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ABSTRACT. The main purpose of this paper is to make C,, ,_1,
which is the main theorem of [Kal], more accessible.

1. INTRODUCTION

In spite of its importance, the proof of Un,n—l is not so easy to
access for the younger generation, including myself. After [Kal] was
published, the birational geometry has drastically developed. When
Kawamata wrote [Kal], the following techniques and results are not
known nor fully matured.

e Kawamata’s covering trick,

e moduli theory of curves, especially, the notion of level structures
and the existence of tautological families,

e various notions of singularities such as rational singularities,
canonical singularities, and so on.

See [Ka2, §2], [AK, Section 5], [AO, Part I1], [vGO], [V2], and [KM]. In
the mid 1990s, de Jong gave us fantastic results: [dJ1] and [dJ2]. The
alteration paradigm generated the weak semistable reduction theorem
[AK]. This paper shows how to recover the main theorem of [Kal]
by using the weak semistable reduction. The proof may look much
simpler than Kawamata’s original proof (note that we have to read
[V1] to understand [Kal]). However, the alteration theorem grew out
from the deep investigation of the moduli space of stable pointed curves
(see [dJ1] and [dJ2]). So, don’t misunderstand the real value of this
paper. We note that we do not enforce Kawamata’s arguments. We
only recover his main result. Of course, this paper is not self-contained.

The following result is the main theorem of [Kal]. We call this U,w,l
in this paper. Here, n means the dimension of X.
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Theorem 1.1 ([Kal, Theorem 1]). Let f : X — Y be a domi-
nant morphism of algebraic varieties defined over the complexr number
field C. Assume that the general fibre X, = f~*(y) is an irreducible
curve. Then we have the following inequality for logarithmic Kodaira
dimensions:

R(X) > R(Y) +R(X,).

In Section 2, we will give a proof to [Kal, Theorem 2], which is
stronger than C,, ,_;. See the inequality (5/%”_1) in the first paragraph
of the proof below.

Note that our reference list does not cover all the papers treating the
related topics. We apologize in advance to the colleagues whose works
were not appropriately mentioned in this paper.

Acknowledgments. I would like to thank Professor Hisashi Naito
for removing several troubles from my Mac during the preparation of
this paper. I am grateful to the Institute for Advanced Study for its
hospitality. I was partially supported by a grant from the National
Science Foundation: DMS-0111298.

Notation. We will work over C throughout this paper. For the basic
properties of the logarithmic Kodaira dimension, see [I1], [I2], [I3], and
[Kal, §1].

(i) Let X be a (not necessarily complete) variety. Then %(X) de-
notes the logarithmic Kodaira dimension of X.

(ii)) Let f : X — Y be a dominant morphism between varieties
and D a Q-divisor on X. We can write D = Dy, + Dye, such
that every irreducible component of Dy, (resp. Dye) is mapped
(resp. not mapped) onto Y. If D = Dy, (resp.D = Dye,), D is
said to be horizontal (resp. vertical).

(ii) Let f : X — Y be a birational morphism. Then Exc(f)
denotes the exceptional locus of f.

2. Un,nfl

Here, we prove the following theorem. It is easy to see that this
statement is equivalent to Theorem 1.1 by the basic properties of the
logarithmic Kodaira dimension.

Theorem 2.1 (C),,—1). Let f : X — Y be a surjective morphism
with connected fibers between non-singular projective varieties X and
Y. Let C and D be simple normal crossing divisors on X and Y. We
put Xo:=X\C and Yy :=Y \ D. Assume that f(Xo) C Yy. Then

K(Xo) = E(Yo) +E(Fp),
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where Fy is a sufficiently general fiber of fo := f|x, : Xo — Yo.

Before we start the proof, let us recall the following trivial lemma.
We will frequently use it without mentioning it.

Lemma 2.2. Let X be a complete normal variety. Let Dy and Do be Q-
Cartier Q-divisors on X. Assume that D1 > Ds. Then k(Dy) > k(D3).

Proof of Theorem 2.1. By Theorem 2 in [Kal], it is sufficient to prove

(Crn) K(EKx +C = f*(Ky + D)) 2 R(F).
Step 1. By Theorem 2.1 in [AK] (see also [Kr, Chapter 2, Remark 4.5
and Section 9]), we have the following commutative diagram:

X<—X,DUX/

| ! |
Y<—Y/3Uy/

such that p : X’ — X and ¢ : Y/ — Y are projective birational
morphisms, X’ is quasi-smooth (in particular, Q-factorial) and Y is
non-singular, the inclusion on the right are toroidal embeddings, and
such that
(1) f": (Ux € X') — (Uys C Y')is toroidal and equi-dimensional,
(2) Let C" := (p*C)rea and D’ := (¢*D)yeq. Then C" C X'\ Uxs and
D' cY’ \ Uy:.
Since
E(XO) = H(KX + C) = R(KX/ + Cl)
and
E(Yb) = K,(Ky + D) = K(Ky/ + D,),
we can replace f : X — Y with f' : X! — Y’. For the simplicity
of the notation, we omit the superscript . So, we can assume that
f: X — Y is toroidal with the above extra assumptions.

