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Abstract: We give a short and almost self-contained proof of generalizations of Kollár’s

vanishing and torsion-free theorems. Although they are contained in Ambro’s much more general

results on embedded normal crossing pairs, we give an alternate and direct reduction argument to

the mixed Hodge theory. In this sense, this paper gives a more readable account of the application

to the log minimal model program for log canonical pairs.
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1. Introduction The main purpose of this

paper is to give a short and almost self-contained

proof of the following theorem.

Theorem 1.1 (Torsion-free and vanishing the-

orems). Let Y be a smooth projective variety and

B a boundary Q-divisor such that SuppB is simple

normal crossing. Let f : Y → X be a projective mor-

phism and L a Cartier divisor on Y such that H ∼Q

L− (KY +B) is f -semi-ample.

(i) Let q be an arbitrary non-negative integer. Ev-

ery non-zero local section of Rqf∗OY (L) con-

tains in its support the f -image of some strata

of (Y,B), where a stratum of (Y,B) denotes Y

itself or an lc center of (Y,B).

(ii) Assume that H ∼Q f∗H ′ for some am-

ple Q-Cartier Q-divisor H ′ on X. Then

Hp(X,Rqf∗OY (L)) = 0 for all p > 0 and q ≥ 0.

Although this theorem is a very special case of

[A, Theorem 3.2], it will play important roles in the

log minimal model program for log canonical pairs.

In [A], Ambro proved the above theorem for embed-

ded normal crossing pairs. His proof is rather dif-

ficult involving a highly technical notion of normal

crossing pairs. For a systematic and thorough treat-

ment, we refer the reader to [F1, Chapter 2].

The author has found a straightforward proof of

the cone theorem for log canonical pairs, which does

not use quasi-log varieties. The proof will be pub-

lished in the forthcoming [F2]. The cone theorem

for log canonical pairs is the starting point of the log

minimal model program for log canonical pairs. Be-

ing free from resolution of singularities and perturba-
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tion of coefficients, the proof of the cone theorem in

[F2] will be even easier than the original proof of the

cone theorem for Kawamata log terminal pairs. Both

[A, Chapter 3] and [F1, Chapter 2] were intended for

the experts and rather involved. Although it was the

feature of [A] to prove the cone theorem in the con-

text of quasi-log varieties, the proof of the cone the-

orem without quasi-log varieties was not available.

Thus Theorem 1.1 had to be proved for embedded

normal crossing pairs, which was the most difficult

part in [A]. Both of [A, Chapter 3] and [F1, Chapter

2] adopted Esnault–Viehweg’s framework explained

in [EV]. Here, we give a short proof of Theorem 1.1

after Kollár’s philosophy explained in, for example,

[KM, §2.4]. It is the first time that we use Kollár’s

philosophy to treat Theorem 1.1 in the literature.

Hopefully, the approach adopted here will clarify the

nature of Theorem 1.1.

We summarize the contents of this paper. Sec-

tion 2 is a short review of the Hodge theoretic as-

pect of the injectivity theorem. We would like to

emphasize that the E1-degeneration in [D] is suffi-

cient for our purposes. We do not know whether

the E1-degeneration discussed in [EV, (3.2, c)] fol-

lows from the one in [D] if A 6= 0 in [EV, (3.2, c)]

(cf. [EV, 3.18. Remarks. a)]). In Section 3, we give

a short proof of Theorem 1.1. It is a standard ar-

gument once the fundamental injectivity theorem is

given in Section 2. In Section 4, we will explain two

applications of Theorem 1.1. The first one contains

the extension theorem from log canonical centers. It

is very strong, seems inaccessible by the Kawamata–

Viehweg–Nadel vanishing theorem (cf. Remark 4.2),

and is intended for use in the log minimal model pro-
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gram for log canonical pairs. Although [A] proved it

in the context of quasi-log varieties, this paper gives

a more accessible account. The final theorem is the

Kodaira vanishing theorem for log canonical pairs,

which was not explicitly stated in [A].

Notation. Let X be a normal variety and B

an effective Q-divisor such that KX +B is Q-Cartier.

