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1.1. Divisors. ! In this subsection, we quickly recall basic definitions
of divisors. We note that we have to deal with reduci%%@ni%r%g non-
reduce uallgglllaraic schemes in this paper. For details, see [Mu, Lecture
9] and [[Fu, Appendix B.4].

1.1. Let X be a noetherian scheme with structure sheaf Ox and let
Kx be the sheaf of total quotient rings of Ox, that is, for every affine
open set U C X, I'(U, Kx) is the total quotient ring of I'(U, Ox). Let
K% denote the (multiplicative) sheaf of invertible elements in Kx, and
O% the sheaf of invertible elements in Ox. We note that Ox C Kx
and Oy C K¥%.

1.2 (Cartier, Q-Cartier, and R-Cartier divisors). A Cartier divisor
D on X is a global section of K% /O%, that is, D is an element of
H(X, K% /O%). A Q-Cartier Q-divisor (resp. R-Cartier R-divisor) is
an element of H(X, K% /O%) ®z Q (resp. HY(X, K% /O%) @z R).

1.3 (Linearly, Q-linearly, and R-linearly equivalence). ? Let D; and Do
be two R-Cartier R-divisors on X. Then D is linearly (resp. Q-linearly,
or R-linearly) equivalent to Do, denoted by Dy ~ Dy (resp. Dy ~q Da,
or D1 ~R DQ) if

Dy = D,y + Zri(fi)

such that f; € I'(X,K%) and r; € Z (resp. r; € Q, or r; € R) for every
i. We note that (f;) is a principal Cartier divisor associated to f;, that
is, the image of f; by I'(X, K% ) — I'(X, K% /O%).
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1.4. Let D be a Cartier divisor on X. The support of D, denoted
by SuppD, is the subset of X consisting of points x such that a local

equation for D is not in O% .. The support of D is a closed subset of
X.

1.5. Let X be an equi-dimensional reduced separated algebraic scheme.
We note that X is not necessarily regular in codimension one. A ( Weil)
divisor D on X is a finite formal sum

i=1

where D; is an irreducible reduced closed subscheme of X of pure codi-
mension one and d; is an integer for every .

If d; € Q (resp. d; € R) for every i, then D is called a Q-divisor
(resp. R-divisor).

2. PRELIMINARIES

bro
3 We explain basic notion according to .9, Section 2].

Definition 2.1 (Normal and simple normal crossing varieties). A va-
riety X has normal crossing singularities if, for every closed point
r e X,
C[[xO’ e 7$NH

(zo - %)
for some 0 < k < N, where N = dim X. Furthermore, if each irre-
ducible component of X is smooth, X is called a simple normal crossing
variety. If X is a normal crossing variety, then X has only Gorenstein
singularities. Thus, it has an invertible dualizing sheaf wy. So, we
can define* the canonical divisor Ky such that wx ~ Ox(Kx). It is a
Cartier divisor on X and is well defined up to linear equivalence.

OX,x =

Definition 2.2 (Mayer—Vietoris simplicial resolution). Let X be a sim-
ple normal crossing variety with the irreducible decomposition X =
Uies Xi- Let I, be the set of strictly increasing sequences (g, - - - , i)
in I and X" =[], X;,N---NX;, the disjoint union of the intersections
of X;. Let ¢, : X™ — X be the disjoint union of the natural inclu-
sions. Then {X", ¢,}, has a natural semi-simplicial scheme structure.
The face operator is induced by A;,, where \;, : X;;N---NX;, —
XipN---NX,  NX; , N---NX, is the natural closed embedding

j-1 ij41

3This is a revised version of the first half of Section 2.2 of my book.
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1lzein?2
for j < n (cf. .7,Ze31.n5.5]). We denote it by € : X* — X and call it the
Mayer—Vietoris simplicial resolution of X. The complex

0 — c0:Ox0 — £.Ox1 — -+ — £ Oxt — -+ |

where the differential dy : €1 Oxr — €p11.Oxr+1 is Z?:é(—l)j e
for any k£ > 0, is denoted by Oxe.. It is easy to see that Ox. is quasi-
isomorphic to Ox. By tensoring £, any line bundle on X, to Ox., we
obtain a complex

0_>€0*£0_>51*£1_>"'_>5k*£k_>'”7

where L™ = ¢} L. It is denoted by L®. Of course, L*® is quasi-isomorphic
to L. We note that H9(X*, £®) is H?(X, L*) by definition and it is
obviously isomorphic to H9(X, L) for any ¢ > 0 because L® is quasi-
isomorphic to L.

