
ON QUASI-LOG SCHEMES
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Abstract. The notion of quasi-log schemes was first introduced by Florin Ambro in
his epoch-making paper: Quasi-log varieties. In this paper, we establish the basepoint-
free theorem of Reid–Fukuda type for quasi-log schemes in full generality. Roughly
speaking, it means that all the results for quasi-log schemes claimed in Ambro’s paper
hold true. The proof is Kawamata’s X-method with the aid of the theory of basic slc-
trivial fibrations. For the reader’s convenience, we make many comments on the theory
of quasi-log schemes in order to make it more accessible.
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1. Introduction

Let us start with a simple situation. Let X be a normal projective variety defined
over C, the complex number field. Then the following two conditions (I) and (II) are
equivalent:

(I) there exist a proper birational morphism f : Y → X from a smooth variety Y and
a Q-divisor BY on Y such that SuppBY is a simple normal crossing divisor with
⌊BY ⌋ ≤ 0 satisfying
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(1) KY +BY ∼Q f ∗ω for some Q-Cartier Q-divisor ω on X, and
(2) the natural map

OX → f∗OY (⌈−BY ⌉)
is an isomorphism,

and
(II) (X,B), where B = f∗BY such that f and BY are as in (I), is kawamata log

terminal in the usual sense.

Even if we replace the assumption that f is proper birational in (I) with one that f is
only proper, many results, for example, the cone and contraction theorem, still hold true
for X with respect to ω (see [F1]). This observation plays a crucial role in [F12] and [F16]
(see also Section 4). Hence it is natural to consider the following more general setting.

Let X be a scheme with an R-Cartier divisor ω on X. Note that X may be reducible
and may have non-reduced components. Of course, X is not necessarily equidimensional.
Assume that there exists a proper morphism f : Y → X from a globally embedded simple
normal crossing pair (Y,BY ) such that

(a) KY +BY ∼R f ∗ω, and
(b) the natural map OX → f∗OY (⌈−(B<1

Y )⌉) induces an isomorphism

IX−∞
≃−→ f∗OY (⌈−(B<1

Y )⌉ − ⌊B>1
Y ⌋),

where IX−∞ is the defining ideal sheaf of a closed subscheme X−∞ ⊊ X.

Then we call

(X,ω, f : (Y,BY ) → X)

or simply [X,ω] a quasi-log scheme (see [A]). We can prove various Kodaira type vanishing
theorems, the cone and contraction theorem, and so on, for quasi-log schemes (see [F23,
Chapter 6]). If X−∞ is empty, then we say that

(X,ω, f : (Y,BY ) → X)

or [X,ω] is a quasi-log canonical pair. In general, quasi-log canonical pairs are reducible
and are not equidimensional. However, it is surprising that they have only Du Bois
singularities (see [FLh3]). Note that a log canonical pair can be seen as a quasi-log
canonical pair by considering a suitable resolution of singularities. Hence [FLh3] is a
complete generalization of [KK]. More generally, let (X,B) be a quasi-projective semi-
log canonical pair. Then [X,KX + B] naturally becomes a quasi-log canonical pair (see
[F17]). Hence any union of some slc strata of (X,B), which is denoted by W , has a
natural quasi-log canonical structure induced from the one on [X,KX +B] by adjunction.
Therefore, W has only Du Bois singularities, the cone and contraction theorem holds for
W with respect to (KX + B)|W , and various Kodaira type vanishing theorems can be
formulated on W .

One of the main purposes of this paper is to establish the following theorem, which is
[A, Theorem 7.2]. We note that there exists no detail of the proof of Theorem 1.1 in [A].

Theorem 1.1 (Basepoint-free theorem of Reid–Fukuda type for quasi-log schemes). Let
[X,ω] be a quasi-log scheme, let π : X → S be a proper morphism between schemes, and
let L be a π-nef Cartier divisor on X such that qL − ω is nef and log big over S with
respect to [X,ω] for some positive real number q. Assume that OX−∞(mL) is π-generated
for every m ≫ 0. Then OX(mL) is π-generated for every m ≫ 0.
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This type of basepoint-free theorem was first considered by Reid in [S, 10.4. Eventual
freedom] in order to avoid Zariski’s famous counterexample (see [KMM, Remark 3-1-
2.(2)]). Note that Section 10 in [S] was written by Reid when he translated Shokurov’s
paper from Russian to English (see [S, §10. Commentary by M. Reid]). Then Fukuda
treated this problem in a series of papers (see [Fk1], [Fk2], and [Fk3]). We know that the
basepoint-free theorem of Reid–Fukuda type holds true for divisorial log terminal pairs
of arbitrary dimension (see [F2]). In [A], Ambro claims Theorem 1.1 without proof. In
[F23, Section 6.9], we proved Theorem 1.1 under the extra assumption that X−∞ = ∅
and π is projective. In [F20], we treated Theorem 1.1 when π is projective and X−∞ may
be nonempty. In [F23, Section 6.9] and [F20], we use Kodaira’s lemma for big divisors.
Hence the projectivity of π is indispensable in [F23, Section 6.9] and [F20]. Our approach
to Theorem 1.1 in this paper is completely different from the one in [F23, Section 6.9]
and [F20]. We use the theory of basic R-slc-trivial fibrations, which is discussed in [FH2,
Sections 3 and 5], in order to prove Theorem 1.1. This means that we use the theory of
variations of mixed Hodge structure on cohomology with compact support for the proof
of Theorem 1.1 (see [FF] and [FFS]). We think that the main importance of Theorem
1.1 is not in the statement but in the techniques in the proof. By Theorem 1.1 and the
author’s series of papers, we can recover all the results for quasi-log schemes in [A]. As
an obvious corollary of Theorem 1.1, we have:

Corollary 1.2 (Basepoint-free theorem of Reid–Fukuda type for log canonical pairs). Let
(X,∆) be a log canonical pair and let π : X → S be a proper morphism to a scheme S.
Let L be a π-nef Cartier divisor on X such that qL− (KX +∆) is nef and log big over S
with respect to (X,∆) for some positive real number q. Then OX(mL) is π-generated for
every m ≫ 0.

When π is projective, Corollary 1.2 is nothing but [F23, Corollary 6.9.4]. As far as
we know, there is no approach to Corollary 1.2 without using the theory of quasi-log
schemes. The main ingredient of the proof of Theorem 1.1 is the following theorem,
which is a generalization of [F30, Theorem 1.7] and [F35, Theorem 7.1]. As is well known,
some generalizations of Kodaira’s canonical bundle formula are very useful for various
geometric problems (see [FMo], [F3], [F4], [FG1], [FG2], and so on). Theorem 1.3 below
is a kind of canonical bundle formula. The proof depends on [FH2, Theorem 5.1 and
Corollary 5.2], that is, the theory of basic R-slc-trivial fibrations. Roughly speaking,
Theorem 1.3 says that every normal irreducible quasi-log scheme naturally becomes a
generalized pair. For the details of generalized pairs, we recommend the reader to see
Birkar’s survey article [B].

Theorem 1.3 (Normal irreducible quasi-log schemes). Let

(X,ω, f : (Y,BY ) → X)

be a quasi-log scheme such that X is a normal variety, f is projective, and every stratum
of Y is dominant onto X. Then f : (Y,BY ) → X is a basic R-slc-trivial fibration. Let
B and M be the discriminant and moduli R-b-divisors associated to f : (Y,BY ) → X,
respectively. Then there exists a projective birational morphism p : X ′ → X from a smooth
quasi-projective variety X ′ such that

(i) K+B = KX′ +BX′ holds, where K is the canonical b-divisor of X,
(ii) SuppBX′ is a simple normal crossing divisor on X ′,
(iii) M = MX′ holds such that MX′ is a potentially nef R-divisor on X ′,
(iv) p

(
B≥1

X′

)
= Nqklt(X,ω) holds set theoretically, and
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(v) p
(
B>1

X′

)
= Nqlc(X,ω) holds set theoretically.

Note that
K+B+M = ω

holds by definition. Moreover, if we put

JNgklt := p∗OX′ (−⌊BX′⌋)
and

JNglc := p∗OX′
(
−⌊BX′⌋+B=1

X′

)
= p∗OX′

(
⌈−(B<1

X′ )⌉ − ⌊B>1
X′⌋
)
,

then JNgklt = p∗OX′
(
−⌊B≥1

X′⌋
)
and JNglc = p∗OX′

(
−⌊B>1

X′⌋
)
are ideal sheaves on X such

that the following inclusions

JNgklt ⊂ INqklt(X,ω) and JNglc ⊂ INqlc(X,ω)

hold, where INqklt(X,ω) and INqlc(X,ω) are the defining ideal sheaves of Nqklt(X,ω) and
Nqlc(X,ω), respectively.

We note that in the above statement B and M become Q-b-divisors when

(X,ω, f : (Y,BY ) → X)

has a Q-structure.

We will prove Theorem 1.1 by combining Kawamata’s X-method with Theorem 1.3
in the framework of quasi-log schemes. We note that we do not use the minimal model
program in this paper.