Then we can define the discrepancy a(E,X,B) ∈ Q

for every prime divisor E over X . If a(E,X,B) ≥ −1

for every E, then (X,B) is called log canonical. We

sometimes abbreviate log canonical to lc. Assume

that (X,B) is log canonical. If E is a prime divisor

over X such that a(E,X,B) = −1, then cX(E) is

called a log canonical center (lc center, for short) of

(X,B), where cX(E) is the closure of the image of

E on X . A stratum of (X,B) denotes X itself or an

lc center of (X,B).

Let r be a rational number. The integral part

xry is the largest integer ≤ r and the fractional part

{r} is defined by r − xry. We put prq = −x−ry
and call it the round-up of r. For a Q-divisor D =∑r

i=1 diDi, where Di is a prime divisor for every i

and Di 6= Dj for i 6= j, we call D a boundary Q-

divisor if 0 ≤ di ≤ 1 for every i. We note that

∼Q denotes the Q-linear equivalence of Q-Cartier Q-

divisors. We put xDy =
∑

xdiyDi, pDq =
∑

pdiqDi,

{D} =
∑

{di}Di, D
<1 =

∑
di<1 diDi, and D=1 =∑

di=1Di.

We will work over C, the complex number field,

throughout this paper.

2. Hodge theoretic aspect In this section,

we will prove the following injectivity theorem, which

is the same as [EV, 5.1. b)]. The proof given here

is more in the sprint of Kollár than in the sprit of

Esnault–Viehweg.

We use the classical topology throughout this

section.

Proposition 2.1 (Fundamental injectivity the-

orem). Let X be a smooth projective variety and

S+B a boundary Q-divisor on X such that the sup-

port of S + B is simple normal crossing and xS +

By = S. Let L be a Cartier divisor on X and D an

effective Cartier divisor whose support is contained

in SuppB. Assume that L ∼Q KX + S + B. Then

the natural homomorphisms

Hq(X,OX(L)) → Hq(X,OX(L+D)),

which are induced by the inclusion OX → OX(D),

are injective for all q.

Before we prove Proposition 2.1, let us recall

some results on the Hodge theory.

2.2. Let V be a smooth projective variety

and Σ a simple normal crossing divisor on V . Let

ι : V \ Σ → V be the natural open immersion.

Then ι!CV \Σ is quasi-isomorphic to the complex

Ω•
V (log Σ) ⊗ OV (−Σ). By this quasi-isomorphism,

we can construct the following spectral sequence

E
pq
1 = Hq(V,Ωp

V (log Σ) ⊗OV (−Σ))

⇒ Hp+q
c (V \ Σ,C).

By the Serre duality, the right hand side

Hq(V,Ωp
V (log Σ) ⊗OV (−Σ))

is dual to Hn−q(V,Ωn−p
V (log Σ)), where n = dimV .

By the Poincaré duality, Hp+q
c (V \ Σ,C) is dual to

H2n−(p+q)(V \ Σ,C). Therefore,

dimHk
c (V \ Σ,C)

=
∑

p+q=k

dimHq(V,Ωp
V (log Σ) ⊗OV (−Σ))

by Deligne (cf. [D, Corollaire (3.2.13) (ii)]). Thus,

the above spectral sequence degenerates at E1. We

will use this E1-degeneration in the proof of Propo-

sition 2.1. By the above E1-degeneration, we obtain

Hk
c (V \ Σ,C) ≃

⊕

p+q=k

Hq(V,Ωp
V (log Σ) ⊗OV (−Σ)).

In particular, the natural inclusion ι!CV \Σ ⊂
OV (−Σ) induces surjections

Hp
c (V \ Σ,C) ≃ Hp(V, ι!CV \Σ) → Hp(V,OV (−Σ))

for all p.

