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Abstract. We give a characterization of projective spaces for quasi-log canonical pairs
from the Mori theoretic viewpoint.
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1. Introduction

In this paper, we give a characterization of projective spaces for quasi-log canonical pairs
from the Mori theoretic viewpoint. We are mainly interested in singular varieties which
naturally appear in the minimal model theory of higher-dimensional complex projective
varieties. Although we could not find it explicitly in the literature, the following theorem
is more or less well known to the experts.

Theorem 1.1. Let (X,∆) be a projective kawamata log terminal pair such that −(KX+∆)
is ample. Assume that −(KX +∆) ≡ rH for some Cartier divisor H on X with r > n =
dimX. Then X is isomorphic to Pn with OX(H) ≃ OPn(1).

In his lectures on Fano manifolds in Osaka, Kento Fujita explained the above theorem
and asked if it could be generalized. The following theorem is an answer to Fujita’s
question.

Theorem 1.2. Let [X,ω] be a projective quasi-log canonical pair such that X is connected.
Assume that ω is not nef and that ω ≡ rD for some Cartier divisor D on X with r > n =
dimX. Then X is isomorphic to Pn with OX(D) ≃ OPn(−1). Moreover, there are no qlc
centers of [X,ω].

By combining Theorem 1.2 with [Fn4, Theorem 1.1], we obtain the following corollary.

Corollary 1.3. Let (X,∆) be a projective semi-log canonical pair such that X is connected.
Assume that KX +∆ is not nef and that KX +∆ ≡ rD for some Cartier divisor D on X
with r > n = dimX. Then X is isomorphic to Pn with OX(D) ≃ OPn(−1) and (X,∆) is
kawamata log terminal.

Just after we put this paper on arXiv, Stéphane Druel and Yoshinori Gongyo pointed
out that Theorem 1.1 was already generalized as follows:
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Theorem 1.4 ([AD, Theorem 1.1]). Let X be a normal projective variety and let ∆ be an
effective R-divisor on X such that KX +∆ is R-Cartier. Assume that −(KX +∆) ≡ rH
for some ample Cartier divisor H on X with r > n = dimX. Then n < r ≤ n + 1,
(X,OX(H)) ≃ (Pn,OPn(1)), and deg∆ = n + 1 − r. In particular, (X,∆) has only
kawamata log terminal singularities.

We note that there are no assumptions on singularities of (X,∆) in Theorem 1.4. On the
other hand, in Theorem 1.2 and Corollary 1.3, we relax the assumption that −(KX +∆)
is ample in Theorem 1.1, although we still require some assumptions on singularities of
pairs.

We summarize the contents of this paper. In Section 2, we give a sketch of proof of
Theorem 1.2 for log canonical pairs in order to make our main result more accessible.
In Section 3, we collect some basic definitions of the minimal model theory of higher-
dimensional algebraic varieties and the theory of quasi-log schemes. In Section 4, we
prepare three important lemmas on quasi-log schemes for the proof of Theorem 1.2. Section
5 is devoted to the proof of Theorem 1.2 and Corollary 1.3.

Acknowledgments. The authors thank Kento Fujita very much for interesting lectures
on Fano manifolds and many useful comments. They also thank Professors Stéphane Druel
and Yoshinori Gongyo for informing them of [AD]. The first author was partly supported
by JSPS KAKENHI Grant Numbers JP16H03925, JP16H06337.

We will work over C, the complex number field, throughout this paper. In this paper, a
scheme means a separated scheme of finite type over C. We will use the theory of quasi-log
schemes discussed in [Fn5, Chapter 6].

2. Sketch of Proof

In order to make Theorem 1.2 more accessible, we give a sketch of proof of the following
very special case of Theorem 1.2 and Corollary 1.3. We note that [X,KX + ∆] naturally
becomes a quasi-log canonical pair when (X,∆) is a log canonical pair. In this section, we
will freely use some standard results of the minimal model theory for log canonical pairs
(see [Fn3]).

Theorem 2.1 (Theorem 1.2 for log canonical pairs). Let (X,∆) be a projective log canon-
ical pair with dimX = n. Assume that KX +∆ is not nef and that −(KX +∆) ≡ rH for
some Cartier divisor H on X with r > n. Then X ≃ Pn with OX(H) ≃ OPn(1).