Let us explain the idea of the proof of Theorem 1.1. For simplicity of notation, we
assume that S is a point. By the standard argument in the theory of quasi-log schemes,
we can reduce the problem to the case where X is irreducible and ONqklt(X,ω)(mL) is
generated by global sections for everym ≫ 0. This implies that Bs |mL|∩Nqklt(X,ω) = ∅
for every m ≫ 0. Let ν : Z → X be the normalization. Then [Z, ν∗ω] has a natural quasi-
log scheme structure with ν∗INqklt(Z,ν∗ω) = INqklt(X,ω). Moreover, we may assume that
[Z, ν∗ω] satisfies Theorem 1.3. By the classical X-method, we can prove that there are
many global sections of OZ(mν∗L) ⊗ JNgklt for m ≫ 0, where JNgklt is the ideal sheaf
defined in Theorem 1.3. By JNgklt ⊂ INqklt(Z,ν∗ω) and ν∗INqklt(Z,ν∗ω) = INqklt(X,ω),

H0 (Z,OZ(mν∗L)⊗ JNgklt) ⊂ H0
(
X,OX(mL)⊗ INqklt(X,ω)

)
holds for every m. Hence OX(mL) ⊗ INqklt(X,ω) has many global sections such that
Bs |mL| ∩ (X \ Nqklt(X,ω)) = ∅. Therefore, we obtain Bs |mL| = ∅ for m ≫ 0.

Finally, we note:

Remark 1.4. Recently, the minimal model program for threefolds in positive and mixed
characteristic is developing rapidly. Moreover, the minimal model program for Kähler
threefolds is studied extensively. Unfortunately, however, our framework of quasi-log
schemes only works for algebraic varieties in characteristic zero. This is because it heavily
depends on the theory of mixed Hodge structures and the theory of variations of mixed
Hodge structure. It is a challenging and interesting problem to discuss the theory of
quasi-log schemes in other settings.

This paper is organized as follows. In Section 2, we make some comments on base
fields and the Lefschetz principle for the reader’s convenience. In Section 3, we collect
some basic definitions. In Section 4, we slightly reformulate the Kawamata–Shokurov
basepoint-free theorem. The results in this section can be proved by Kawamata’s X-
method without difficulties. In Section 5, we quickly recall the definition of quasi-log
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schemes and basic slc-trivial fibrations and explain some fundamental results. In Section
6, we prove Theorem 1.3, which is one of the main results of this paper. Section 7 is
devoted to the proof of Theorem 1.1. In Section 8, we make many comments on [A] to
help the reader understand differences between Ambro’s original approach in [A] and our
framework of quasi-log schemes.

Acknowledgments. The author was partially supported by JSPS KAKENHI Grant
Numbers JP19H01787, JP20H00111, JP21H00974, JP21H04994. He would like to thank
Kenta Hashizume very much for fruitful discussions. Finally, he thanks the referee for
many useful comments.

We will work over C, the complex number field, throughout this paper. A scheme
means a separated scheme of finite type over C. A variety means an integral scheme,
that is, an irreducible and reduced separated scheme of finite type over C. We will freely
use the framework of quasi-log schemes established in [F23, Chapter 6]. We note that Z,
Q, and R denote the set of intergers, rational numbers, and real numbers, respectively.
We also note that Q>0 and R>0 are the set of positive rational numbers and positive real
numbers, respectively. In this paper, the expression ‘... for every m ≫ 0’ means that
‘there exists a positive number m0 such that ... for every m ≥ m0.’

2. On the Lefschetz principle

In this short section, before starting the main contents of this paper, we make some
comments on base fields and the Lefschetz principle for the reader’s convenience.

Remark 2.1 (On the base field k). We mainly work over C, the complex number field,
in the papers on quasi-log schemes (see [F23, Chapter 6]). This is because the author’s
approach depends on the theory of mixed Hodge structures on cohomology with compact
support. However, almost all results on quasi-log schemes hold true over any algebraically
closed field k of characteristic zero. For example, we can prove the vanishing theorems
for quasi-log schemes over k by the Lefschetz principle. Hence the cone and contraction
theorem for quasi-log schemes defined over k can be proved as an application of some
vanishing theorems. When we treat sufficiently general fibers, uniruledness, rationally
chain connectedness, and so on, we have to take care of the base field k if the cardinality
of k is countable (see [F35]). It is obvious that some results, for example, the simply
connectedness of quasi-log canonical Fano pairs, make sense only over C (see [FLw] and
[F31]). We note that we can check that all the results obtained in this paper hold true
over any algebraically closed field k of characteristic zero without any difficulties.

Let us quickly see how to use the Lefschetz principle. Let X be a projective scheme
defined over an algebraically closed field k of characteristic zero. Let L be a Cartier
divisor on X and let H be an ample Cartier divisor on X. We can take a subfield k0 of
k, which is finitely generated over Q, and a scheme X0 defined over k0, a Cartier divisor
L0 on X0, and an ample Cartier divisor H0 on X0 such that X ≃ X0 ×Spec k0 Spec k,
L ≃ L0 ×Spec k0 Spec k, and H ≃ H0 ×Spec k0 Spec k. We consider some embedding k0 ⊂ C
and the induced morphism SpecC → Spec k0. Then we put XC := X0 ×Spec k0 SpecC,
LC := L0 ×Spec k0 SpecC, and HC := H0 ×Spec k0 SpecC. Since H is ample, H0 and HC
are both ample. Note that L, L0, and LC are nef if and only if L + rH, L0 + rH0, and
LC + rHC are ample for every rational number r with 0 < r ≪ 1, respectively. Hence, L
is nef if and only if LC is nef.
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3. Preliminaries

Here, we collect some basic definitions for the reader’s convenience. Let X be a scheme
and let Pic(X) be the group of line bundles on X, that is, the Picard group of X. An
element of Pic(X) ⊗Z R (resp. Pic(X) ⊗Z Q) is called an R-line bundle (resp. a Q-line
bundle) on X. We write the group law of Pic(X) ⊗Z Q additively for simplicity of no-
tation. Let Div(X) be the group of Cartier divisors on X. An element of Div(X) ⊗Z R
(resp. Div(X)⊗ZQ) is called an R-Cartier divisor (resp. aQ-Cartier divisor) onX. Let ∆1

and ∆2 be R-Cartier (resp. Q-Cartier) divisors on X. Then ∆1 ∼R ∆2 (resp. ∆1 ∼Q ∆2)
means that ∆1 is R-linearly (resp. Q-linearly) equivalent to ∆2. There exists a natural
group homomorphism Div(X) → Pic(X) given by A 7→ OX(A), where A is a Cartier divi-
sor on X. It induces a homomorphism δX : Div(X)⊗Z R → Pic(X)⊗Z R. We sometimes
write A + L ∼R B +M for A,B ∈ Div(X)⊗Z R and L,M ∈ Pic(X)⊗Z R. This means
that δX(A)+L = δX(B)+M holds in Pic(X)⊗ZR. We usually use this type of abuse of
notation, that is, the confusion of R-line bundles with R-Cartier divisors. In the theory
of minimal models for higher-dimensional algebraic varieties, we sometimes use R-Cartier
divisors for ease of notation even when they should be R-line bundles.

Let us recall the definition of potentially nef divisors. We need it in Theorem 1.3.

Definition 3.1 (Potentially nef divisors, see [F30, Definition 2.5]). Let X be a normal
variety and let D be a divisor on X. If there exist a completion X♭ of X, that is, X♭ is a
complete normal variety and contains X as a dense Zariski open subset, and a nef divisor
D♭ on X♭ such that D = D♭|X , then D is called a potentially nef divisor on X. A finite
Q>0-linear (resp. R>0-linear) combination of potentially nef divisors is called a potentially
nef Q-divisor (resp. R-divisor).

Remark 3.2. (i) Let D be a nef R-divisor on a smooth projective variety X. Then D
is not necessarily a potentially nef R-divisor. This means that D is not always a finite
R>0-linear combination of nef Cartier divisors on X. (ii) Let X be a normal variety and
let D be a potentially nef R-divisor on X. Then D · C ≥ 0 for every projective curve C
on X. In particular, D is π-nef for every proper morphism π : X → S to a scheme S.

It is convenient to use b-divisors to explain several results. We note that the notion of
b-divisors was first introduced by Shokurov. Let us recall the definition of b-divisors for
the reader’s convenience.

Definition 3.3 (b-divisors). Let X be a normal variety and let Weil(X) be the space of
Weil divisors on X. A b-divisor on X is an element:

D ∈ Weil(X) := lim
Y→X

Weil(Y ),

where the (projective) limit is taken over all proper birational morphism f : Y → X from
a normal variety Y under the pushforward homomorphism f∗ : Weil(Y ) → Weil(X). We
can define Q-b-divisors and R-b-divisors on X similarly. If D =

∑
dΓΓ is an R-b-divisor

on a normal variety X and f : Y → X is a proper birational morphism from a normal
variety Y , then the trace of D on Y is the R-divisor

DY :=
∑

Γ is a divisor on Y

dΓΓ.