Proof of Proposition 2.1. We put L = OX(L −
KX −S). Let ν be the smallest positive integer such

that νL ∼ ν(KX + S + B). In particular, νB is an

integral Weil divisor. We take the ν-fold cyclic cover

π′ : Y ′ = SpecX

⊕ν−1
i=0 L−i → X associated to the

section νB ∈ |Lν |. More precisely, let s ∈ H0(X,Lν)

be a section whose zero divisor is νB. Then the dual

of s : OX → Lν defines an OX -algebra structure on⊕ν−1
i=0 L−i. Let Y → Y ′ be the normalization and

π : Y → X the composition morphism. For details,

see [EV, 3.5. Cyclic covers]. We can take a finite

cover ϕ : V → Y such that V is smooth and T is

a simple normal crossing divisor on V , where ψ =

π ◦ ϕ and T = ψ∗S, by Kawamata’s covering trick

(cf. [EV, 3.17. Lemma]). Let ι′ : Y \π∗S → Y be the

natural open immersion and U the smooth locus of

Y . We denote the natural open immersion U → Y
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by j. We put Ω̃p
Y (log(π∗S)) = j∗Ω

p
U (log(π∗S)) for

any p. Then it can be checked easily that

ι′!CY \π∗S
qis
−→ Ω̃•

Y (log(π∗S)) ⊗OY (−π∗S)

is a direct summand of

ϕ∗(ι!CV \T )
qis
−→ ϕ∗(Ω

•
V (log T ) ⊗OV (−T )),

where qis means a quasi-isomorphism. On the

other hand, we can decompose π∗(Ω̃
•
Y (log(π∗S)) ⊗

OY (−π∗S)) and π∗(ι
′
!CY \π∗S) into eigen components

of the Galois action of π : Y → X . We write these

decompositions as follows,

π∗(ι
′
!CY \π∗S) =

ν−1⊕

i=0

Ci

⊂
ν−1⊕

i=0

L−i(xiBy − S) = π∗OY (−π∗S),

where Ci ⊂ L−i(xiBy − S) for every i. We put C =

C1. Then we have that

C
qis
−→ Ω•

X(log(S +B)) ⊗ L−1(−S)

is a direct summand of

ψ∗(ι!CV \T )
qis
−→ ψ∗(Ω

•
V (logT ) ⊗OV (−T )).

The E1-degeneration of the spectral sequence

E
pq
1 = Hq(V,Ωp

V (log T ) ⊗OV (−T ))

⇒ Hp+q(V,Ω•
V (log T ) ⊗OV (−T ))

≃ Hp+q(V, ι!CV \T )

implies the E1-degeneration of

E
pq
1 = Hq(X,Ωp

X(log(S +B)) ⊗ L−1(−S))

⇒ Hp+q(X,Ω•
X(log(S +B)) ⊗ L−1(−S))

≃ Hp+q(X, C)

Therefore, the inclusion C ⊂ L−1(−S) induces sur-

jections

Hp(X, C) → Hp(X,L−1(−S)).

The following arguments are the same as those in

[KM]. We describe them for readers’ convenience.

We can check the following simple property by

seeing the monodromy action of the Galois group of

π : Y → X on C around SuppB.

Corollary 2.3 (cf. [KM, Corollary 2.54]). Let

U ⊂ X be a connected open set such that U ∩
SuppB 6= ∅. Then H0(U, C|U ) = 0.

This property is utilized via the following fact.

The proof is obvious.

Lemma 2.4 (cf. [KM, Lemma 2.55]). Let F

be a sheaf of Abelian groups on a topological space X

and F1, F2 ⊂ F subsheaves. Let Z ⊂ X be a closed

subset. Assume that

(1) F2|X\Z = F |X\Z , and

(2) if U is connected, open and U ∩ Z 6= ∅, then

H0(U,F1|U) = 0.

Then F1 is a subsheaf of F2.

As a corollary, we obtain:

Corollary 2.5 (cf. [KM, Corollary 2.56]). Let

M ⊂ L−1(−S) be a subsheaf such that M |X\SuppB =

L−1(−S)|X\SuppB. Then the injection

C → L−1(−S)

factors as

C →M → L−1(−S).

Therefore,

Hi(X,M) → Hi(X,L−1(−S))

is surjective for every i.

Proof. The first part is clear from Corollary 2.3

and Lemma 2.4. This implies that we have maps

Hi(X, C) → Hi(X,M) → Hi(X,L−1(−S)).

As we saw above, the composition is surjective.

Hence so is the map on the right.

