
APPENDIX: RATIONAL SINGULARITIES

OSAMU FUJINO

0.1. Appendix: Rational singularities. In this subsection, we give
a proof of the following well-known theorem again (see Theorem

49-dlt
??).

z-rational Theorem 0.1. Let (X, D) be a dlt pair. Then X has only rational

singularities.

Our proof is a combination of the proofs in
km
[?, Theorem 5.22] and

ko-sing
[?, Section 11]. We need no difficult duality theorems. The argument
here will be used in Section

sec-alex
??.

First, let us recall the definition of the rational singularities.

Definition 0.2 (Rational singularities). A variety X has rational sin-

gularities if there is a resolution f : Y → X such that f∗OY ' OX and
Rif∗OY = 0 for all i > 0.

Next, we give a dual form of the Grauert–Riemenschneider vanishing
theorem.

lem-gr Lemma 0.3. Let f : Y → X be a proper birational morphism from a

smooth variety Y to a variety X. Let x ∈ X be a closed point. We put

F = f−1(x). Then we have

H i
F (Y,OY ) = 0

for every i < n = dim X.

Proof. We take a proper birational morphism g : Z → Y from a smooth
variety Z such that f ◦ g is projective. We consider the following
spectral sequence

E
pq
2 = H

p
F (Y, Rqg∗OZ) ⇒ H

p+q
E (Z,OZ),

where E = g−1(F ) = (f ◦ g)−1(x). Since Rqg∗OZ = 0 for q > 0 and
g∗OZ ' OY , we have H

p
F (Y,OY ) ' H

p
E(Z,OZ) for every p. Therefore,

we can replace Y with Z and assume that f : Y → X is projective.
Without loss of generality, we can assume that X is affine. Then we
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compactify X and assume that X and Y are projective. It is well
known that

H i
F (Y,OY ) ' lim

−→
m

Exti(OmF ,OY )

(see
hartshorne-local
[?, Theorem 2.8]) and that

Hom(Exti(OmF ,OY ), C) ' Hn−i(Y,OmF ⊗ ωY )

by duality on a smooth projective variety Y (see
hartshorne-ag
[?, Theorem 7.6 (a)]).

Therefore,

Hom(H i
F (Y,OY ), C) ' Hom(lim

−→
m

Exti(OmF ,OY ), C)

' lim
←−
m

Hn−i(Y,OmF ⊗ ωY )

' (Rn−if∗ωY )∧x

by the theorem on formal functions (see
hartshorne-ag
[?, Theorem 11.1]), where

(Rn−if∗ωY )∧x is the completion of Rn−if∗ωY at x ∈ X. On the other
hand, Rn−if∗ωY = 0 for i < n by the Grauert–Riemenschneider van-
ishing theorem. Thus, H i

F (Y,OY ) = 0 for i < n. �

lem-gr-ho Remark 0.4. Lemma
lem-gr
0.3 holds true even when Y has rational singu-

larities. It is because Rqg∗OZ = 0 for q > 0 and g∗OZ ' OY holds in
the proof of Lemma

lem-gr
0.3.

Let us start the proof of Theorem
z-rational
0.1.

Proof of Theorem
z-rational
0.1. Without loss of generality, we can assume that

X is affine. Moreover, by taking generic hyperplane sections of X,
we can also assume that X has only rational singularities outside a
closed point x ∈ X. By the definition of dlt pairs, we can take a
resolution f : Y → X such that Exc(f) and Exc(f) ∪ Suppf−1

∗
D are

both simple normal crossing divisors on Y , KY + f−1
∗

D = f ∗(KX +
D) + E with pEq ≥ 0, and that f is projective. Moreover, we can
make f an isomorphism over the generic point of any lc center of (X, D).
Therefore, by Lemma

vani-rf-le
??, we can check that Rif∗OY (pEq) = 0 for every

i > 0. See also the proof of Theorem
49-dlt
??. We note that f∗OY (pEq) '

OX since pEq is effective and f -exceptional. For every i > 0, by the
above assumption, Rif∗OY is supported at a point x ∈ X if it ever
has a non-empty support at all. We put F = f−1(x). Then we have a
spectral sequence

E
ij
2 = H i

x(X, Rjf∗OY (pEq)) ⇒ H
i+j
F (Y,OY (pEq)).

By the above vanishing result, we have

H i
x(X,OX) ' H i

F (Y,OY (pEq))
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for every i ≥ 0. We obtain a commutative diagram

H i
F (Y,OY ) −−−→ H i

F (Y,OY (pEq))

α

x





x





β

H i
x(X,OX) H i

x(X,OX).

We have already checked that β is an isomorphism for every i and that
H i

F (Y,OY ) = 0 for i < n (see Lemma
lem-gr
0.3). Therefore, H i

x(X,OX) = 0
for every i < n = dim X. Thus, X is Cohen–Macaulay. For i = n, we
obtain that

α : Hn
x (X,OX) → Hn

F (Y,OY )

is injective. We consider the following spectral sequence

E
ij
2 = H i

x(X, Rjf∗OY ) ⇒ H
i+j
F (Y,OY ).

We note that H i
x(X, Rjf∗OY ) = 0 for every i > 0 and j > 0 since X is

affine, SuppRjf∗OY ⊂ {x} for j > 0, and

· · · → H i−1(X \ {x}, Rjf∗OY ) → H i
x(X, Rjf∗OY )

→ H i(X, Rjf∗OY ) → · · · .

On the other hand, we have already obtained E i0
2 = H i

x(X,OX) = 0

for every i < n. Therefore, H0
x(X, Rjf∗OY ) ' H

j
F (Y,OY ) = 0 for all

j ≤ n−2. Thus, Rjf∗OY = 0 for 1 ≤ j ≤ n−2. Since Hn−1
x (X,OX) =

0, we obtain that

0 → H0

x(X, Rn−1f∗OY ) → Hn
x (X,OX)

α
→ Hn

F (Y,OY ) → 0

is exact. We have already checked that α is injective. So, we obtain
that H0

x(X, Rn−1f∗OY ) = 0. This means that Rn−1f∗OY = 0. Thus,
we have Rif∗OY = 0 for every i > 0. We complete the proof. �
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