Definition 3.4 (Canonical b-divisors). Let X be a normal variety and let ω be a top
rational differential form of X. Then (ω) defines a b-divisor K. We call K the canonical
b-divisor of X.
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Definition 3.5 (R-Cartier closures). The R-Cartier closure of an R-Cartier R-divisor D
on a normal variety X is the R-b-divisor D with trace

DY = f ∗D,

where f : Y → X is a proper birational morphism from a normal variety Y .

Definition 3.6 ([F30, Definition 2.12]). Let X be a normal variety. An R-b-divisor D
of X is b-potentially nef (resp. b-semi-ample) if there exists a proper birational morphism
X ′ → X from a normal variety X ′ such that D = DX′ , that is, D is the R-Cartier closure
of DX′ , and that DX′ is potentially nef (resp. semi-ample). An R-b-divisor D of X is
R-b-Cartier if there is a proper birational morphism X ′ → X from a normal variety X ′

such that D = DX′ .

Definition 3.7. Let X be an equidimensional reduced scheme. Note that X is not
necessarily regular in codimension one. Let D be an R-divisor (resp. a Q-divisor), that
is, D is a finite formal sum

∑
i diDi, where Di is an irreducible reduced closed subscheme

of X of pure codimension one and di ∈ R (resp. di ∈ Q) for every i such that Di ̸= Dj for
i ̸= j. We put

D<1 =
∑
di<1

diDi, D=1 =
∑
di=1

Di, D>1 =
∑
di>1

diDi, and ⌊D⌋ =
∑
i

⌊di⌋Di,

where ⌊di⌋ is the integer defined by di − 1 < ⌊di⌋ ≤ di. We note that ⌈D⌉ = −⌊−D⌋ and
{D} = D − ⌊D⌋. Similarly, we put

D≥1 =
∑
di≥1

diDi.

Let D be an R-divisor (resp. a Q-divisor) as above. We call D a subboundary R-divisor
(resp. Q-divisor) if D = D≤1 holds. When D is effective and D = D≤1 holds, we call D a
boundary R-divisor (resp. Q-divisor).

The following definition is standard and is well known.

Definition 3.8 (Singularities of pairs). Let X be a variety and let E be a prime divisor
on Y for some proper birational morphism f : Y → X from a normal variety Y . Then E
is called a divisor over X. A normal pair (X,∆) consists of a normal variety X and an
R-divisor ∆ on X such that KX + ∆ is R-Cartier. Let (X,∆) be a normal pair and let
f : Y → X be a proper birational morphism from a normal variety Y . Then we can write

KY = f ∗(KX +∆) +
∑
E

a(E,X,∆)E

with

f∗

(∑
E

a(E,X,∆)E

)
= −∆,

where E runs over prime divisors on Y . We call a(E,X,∆) the discrepancy of E with
respect to (X,∆). Note that we can define the discrepancy a(E,X,∆) for any prime
divisor E over X by taking a suitable resolution of singularities of X. If a(E,X,∆) ≥ −1
(resp. > −1) for every prime divisor E over X, then (X,∆) is called sub log canonical
(resp. sub kawamata log terminal). We further assume that ∆ is effective. Then (X,∆) is
called log canonical and kawamata log terminal if it is sub log canonical and sub kawamata
log terminal, respectively.



8 OSAMU FUJINO

Let (X,∆) be a log canonical pair. If there exists a projective birational morphism
f : Y → X from a smooth variety Y such that both Exc(f), the exceptional locus of f , and
Exc(f) ∪ Supp f−1

∗ ∆ are simple normal crossing divisors on Y and that a(E,X,∆) > −1
holds for every f -exceptional divisor E on Y , then (X,∆) is called divisorial log terminal
(dlt, for short).

Definition 3.9 (Log canonical centers, non-lc loci, and so on). Let (X,∆) be a normal
pair. If there exist a projective birational morphism f : Y → X from a normal variety Y
and a prime divisor E on Y such that (X,∆) is sub log canonical in a neighborhood of
the generic point of f(E) and that a(E,X,∆) = −1, then f(E) is called a log canonical
center of (X,∆).

From now on, we further assume that ∆ is effective. Let f : Y → X be a resolution
with

KY +∆Y = f ∗(KX +∆)

such that Supp∆Y is a simple normal crossing divisor on Y . We put

J (X,∆) = f∗OY (−⌊∆Y ⌋).

Then J (X,∆) is an ideal sheaf on X and is known as the multiplier ideal sheaf associated
to the pair (X,∆). It is independent of the resolution f : Y → X. The closed subscheme
Nklt(X,∆) defined by J (X,∆) is called the non-klt locus of (X,∆). It is obvious that
(X,∆) is kawamata log terminal if and only if J (X,∆) = OX . Similarly, we put

JNLC(X,∆) = f∗OX(−⌊∆Y ⌋+∆=1
Y )

and call it the non-lc ideal sheaf associated to the pair (X,∆). We can check that it is
independent of the resolution f : Y → X. The closed subscheme Nlc(X,∆) defined by
JNLC(X,∆) is called the non-lc locus of (X,∆). It is obvious that (X,∆) is log canonical
if and only if JNLC(X,∆) = OX . By definition, the natural inclusion

J (X,∆) ⊂ JNLC(X,∆)

always holds. Therefore, we have

Nlc(X,∆) ⊂ Nklt(X,∆).

For the details of JNLC(X,∆), we recommend the reader to see [F9] and [F14].

4. Classical basepoint-free theorems

In this section, we will reformulate some classical results in order to apply them to the
proof of Theorem 1.1. Everything in this section can be proved by the X-method. For the
details of the X-method, see [KMM], [KM], and [M]. We note that this section is similar
to [F16, Section 2].

Let us start with Shokurov’s nonvanishing theorem.

Theorem 4.1 (Shokurov’s nonvanishing theorem). Let X be a smooth variety and let B
be an R-divisor on X such that SuppB is a simple normal crossing divisor on X with
⌊B⌋ ≤ 0. Let π : X → S be a proper morphism to a scheme S and let D be a π-nef Cartier
divisor on X. Assume that aD− (KX +B) is nef and big over S for some positive integer
a. Then π∗OX(mD + ⌈−B⌉) ̸= 0 for every m ≫ 0.
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Sketch of Proof. By taking the Stein factorization and considering a sufficiently general
fiber of π : X → S, we may assume that S is a point. By taking a resolution of singularities
of X and using Kodaira’s lemma, we may further assume that X is projective, aD−(KX+
B) is ample, and B is a Q-divisor. In this case, the statement is well known. For the
details, see [KMM], [KM], and [M]. □

For the proof of Theorem 1.1, the following formulation of the Kawamata–Shokurov
basepoint-free theorem is very useful.

Theorem 4.2 (Kawamata–Shokurov basepoint-free theorem). Let X be a smooth variety
and let B be an R-divisor on X such that SuppB is a simple normal crossing divisor on
X with ⌊B⌋ ≤ 0. Let π : X → S be a proper morphism to a scheme S and let D be a
π-nef Cartier divisor on X. Assume the following conditions:

(1) aD − (KX +B) is nef and big over S for some positive integer a, and
(2) there exists a positive integer k such that the natural inclusion

π∗OX(lD) ↪→ π∗OX(lD + ⌈−B⌉)

is an isomorphism for every l ≥ k.

Then OX(mD) is π-generated for every m ≫ 0.

We give a detailed proof for the sake of completeness. We note that the proof of the
Kawamata–Shokurov basepoint-free theorem, which is now usually called the X-method,
works without any changes (see [KMM], [KM], and [M]), although our treatment looks
slightly different from the original one.

Proof of Theorem 4.2. We will use Shokurov’s nonvanishing theorem (see Theorem 4.1),
the Kawamata–Viehweg vanishing theorem, and Hironaka’s resolution of singularities.

Step 1. By (1) and Theorem 4.1, π∗OX(mD + ⌈−B⌉) ̸= 0 for every m ≫ 0. Hence,
by (2), π∗OX(mD) = π∗OX(mD + ⌈−B⌉) ̸= 0 holds for every m ≫ 0. Let ℓ be any
prime number. Then π∗OX(ℓ

n0D) = π∗OX(ℓ
n0D + ⌈−B⌉) ̸= 0 for some sufficiently large

positive integer n0.

Step 2. Let f : X ′ → X be a projective birational morphism from a smooth variety X ′

such that KX′ + B′ = f ∗(KX + B) and that SuppB′ is a simple normal crossing divisor
on X ′. Then we can check that f∗OX′(⌈−B′⌉) = OX(⌈−B⌉). Hence, we can replace
(X,B) and D with (X ′, B′) and f ∗D, respectively. Therefore, we may assume that there
exists a simple normal crossing divisor G on X such that G =

∑
j Fj is the irreducible

decomposition with the following properties:

• the support of G+SuppB is contained in a simple normal crossing divisor on X,
• ℓn0D = L+

∑
j rjFj for some nonnegative integers rj and a π-free Cartier divisor

L on X such that

π∗OX(ℓ
n0D) = π∗OX(L),

and
• aD − (KX +B)−

∑
j pjFj is ample over S for suitable 0 < pj ≪ 1.