Therefore, we obtain that

Hq(X,L−1(−S −D)) → Hq(X,L−1(−S))

is surjective for every q. By the Serre duality, we

obtain

Hq(X,OX(KX) ⊗ L(S))

→ Hq(X,OX(KX) ⊗ L(S +D))

is injective for every q. This means that

Hq(X,OX(L)) → Hq(X,OX(L+D))

is injective for every q.

3. Proof of the main theorem In this sec-

tion, we prove Theorem 1.1. First, we prove a gener-

alization of Kollár’s injectivity theorem (cf. [A, The-

orem 3.1]). It is a straightforward consequence of

Proposition 2.1 and will produce the desired torsion-

free and vanishing theorems.

Theorem 3.1 (Injectivity theorem). Let X be

a smooth projective variety and ∆ a boundary Q-

divisor such that Supp∆ is simple normal crossing.

Let L be a Cartier divisor on X and D an effective



4 O. Fujino [Vol. 85(A),

Cartier divisor that contains no lc centers of (X,∆).

Assume the following conditions.

(i) L ∼Q KX + ∆ +H,

(ii) H is a semi-ample Q-Cartier Q-divisor, and

(iii) tH ∼Q D+D′ for some positive rational number

t, where D′ is an effective Q-Cartier Q-divisor

that contains no lc centers of (X,∆).

Then the homomorphisms

Hq(X,OX(L)) → Hq(X,OX(L+D)),

which are induced by the natural inclusion OX →
OX(D), are injective for all q.

Proof. We put S = x∆y and B = {∆}. We can

take a resolution f : Y → X such that f is an iso-

morphism outside Supp(D +D′ + B), and that the

union of the support of f∗(S +B+D+D′) and the

exceptional locus of f has a simple normal crossing

support on Y . Let B′ be the strict transform of B

on Y . We write KY + S′ +B′ = f∗(KX + S +B) +

E, where S′ is the strict transform of S, and E is f -

exceptional. It is easy to see that E+ = pEq ≥ 0. We

put L′ = f∗L+E+ and E− = E+ −E ≥ 0. We note

that E+ is Cartier and E− is an effective Q-Cartier

divisor with xE−y = 0. Since f∗H is semi-ample, we

can write f∗H ∼Q aH ′, where 0 < a < 1 and H ′ is a

general Cartier divisor on Y . We put B′′ = B′+E−+
ε
t
f∗(D+D′)+ (1− ε)aH ′ for some 0 < ε≪ 1. Then

L′ ∼Q KY + S′ +B′′. By the construction, it is easy

to see that xB′′
y = 0, the support of S′ +B′′ is sim-

ple normal crossing on Y , and SuppB′′ ⊃ Suppf∗D.

So, Proposition 2.1 implies that the homomorphisms

Hq(Y,OY (L′)) → Hq(Y,OY (L′ + f∗D)) are injec-

tive for all q. By Lemma 3.2 below, Rqf∗OY (L′) = 0

for all q > 0 and it is easy to see that f∗OY (L′) ≃
OX(L). By the Leray spectral sequence, the homo-

morphisms Hq(X,OX(L)) → Hq(X,OX(L+D)) are

injective for all q.

Let us recall the following well-known easy

lemma.

Lemma 3.2. Let V be a smooth projective va-

riety and B a boundary Q-divisor on V such that

SuppB is simple normal crossing. Let f : V → W

be a birational morphism onto a projective variety

W . Assume that f is an isomorphism at the generic

point of every lc center of (V,B) and that D is a

Cartier divisor on V such that D− (KV +B) is nef.

Then Rif∗OV (D) = 0 for every i > 0.

Proof. We use the induction on the number of

irreducible components of xBy and on the dimen-

sion of V . If xBy = 0, then the lemma follows from

the Kawamata–Viehweg vanishing theorem (cf. [KM,

Corollary 2.68]). Therefore, we can assume that

there is an irreducible divisor S ⊂ xBy. We con-

sider the following short exact sequence

0 → OV (D − S) → OV (D) → OS(D) → 0.

By induction, we see that Rif∗OV (D − S) = 0 and

Rif∗OS(D) = 0 for every i > 0. Thus, we have

Rif∗OV (D) = 0 for i > 0.

Let us start the proof of the main theorem: The-

orem 1.1.