Sketch of Proof of Theorem 2.1. Since KX + ∆ is not nef, we have a (KX + ∆)-negative
extremal contraction φ : X → W by the cone and contraction theorem for log canonical
pairs (see [Fn3, Theorem 1.1]).

Case 1 (dimW ≥ 1). We can take an effective R-Cartier divisor B onW with the following
properties:

(i) (X,∆+ φ∗B) is log canonical outside finitely many points, and
(ii) there exists a log canonical center C of (X,∆ + φ∗B) such that φ(C) is a point

with dimC ≥ 1.

In this situation, we obtain that

−(KX +∆+ φ∗B)|C ≡ rH|C
and H|C is ample since φ(C) is a point. Therefore, by the vanishing theorem for quasi-log
schemes (see Lemma 4.2 below), we obtain

χ(C,OC(tH)) ≡ 0.

This is a contradiction since H|C is ample. This means that dimW ≥ 1 does not happen.
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Case 2 (dimW = 0). Since φ : X → W is a (KX +∆)-negative extremal contraction, we
see that H is ample. We can explicitly determine

χ(X,OX(tH))

by −(KX + ∆) ≡ rH with r > n and the vanishing theorem for log canonical pairs (see
[Fn3, Theorem 8.1]). Then we get Hn = 1 and

dimC H
0(X,OX(H)) = n+ 1.

Therefore,

∆(X,H) = n+Hn − dimC H
0(X,OX(H)) = 0

holds, where ∆(X,H) is Fujita’s ∆-genus of (X,H). This implies X ≃ Pn with OX(H) ≃
OPn(1) (see [Ft1, Theorem 2.1] or [KO, Theorem 1.1]).

This is a sketch of the proof of Theorem 2.1. □

When (X,∆) is toric, Theorem 2.1 was already established by the first author in [Fn2,
Theorem 1.2], which is an easy direct consequence of [Fn1, Theorem 0.1]. In [Fn1] and
[Fn2], the sharp estimate of lengths of extremal rational curves plays a crucial role. On
the other hand, we will use some vanishing theorems for quasi-log schemes in this paper.

3. Preliminaries

In this section, we collect some basic definitions of the minimal model program and the
theory of quasi-log schemes. For the details, see [Fn3] and [Fn5].

Let us recall singularities of pairs.

Definition 3.1 (Singularities of pairs). A normal pair (X,∆) consists of a normal variety
X and an R-divisor ∆ on X such that KX+∆ is R-Cartier. Let f : Y → X be a projective
birational morphism from a normal variety Y . Then we can write

KY = f ∗(KX +∆) +
∑
E

a(E,X,∆)E

with

f∗

(∑
E

a(E,X,∆)E

)
= −∆,

where E runs over prime divisors on Y . We call a(E,X,∆) the discrepancy of E with
respect to (X,∆). Note that we can define the discrepancy a(E,X,∆) for any prime
divisor E over X by taking a suitable resolution of singularities of X. If a(E,X,∆) ≥ −1
(resp. > −1) for every prime divisor E over X, then (X,∆) is called sub log canonical
(resp. sub kawamata log terminal). We further assume that ∆ is effective. Then (X,∆) is
called log canonical and kawamata log terminal if it is sub log canonical and sub kawamata
log terminal, respectively.

Let (X,∆) be a normal pair. If there exist a projective birational morphism f : Y → X
from a normal variety Y and a prime divisor E on Y such that (X,∆) is sub log canonical
in a neighborhood of the generic point of f(E) and that a(E,X,∆) = −1, then f(E) is
called a log canonical center of (X,∆).

Definition 3.2 (Operations for R-divisors). Let V be an equidimensional reduced scheme.
An R-divisor D on V is a finite formal sum

l∑
i=1

diDi
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where Di is an irreducible reduced closed subscheme of V of pure codimension one with
Di ̸= Dj for i ̸= j and di is a real number for every i. We put

D<1 =
∑
di<1

diDi, D=1 =
∑
di=1

Di, and D>1 =
∑
di>1

diDi.

For every real number x, ⌈x⌉ is the integer defined by x ≤ ⌈x⌉ < x+ 1. Then we put

⌈D⌉ =
l∑

i=1

⌈di⌉Di and ⌊D⌋ = −⌈−D⌉.