Step 3. We perturb pj suitably and choose c > 0 such that(
B + c

∑
j

rjFj +
∑
j

pjFj

)>1

= 0
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and (
B + c

∑
j

rjFj +
∑
j

pjFj

)=1

is a prime divisor F on X. We put

F +B′ = B + c
∑
j

rjFj +
∑
j

pjFj.

Then, by construction, we see that ⌊F + B′⌋ = F + ⌊B′⌋ and that 0 ≤ ⌈−B′⌉ ≤ ⌈−B⌉
holds.

Step 4. Let n1 be a positive integer such that ℓn1 ≥ cℓn0 + a. We consider an R-divisor
N(ℓn1) := ℓn1D − (KX + F +B′)

= (ℓn1 − cℓn0 − a)D + cL+

(
aD − (KX +B)−

∑
j

pjFj

)
.

Hence, N(ℓn1) is ample over S. By the Kawamata–Viehweg vanishing theorem,

R1π∗OX(KX + ⌈N(ℓn1)⌉) = R1π∗OX(ℓ
n1D − F − ⌊B′⌋) = 0.

Therefore, the restriction map

(4.1) π∗OX(ℓ
n1D) = π∗OX(ℓ

n1D − ⌊B′⌋) → π∗OF (ℓ
n1D + ⌈−B′|F ⌉)

is surjective, where the equality in (4.1) follows from (2) and

π∗OX(ℓ
n1D) ↪→ π∗OX(ℓ

n1D − ⌊B′⌋) ↪→ π∗OX(ℓ
n1D − ⌊B⌋).

By construction,

N(ℓn1)|F = ℓn1D|F − (KX + F +B′)|F
= ℓn1D|F − (KF +B′|F )

is ample over S, SuppB′|F is a simple normal crossing divisor on F , and ⌊B′|F ⌋ ≤ 0 holds.
By Theorem 4.1, we obtain that π∗OF (ℓ

n1D + ⌈−B′|F ⌉) ̸= 0 for every n1 ≫ 0. Thus we
have

(4.2) F ̸⊂ Supp (Coker (π∗π∗OX(ℓ
n1D) → OX(ℓ

n1D))) .

Without loss of generality, we may assume that n1 ≥ n0. Hence, (4.2) implies that

Supp (Coker (π∗π∗OX(ℓ
n1D) → OX(ℓ

n1D)))

⊊ Supp (Coker (π∗π∗OX(ℓ
n0D) → OX(ℓ

n0D)))

since F ⊂ Supp (Coker (π∗π∗OX(ℓ
n0D) → OX(ℓ

n0D))) by construction. By Noetherian
induction,

Supp (Coker (π∗π∗OX(ℓ
nD) → OX(ℓ

nD))) = ∅,
that is, OX(ℓ

nD) is π-generated, for every n ≫ 0.

Step 5. We take another prime number ℓ′. Then, by Step 4, OX(ℓ
′n′
D) is π-generated

for every n′ ≫ 0. We may assume that ℓn < ℓ′n
′
holds by taking ℓ, ℓ′, n, and n′ suitably.

Note that gcd(ℓn, ℓ′n
′
) = 1 since ℓ ̸= ℓ′. We put m0 = ℓn

(
ℓ′n

′ −
⌈
ℓ′n

′

ℓn

⌉)
. By Lemma 4.3

below, for every positive integer m with m ≥ m0, there exist nonnegative integers u and
v such that m = uℓn+vℓ′n

′
. This implies that OX(mD) is π-generated for every m ≥ m0.

We finish the proof. □
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We have already used the following easy lemma in the proof of Theorem 4.2. We give
a proof for the sake of completeness.

Lemma 4.3. Let a and b be positive integers with 1 < a < b such that gcd(a, b) = 1.
Then, for any positive integer m with m ≥ a

(
b−

⌈
b
a

⌉)
, there exist nonnegative integers u

and v such that m = ua+ vb.

Proof. We can uniquely write m = qa+ r such that q and r are integers with q ≥ b−
⌈
b
a

⌉
and 0 ≤ r ≤ a − 1. If r = 0, then it is sufficient to put u = q and v = 0. From now on,
we assume r ̸= 0. Then there exists a positive integer c such that cb =

⌊
cb
a

⌋
a + r with

1 ≤ c ≤ a− 1. Hence m =
(
q −

⌊
cb
a

⌋)
a+ cb. Note that

q −
⌊
cb

a

⌋
≥ b−

⌈
b

a

⌉
−
⌊
(a− 1)b

a

⌋
= 0.

Thus it is sufficient to put u = q −
⌊
cb
a

⌋
and v = c. □

We need a somewhat artificial lemma for the proof of Theorem 1.1.

Lemma 4.4. Let π : X → S be a proper morphism from a normal variety X to an
affine scheme S and let D be a π-nef Cartier divisor on X. Let p : Z → X be a proper
birational morphism from a smooth variety Z and let B be an R-divisor on Z such that
SuppB is a simple normal crossing divisor, B<0 is p-exceptional, and B≥1 ̸= 0. Assume
that ap∗D − (KZ + B) is nef and big over S for some positive real number a and that
Bs |mD| ∩ p(B≥1) = ∅ for some positive integer m, where Bs |mD| denotes the base locus
of |mD| with the reduced scheme structure. Then there exists a positive integer s such
that

(4.3) H0 (X,OX(m
sD)⊗ p∗OZ(−⌊B⌋))⊗OX → OX(m

sD)

is surjective on X \ p(B≥1). Note that p∗OZ(−⌊B⌋) is an ideal sheaf on X. In particular,
OX(m

sD) is π-generated.

Proof. The well-known X-method works with some minor modifications.

Step 1. Let q : Z ′ → Z be a projective birational morphism from a smooth quasi-
projective variety Z ′ such that KZ′ + BZ′ = q∗(KZ + B) and that SuppBZ′ is a simple
normal crossing divisor on Z ′. It is easy to see that q∗OZ′(−⌊BZ′⌋) = OZ(−⌊B⌋). Hence
we can replace (Z,B) and p : Z → X with (Z ′, BZ′) and p ◦ q : Z ′ → X, respectively.
Therefore, we may assume that there exists a simple normal crossing divisor G on Z such
that G =

∑
j Fj is the irreducible decomposition with the following properties:

(1) the support of G+ SuppB is contained in a simple normal crossing divisor on Z,
(2) p∗mD = L +

∑
j rjFj for some nonnegative integers rj and a π ◦ p-free Cartier

divisor L on Z such that

H0(X,OX(mD)) = H0(Z,OZ(L))

and that Bs |mD| =
∪

rj>0 p(Fj), and

(3) ap∗D − (KZ +B)−
∑

j pjFj is ample over S for suitable 0 < pj ≪ 1.

Step 2. By the usual argument in Kawamata’s X-method, we can perturb pj suitably
and choose c > 0 such that(

B + c
∑
j

rjFj +
∑
j

pjFj

)>1

= 0
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on Z \ SuppB≥1 and (
B + c

∑
j

rjFj +
∑
j

pjFj

)=1

is a prime divisor F on Z \ SuppB≥1. We note that if rj > 0 then Fj is disjoint from
SuppB≥1 by the assumption Bs |mD| ∩ p(B≥1) = ∅. We put

F +B′ = B + c
∑
j

rjFj +
∑
j

pjFj.

Then, by construction, ⌊F+B′⌋ = F+⌊B′⌋, Supp(B′)≥1 = SuppB≥1, and p∗OZ(−⌊B′⌋) ⊂
p∗OZ(−⌊B⌋). Note that F is disjoint from Supp(B′)≥1 by construction.

Step 3. Let b be a positive integer such that b ≥ cm+ a. We consider an R-divisor

N(b) := bp∗D − (KZ + F +B′)

= (b− cm− a)p∗D + cL+

(
ap∗D − (KZ +B)−

∑
j

pjFj

)
.

Therefore, we see that N(b) is ample over S. By the Kawamata–Viehweg vanishing
theorem,

H1(Z,OZ(KZ + ⌈N(b)⌉)) = H1(Z,OZ(bp
∗D − F − ⌊B′⌋)) = 0.

Hence the restriction map

(4.4) H0(Z,OZ(bp
∗D − ⌊B′⌋)) → H0(F,OF (bp

∗D + ⌈−B′|F ⌉))

is surjective. Note that

N(b)|F = bp∗D|F − (KZ + F +B′)|F
= bp∗D|F − (KF +B′|F )

is ample over S. By construction, SuppB′|F is a simple normal crossing divisor on F and
⌊B′|F ⌋ ≤ 0 holds. By Theorem 4.1, we obtain that H0(F,OF (bp

∗D + ⌈−B′|F ⌉)) ̸= 0 for
every b ≫ 0. Therefore, H0(Z,OZ(bp

∗D − ⌊B′⌋)) has a section which does not vanish on
the generic point of F for every b ≫ 0 by the surjection (4.4). This means that there
exists some positive integer t such that

H0
(
X,OX(m

tD)⊗ p∗OZ(−⌊B⌋)
)
⊗OX → OX(m

tD)

is surjective at the generic point of p(F ). It is obvious that Bs |mtD| ∩ p(B≥1) = ∅ holds.
Hence we can apply the same argument as above to mtD. Then, by Noetherian induction,
we can find a sufficiently large and divisible positive integer s such that the map in (4.3)
is surjective.

