PERMISSIBLE DIVISORS (PRELIMINARY VERSION)

OSAMU FUJINO

1.1. **Divisors.** ¹ In this subsection, we quickly recall basic definitions of divisors. We note that we have to deal with reducible and non-reduced algebraic schemes in this paper. For details, see [Mu, Lecture 9] and [Fu, Appendix B.4].

1.1. Let X be a noetherian scheme with structure sheaf \mathcal{O}_X and let \mathcal{K}_X be the sheaf of total quotient rings of \mathcal{O}_X , that is, for every affine open set $U \subset X$, $\Gamma(U, \mathcal{K}_X)$ is the total quotient ring of $\Gamma(U, \mathcal{O}_X)$. Let \mathcal{K}_X^* denote the (multiplicative) sheaf of invertible elements in \mathcal{K}_X , and \mathcal{O}_X^* the sheaf of invertible elements in \mathcal{O}_X . We note that $\mathcal{O}_X \subset \mathcal{K}_X$ and $\mathcal{O}_X^* \subset \mathcal{K}_X^*$.

1.2 (Cartier, Q-Cartier, and R-Cartier divisors). A Cartier divisor D on X is a global section of $\mathcal{K}_X^*/\mathcal{O}_X^*$, that is, D is an element of $H^0(X, \mathcal{K}_X^*/\mathcal{O}_X^*)$. A Q-Cartier Q-divisor (resp. R-Cartier R-divisor) is an element of $H^0(X, \mathcal{K}_X^*/\mathcal{O}_X^*) \otimes_{\mathbb{Z}} \mathbb{Q}$ (resp. $H^0(X, \mathcal{K}_X^*/\mathcal{O}_X^*) \otimes_{\mathbb{Z}} \mathbb{R}$).

1.3 (Linearly, \mathbb{Q} -linearly, and \mathbb{R} -linearly equivalence). ² Let D_1 and D_2 be two \mathbb{R} -Cartier \mathbb{R} -divisors on X. Then D_1 is *linearly* (resp. \mathbb{Q} -*linearly*, or \mathbb{R} -*linearly*) equivalent to D_2 , denoted by $D_1 \sim D_2$ (resp. $D_1 \sim_{\mathbb{Q}} D_2$, or $D_1 \sim_{\mathbb{R}} D_2$) if

$$D_1 = D_2 + \sum_i r_i(f_i)$$

such that $f_i \in \Gamma(X, \mathcal{K}_X^*)$ and $r_i \in \mathbb{Z}$ (resp. $r_i \in \mathbb{Q}$, or $r_i \in \mathbb{R}$) for every i. We note that (f_i) is a *principal Cartier divisor* associated to f_i , that is, the image of f_i by $\Gamma(X, \mathcal{K}_X^*) \to \Gamma(X, \mathcal{K}_X^*/\mathcal{O}_X^*)$.

Date: 2010/11/18, Version 1.06.

I would like to thank Professors Nobuyoshi Takahashi and Takeshi Abe for valuable comments.

¹I will add this subsection to my book.

 $^{^{2}\}mathrm{I}$ have to make these definitions compatible with other definitions.

OSAMU FUJINO

1.4. Let D be a Cartier divisor on X. The *support* of D, denoted by SuppD, is the subset of X consisting of points x such that a local equation for D is not in $\mathcal{O}_{X,x}^*$. The support of D is a closed subset of X.

1.5. Let X be an equi-dimensional reduced separated algebraic scheme. We note that X is not necessarily regular in codimension one. A (*Weil*) divisor D on X is a finite formal sum

$$\sum_{i=1}^{n} d_i D_i$$

where D_i is an irreducible reduced closed subscheme of X of pure codimension one and d_i is an integer for every *i*.

If $d_i \in \mathbb{Q}$ (resp. $d_i \in \mathbb{R}$) for every *i*, then *D* is called a \mathbb{Q} -divisor (resp. \mathbb{R} -divisor).

2. Preliminaries

³ We explain basic notion according to $\stackrel{\text{ambro}}{?, \text{Section 2}}$.

Definition 2.1 (Normal and simple normal crossing varieties). A variety X has normal crossing singularities if, for every closed point $x \in X$,

$$\widehat{\mathcal{O}}_{X,x} \simeq \frac{\mathbb{C}[[x_0, \cdots, x_N]]}{(x_0 \cdots x_k)}$$

for some $0 \leq k \leq N$, where $N = \dim X$. Furthermore, if each irreducible component of X is smooth, X is called a *simple normal crossing* variety. If X is a normal crossing variety, then X has only Gorenstein singularities. Thus, it has an invertible dualizing sheaf ω_X . So, we can define⁴ the *canonical divisor* K_X such that $\omega_X \simeq \mathcal{O}_X(K_X)$. It is a Cartier divisor on X and is well defined up to linear equivalence.