Definition 3.3 (∼R and ≡). Let B1 and B2 be R-Cartier divisors on a scheme X. Then
B1 ∼R B2 means that B1 is R-linearly equivalent to B2, that is, B1−B2 is a finite R-linear
combination of principal Cartier divisors. When X is complete, B1 ≡ B2 means that B1

is numerically equivalent to B2.

In order to define quasi-log schemes, we need the notion of globally embedded simple
normal crossing pairs.

Definition 3.4 (Globally embedded simple normal crossing pairs, see [Fn5, Definition
6.2.1]). Let Y be a simple normal crossing divisor on a smooth variety M and let D be
an R-divisor on M such that Supp(D + Y ) is a simple normal crossing divisor on M and
that D and Y have no common irreducible components. We put BY = D|Y and consider
the pair (Y,BY ). We call (Y,BY ) a globally embedded simple normal crossing pair and M
the ambient space of (Y,BY ). A stratum of (Y,BY ) is a log canonical center of (M,Y +D)
that is contained in Y .

Let us recall the definition of quasi-log schemes.

Definition 3.5 (Quasi-log schemes, see [Fn5, Definition 6.2.2]). A quasi-log scheme is a
scheme X endowed with an R-Cartier divisor (or R-line bundle) ω on X, a proper closed
subscheme X−∞ ⊂ X, and a finite collection {C} of reduced and irreducible subschemes
of X such that there is a proper morphism f : (Y,BY ) → X from a globally embedded
simple normal crossing pair satisfying the following properties:

(1) f ∗ω ∼R KY +BY .
(2) The natural map OX → f∗OY (⌈−(B<1

Y )⌉) induces an isomorphism

IX−∞
≃−→ f∗OY (⌈−(B<1

Y )⌉ − ⌊B>1
Y ⌋),

where IX−∞ is the defining ideal sheaf of X−∞.
(3) The collection of reduced and irreducible subschemes {C} coincides with the images

of (Y,BY )-strata that are not included in X−∞.

We simply write [X,ω] to denote the above data(
X,ω, f : (Y,BY ) → X

)
if there is no risk of confusion. Note that a quasi-log scheme [X,ω] is the union of {C} and
X−∞. The reduced and irreducible subschemes C are called the qlc strata of [X,ω], X−∞
is called the non-qlc locus of [X,ω], and f : (Y,BY ) → X is called a quasi-log resolution of
[X,ω]. We sometimes use Nqlc(X,ω) to denote X−∞. If a qlc stratum C of [X,ω] is not
an irreducible component of X, then it is called a qlc center of [X,ω].

Definition 3.6 (Quasi-log canonical pairs, see [Fn5, Definition 6.2.9]). Let

(X,ω, f : (Y,BY ) → X)

be a quasi-log scheme. If X−∞ = ∅, then it is called a quasi-log canonical pair.
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The following example is very important. Example 3.7 shows that we can treat log
canonical pairs as quasi-log canonical pairs.

Example 3.7 ([Fn5, 6.4.1]). Let (X,∆) be a normal pair such that ∆ is effective. Let
f : Y → X be a resolution of singularities such that

KY +BY = f ∗(KX +∆)

and that SuppBY is a simple normal crossing divisor on Y . We put ω = KX +∆. Then

(X,ω, f : (Y,BY ) → X)

becomes a quasi-log scheme. By construction, (X,∆) is log canonical if and only if [X,ω]
is quasi-log canonical. We note that C is a log canonical center of (X,B) if and only if C
is a qlc center of [X,ω].

For the basic properties of quasi-log schemes, see [Fn5, Chapter 6].

4. Lemmas

In this section, we prepare three lemmas on quasi-log schemes for the proof of Theorem
1.2. The first one is an easy consequence of Fujita’s theory of ∆-genus (see [Ft1], [Ft2],
[Ft3] and [I, Chapter 3]) and the theory of quasi-log schemes (see [Fn5, Chapter 6]).

Lemma 4.1. Let [X,ω] be a projective quasi-log canonical pair such that X is irreducible
with dimX = n ≥ 1. Let H be an ample Cartier divisor on X. Assume that −ω ≡ rH for
some r > n. Then X ≃ Pn, OX(H) ≃ OPn(1), r ≤ n + 1, and there are no qlc centers of
[X,ω].

