VANISHING THEOREMS FOR QUASI-PROJECTIVE VARIETIES

OSAMU FUJINO

1. VANISHING AND TORSION-FREE THEOREMS

In this section, we prove the following theorem. It was proved for embedded simple normal crossing pairs in [F1, Theorem 2.39]. Here, we prove it without assuming the existence of ambient spaces. However, we need the assumption that X is quasi-projective.

Theorem 1.1 (cf. [F1, Theorem 2.39]). Let (X, B) be a quasi-projective simple normal crossing pair. Let $f: X \rightarrow Y$ be a proper morphism between algebraic varieties and let L be a Cartier divisor on X. Let q be an arbitrary integer. Then we have the following properties.
(i) Assume that $L-\left(K_{X}+B\right)$ is f-semi-ample. Then every associated prime of $R^{q} f_{*} \mathcal{O}_{X}(L)$ is the generic point of the f-image of some stratum of (X, B).
(ii) Let $\pi: Y \rightarrow Z$ be a projective morphism. We assume that $L-$ $\left(K_{X}+B\right) \sim_{\mathbb{R}} f^{*} A$ for some π-ample \mathbb{R}-Cartier \mathbb{R}-divisor A on Y. Then $R^{q} f_{*} \mathcal{O}_{X}(L)$ is π_{*}-acyclic, that is, $R^{p} \pi_{*} R^{q} f_{*} \mathcal{O}_{X}(L)=0$ for every $p>0$.

Proof. Since X is quasi-projective, we can embed X into a smooth projective variety V. By Lemma 1.2 below, we can replace (X, B) and L with (X_{k}, B_{k}) and $\sigma^{*} L$ and assume that there exists an \mathbb{R}-divisor D on V such that $B=\left.D\right|_{X}$. Then, by using Bertini's theorem, we can take a general complete intersection $W \subset V$ such that $\operatorname{dim} W=$ $\operatorname{dim} X+1, X \subset W$, and W is smooth at the generic point of any stratum of (X, B).

We take a suitable resolution $\varphi: M \rightarrow W$ which is an isomorphism outside the singular locus of W with the following properties.
(A) The strict transform X^{\prime} of X is a simple normal crossing divisor on M.
(B) We can write

$$
K_{X^{\prime}}+B^{\prime}=\varphi^{*}\left(K_{X}+B\right)+E
$$

Date: 2010/6/9, version 1.02.
such that $\left(X^{\prime}, \operatorname{Supp}\left(B^{\prime}+E\right)\right)$ is a global embedded simple normal crossing pair, B^{\prime} is a boundary \mathbb{R}-divisor on X^{\prime}, the φ image of any stratum of $\left(X^{\prime}, B^{\prime}\right)$ is a stratum of $(X, B),\ulcorner E\urcorner$ is effective and φ-exceptional.
Then

$$
\begin{gathered}
K_{X^{\prime}}+B^{\prime}+\{-E\}=\varphi^{*}\left(K_{X}+B\right)+\ulcorner E\urcorner, \\
\varphi_{*} \mathcal{O}_{X^{\prime}}\left(\varphi^{*} L+\ulcorner E\urcorner\right) \simeq \mathcal{O}_{X}(L),
\end{gathered}
$$

and

$$
R^{q} \varphi_{*} \mathcal{O}_{X^{\prime}}\left(\varphi^{*} L+\ulcorner E\urcorner\right)=0
$$

for every $q>0$ (cf. [F1, Theorem 2.39 (i)]). We note that

$$
\varphi^{*} L+\ulcorner E\urcorner-\left(K_{X^{\prime}}+B^{\prime}+\{-E\}\right)=\varphi^{*}\left(L-\left(K_{X}+B\right)\right)
$$

and that we can assume that φ is an isomorphism at the generic point of any stratum of ($\left.X^{\prime}, B^{\prime}+\{-E\}\right)$.

Therefore, by replacing (X, B) and L with $\left(X^{\prime}, B^{\prime}+\{-E\}\right)$ and $\varphi^{*} L+\ulcorner E\urcorner$, we can assume that (X, B) is a quasi-projective global embedded simple normal crossing pair. In this case, the claims have already been established by [F1, Theorem 2.39].

By direct calculations, we can obtain the following elementary lemma.
Lemma 1.2 (cf. [F1, Lemma 3.60]). Let (X, B) be a simple normal crossing pair such that B is a boundary \mathbb{R}-divisor. Let V be a smooth variety such that $X \subset V$. Then we can construct a sequence of blow-ups

$$
V_{k} \rightarrow V_{k-1} \rightarrow \cdots \rightarrow V_{0}=V
$$

with the following properties.
(1) $\sigma_{i+1}: V_{i+1} \rightarrow V_{i}$ is the blow-up along a smooth irreducible component of $\operatorname{Supp} B_{i}$ for every $i \geq 0$.
(2) We put $X_{0}=X, B_{0}=B$, and X_{i+1} is the strict transform of X_{i} for every $i \geq 0$.
(3) We put $K_{X_{i+1}}+B_{i+1}=\sigma_{i+1}^{*}\left(K_{X_{i}}+B_{i}\right)$ for every $i \geq 0$.
(4) There exists an \mathbb{R}-divisor D on V_{k} such that $\left.D\right|_{X_{k}}=B_{k}$.
(5) $\sigma_{*} \mathcal{O}_{X_{k}} \simeq \mathcal{O}_{X}$ and $R^{q} \sigma_{*} \mathcal{O}_{X_{k}}=0$ for every $q>0$, where σ : $V_{k} \rightarrow V_{k-1} \rightarrow \cdots \rightarrow V_{0}=V$.

Proof. All we have to do is to check the property (5). We note that $\sigma_{i+1 *} \mathcal{O}_{V_{i+1}}\left(K_{V_{i+1}}\right) \simeq \mathcal{O}_{V_{i+1}}\left(K_{V_{i+1}}\right)$ and $R^{q} \sigma_{i+1 *} \mathcal{O}_{V_{i+1}}\left(K_{V_{i+1}}\right)=0$ for every q and for each step $\sigma_{i+1}: V_{i+1} \rightarrow V_{i}$ (cf. [F1, Lemma 2.33]). Therefore we obtain $R^{q} \sigma_{*} \mathcal{O}_{X_{k}}\left(K_{X_{k}}\right)=0$ for every $q>0$ and $\sigma_{*} \mathcal{O}_{X_{k}}\left(K_{X_{k}}\right) \simeq$ $\mathcal{O}_{X}\left(K_{X}\right)$. Thus by the Grothendieck duality we obtain $R^{q} \sigma_{*} \mathcal{O}_{X_{k}}=0$ for every $q>0$ and $\sigma_{*} \mathcal{O}_{X_{k}} \simeq \mathcal{O}_{X}$.

References

[F1] O. Fujino, Introduction to the log minimal model program for log canonical pairs, preprint (2009).

Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606-8502, Japan

E-mail address: fujino@math.kyoto-u.ac.jp