Definition 2.2 (Mayer–Vietoris simplicial resolution). Let X be a simple normal crossing variety with the irreducible decomposition $X = \bigcup_{i \in I} X_i$. Let I_n be the set of strictly increasing sequences (i_0, \dots, i_n) in I and $X^n = \coprod_{I_n} X_{i_0} \cap \dots \cap X_{i_n}$ the disjoint union of the intersections of X_i . Let $\varepsilon_n : X^n \to X$ be the disjoint union of the natural inclusions. Then $\{X^n, \varepsilon_n\}_n$ has a natural semi-simplicial scheme structure. The face operator is induced by $\lambda_{j,n}$, where $\lambda_{j,n} : X_{i_0} \cap \dots \cap X_{i_n} \to X_{i_0} \cap \dots \cap X_{i_{j-1}} \cap X_{i_{j+1}} \cap \dots \cap X_{i_n}$ is the natural closed embedding

 $\mathbf{2}$

 $^{^{3}}$ This is a revised version of the first half of Section 2.2 of my book.

⁴Is it OK? Can I always define K_X ?

for $j \leq n$ (cf. [?, 3.5.5]). We denote it by $\varepsilon : X^{\bullet} \to X$ and call it the Mayer-Vietoris simplicial resolution of X. The complex

 $0 \to \varepsilon_{0*} \mathcal{O}_{X^0} \to \varepsilon_{1*} \mathcal{O}_{X^1} \to \cdots \to \varepsilon_{k*} \mathcal{O}_{X^k} \to \cdots,$

where the differential $d_k : \varepsilon_{k*}\mathcal{O}_{X^k} \to \varepsilon_{k+1*}\mathcal{O}_{X^{k+1}}$ is $\sum_{j=0}^{k+1} (-1)^j \lambda_{j,k+1}^*$ for any $k \ge 0$, is denoted by $\mathcal{O}_{X^{\bullet}}$. It is easy to see that $\mathcal{O}_{X^{\bullet}}$ is quasiisomorphic to \mathcal{O}_X . By tensoring \mathcal{L} , any line bundle on X, to $\mathcal{O}_{X^{\bullet}}$, we obtain a complex

$$0 \to \varepsilon_{0*} \mathcal{L}^0 \to \varepsilon_{1*} \mathcal{L}^1 \to \cdots \to \varepsilon_{k*} \mathcal{L}^k \to \cdots,$$

where $\mathcal{L}^n = \varepsilon_n^* \mathcal{L}$. It is denoted by \mathcal{L}^{\bullet} . Of course, \mathcal{L}^{\bullet} is quasi-isomorphic to \mathcal{L} . We note that $H^q(X^{\bullet}, \mathcal{L}^{\bullet})$ is $\mathbb{H}^q(X, \mathcal{L}^{\bullet})$ by definition and it is obviously isomorphic to $H^q(X, \mathcal{L})$ for any $q \geq 0$ because \mathcal{L}^{\bullet} is quasiisomorphic to \mathcal{L} .

Definition 2.3. Let X be a simple normal crossing variety. A stratum of X is the image on X of some irreducible component of X^{\bullet} . Note that an irreducible component of X is a stratum of X.

Definition 2.4 (Permissible and normal crossing divisors). Let X be a simple normal crossing variety.

A Cartier divisor D on X is called *permissible* if D contains no strata of X in its support. In this case, D induces a Cartier divisor D^{\bullet} on X^{\bullet} . This means that $D^n = \varepsilon_n^* D$ is a Cartier divisor on X^n for every n. A Q-Cartier (resp. \mathbb{R} -Cartier) divisor on X is *permissible* if it can be written as a Q-linear (resp. \mathbb{R} -linear) combination of permissible Cartier divisors.

We say that a permissible Cartier divisor D is a normal crossing divisor on X if, in the notation of Definition 2.1, we have

$$\widehat{\mathcal{O}}_{D,x} \simeq \frac{\mathbb{C}[[x_0, \cdots, x_N]]}{(x_0 \cdots x_k, x_{i_1} \cdots x_{i_l})}$$

for some $\{i_1, \dots, i_l\} \subset \{k+1, \dots, N\}$. It is equivalent to the condition that D^n is a normal crossing divisor on X^n for every n in the usual sense. Furthermore, let D be a normal crossing divisor on a simple normal crossing variety X. If D^n is a simple normal crossing divisor on X^n for every n, then D is called a *simple normal crossing divisor* on X.