Proof. We will use Fujita’s theory of ∆-genus (see [Ft1], [Ft2], [Ft3, Chapter I], and [I,
Chapter 3]) and the theory of quasi-log schemes (see [Fn5, Chapter 6]).

Step 1. Let us consider

χ(X,OX(tH)) =
n∑

i=0

(−1)i dimC H
i(X,OX(tH)).

Since H is ample, it is a nontrivial polynomial of degree n. Since

tH − ω ≡ (t+ r)H

with r > n by assumption, we have

H i(X,OX(tH)) = 0

for i > 0 and t ≥ −n by [Fn5, Theorem 6.3.5 (ii)]. Since

H0(X,OX(tH)) = 0

for t < 0 and
χ(X,OX) = dimC H

0(X,OX) = 1,

we have

(4.1) χ(X,OX(tH)) =
1

n!
(t+ 1) · · · (t+ n).

Therefore, we obtain that Hn = 1 and

dimC H
0(X,OX(H)) = χ(X,OX(H)) = n+ 1.

This means
∆(X,H) = n+Hn − dimC H

0(X,OX(H)) = 0,

where ∆(X,H) is Fujita’s ∆-genus of (X,H). Thus we obtain that X ≃ Pn and OX(H) ≃
OPn(1) (see [Ft1, Theorem 2.1] or [KO, Theorem 1.1]).
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Step 2. In this step, we will see that r ≤ n+ 1 always hold true.
We assume that r > n+ 1 holds true. Then, by [Fn5, Theorem 6.3.5 (ii)], we have

H i(X,OX(−(n+ 1)H)) = 0

for i > 0. Therefore, we obtain

χ(X,OX(−(n+ 1)H)) = dimC H
0(X,OX(−(n+ 1)H)) = 0.

On the other hand, by (4.1), we have

χ(X,OX(−(n+ 1)H)) = (−1)n ̸= 0.

This is a contradiction. This means that r ≤ n+ 1 always holds.

Step 3. In this step, we will see that [X,ω] has no qlc centers.
Assume that there exists a zero-dimensional qlc center P of [X,ω]. Then the evaluation

map
H0(X,OX(−H)) → C(P )

is surjective since
H1(X, IP ⊗OX(−H)) = 0

by [Fn5, Theorem 6.3.5 (ii)], where IP is the defining ideal sheaf of P on X. We note that
H is ample and −ω ≡ rH with r > dimX ≥ 1. This means that

H0(X,OX(−H)) ̸= 0.

This is a contradiction since H is ample. Therefore, there are no zero-dimensional qlc
centers of [X,ω].

Assume that there exists a qlc center C of [X,ω] with dimC ≥ 1. By [Fn5, Theorem
6.3.5 (i)], [C, ω|C ] is a quasi-log canonical pair with dimC < dimX. Since

−ω ≡ rH

with r > n, we have
−ω|C ≡ rH|C

with r > n ≥ dimC + 1. This contradicts the result established in Step 2. It means that
there are no qlc centers of [X,ω].

We finish the proof of Lemma 4.1. □
The second one is an easy lemma on the vanishing theorem for quasi-log schemes.

Lemma 4.2 (Vanishing theorem for quasi-log schemes). Let [X,ω] be a projective quasi-log
scheme with dimX−∞ = 0 or X−∞ = ∅. Let L be a Cartier divisor on X such that L− ω
is ample. Then

H i(X,OX(L)) = 0

for every i > 0.

Proof. If X−∞ = ∅, then the statement is a special case of [Fn5, Theorem 6.3.5 (ii)].
Therefore, from now on, we may assume that X−∞ ̸= ∅.
Let us consider the following short exact sequence:

0 → IX−∞ → OX → OX−∞ → 0.

Then we obtain a long exact sequence:

(4.2) · · · → H i(X, IX−∞ ⊗OX(L)) → H i(X,OX(L)) → H i(X,OX−∞(L)) → · · · .
By [Fn5, Theorem 6.3.5 (ii)], we get

H i(X, IX−∞ ⊗OX(L)) = 0
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for every i > 0. Since dimX−∞ = 0 by assumption, we have

H i(X,OX−∞(L)) = 0

for every i > 0. Therefore, by (4.2), we see that

H i(X,OX(L)) = 0

holds true for every i > 0. □
The final one is a somewhat technical lemma (see [Fn6, Lemmas 3.1 and 3.2]).