Step 4. By (4.3), Bs |msD|∩(X \p(B≥1)) = ∅. On the other hand, Bs |mD|∩p(B≥1) = ∅
by assumption. Hence Bs |msD| ∩ p(B≥1) = ∅. Therefore, we obtain Bs |msD| = ∅. This
means that OX(m

sD) is π-generated.

We finish the proof of Lemma 4.4. □

We close this section with a remark on the X-method.
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Remark 4.5. As is well known, the X-method works very well for kawamata log terminal
pairs. Precisely speaking, the notion of kawamata log terminal pairs was introduced to
make the X-method work well. Unfortunately, however, it is not so powerful for log
canonical pairs. Hence we proposed a new approach in order to prove the cone and
contraction theorem for log canonical pairs (see [F13] and [F14]). Our approach is based on
some vanishing theorems obtained by the theory of mixed Hodge structures on cohomology
with compact support (see [F7], [F22], [F23, Chapter 5], and [F27]). In some sense, it is
simpler than the X-method. It is mysterious that the proof of Theorem 1.1 given in this
paper needs the X-method.

5. Quasi-log schemes and basic slc-trivial fibrations

In this section, let us quickly review the theory of quasi-log schemes and the framework
of basic slc-trivial fibrations.

Let Y be a simple normal crossing divisor on a smooth variety M and let B be an
R-divisor on M such that Supp(B+Y ) is a simple normal crossing divisor on M and that
B and Y have no common irreducible components. We put BY = B|Y and consider the
pair (Y,BY ). We call (Y,BY ) a globally embedded simple normal crossing pair and M the
ambient space of (Y,BY ). A stratum of (Y,BY ) is a log canonical center of (M,Y + B)
that is contained in Y .

Let us recall the definition of quasi-log schemes.

Definition 5.1 (Quasi-log schemes, see [F23, Definition 6.2.2]). A quasi-log scheme is
a scheme X with an R-Cartier divisor (or R-line bundle) ω on X, a closed subscheme
X−∞ ⊊ X, and a finite collection {C} of subvarieties of X such that there exists a
proper morphism f : (Y,BY ) → X from a globally embedded simple normal crossing pair
satisfying the following properties:

(1) f ∗ω ∼R KY +BY holds,
(2) the natural map OX → f∗OY (⌈−(B<1

Y )⌉) induces an isomorphism

IX−∞
≃−→ f∗OY (⌈−(B<1

Y )⌉ − ⌊B>1
Y ⌋),

where IX−∞ is the defining ideal sheaf of X−∞, and
(3) the collection of subvarieties {C} coincides with the images of the strata of (Y,BY )

that are not included in X−∞.

If there is no risk of confusion, then we simply write [X,ω] to denote the above data

(X,ω, f : (Y,BY ) → X) .

The subvarieties C are called the qlc strata of [X,ω] and X−∞ is called the non-qlc locus of
[X,ω]. Note that a qlc stratum C of [X,ω] is an irreducible and reduced closed subscheme
of X. We usually use Nqlc(X,ω) to denote X−∞. If a qlc stratum C of [X,ω] is not an
irreducible component of X, then it is called a qlc center of [X,ω]. The union of X−∞
with all qlc centers of [X,ω] is denoted by Nqklt(X,ω).
We say that (X,ω, f : (Y,BY ) → X) or [X,ω] has a Q-structure if BY is a Q-divisor,

ω is a Q-Cartier divisor (or Q-line bundle), and f ∗ω ∼Q KY + BY holds in the above
definition.

We need the notion of nef and log big R-divisors in order to formulate the basepoint-free
theorem of Reid–Fukuda type.



14 OSAMU FUJINO

Definition 5.2 (Nef and log bigness). Let L be an R-Cartier divisor (or R-line bundle)
on a quasi-log scheme [X,ω] and let π : X → S be a proper morphism between schemes.
Then L is said to be nef and log big over S with respect to [X,ω] if L is π-nef and L|W is
π-big for every qlc stratum W of [X,ω].

The following example is very important. By this example, we can apply the results
for quasi-log schemes to normal pairs.

Example 5.3. Let X be a normal variety and let B be an effective R-divisor on X such
that KX+B is R-Cartier. Let f : Y → X be a proper birational morphism from a smooth
variety Y with KY + BY = f ∗(KX + B) such that SuppBY is a simple normal crossing
divisor on Y . Then

(X,KX +B, f : (Y,BY ) → X)

naturally becomes a quasi-log scheme. Note that W is a qlc center of [X,KX + B] if
and only if W is a log canonical center of (X,B). By construction, Nqlc(X,KX + B) =
Nlc(X,B). Hence (X,B) is log canonical if and only if Nqlc(X,KX +B) = ∅.

A pair (X,B) which is Zariski locally isomorphic to a globally embedded simple normal
crossing pair at any point is called a simple normal crossing pair. Let (X,B) be a simple
normal crossing pair and let ν : Xν → X be the normalization. We define Bν by KXν +
Bν = ν∗(KX + B), that is, Bν is the sum of the inverse images of B and the singular
locus of X. We note that Xν is a disjoint union of smooth varieties and SuppBν is a
simple normal crossing divisor on Xν . Then we say that W is a stratum of (X,B) if and
only if W is an irreducible component of X or the ν-image of some log canonical center of
(Xν , Bν). Let (X,B) be a simple normal crossing pair as above and let X =

∪
i∈I Xi be

the irreducible decomposition of X. Then a stratum of X means an irreducible component
of Xi1 ∩ · · · ∩Xik for some {i1, . . . , ik} ⊂ I. It is not difficult to see that W is a stratum
of X if and only if W is a stratum of (X, 0). By definition, it is obvious that a globally
embedded simple normal crossing pair is a simple normal crossing pair.

Let us recall the definition of basic slc-trivial fibrations.

Definition 5.4 (Basic slc-trivial fibrations). A basic Q-slc-trivial (resp. R-slc-trivial)
fibration f : (X,B) → Y consists of a projective surjective morphism f : X → Y and a
simple normal crossing pair (X,B) satisfying the following properties:

(1) Y is a normal variety,
(2) every stratum of X is dominant onto Y and f∗OX ≃ OY ,
(3) B is a Q-divisor (resp. an R-divisor) such that B = B≤1 holds over the generic

point of Y ,
(4) there exists a Q-Cartier Q-divisor (resp. an R-Cartier R-divisor) D on Y such that

KX +B ∼Q f ∗D (resp. KX +B ∼R f ∗D), and
(5) rank f∗OX(⌈−(B<1)⌉) = 1.

If there is no danger of confusion, we simply use basic slc-trivial fibrations to denote
basic Q-slc-trivial fibrations or basic R-slc-trivial fibrations. Let f : (X,B) → Y be a
basic slc-trivial fibration as in Definition 5.4 and let ν : Xν → X be the normalization
with KXν +Bν = ν∗(KX +B) as before. Let P be a prime divisor on Y . By shrinking Y
around the generic point of P , we assume that P is a Cartier divisor. We set

bP = max

{
t ∈ R

∣∣∣∣ (Xν , Bν + tν∗f ∗P ) is sub log canonical
over the generic point of P

}
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and put

BY =
∑
P

(1− bP )P,

where P runs over prime divisors on Y . Then BY is a well-defined R-divisor on Y and is
called the discriminant R-divisor of f : (X,B) → Y . We set

MY = D −KY −BY

and call MY the moduli R-divisor of f : (X,B) → Y . The discriminant R-divisor BY is
uniquely determined by f : X → Y and B geometrically. On the other hand, the moduli
R-divisor MY depends on the choice of KX , KY , and D. By definition, we have

KX +B ∼R f ∗(KY +BY +MY ).

Let σ : Y ′ → Y be a proper birational morphism from a normal variety Y ′. Then we have
the following commutative diagram:

(X♯, B♯)
µ //

��

(Xν , Bν)

f◦ν
��

Y ′
σ

// Y,

where X♯ denotes the normalization of the main components of X×Y Y ′ and B♯ is defined
by KX♯ + B♯ = µ∗(KXν + Bν). As above, we can define R-divisors BY ′ , KY ′ and MY ′

for (X♯, B♯) → Y ′ such that σ∗D = KY ′ + BY ′ + MY ′ , σ∗BY ′ = BY , σ∗KY ′ = KY and
σ∗MY ′ = MY hold. Hence there exist a unique R-b-divisor B such that BY ′ = BY ′ for
every σ : Y ′ → Y and a unique R-b-divisor M such that MY ′ = MY ′ for every σ : Y ′ → Y .
We call B the discriminant R-b-divisor associated to f : (X,B) → Y . The R-b-divisor
M is called the moduli R-b-divisor associated to f : (X,B) → Y . When f : (X,B) → Y
is a basic Q-slc-trivial fibration, it is easy to see that B and M are Q-b-divisors by
construction.

