
ON QUASI-LOG SCHEMES

OSAMU FUJINO

Abstract. The notion of quasi-log schemes was first introduced by Florin Ambro in his
epoch-making paper: Quasi-log varieties. In this paper, we establish the basepoint-free
theorem of Reid–Fukuda type for quasi-log schemes in full generality. Roughly speaking, it
means that all the results for quasi-log schemes claimed in Ambro’s paper hold true. The
proof is Kawamata’s X-method with the aid of the theory of basic slc-trivial fibrations.
For the reader’s convenience, we make many comments on the theory of quasi-log schemes
in order to make it more accessible.
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1. Introduction

Let us start with a simple situation. Let X be a normal projective variety defined over
C, the complex number field. Then there exist a proper birational morphism f : Y → X
from a smooth variety Y and a Q-divisor BY on Y such that SuppBY is a simple normal
crossing divisor with ⌊BY ⌋ ≤ 0 satisfying

(1) KY +BY ∼Q f ∗ω for some Q-Cartier Q-divisor ω on X, and
(2) the natural map

OX → f∗OY (⌈−BY ⌉)
is an isomorphism,
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if and only if (X,B), where B = f∗BY , is kawamata log terminal in the usual sense. Even
if we replace the assumption that f is proper birational with one that f is only proper,
many results, for example, the cone and contraction theorem, still hold true for X with
respect to ω (see [F1]). This observation plays a crucial role in [F12] and [F16] (see also
Section 4). Hence it is natural to consider the following more general setting.

Let X be a scheme with an R-Cartier divisor ω on X. Note that X may be reducible
and may have non-reduced components. Of course, X is not necessarily equidimensional.
Assume that there exists a proper morphism f : Y → X from a globally embedded simple
normal crossing pair (Y,BY ) such that

(a) KY +BY ∼R f ∗ω, and
(b) the natural map OX → f∗OY (⌈−(B<1

Y )⌉) induces an isomorphism

IX−∞
≃−→ f∗OY (⌈−(B<1

Y )⌉ − ⌊B>1
Y ⌋),

where IX−∞ is the defining ideal sheaf of a closed subscheme X−∞ ⊊ X.

Then we call

(X,ω, f : (Y,BY ) → X)

or simply [X,ω] a quasi-log scheme (see [A]). We can prove various Kodaira type vanishing
theorems, the cone and contraction theorem, and so on, for quasi-log schemes (see [F23,
Chapter 6]). If X−∞ is empty, then we say that

(X,ω, f : (Y,BY ) → X)

or [X,ω] is a quasi-log canonical pair. In general, quasi-log canonical pairs are reducible
and are not equidimensional. However, it is surprising that they have only Du Bois singu-
larities (see [FLh3]). Note that a log canonical pair can be seen as a quasi-log canonical
pair by considering a suitable resolution of singularities. More generally, let (X,B) be a
quasi-projective semi-log canonical pair. Then [X,KX +B] naturally becomes a quasi-log
canonical pair (see [F17]). Hence any union of some slc strata of (X,B), which is denoted
by W , has a natural quasi-log canonical structure induced from the one on [X,KX + B]
by adjunction. Therefore, W has only Du Bois singularities, the cone and contraction
theorem holds for W with respect to (KX + B)|W , and various Kodaira type vanishing
theorems can be formulated on W .

One of the main purposes of this paper is to establish the following theorem, which is
[A, Theorem 7.2]. We note that there exists no detail of the proof of Theorem 1.1 in [A].

Theorem 1.1 (Basepoint-free theorem of Reid–Fukuda type for quasi-log schemes). Let
[X,ω] be a quasi-log scheme, let π : X → S be a proper morphism between schemes, and
let L be a π-nef Cartier divisor on X such that qL − ω is nef and log big over S with
respect to [X,ω] for some positive real number q. Assume that OX−∞(mL) is π-generated
for every m ≫ 0. Then OX(mL) is π-generated for every m ≫ 0.