Definition 2.3. Let X be a simple normal crossing variety. A stratum
of X is the image on X of some irreducible component of X°®. Note
that an irreducible component of X is a stratum of X.

Definition 2.4 (Permissible and normal crossing divisors). Let X be
a simple normal crossing variety.

A Cartier divisor D on X is called permissible if D contains no strata
of X in its support. In this case, D induces a Cartier divisor D*® on
X*. This means that D" = ¢} D is a Cartier divisor on X" for every
n. A Q-Cartier (resp. R-Cartier) divisor on X is permissible if it can
be written as a Q-linear (resp. R-linear) combination of permissible
Cartier divisors.

We say that a permissible Cartier divisorop is a mormal crossing
divisor on X if, in the notation of Definition b.‘l, we have

6[)’1 ~ (C[[I‘(), 7IN]]
(xo...q;k’xil le)
for some {iy, -+ ,4} € {k+1, .-, N}. It is equivalent to the condition

that D™ is a normal crossing divisor on X" for every n in the usual
sense. Furthermore, let D be a normal crossing divisor on a simple
normal crossing variety X. If D" is a simple normal crossing divisor
on X" for every n, then D is called a simple normal crossing divisor
on X.

2.5. Let X be a simple normal crossing variety. Let PerDiv(X) be
the abelian group generated by permissible Cartier divisors on X and
Weil(X) the abelian group generated by Weil divisors on X. Then we
can define natural injective homomorphisms of abelian groups

Y PerDiv(X) ®z K — Weil(X) ®z K,
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where K =7, Q, or R. Let v : X — X be the normalization. Then
we have the following commutative diagram.

Div(X) ®z K %{; Weil(X) @z K

PerDiv(X) ®z K e Weil(X) ®z K
Note that Div()? ) is the abelian group generated by Cartier divisors
on X and that @Z is an isomorphism since X is smooth.

By v, every permissible Cartier (resp. Q-Cartier or R-Cartier) divi-
sor can be considered as a Weil divisor (resp. Q-divisor or R-divisor).
Therefore, various operations, for example, . D, D<!, and so on, make
sense for a permissible R-Cartier R-divisor D on X.

We note the following easy example.

Example 2.6. Let X be a simple normal crossing variety in C3 =
SpecClz,y, z] defined by zy = 0. We put D; = (z + 2z = 0) N X and
Dy = (z—2z=0)NX. Then D = 3D, + 3D, is a permissible Q-Cartier
Q-divisor on X. In this case, LD1 = (r = z = 0) on X. Therefore,
LD is not a Cartier divisor on X.

The followi s%c]fné 18, is easy but important. We will repeatedly use
l7 7 and 77

it in Sections 77 a

Lemma 2.7. Let X be a simple normal crossing variety and B a per-
missible R-Cartier R-divisor on X such that .By = 0. Let A be a
Cartier divisor on X. Assume that A ~g B. Then there exists a per-
missible Q-Cartier Q-divisor C on X such that A ~qo C, LC1 =0, and
SuppC' = SuppB.

Proof. We can write B = A+ > .ri(f;), where f; € I'(X,K%) and
r; € R for every i. Here, KCx is the sheaf of total quotient rings of Ox.
Let P € X be a scheme theoretic point corresponding to some stratum
of X. We consider the following affine map

K* — H'(Xp,K%,/O%,) ®2 K

given by (a1, - ,ar) — A+ >, a;(f;), where Xp = SpecOx p and
K = Q or R. Then we can check that

P={(a, - ,a;) ERF| A+ Zai(fi) is permissible} C RF

is an affine subspace of R¥ defined over Q. Therefore, we see that

S={(a,--,ax) € P|Supp(A+ > ai(fi)) = SuppB} C P
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is an affine subspace of R* defined over Q. Since (ry,--- ,7;) € S, we
know that S # (). We take a point (s, ,s;) € S NQF which is very
close to (rq,---,r) and put C = A+ > s,(fi). By construction, C
is a permissible Q-Cartier Q-divisor such that C' ~g A, LC1 = 0, and
SuppC = SuppB. O
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