By using the theory of mixed Hodge structures on cohomology with compact support
(see [F23, Chapter 5]), we have:

Theorem 5.5 ([F23, Theorem 6.3.5]). Let [X,ω] be a quasi-log scheme and let X ′ be the
union of X−∞ with a (possibly empty) union of some qlc strata of [X,ω]. Then we have
the following properties.

(i) (Adjunction for quasi-log schemes). Assume that X ′ ̸= X−∞. Then X ′ naturally
becomes a quasi-log scheme with ω′ = ω|X′ and X ′

−∞ = X−∞. Moreover, the qlc
strata of [X ′, ω′] are exactly the qlc strata of [X,ω] that are included in X ′.

(ii) (Vanishing theorem for quasi-log schemes). Assume that π : X → S is a proper
morphism between schemes. Let L be a Cartier divisor on X such that L − ω is
nef and log big over S with respect to [X,ω]. Then Riπ∗(IX′ ⊗ OX(L)) = 0 for
every i > 0, where IX′ is the defining ideal sheaf of X ′ on X.

Theorem 5.5 is a key result in the theory of quasi-log schemes. Note that Theorem 5.5
(ii) can be seen as a Kawamata–Viehweg–Nadel vanishing theorem for quasi-log schemes.

Remark 5.6. If Nqklt(X,ω) ̸= Nqlc(X,ω), then [Nqklt(X,ω), ω|Nqklt(X,ω)] naturally be-
comes a quasi-log scheme by adjunction (see Theorem 5.5 (i)).

By using the theory of variations of mixed Hodge structure on cohomology with compact
support (see [FF] and [FFS]), we have:
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Theorem 5.7 ([FH2, Theorem 5.1]). Let f : (X,B) → Y be a basic R-slc-trivial fibration
such that Y is a smooth quasi-projective variety. We write KX + B ∼R f ∗D. Assume
that there exists a simple normal crossing divisor Σ on Y such that SuppD ⊂ Σ and that
every stratum of (X, SuppB) is smooth over Y \ Σ. Let B and M be the discriminant
and moduli R-b-divisors associated to f : (X,B) → Y , respectively. Then

(i) K+B = KY +BY holds, where K is the canonical b-divisor of Y , and
(ii) MY is a potentially nef R-divisor on Y with M = MY .

Theorem 5.7 is the most fundamental property of basic slc-trivial fibrations. In the
proof of Theorem 1.3, we will use the following result, which easily follows from Theorem
5.7.

Corollary 5.8 ([FH2, Corollary 5.2]). Let f : (X,B) → Y be a basic R-slc-trivial fibration
and let B and M be the discriminant and moduli R-b-divisors associated to f : (X,B) →
Y , respectively. Then we have the following properties:

(i) K+B is R-b-Cartier, where K is the canonical b-divisor of Y , and
(ii) M is b-potentially nef, that is, there exists a proper birational morphism σ : Y ′ →

Y from a normal variety Y ′ such that MY ′ is a potentially nef R-divisor on Y ′

and that M = MY ′ holds.

Remark 5.9. It is conjectured that MY is semi-ample in Theorem 5.7. Unfortunately,
however, it is still widely open. We note that MY is known to be semi-ample when Y is
a curve (see [FFL] and [FH2]). We do not mention them here although there are several
cases in which the semi-ampleness of MY is known when X is irreducible. In this paper,
we are mainly interested in the case where X is reducible.

Very roughly speaking, in the author’s opinion, the theory of quasi-log schemes is a
powerful framework to use mixed Hodge structures on cohomology with compact support
for the study of higher-dimensional algebraic varieties and the theory of basic slc-trivial
fibrations was constructed in order to make the theory of variations of mixed Hodge
structure on cohomology with compact support applicable for some geometric problems.

Finally, we note that Theorems 5.5, 5.7, and Corollary 5.8 hold true over any alge-
braically closed field k of characteristic zero (see Section 2).

6. On normal irreducible quasi-log schemes

In this section, we will prove Theorem 1.3. For the proof of Theorem 1.3, we prepare
an elementary lemma.

Lemma 6.1. Let m be any positive integer and let a be any nonnegative real number. If
t ≤ − a

m
, then the following inequality

(6.1) m (1 + ⌊−t⌋) ≥ 1 + ⌊a⌋
holds.

Proof. We can uniquely write
a = mk + l

for some nonnegative integer k with 0 ≤ l < m. Then

m(1 + ⌊−t⌋)− (1 + ⌊a⌋) ≥ m
(
1 +

⌊ a
m

⌋)
− (1 + ⌊a⌋)

≥ m(1 + k)− (1 +mk +m− 1)

= 0
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holds. This implies the desired inequality. □
Let us prove Theorem 1.3.

Proof of Theorem 1.3. We divide the proof into several small steps. The arguments in
Steps 1 and 2 are standard. Step 3 is new.

Step 1. By definition, IX−∞ = f∗OY (⌈−(B<1
Y )⌉ − ⌊B>1

Y ⌋) is an ideal sheaf on X and
Supp⌊B>1

Y ⌋ is not dominant onto X by f . Therefore, rank f∗OY (⌈−(B<1
Y )⌉) = 1 holds.

In particular, we have rank f∗OY = 1. Let f : Y → Z → X be the Stein factorization of
f : Y → X. Since every irreducible component of Y is dominant onto X and rank f∗OY =
1, Z → X is a finite birational morphism from a variety Z onto a normal variety X. Then,
by Zariski’s main theorem, Z → X is an isomorphism. This means that the natural map
OX → f∗OY is an isomorphism. Hence f : (Y,BY ) → X is a basic R-slc-trivial fibration.
By Corollary 5.8, we can take a proper birational morphism p : X ′ → X from a normal
variety X ′ with K + B = KX′ +BX′ and M = MX′ , where MX′ is a potentially nef
R-divisor on X ′. By using Hironaka’s resolution, we may further assume that X ′ is a
smooth quasi-projective variety and that SuppBX′ is a simple normal crossing divisor on
X ′. Therefore, we obtain a projective birational morphism p : X ′ → X from a smooth
quasi-projective varietyX ′ satisfying (i), (ii), and (iii). By the proof of [F30, Lemma 11.2],
we see that BX is effective. By the argument in Step 3 in the proof of [F35, Theorem
7.1], we can make p : X ′ → X satisfy (iv). We note that we can directly apply the
argument in Step 3 in the proof of [F35, Theorem 7.1] to the basic R-slc-trivial fibration
f : (Y,BY ) → X by Corollary 5.8. Moreover, by the same argument, we can check (v).

Step 2. In this step, we will check that JNgklt and JNglc are well-defined ideal sheaves on
X, that is, they are independent of p : X ′ → X.

Let q : X ′′ → X ′ be a projective birational morphism from a smooth quasi-projective
variety X ′′ such that KX′′ +BX′′ = q∗(KX′ +BX′) and that SuppBX′′ is a simple normal
crossing divisor on X ′′. Since (X ′, {BX′}) is kawamata log terminal, q∗⌊BX′⌋ − ⌊BX′′⌋ is
an effective q-exceptional divisor on X ′′. Hence we have

q∗OX′′(−⌊BX′′⌋) = OX′(−⌊BX′⌋)
by projection formula. By this fact and Hironaka’s resolution of singularities, we can
easily see that JNgklt is independent of p : X

′ → X. Since BX is effective by construction
(see the proof of [F30, Lemma 11.2]), SuppB<0

X′ is p-exceptional. Hence JNgklt is an ideal

sheaf on X and JNgklt = p∗OX′
(
−⌊B≥1

X′⌋
)
holds. Of course, JNgklt is a generalization

of well-known multiplier ideal sheaves (see [La]). Similarly, since (X ′, {BX′} + B=1
X′ ) is

divisorial log terminal, q∗ (⌊BX′⌋ −B=1
X′ ) − (⌊BX′′⌋ −B=1

X′′) is an effective q-exceptional
divisor on X ′′. Hence

q∗OX′′
(
−⌊BX′′⌋+B=1

X′′

)
= OX′

(
−⌊BX′⌋+B=1

X′

)
.

This means that JNglc is independent of p : X ′ → X by Hironaka’s resolution of singu-
larities. Since ⌈−(B<1

X′ )⌉ is effective and p-exceptional, JNglc is an ideal sheaf on X and
JNglc = p∗OX′

(
−⌊B>1

X′⌋
)
holds. By definition, JNglc is a generalization of non-lc ideal

sheaves.

