VANISHING THEOREMS FOR QUASI-PROJECTIVE VARIETIES

OSAMU FUJINO

1. Vanishing and torsion-free theorems

In this section, we prove the following theorem. It was proved for $embedded\ simple\ normal\ crossing\ pairs$ in [F1, Theorem 2.39]. Here, we prove it without assuming the existence of ambient spaces. However, we need the assumption that X is quasi-projective.

Theorem 1.1 (cf. [F1, Theorem 2.39]). Let (X, B) be a quasi-projective simple normal crossing pair. Let $f: X \to Y$ be a proper morphism between algebraic varieties and let L be a Cartier divisor on X. Let q be an arbitrary integer. Then we have the following properties.

- (i) Assume that $L (K_X + B)$ is f-semi-ample. Then every associated prime of $R^q f_* \mathcal{O}_X(L)$ is the generic point of the f-image of some stratum of (X, B).
- (ii) Let $\pi: Y \to Z$ be a projective morphism. We assume that $L (K_X + B) \sim_{\mathbb{R}} f^*A$ for some π -ample \mathbb{R} -Cartier \mathbb{R} -divisor A on Y. Then $R^q f_* \mathcal{O}_X(L)$ is π_* -acyclic, that is, $R^p \pi_* R^q f_* \mathcal{O}_X(L) = 0$ for every p > 0.

Proof. Since X is quasi-projective, we can embed X into a smooth projective variety V. By Lemma 1.2 below, we can replace (X, B) and L with (X_k, B_k) and σ^*L and assume that there exists an \mathbb{R} -divisor D on V such that $B = D|_X$. Then, by using Bertini's theorem, we can take a general complete intersection $W \subset V$ such that $\dim W = \dim X + 1$, $X \subset W$, and W is smooth at the generic point of any stratum of (X, B).

We take a suitable resolution $\varphi: M \to W$ which is an isomorphism outside the singular locus of W with the following properties.

- (A) The strict transform X' of X is a simple normal crossing divisor on M.
- (B) We can write

$$K_{X'} + B' = \varphi^*(K_X + B) + E$$

Date: 2010/6/9, version 1.02.

such that $(X', \operatorname{Supp}(B'+E))$ is a global embedded simple normal crossing pair, B' is a boundary \mathbb{R} -divisor on X', the φ -image of any stratum of (X', B') is a stratum of (X, B), $\ulcorner E \urcorner$ is effective and φ -exceptional.

Then

$$K_{X'} + B' + \{-E\} = \varphi^*(K_X + B) + \lceil E \rceil,$$

$$\varphi_* \mathcal{O}_{X'}(\varphi^* L + \lceil E \rceil) \simeq \mathcal{O}_X(L),$$

and

$$R^q \varphi_* \mathcal{O}_{X'}(\varphi^* L + \lceil E \rceil) = 0$$

for every q > 0 (cf. [F1, Theorem 2.39 (i)]). We note that

$$\varphi^* L + \lceil E \rceil - (K_{X'} + B' + \{-E\}) = \varphi^* (L - (K_X + B))$$

and that we can assume that φ is an isomorphism at the generic point of any stratum of $(X', B' + \{-E\})$.

Therefore, by replacing (X, B) and L with $(X', B' + \{-E\})$ and $\varphi^*L + \lceil E \rceil$, we can assume that (X, B) is a quasi-projective global embedded simple normal crossing pair. In this case, the claims have already been established by [F1, Theorem 2.39].

By direct calculations, we can obtain the following elementary lemma.

Lemma 1.2 (cf. [F1, Lemma 3.60]). Let (X, B) be a simple normal crossing pair such that B is a boundary \mathbb{R} -divisor. Let V be a smooth variety such that $X \subset V$. Then we can construct a sequence of blow-ups

$$V_k \to V_{k-1} \to \cdots \to V_0 = V$$

with the following properties.

- (1) $\sigma_{i+1}: V_{i+1} \to V_i$ is the blow-up along a smooth irreducible component of $\operatorname{Supp} B_i$ for every $i \geq 0$.
- (2) We put $X_0 = X$, $B_0 = B$, and X_{i+1} is the strict transform of X_i for every $i \geq 0$.
- (3) We put $K_{X_{i+1}} + B_{i+1} = \sigma_{i+1}^*(K_{X_i} + B_i)$ for every $i \ge 0$.
- (4) There exists an \mathbb{R} -divisor D on V_k such that $D|_{X_k} = B_k$.
- (5) $\sigma_* \mathcal{O}_{X_k} \simeq \mathcal{O}_X$ and $R^q \sigma_* \mathcal{O}_{X_k} = 0$ for every q > 0, where $\sigma : V_k \to V_{k-1} \to \cdots \to V_0 = V$.

Proof. All we have to do is to check the property (5). We note that $\sigma_{i+1*}\mathcal{O}_{V_{i+1}}(K_{V_{i+1}}) \simeq \mathcal{O}_{V_{i+1}}(K_{V_{i+1}})$ and $R^q\sigma_{i+1*}\mathcal{O}_{V_{i+1}}(K_{V_{i+1}}) = 0$ for every q and for each step $\sigma_{i+1}: V_{i+1} \to V_i$ (cf. [F1, Lemma 2.33]). Therefore we obtain $R^q\sigma_*\mathcal{O}_{X_k}(K_{X_k}) = 0$ for every q > 0 and $\sigma_*\mathcal{O}_{X_k}(K_{X_k}) \simeq \mathcal{O}_X(K_X)$. Thus by the Grothendieck duality we obtain $R^q\sigma_*\mathcal{O}_{X_k} = 0$ for every q > 0 and $\sigma_*\mathcal{O}_{X_k} \simeq \mathcal{O}_X$.

References

[F1] O. Fujino, Introduction to the log minimal model program for log canonical pairs, preprint (2009).

Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606-8502, Japan

 $E ext{-}mail\ address: fujino@math.kyoto-u.ac.jp}$