Proof of Theorem 1.1. We begin the proof of

(i). We can assume that H is semi-ample by replac-

ing L (resp.H) with L+f∗A′ (resp.H+f∗A′), where

A′ is a very ample Cartier divisor onX . Assume that

Rqf∗OY (L) has a local section whose support does

not contain the image of any (Y,B)-stratum. Then

we can find a very ample Cartier divisor A with the

following properties.

(a) f∗A contains no lc centers of (Y,B), and

(b) Rqf∗OY (L) → Rqf∗OY (L) ⊗ OX(A) is not in-

jective.

We can assume that H − f∗A is semi-ample by re-

placing L (resp. H) with L + f∗A (resp. H + f∗A).

If necessary, we replace L (resp. H) with L + f∗A′′

(resp. H + f∗A′′), where A′′ is a very ample Cartier

divisor on X . Then, we have

H0(X,Rqf∗OY (L)) ≃ Hq(Y,OY (L))

and

H0(X,Rqf∗OY (L)⊗OX(A)) ≃ Hq(Y,OY (L+f∗A)).

We see that

H0(X,Rqf∗OY (L)) → H0(X,Rqf∗OY (L)⊗OX(A))

is not injective by (b) if A′′ is sufficiently ample. So,

Hq(Y,OY (L)) → Hq(Y,OY (L+ f∗A))

is not injective. It contradicts Theorem 3.1. This

completes the proof of (i).

Let us start the proof of (ii). We take a gen-

eral member A ∈ |mH ′|, where m is a sufficiently

divisible positive integer, such that A′ = f∗A and

Rqf∗OY (L +A′) is Γ-acyclic for every q. By (i), we

have the following short exact sequences,

0 → Rqf∗OY (L) → Rqf∗OY (L +A′)

→ Rqf∗OA′(L+A′) → 0.

for all q. Note that Rqf∗OA′(L+A′) is Γ-acyclic by

the induction on dimX and Rqf∗OY (L+A′) is also
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Γ-acyclic by the above assumption. We consider the

spectral sequences

E
pq
2 = Hp(X,Rqf∗OY (L)) → Hp+q(Y,OY (L)),

and

E
pq

2 = Hp(X,Rqf∗OY (L +A′))

→ Hp+q(Y,OY (L +A′)).

Thus, Epq
2 = 0 for p ≥ 2 in the following commuta-

tive diagram of spectral sequences.

E
pq
2

ϕpq

��

+3 Hp+q(Y,OY (L))

ϕp+q

��

E
pq

2
+3 Hp+q(Y,OY (L +A′))

We note that ϕ1+q is injective by Theorem 3.1.

We have E
1q
2 → H1+q(Y,OY (L)) is injective by

the fact that Epq
2 = 0 for p ≥ 2. We also have

that E
1q

2 = 0 by the above assumption. There-

fore, we obtain E
1q
2 = 0 since the injection E

1q
2 →

H1+q(Y,OY (L+A′)) factors through E
1q

2 . This im-

plies that Hp(X,Rqf∗OY (L)) = 0 for every p >

0.

4. Applications In this final section, we

give two applications of Theorem 1.1. The next the-

orem is powerful enough and seems inaccessible by

the classical approaches (cf. Remark 4.2). We rec-

ommend the reader to see [F2] for some applications

to the log minimal model program for log canonical

pairs.

Theorem 4.1 (cf. [A, Theorem 4.4]). Let X

be a normal projective variety and B a boundary Q-

divisor on X such that (X,B) is log canonical. Let L

be a Cartier divisor on X. Assume that L − (KX +

B) is ample. Let {Ci} be any set of lc centers of

the pair (X,B). We put W =
⋃
Ci with a reduced

scheme structure. Then we have

Hi(X, IW ⊗OX(L)) = 0, Hi(X,OX(L)) = 0,

and

Hi(W,OW (L)) = 0

for all i > 0, where IW is the defining ideal sheaf of

W on X. In particular, the restriction map

H0(X,OX(L)) → H0(W,OW (L))

is surjective. Therefore, if (X,B) has a zero-

dimensional lc center, then the linear system |L| is

not empty and the base locus of |L| contains no zero-

dimensional lc centers of (X,B).