Step 3. In this step, we will check the inclusions JNgklt ⊂ INqklt(X,ω) and JNglc ⊂ INqlc(X,ω).
We note that INqklt(X,ω) = f∗OY (−⌊BY ⌋) holds (see [F23, Propositions 6.3.1 and 6.3.2]

and the proof of [F23, Theorem 6.3.5 (i)]). Let P be an irreducible component of SuppB≥1
Y .

We take a suitable birational modification p : X ′ → X satisfying (i)–(v) and consider the
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induced basic R-slc-trivial fibration f ′ : (Y ′, BY ′) → X ′ (see [FH2, Definition 3.4]). We
have the following commutative diagram.

(Y ′, BY ′)
q //

f ′

��

(Y,BY )

f
��

X ′
p

// X

Note that f ′ : (Y ′, BY ′) → X ′ is a basic R-slc-trivial fibration with KY ′ +BY ′ = q∗(KY +
BY ) such that f ′ : (Y ′, BY ′) → X ′ coincides with the base change of f : (Y,BY ) → X by
p : X ′ → X over some nonempty Zariski open subset of X ′. Without loss of generality,
by using the flattening theorem (see [RG, Théorème (5.2.2)]), we may assume that the
image of P ′ := q−1

∗ P by f ′ is a prime divisor Q on X ′. We put coeffP BY = 1 + a with
a ≥ 0 and coeffP ′ f ′∗Q = m > 0. Then coeffQBX′ = 1− t with t ≤ − a

m
. By Lemma 6.1,

m (1 + ⌊−t⌋) ≥ 1 + ⌊a⌋.

This means that if

h ∈ Γ(U,JNgklt) = Γ
(
U, p∗OX′

(
−⌊B≥1

X′⌋
))

then

f ∗h ∈ Γ
(
f−1(U),OY

(
−⌊B≥1

Y ⌋
))

for any Zariski open subset U of X. Therefore, we obtain the desired inclusion

JNgklt ⊂ f∗OY (−⌊BY ⌋) = INqklt(X,ω).

This is what we wanted. The same argument as above works for JNglc and INqlc(X,ω) =
f∗OY (−⌊BY ⌋+B=1

Y ). Hence we obtain the desired inclusion JNglc ⊂ INqlc(X,ω).

We finish the proof of Theorem 1.3. □

7. Proof of Theorem 1.1

In this section, we will prove Theorem 1.1 and Corollary 1.2. Our proof of Theorem 1.1
here, which is a combination of Kawamata’s X-method with Theorem 1.3 in the framework
of quasi-log schemes, is completely different from the proof given in [F20]. A key idea of
the proof of Theorem 1.1 below is due to the argument in [FLh2]. Let us prove Theorem
1.1.

Proof of Theorem 1.1. We divide the proof into several small steps.

Step 1. If dimX \ X−∞ = 0, then Theorem 1.1 obviously holds true. From now on,
we assume that Theorem 1.1 holds for any quasi-log scheme Z with dimZ \ Z−∞ <
dimX \X−∞ by induction on dimX \X−∞.

Step 2. We take a qlc stratum W of [X,ω]. We put X ′ = W ∪X−∞. Then, by adjunction
(see Theorem 5.5 (i)), X ′ has a natural quasi-log scheme structure induced by [X,ω]. By
the vanishing theorem (see Theorem 5.5 (ii)), we have

R1π∗(IX′ ⊗OX(mL)) = 0

for every m ≥ q, where IX′ is the defining ideal sheaf of X ′ on X. Therefore, we obtain
that the restriction map

π∗OX(mL) → π∗OX′(mL)
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is surjective for every m ≥ q. Thus, we may assume that X \X−∞ is irreducible for the
proof of Theorem 1.1 by the following commutative diagram.

π∗π∗OX(mL) //

��

π∗π∗OX′(mL) //

��

0

OX(mL) // OX′(mL) // 0

Step 3. We put W = X \X−∞. By Step 2, W is irreducible. In this step, we fur-
ther assume that W ∩ Nqklt(X,ω) = ∅. In this case, W is a normal variety (see [F23,
Lemma 6.3.9]) and [W,ω|W ] is a quasi-log canonical pair (see [F23, Lemma 6.3.12]). By
[F30, Theorem 1.7] (see also Theorem 1.3), there exists a projective birational morphism
p : W ′ → W from a smooth quasi-projective variety W ′ such that

p∗ω|W = KW ′ +BW ′ +MW ′ ,

SuppBW ′ is a simple normal crossing divisor, BW ′ = B<1
W ′ , SuppB<0

W ′ is p-exceptional, and
MW ′ is a potentially nef R-divisor on W ′. Hence q(p∗L|W )− (KW ′ +BW ′) is nef and big
over S and ⌈−BW ′⌉ is effective and p-exceptional. Then, by Theorem 4.2, OW ′(mp∗L|W )
is π ◦ p-generated for every m ≫ 0. Hence OW (mL|W ) is π-generated for every m ≫ 0.
Since W ∩X−∞ = ∅ by assumption, OX(mL) is π-generated for every m ≫ 0. Therefore,
from now on, we may assume that W ∩ Nqklt(X,ω) ̸= ∅.

Step 4. By [F35, Lemma 4.19], [W,ω|W ] has a natural quasi-log scheme structure induced
by [X,ω] such that INqklt(W,ω|W ) = INqklt(X,ω) holds. Let ν : Z → W be the normaliza-
tion. Then, by [F35, Theorem 1.9] (see also [FLh1]), there exists a proper surjective
morphism f ′ : Y ′ → Z from a quasi-projective globally embedded simple normal crossing
pair (Y ′, BY ′) such that every stratum of Y ′ is dominant onto Z and that

(Z, ν∗(ω|W ), f ′ : (Y ′, BY ′) → Z)

naturally becomes a quasi-log scheme with

ν∗INqklt(Z,ν∗(ω|W )) = INqklt(W,ω|W ) = INqklt(X,ω).

By Theorem 1.3, we can take a projective birational morphism p : Z ′ → Z from a smooth
quasi-projective variety Z ′ with

KZ′ +BZ′ +MZ′ = p∗ν∗(ω|W )

satisfying (i)–(v) in Theorem 1.3 such that the following inclusion

JNgklt = p∗OZ′(−⌊BZ′⌋) ⊂ INqklt(Z,ν∗(ω|W ))

holds.

Step 5. By induction on dimW (see Step 1) or the assumption that OX−∞(mL) is π-
generated for every m ≫ 0, ONqklt(X,ω)(mL|Nqklt(X,ω)) is π-generated for every m ≫ 0. As
in Step 2, the restriction map

π∗OX(mL) → π∗ONqklt(X,ω)(mL|Nqklt(X,ω))

is surjective for m ≥ q since R1π∗(INqklt(X,ω) ⊗OX(mL)) = 0 for m ≥ q by the vanishing
theorem (see Theorem 5.5 (ii)). Therefore, the relative base locus of OX(mL) is disjoint
from Nqklt(X,ω) for every m ≫ 0.
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Step 6. We take a finite affine open covering S =
∪

λ∈Λ Uλ of S. It is sufficient to
prove this theorem on each affine open subset Uλ. Hence, by replacing S with Uλ, we
may further assume that S is affine. Let ℓ be a sufficiently large prime number. Then
Bs |ℓL| ∩ Nqklt(Z, ν∗(ω|W )) = Bs |ℓL| ∩ p(B≥1

Z′ ) = ∅ by Step 5. We note that B<0
Z′ is

p-exceptional and that MZ′ is nef over S. By Lemma 4.4,

H0 (Z,OZ(ℓ
sν∗(L|W ))⊗ p∗OZ′(−⌊BZ′⌋))⊗OZ → OZ(ℓ

sν∗(L|W ))

is surjective on Z \ p(B≥1
Z′ ) for some positive integer s. We note that

H0 (Z,OZ(mν∗(L|W ))⊗ p∗OZ′(−⌊BZ′⌋))
⊂ H0

(
Z,OZ(mν∗(L|W ))⊗ INqklt(Z,ν∗(ω|W ))

)
= H0

(
W,OW (mL|W )⊗ INqklt(W,ω|W )

)
= H0

(
X,OX(mL)⊗ INqklt(X,ω)

)
holds for every integer m. Therefore, Bs |ℓsL| ∩ (X \Nqklt(X,ω)) = ∅. This implies that
Bs |ℓsL| = ∅. We take a sufficiently large prime number ℓ′ with ℓ′ ̸= ℓ. By the same
argument as above, we can find a positive integer s′ such that Bs |ℓ′s′L| = ∅. Without
loss of generality, we may assume that ℓs < ℓ′s

′
holds. Note that gcd(ℓs, ℓ′s

′
) = 1 since

ℓ ̸= ℓ′. We put m0 = ℓs
(
ℓ′s

′ −
⌈
ℓ′s

′

ℓs

⌉)
. By Lemma 4.3, for every positive integer m with

m ≥ m0, there exist nonnegative integers u and v such that m = uℓs + vℓ′s
′
. This means

that Bs |mL| = ∅ for every m ≥ m0 since Bs |ℓsL| = Bs |ℓ′s′L| = ∅.
We finish the proof of Theorem 1.1. □
We close this section with the proof of Corollary 1.2.