Lemma 4.3. Let [X,ω] be a quasi-log canonical pair such that X is irreducible and
let φ : X → W be a proper surjective morphism onto a quasi-projective variety W with
dimW ≥ 1. Let P ∈ W be a closed point such that dimφ−1(P ) ≥ 1. Then we can con-
struct an effective R-Cartier divisor B on W such that [X,ω+φ∗B] is a quasi-log scheme
with the following properties:

(i) [X,ω + φ∗B] is quasi-log canonical outside finitely many points, and
(ii) there exists a qlc center C of [X,ω + φ∗B] such that φ(C) = P with dimC ≥ 1.

Proof. We divide the proof into several cases.

Case 1. In this case, we assume that there are no qlc centers of [X,ω] in φ−1(P ).
Let f : (Y,BY ) → X be a quasi-log resolution of [X,ω] as in Definition 3.5. We take

general very ample Cartier divisors B1, . . . , Bn+1 on W such that P ∈ SuppBi for every i.
By [Fn5, Proposition 6.3.1], we may further assume that(

Y,
n+1∑
i=1

(φ ◦ f)∗Bi + SuppBY

)
is a globally embedded simple normal crossing pair (see [K, Theorem 3.35]). By [Fn5,
Lemma 6.3.13], we can take 0 < c < 1 with the following properties:

(a)
(
BY + c

∑n+1
i=1 (φ ◦ f)∗Bi

)>1
= 0 or dim f

(
Supp

(
BY + c

∑n+1
i=1 (φ ◦ f)∗Bi

)>1
)
= 0,

and
(b) there exists an irreducible component G of

(
BY + c

∑n+1
i=1 (φ ◦ f)∗Bi

)=1
such that

dim f(G) ≥ 1.

We put B = c
∑n+1

i=1 Bi. Then, by construction, we see that

f : (Y,BY + (φ ◦ f)∗B) → [X,ω + φ∗B]

gives a desired quasi-log structure on [X,ω + φ∗B].

Case 2. In this case, we assume that there exists a qlc center C of [X,ω] in φ−1(P ) with
dimC ≥ 1.

Obviously, it is sufficient to put B = 0.

Case 3. In this case, we assume that every qlc center of [X,ω] contained in φ−1(P ) is
zero-dimensional.

Let f : (Y,BY ) → X be a quasi-log resolution of [X,ω] as in Definition 3.5. We take
general very ample Cartier divisors B1, . . . , Bn+1 on W such that P ∈ SuppBi for every
i as in Case 1. Let X ′ be the union of all qlc centers contained in φ−1(P ). By [Fn5,
Proposition 6.3.1], we may assume that the union of all strata of (Y,BY ) mapped to X ′

by f , which is denoted by Y ′, is a union of some irreducible components of Y . We put
Y ′′ = Y − Y ′, KY ′′ +BY ′′ = (KY +BY )|Y ′′ , and f ′′ = f |Y ′′ . We may further assume that(

Y ′′,
n+1∑
i=1

(φ ◦ f ′′)∗Bi + SuppBY ′′

)
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is a globally embedded simple normal crossing pair by [Fn5, Proposition 6.3.1] and [K,
Theorem 3.35]. We note that by the proof of [Fn5, Theorem 6.3.5 (i)]

IX′ = f ′′
∗OY ′′(⌈−(B<1

Y ′′)⌉ − Y ′|Y ′′)

holds true, where IX′ is the defining ideal sheaf of X ′ on X. We also note that BY ′′ ≥ Y ′|Y ′′

by construction. By [Fn5, Lemma 6.3.13], we can take 0 < c < 1 with the following
properties:

(c) dim f ′′
(
Supp

(
BY ′′ + c

∑n+1
i=1 (φ ◦ f ′′)∗Bi

)>1
)
= 0, and

(d) there exists an irreducible component G of
(
BY ′′ + c

∑n+1
i=1 (φ ◦ f ′′)∗Bi

)=1
such that

dim f ′′(G) ≥ 1.

We put B = c
∑n+1

i=1 Bi. Then, by construction, we see that

f ′′ : (Y ′′, BY ′′ + (φ ◦ f ′′)∗B) → [X,ω + φ∗B]

gives a desired quasi-log structure on [X,ω + φ∗B].