Before the proof of Theorem 4.1, we give a very

important remark.

Remark 4.2. In the last sentence in Theorem

4.1, we do not assume that the zero-dimensional lc

center is isolated in the non-klt locus of the pair

(X,B), neither do we assume that there exists an-

other boundary Q-divisor B′ on X such that (X,B′)

is klt. Therefore, it can not be proved by the tra-

ditional arguments depending on the Kawamata–

Viehweg–Nadel vanishing theorem. So, Theorem 4.1

is not a technical improvement of the known results.

We begin the proof of Theorem 4.1.

Proof of Theorem 4.1. Let f : Y → X be a res-

olution such that Suppf−1
∗ B ∪ Exc(f) is a simple

normal crossing divisor. We can further assume that

f−1(W ) is a simple normal crossing divisor on Y .

We can write

KY +BY = f∗(KX +B).

Let T be the union of the irreducible components of

B=1
Y that are mapped into W by f . We put A =

p−(B<1
Y )q. Then A is an effective f -exceptional di-

visor. Thus, we have f∗OY (A) ≃ OX . On the other

hand, it is easy to see that f∗OY (A−T ) ≃ IW , where

IW is the defining ideal sheaf of W . We note that

f(T ) = W . Since

f∗L+A− T − (KY + {BY } + B=1
Y − T )

∼Q f∗(L− (KX +B)),

and

f∗L+A− (KY + {BY } + B=1
Y )

∼Q f∗(L− (KX +B)),

we have

Hi(X, IW ⊗OX(L))

≃ Hi(X, f∗OY (A− T )⊗OX(L)) = 0,

and

Hi(X,OX(L))

≃ Hi(X, f∗OY (A) ⊗OX(L)) = 0

for all i > 0 by Theorem 1.1 (ii). By the following

long exact sequence

· · · → Hi(X,OX(L)) → Hi(W,OW (L))

→ Hi+1(X, IW ⊗OX(L)) → · · · ,

we obtain Hi(W,OW (L)) = 0 for all i > 0.
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Remark 4.3. We note that we do not need

Ambro’s vanishing theorem for embedded normal

crossing pairs (cf. [A, Theorem 3.2]) to obtain

Hi(W,OW (L)) = 0 for i > 0 in Theorem 4.1.

We close this paper with the Kodaira vanishing

theorem for log canonical pairs, which was not ex-

plicitly stated in [A]. For a more general result con-

taining the Kawamata–Viehweg vanishing theorem,

see [F1, Theorem 2.48].

Theorem 4.4 (Kodaira vanishing theorem for

lc pairs). Let X be a normal projective variety and

B a boundary Q-divisor on X such that (X,B) is

log canonical. Let L be a Q-Cartier Weil divisor

on X such that L − (KX + B) is ample. Then

Hq(X,OX(L)) = 0 for every q > 0.

Proof. Let f : Y → X be a resolution of (X,B)

such that KY = f∗(KX +B)+
∑

i aiEi with ai ≥ −1

for every i and Supp
∑
Ei is simple normal crossing.

We can assume that
∑

i Ei∪Suppf∗L is a simple nor-

mal crossing divisor on Y . We put E =
∑

i aiEi and

F =
∑

aj=−1(1 − bj)Ej , where bj = multEj
{f∗L}.

We note that A = L− (KX +B) is ample by the as-

sumption. So, we have f∗A = f∗L− f∗(KX +B) =

pf∗L + E + Fq − (KY + F + {−(f∗L + E + F )}).
We can easily check that f∗OY (pf∗L + E + Fq) ≃
OX(L) and that F +{−(f∗L+E+F )} has a simple

normal crossing support and is a boundary Q-divisor

on Y . By Theorem 1.1 (ii), we obtain that OX(L)

is Γ-acyclic. Thus, we have Hq(X,OX(L)) = 0 for

every q > 0.

The reader can find more advanced topics and

many other applications in [F1], [F2], [F3], [F4], [F5],

[F6], [F7], and [F8]. This paper is a gentle introduc-

tion to Chapter 2 in [F1]. We recommend the reader

to see [F1].
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