Proof of Corollary 1.2. Let (X,∆) be a log canonical pair. We put ω = KX + ∆. Then
[X,ω] naturally becomes a quasi-log scheme with Nqlc(X,ω) = ∅ (see Example 5.3). By
assumption, qL − ω is nef and log big over S with respect to [X,ω]. Hence OX(mL) is
π-generated for every m ≫ 0 by Theorem 1.1. □

8. Comments on Ambro’s paper: Quasi-log varieties

In this section, we make many comments on [A] to help the reader understand differ-
ences between Ambro’s original approach in [A] and our framework of quasi-log schemes
mainly discussed in [F23, Chapter 6]. Note that [F11] is a gentle introduction to the
theory of quasi-log varieties. We also note that a quasi-log variety in [A] and [F11] is
called a quasi-log scheme in the author’s recent papers because it may have non-reduced
components.

8.0. Introduction. By [A, Definition 1], a generalized log variety (X,B) is a pair con-
sisting of a normal variety X and an effective R-divisor B on X such that KX + B is
R-Cartier. Note that we sometimes call (X,B) a normal pair in some literature. When
(X,B) is log canonical, it is called a log variety. The main result of [A] is the cone and
contraction theorem for generalized log varieties (see [A, Theorem 2]). In order to estab-
lish the cone and contraction theorem, Ambro introduced the notion of quasi-log varieties,
which was motivated by Kawamata’s X-method. He also said that the motivation behind
[A] is Shokurov’s idea that log varieties and non-kawamata log terminal loci should be
treated on an equal footing. In [F14], we recovered [A, Theorem 2] without using the
framework of quasi-log schemes. The approach in [F14] was influenced by not only Kawa-
mata’s X-method but also the theory of (algebraic) multiplier ideal sheaves (see [La]).



ON QUASI-LOG SCHEMES 21

We recommend the reader who is interested only in the cone and contraction theorem for
generalized log varieties to see [F14], which seems to be more accessible than [A]. We
note that [F7] and [F13] may help the reader understand [F14]. The cone and contraction
theorem for generalized log varieties (see [A, Theorem 2] and [F14, Theorem 1.1]) plays
a crucial role in the minimal model theory for log surfaces (see [F15], [F19], [F32], [F33],
and [FT]).

8.1. Section 1. Preliminary. In Section 1 in [A], some standard definitions are col-
lected. In the theory of quasi-log schemes, we usually treat highly singular reducible
schemes. Moreover, we have to treat R-Cartier divisors and R-line bundles. We note that
Kleiman’s famous ampleness criterion does not necessarily hold true for singular complete
non-projective schemes (see [F5] and [F32]). On the other hand, the Nakai–Moishezon
ampleness criterion for R-line bundles holds for any complete schemes (see [FMi2]). It
sometimes may be very useful when we treat R-line bundles on highly singular schemes.
Moreover, the Nakai–Moishezon ampleness criterion on complete algebraic spaces is cru-
cial for the proof of the projectivity of some moduli spaces (see [F28]).

8.2. Section 2. Normal crossing pairs. Ambro defined multicrossing singularities and
considered their associated hypercoverings (see [A, Definition 2.1 and Lemma 2.2]). More-
over, he defined multicrossing divisors. Then he finally introduced the notion of (embed-
ded) normal crossing pairs (see [A, Definitions 2.3 and 2.7]). He used embedded normal
crossing pairs to define quasi-log varieties. On the other hand, our framework of the the-
ory of quasi-log schemes in [F23, Chapter 6] uses the notion of globally embedded simple
normal crossing pairs. Note that [F23, Propositions 6.3.1, 6.3.2, and 6.3.3] is much more
flexible than [A, Proposition 2.8]. We think that our approach is more accessible than
Ambro’s because globally embedded simple normal crossing pairs are much easier to treat
than embedded normal crossing pairs. We can use the standard techniques in the theory
of minimal models for higher-dimensional algebraic varieties to treat globally embedded
simple normal crossing pairs. In general, simple normal crossing divisors behave much
better than normal crossing divisors (see [F6]).

8.3. Section 3. Vanishing theorems. Section 3 in [A] is a short section on injectivity,
vanishing, and torsion-free theorems. The proof of [A, Theorems 3.1 and 3.2] is hard
to follow. In [F23, Chapter 5] (see also [F7], [F14], [F22], [F27], and so on), we give a
rigorous proof of [A, Theorems 3.1 and 3.2] and treat some more general results. Our
approach is slightly different from Ambro’s and is based on the theory of mixed Hodge
structures on cohomology with compact support. A survey article [F26] may help the
reader understand our approach to vanishing theorems. The reader can find some related
vanishing theorems in [F17], [F18], [F29], and so on.

8.4. Section 4. Quasi-log varieties. As we mentioned above, a quasi-log variety is
called a quasi-log scheme in [F23]. Section 4 is the main part of [A]. In Section 4, Ambro
defined quasi-log varieties in [A, Definition 4.1]. Ambro’s definition is slightly different
from ours in [F23, Definition 6.2.2]. Note that (Y,BY ) in [A, Definition 4.1] is an embedded
normal crossing pair and (Y,BY ) in [F23, Definition 6.2.2] is a globally embedded simple
normal crossing pair. For the details of this difference, see [F24]. The most important
result in this section is [A, Theorem 4.4], which is adjunction and vanishing for quasi-log
varieties. In [F23, Section 6.3], we prepare some useful propositions (see [F23, Propositions
6.3.1, 6.3.2, and 6.3.3]) and prove adjunction and vanishing for quasi-log schemes in [F23,
Theorem 6.3.5]. We also discuss some other basic properties of quasi-log schemes in [F23,
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Sections 6.3 and 6.4]. Note that a qlc center in [A] is called a qlc stratum in [F23, Chapter
6]. We also note that a qlc center which is not maximal with respect to the inclusion
in [A] is called a qlc center in [F23, Chapter 6]. Hence LCS(X) in [A, Definition 4.6]
is nothing but Nqklt(X,ω) in [F23, Chapter 6]. We can recover [A, Proposition 4.7] by
[F23, Lemma 6.3.9]. Our proof seems to be simpler. Note that [A, Proposition 4.8] is
[F23, Theorem 6.3.11]. In [FH2] (see also [FH3]), we completely generalize [A, Theorem
4.9]. Our treatment depends on the theory of variations of mixed Hodge structure on
cohomology with compact support (see [FF], [FFS], [F30], and [FFL]). On the other
hand, [A, Theorem 4.11] only uses the theory of variations of pure Hodge structure.

8.5. Section 5. The cone theorem. In [A, Section 5], the cone and contraction theorem
for quasi-log schemes was established in full generality. The results in [A, Section 5] are
recovered in [F23, Sections 6.5, 6.6, and 6.7]. Although we slightly changed and improved
some arguments, the treatment in [F23, Sections 6.5, 6.6, and 6.7] is essentially the same as
that in [A, Section 5]. The basepoint-free theorem for quasi-log schemes (see [A, Theorem
5.1] and [F23, Theorem 6.5.1]) is generalized in various directions (see [F8], [F10], [F21],
[F25], [F34], [FLh2], [FMi1], and [Li]). The theory of quasi-log schemes gives a very
powerful framework for basepoint-freeness (see also the proof of Theorem 1.1 in Section
7 in this paper).

8.6. Section 6. Quasi-log Fano contractions. In [A, Section 6], Ambro specialized
some results in [A, Section 5] for quasi-log Fano contraction morphisms. In [F23, Section
6.8], we treat (relative) quasi-log Fano schemes. Moreover, in [FLw], [F31], [F35], and
[FH1], we discuss simply connectedness, rationally chain connectedness, lengths of rational
curves for (relative) quasi-log Fano schemes. In [F31] and [F35], we use not only quasi-
log schemes but also some results obtained by the theory of basic slc-trivial fibrations.
Moreover, in [FH1], we also use the minimal model program for log canonical pairs. Hence
the results in [F31], [F35], and [FH1] are much more general than those in [A, Section 6].

8.7. Section 7. The log big case. In Section 7, Ambro replaced the ampleness in some
theorems with the nef and log bigness. Note that [A, Theorem 7.2] is the basepoint-free
theorem of Reid–Fukuda type for quasi-log schemes, which is Theorem 1.1 in this paper.
In [A], there is no detail of the proof of [A, Theorem 7.2]. Now we have a rigorous proof
of [A, Theorem 7.2]. The reader can find vanishing theorems for nef and log big divisors
in [F23, Theorem 5.8.2 and Theorem 6.3.5 (ii)]. We note that [F23, Theorem 6.3.8] is
a slight generalization of [A, Theorem 7.3]. We know that everything in [A, Section 7]
holds true. We note that the proof of Theorem 1.1 in this paper depends on some deep
results in the theory of variations of mixed Hodge structure on cohomology with compact
support (see [FF], [FFS], [F30], [F35], [FH2], and so on).
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