Step 2. By taking a Kawamata’s Kummer cover ¢ : Y/ — Y, we
obtain the following commutative diagram:

X 2 x

| |7
Y «—— Y’
q
such that f': X’ — Y’ is weakly semistable, where X’ is the normal-
ization of X Xy Y’ (see [AK, Section 5]). We put G := X \ Ux and
H :=Y \ Uy. Then we have

Kx+C— f"(Ky+D)> Kx + Chor + Gyer — [*(Ky + H).
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Therefore, we can check that
p*(KX + C - f*(KY + D)) Z KXI/Y/ + (p*C)hor.

We note that (p*C)nor = p*(Chor). So, it is sufficient to prove that
KZ(KX//y/ + (p*c>h0r) 2 E(Fo)

Step 3. Let F be a general fiber of f : X — Y. We put g := g(F): the
genus of F.

Case (g > 2). In this case,
K(Kx vy + (0" Chhor) = 6(Kxryyr) 2 1 = R(Fp).
The last inequality is well-known. So, we stop the proof in this case.
Case (g = 1). It is well-known that
k(Kxr yr) > Var(f') = Var(f) > 0.

For the definition of the variation Var(f), see, for instance, [V3, p.329].
So, if C'is vertical or Var(f) > 1, then we obtain

K(KX//y/ + (p*C>hor> Z E(Fo)

Therefore, we can assume that Var(f) = 0 and C is not vertical. By
Kawamata’s covering trick, we obtain the following commutative dia-
gram:

X/ ™ X//

T

YI Y//’
U
where 1 : Y — Y’ is a Kawamata’s Kummer cover from a non-
singular projective variety Y, f": X" := X' xy, Y — Y is weakly
semistable, and f” is birationally equivalent to Y” x F — Y. Here,
E' is an elliptic curve. Note that, if we need, we blow-up Y’ and replace
X' with its base change before taking the cover. For details, see [AK,
Lemma 6.2] and the proof of [Ka2, Corollary 19]. Since

7T*<KX’/Y’ + (p*c)hor) = KX”/Y” + W*((p*c)hor)a

it is sufficient to prove k(K xw/yn + 7 ((p*C)nor)) > 1. Let a : X —

Y"x E, 3: X — X" be a common resolution. Since X" has only ra-
tional Gorenstein singularities, X” has at worst canonical singularities.
Thus, we obtain

(K pyn + 7 (0" Cnor)) = 6(K gy + 877 ((0°Cnor)) -
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On the other hand,
K)Z'/Y” == K)Z'/Y”XE —I— KY”XE/Y” = A

is an effective a-exceptional divisor such that SuppA = Exc(«). Let B

be an irreducible component of 8*7*((p*C)nor) such that B is dominant
onto Y. Then

m(A+ 7 ((p*Chor)) > @B,

for a sufficiently large integer m. Therefore, if is sufficient to prove
k(YY" x E,a.B) > 1. It is true by [F2, Corollary 5.4]. Thus, we finish
the proof when g = 1.

Case (g = 0). As in the above case, we can take a Kawamata’s Kum-
mer cover and obtain the following commutative diagram:

X/ ™ X//

1L

Y/ Y//,
n

where f” is birationally equivalent to Y” x P! — Y”. We can further
assume that all the horizontal components of 7*((p*C')per) are mapped
onto Y birationally.

Lemma 2.3 (cf. [F1, Section 7]). Let f : V. — W be a surjective mor-
phism between non-singular projective varieties with connected fibers.
Assume that f is birationally equivalent to W x P! — P, Let {Cy} be
a set of distinct irreducible divisors such that f : Cy, — W is birational

for every k (k < 3). Then
I{(Kv/w + 01 + 02) Z 0
and
K(Kv/w + 01 + 02 + Cg) Z 1.

Proof. By modifying V' and W birationally (see also [F1, Lemma 7.8])
and replacing ' with its strict transform, we can assume that there
exists a simple normal crossing divisor X on W such that

SD'LJ : VE) = f71<W0> ~ WO X ]P)l

with ¢;;(Cilv,) = Wo x {0} and ¢;;(Cjlv,) = Wo x {oo} for i # j,
where Wy := W\ ¥. We can further assume that there exists ¢;; :
V' — P! such that ¥;;]v, = p2 o ¢ij, where p, is the second projection
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Wy x P! — P! We also assume that UpCj U (f*Y).q is a simple
normal crossing divisor. we obtain

d
/\wij* (5) € HOHIOV(f*(KW + E)a KV + Cz + Cj + (f*z)red)

~ HV,Kyyw + Ci + Cj + (fS)ea — f72)
c HV,Kyw +C;+ )

for i # j, where z denotes a suitable inhomogeneous coordinate of P*
(see [F1, Lemma 7.12]). Therefore,

dim(c HOO/, KV/W + Cl + 02) Z 1

and
dim(c HO(‘/, KV/W + Ol + CQ + Cg) Z 2.

Thus, we obtain the required result. U

Apply Lemma 2.3 to X — Y, where (3 : X — X" is a resolution
of X”. Then we obtain

K(K g yn + 87 ((P"Chhor)) = E(Fo).

Thus, we complete the proof. O
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