REMARKS ON DESINGULARIZATION THEOREM

OSAMU FUJINO

1. Remarks on desingularization theorem

In this section, we discuss some remarks on desingularization theorem for the study of simple normal crossing varieties. First, we prove a slight generalization of Szabó's resolution lemma (cf. [Sz, Resolution Lemma], [BEV, Theorem 7.11], and [K07, Proposition 6]).

Theorem 1.1 (Resolution lemma for simple normal crossing varieties). Let X be a simple normal crossing variety and D a permissible Cartier divisor on X. Then there exists a proper birational morphism $f: Y \rightarrow X$ with the following properties:

- (1) f is a composition of blow-ups of smooth subvarieties,
- (2) Y is a simple normal crossing variety,
- (3) $\operatorname{Supp}(f_*^{-1}D \cup \operatorname{Exc}(f))$ is a simple normal crossing divisor on Y, where $f_*^{-1}D$ is the strict transform of D on Y, and
- (4) f is an isomorphism over U, where U is the largest open set of X such that $\text{Supp}D|_U$ is a simple normal crossing divisor on U.

Note that f is projective and the exceptional locus Exc(f) is of pure codimension one in Y since f is a composition of blowing-ups.

Proof. Let $X = \bigcup_{i \in I} X_i$ be the irreducible decomposition. By Szabó's resolution lemma (see, for example, [BEV, Theorem 7.11] and [K08, Proposition 6], we obtain a sequence of smooth blow-ups

 $\Pi: {}_{r}X \to {}_{r-1}X \to \cdots \to {}_{1}X \to {}_{0}X = X$

whose centers are on the strict transforms of X_1 and have simple normal crossing with $\sum_{i \neq 1} X_i |_{X_1}$ such that

- (A) $\text{Exc}(\Pi)$ is a simple normal crossing divisor on a simple normal crossing variety $_{r}X$,
- (B) Π is an isomorphism over U, and

Date: 2010/8/16, Version 1.07.

I will use these statements in some papers.

OSAMU FUJINO

(C) $\operatorname{Supp}(\Pi_*^{-1}D + \sum_{i \neq 1} {}_rX_i + \operatorname{Exc}(\Pi))|_{rX_1}$ is a simple normal crossing divisor on ${}_rX_1$, where ${}_rX_i$ is the strict transform of X_i on ${}_rX$ for every *i*.

We note that ${}_{j}X$ is a simple normal crossing variety for every j by the construction. Apply this argument to each irreducible component of X. Then we obtain a desired birational map $f: Y \to X$. \Box

Next, we discuss the elimination of indeterminacies for simple normal crossing varieties.

Theorem 1.2 (Elimination of indeterminacies for simple normal crossing varieties). Let X be a simple normal crossing variety and $g: X \dashrightarrow$ Y a rational map to a quasi-projective variety Y. Let $Z \subset X$ be the indeterminacy locus of g. Assume that Z contains no strata of X. Then there is a projective birational morphism $f: X' \to X$ from a simple normal crossing variety X' with the following properties:

- (1) f is a composition of blow-ups of smooth subvarieties,
- (2) the composition $g \circ f : X' \to Y$ is a morphism, and
- (3) f is an isomorphism over $X \setminus Z$.

Proof. Since Y is quasi-projective, we can assume that $Y = \mathbb{P}^N$. By the assumption, the codimension of $Z \geq 2$. Let $X = \bigcup_{i \in I} X_i$ be the irreducible decomposition of X. We consider $\mathcal{O}_{\mathbb{P}^N}(1)$ and a basis $\{s_0, \dots, s_N\}$ of $H^0(\mathbb{P}^N, \mathcal{O}_{\mathbb{P}^N}(1))$. We put $g_i = g|_{X_i}$ for every *i*. The line bundle $g_i^* \mathcal{O}_{\mathbb{P}^N}(1)$ on $X_i \setminus Z$ extends to a line bundle on X_i and $g_i^* s_0, \dots, g_i^* s_N$ are sections of \mathcal{L}_i on X_i . Let $\mathcal{M}_i \subset \mathcal{L}_i$ be the subsheaf generated by $\{g_i^* s_0, \dots, g_i^* s_N\}$. Then $I_i = \mathcal{M}_i \otimes \mathcal{L}_i^{-1}$ is an ideal sheaf on X_i . By the principalization theorem (see, for example, [K07, Theorem 3.26]), there is a sequence of smooth blow-ups