In any case, we got a desired effective R-Cartier divisor B on W . We note that [X,ω +
φ∗B] is quasi-log canonical outside φ−1(P ) by construction. □

5. Proof

In this section, we will prove Theorem 1.2 and Corollary 1.3 by using the lemmas ob-
tained in Section 4.

Let us prove Theorem 1.2, which is the main result of this paper.

Proof of Theorem 1.2. In this proof, we put H = −D.

Case 1. In this case, we assume that X is irreducible.
Since ω is not nef, we can take an ω-negative extremal contraction φ : X → W by the

cone and contraction theorem of quasi-log canonical pairs (see [Fn5, Theorems 6.7.3 and
6.7.4]). If dimW ≥ 1, then we can take an effective R-Cartier divisor B on W satisfying
the properties in Lemma 4.3. Let C be a qlc center of [X,ω + φ∗B] as in Lemma 4.3. We
put

C ′ = C ∪ Nqlc(X,ω + φ∗B).

By adjunction (see [Fn5, Theorem 6.3.5 (i)]), [C ′, (ω + φ∗B)|C′ ] is a quasi-log scheme. We
note that there exists the following short exact sequence:

(5.1) 0 −→ Kerα −→ OC′
α−→ OC −→ 0

such that Kerα = 0 or the support of Kerα is zero-dimensional. We also note that

− (ω + φ∗B) |C′ ≡ rH|C′

since dimφ(C ′) = 0. By Lemma 4.2 and (5.1),

H i(C,OC(tH)) = H i(C ′,OC′(tH)) = 0

for i > 0 and t ≥ −n since r > n by assumption. Since H|C is ample, we have

H0(C,OC(tH)) = 0

for t < 0. This means that

χ(C,OC(tH)) = 0

for t = −n, . . . ,−1. Therefore, we get

χ(C,OC(tH)) ≡ 0
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by n ≥ dimC+1. This is a contradiction since H|C is ample. This implies that dimW = 0
and that H is ample. Thus we obtain that X ≃ Pn with OX(D) ≃ OPn(−1) by Lemma
4.1. Moreover, there are no qlc centers of [X,ω] by Lemma 4.1.

Case 2. Let us assume now that X is not necessarily irreducible. We take an irreducible
component X ′ of X such that ω′ = ω|X′ is not nef. By adjunction (see [Fn5, Theorem
6.3.5 (i)]), [X ′, ω′] is an irreducible quasi-log canonical pair such that ω′ ≡ rD|X′ with
r > n ≥ dimX ′. By Case 1, we see that H|X′ is ample. We note that [X ′, ω′] has
qlc centers if we assume X ̸= X ′ since X is connected (see [Fn5, Theorem 6.3.11 and
Theorem 6.3.5 (i)]). Therefore, by Lemma 4.1, we obtain that X ′ ≃ Pn, X ′ = X, and
OX(D) ≃ OPn(−1). In particular, X is always irreducible.

We finish the proof of Theorem 1.2. □

We prove Corollary 1.3 as an application of Theorem 1.2.

Proof of Corollary 1.3. By [Fn4, Theorem 1.2], [X,KX +∆] naturally becomes a quasi-log
canonical pair. Therefore, we obtain the desired statement by Theorem 1.2. We note that
(X,∆) is kawamata log terminal since there are no qlc centers of [X,KX + ∆] (see [Fn4,
Theorem 1.2 (5)]). □

We close this paper with a remark on Corollary 1.3.

Remark 5.1. We can prove Corollary 1.3 without using the theory of quasi-log schemes.
By taking the normalization and a dlt blow-up (see [Fn3, Theorem 10.4] and [Fn5, Theorem
4.4.21]), we can reduce the problem to the case where (X,∆) is a Q-factorial dlt pair.
By taking a (KX + ∆)-negative extremal contraction φ : X → W and decreasing the
coefficients of ∆ slightly, we can check that dimW = 0 by using the argument in the
proof of [AW, Theorem 3.1] (see [AW, Remark 3.1.2]). Note that some results in [AW] are
generalized in [Fn6]. Then we obtain that −(KX +∆) is ample. This implies that X ≃ Pn

holds (see Case 2 in Sketch of Proof of Theorem 2.1 or Step 1 in the proof of Theorem
4.1).
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