2.5. Let X be a simple normal crossing variety. Let PerDiv(X) be the abelian group generated by permissible Cartier divisors on X and Weil(X) the abelian group generated by Weil divisors on X. Then we can define natural injective homomorphisms of abelian groups

 ψ : PerDiv $(X) \otimes_{\mathbb{Z}} K \to$ Weil $(X) \otimes_{\mathbb{Z}} K$,

where $K = \mathbb{Z}$, \mathbb{Q} , or \mathbb{R} . Let $\nu : \widetilde{X} \to X$ be the normalization. Then we have the following commutative diagram.

$$\begin{array}{c|c} \operatorname{Div}(\widetilde{X}) \otimes_{\mathbb{Z}} K & \xrightarrow{\sim} & \operatorname{Weil}(\widetilde{X}) \otimes_{\mathbb{Z}} K \\ & \nu^* & & & \downarrow^{\nu_*} \\ \operatorname{PerDiv}(X) \otimes_{\mathbb{Z}} K & \xrightarrow{\psi} & \operatorname{Weil}(X) \otimes_{\mathbb{Z}} K \end{array}$$

Note that $\text{Div}(\widetilde{X})$ is the abelian group generated by Cartier divisors on \widetilde{X} and that $\widetilde{\psi}$ is an isomorphism since \widetilde{X} is smooth.

By ψ , every permissible Cartier (resp. Q-Cartier or R-Cartier) divisor can be considered as a Weil divisor (resp. Q-divisor or R-divisor). Therefore, various operations, for example, $\Box D \lrcorner$, $D^{<1}$, and so on, make sense for a permissible R-Cartier R-divisor D on X.

We note the following easy example.

Example 2.6. Let X be a simple normal crossing variety in $\mathbb{C}^3 = \operatorname{Spec}\mathbb{C}[x, y, z]$ defined by xy = 0. We put $D_1 = (x + z = 0) \cap X$ and $D_2 = (x - z = 0) \cap X$. Then $D = \frac{1}{2}D_1 + \frac{1}{2}D_2$ is a permissible Q-Cartier Q-divisor on X. In this case, $\lfloor D \rfloor = (x = z = 0)$ on X. Therefore, $\lfloor D \rfloor$ is not a Cartier divisor on X.

The following lemma is easy but important. We will repeatedly use it in Sections ?? and ??.

7 Lemma 2.7. Let X be a simple normal crossing variety and B a permissible \mathbb{R} -Cartier \mathbb{R} -divisor on X such that $\lfloor B \rfloor = 0$. Let A be a Cartier divisor on X. Assume that $A \sim_{\mathbb{R}} B$. Then there exists a permissible \mathbb{Q} -Cartier \mathbb{Q} -divisor C on X such that $A \sim_{\mathbb{Q}} C$, $\lfloor C \rfloor = 0$, and SuppC = SuppB.

Proof. We can write $B = A + \sum_i r_i(f_i)$, where $f_i \in \Gamma(X, \mathcal{K}_X^*)$ and $r_i \in \mathbb{R}$ for every *i*. Here, \mathcal{K}_X is the sheaf of total quotient rings of \mathcal{O}_X . Let $P \in X$ be a scheme theoretic point corresponding to some stratum of X. We consider the following affine map

$$K^k \to H^0(X_P, \mathcal{K}^*_{X_P}/\mathcal{O}^*_{X_P}) \otimes_{\mathbb{Z}} K$$

given by $(a_1, \dots, a_k) \mapsto A + \sum_i a_i(f_i)$, where $X_P = \text{Spec}\mathcal{O}_{X,P}$ and $K = \mathbb{Q}$ or \mathbb{R} . Then we can check that

$$\mathcal{P} = \{(a_1, \cdots, a_k) \in \mathbb{R}^k \,|\, A + \sum_i a_i(f_i) \text{ is permissible}\} \subset \mathbb{R}^k$$

is an affine subspace of \mathbb{R}^k defined over \mathbb{Q} . Therefore, we see that

$$\mathcal{S} = \{(a_1, \cdots, a_k) \in \mathcal{P} \mid \operatorname{Supp}(A + \sum_i a_i(f_i)) = \operatorname{Supp}B\} \subset \mathcal{P}$$

PERMISSIBLE DIVISORS

is an affine subspace of \mathbb{R}^k defined over \mathbb{Q} . Since $(r_1, \dots, r_k) \in \mathcal{S}$, we know that $\mathcal{S} \neq \emptyset$. We take a point $(s_1, \dots, s_k) \in \mathcal{S} \cap \mathbb{Q}^k$ which is very close to (r_1, \dots, r_k) and put $C = A + \sum_i s_i(f_i)$. By construction, Cis a permissible \mathbb{Q} -Cartier \mathbb{Q} -divisor such that $C \sim_{\mathbb{Q}} A$, $\ \Box C \ = 0$, and SuppC =SuppB. \Box

References

- fulton[Fu]W. Fulton, Intersection theory, Second edition. Ergebnisse der Mathematik
und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathe-
matics [Results in Mathematics and Related Areas. 3rd Series. A Series of
Modern Surveys in Mathematics], 2. Springer-Verlag, Berlin, 1998.
- <u>mumford</u> [Mu] D. Mumford, *Lectures on curves on an algebraic surface*, With a section by G. M. Bergman. Annals of Mathematics Studies, No. **59** Princeton University Press, Princeton, N.J. 1966.

Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606-8502, Japan

E-mail address: fujino@math.kyoto-u.ac.jp