$$\Pi: \widetilde{X} = {}_{r}X \to {}_{r-1}X \to \dots \to {}_{1}X \to {}_{0}X = X$$

whose centers are on the strict transforms of X_1 and have simple normal crossing with $\sum_{i \neq 1} X_i|_{X_1}$ (see [K07, Definitions 3.24 and 3.25]) such that

- (A) $I_1 \mathcal{O}_{\widetilde{X}_1} \subset \mathcal{O}_{\widetilde{X}_1}$ is a locally principal ideal sheaf, where \widetilde{X}_1 is the strict transform of X_1 on \widetilde{X} , and
- (B) Π is an isomorphism over $X \setminus Z$.

We note that ${}_{j}X$ is a simple normal crossing variety for every j by the construction. We replace X with \widetilde{X} and apply the same argument to the irreducible component X_2 of X. Repeat this argument. Then we obtain a projective birational morphism $f : X' \to X$ from a simple normal crossing variety X' such that $I_i \mathcal{O}_{X'_i}$ is a locally principal ideal

 $\mathbf{2}$

sheaf for every *i*, where X'_i is the strict transform of X_i on X'. The global sections $(g_i \circ f)^* s_0, \cdots, (g_i \circ f)^* s_N \in H^0(X'_i, f^*\mathcal{L}_i)$ generate the locally free sheaf $I_i f^*\mathcal{L}_i$ on X'_i for every *i*. By the construction, we can glue the morphisms given by

$$X'_i \to \mathbb{P}^N : x \mapsto \left[(g_i \circ f)^* s_0(x) : \dots : (g_i \circ f)^* s_N(x) \right]$$

for all i and we obtain a morphism $g \circ f : X' \to \mathbb{P}^N$.

We think the following problem is one of the most important problems on simple normal crossing varieties.

Problem 1.3. Let X be a simple normal crossing variety. Are there any simple normal crossing varieties \overline{X} such that

- (i) \overline{X} is complete,
- (ii) \overline{X} is projective if X is quasi-projective,
- (iii) X is a Zariski open dense subset of \overline{X} ,
- (iv) $Z = \overline{X} \setminus X$ is a simple normal crossing divisor on \overline{X} , and
- (v) Z contains no strata of \overline{X} .

We note that it was already solved by Szabó's resolution lemma when X is a simple normal crossing divisor on a smooth variety M. We recommend the reader to see [F7].

Acknowledgments. I thank Professors Takeshi Abe, Hiraku Kawanoue, Kenji Matsuki, and Shigefumi Mori.

References

bevbev	[BEV]	A. Bravo, S. Encinas, Santiago, U., O. Villamayor, A simplified proof of
		desingularization and applications, Rev. Mat. Iberoamericana 21 (2005),
		no. 2, 349–458.
fujino0	[F7]	O. Fujino, What is
book	[Book]	O. Fujino, Introduction to the log minimal model program for log canonical
		pairs, preprint (2009).
resol-book	[K07]	J. Kollár, Lectures on resolution of singularities, Annals of Mathematics
		Studies, 166. Princeton University Press, Princeton, NJ, 2007.

[K08] J. Kollár, Semi log resolutions, preprint (2008).

[Sz] E. Szabó,

semi-resolution

szabo

Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606-8502, Japan

E-mail address: fujino@math.kyoto-u.ac.jp