This type of basepoint-free theorem was first considered by Reid in [S, 10.4. Eventual
freedom] in order to avoid Zariski’s famous counterexample (see [KMM, Remark 3-1-2.(2)]).
Note that Section 10 in [S] was written by Reid when he translated Shokurov’s paper from
Russian to English (see [S, §10. Commentary by M. Reid]). Then Fukuda treated this
problem in a series of papers (see [Fk1], [Fk2], and [Fk3]). We know that the basepoint-
free theorem of Reid–Fukuda type holds true for divisorial log terminal pairs of arbitrary
dimension (see [F2]). In [A], Ambro claims Theorem 1.1 without proof. In [F23, Section
6.9], we proved Theorem 1.1 under the extra assumption that X−∞ = ∅ and π is projective.
In [F20], we treated Theorem 1.1 when π is projective and X−∞ may be nonempty. In [F23,
Section 6.9] and [F20], we use Kodaira’s lemma for big divisors. Hence the projectivity of π
is indispensable in [F23, Section 6.9] and [F20]. Our approach to Theorem 1.1 in this paper
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is completely different from the one in [F23, Section 6.9] and [F20]. We use the theory of
basic R-slc-trivial fibrations in order to prove Theorem 1.1. This means that we use the
theory of variations of mixed Hodge structure on cohomology with compact support for
the proof of Theorem 1.1 (see [FF] and [FFS]). We think that the main importance of
Theorem 1.1 is not in the statement but in the techniques in the proof. By Theorem 1.1
and the author’s series of papers, we can recover all the results for quasi-log schemes in
[A]. As an obvious corollary of Theorem 1.1, we have:

Corollary 1.2 (Basepoint-free theorem of Reid–Fukuda type for log canonical pairs). Let
(X,∆) be a log canonical pair and let π : X → S be a proper morphism to a scheme S. Let
L be a π-nef Cartier divisor on X such that qL− (KX +∆) is nef and log big over S with
respect to (X,∆) for some positive real number q. Then OX(mL) is π-generated for every
m ≫ 0.

When π is projective, Corollary 1.2 is nothing but [F23, Corollary 6.9.4]. As far as
we know, there is no approach to Corollary 1.2 without using the theory of quasi-log
schemes. The main ingredient of the proof of Theorem 1.1 is the following theorem,
which is a generalization of [F30, Theorem 1.7]. As is well known, some generalizations
of Kodaira’s canonical bundle formula are very useful for various geometric problems (see
[FMo], [F3], [F4], [FG1], [FG2], and so on). Theorem 1.3 below is a kind of canonical
bundle formula. The proof depends on [FH2, Corollary 5.2], that is, the theory of basic
R-slc-trivial fibrations.
Theorem 1.3 (Normal irreducible quasi-log schemes). Let

(X,ω, f : (Y,BY ) → X)

be a quasi-log scheme such that X is a normal variety, f is projective, and every stratum
of Y is dominant onto X. Then f : (Y,BY ) → X is a basic R-slc-trivial fibration. Let
B and M be the discriminant and moduli R-b-divisors associated to f : (Y,BY ) → X,
respectively. Then there exists a projective birational morphism p : X ′ → X from a smooth
quasi-projective variety X ′ such that

(i) K+B = KX′ +BX′ holds, where K is the canonical b-divisor of X,
(ii) SuppBX′ is a simple normal crossing divisor on X ′,
(iii) M = MX′ holds such that MX′ is a potentially nef R-divisor on X ′,
(iv) p

(
B≥1

X′

)
= Nqklt(X,ω) holds set theoretically, and

(v) p
(
B>1

X′

)
= Nqlc(X,ω) holds set theoretically.

Note that
K+B+M = ω

holds by definition. Moreover, if we put

JNgklt := p∗OX′ (−⌊BX′⌋)
and

JNglc := p∗OX′
(
−⌊BX′⌋+B=1

X′

)
= p∗OX′

(
⌈−(B<1

X′ )⌉ − ⌊B>1
X′⌋
)
,

then JNgklt = p∗OX′
(
−⌊B≥1

X′⌋
)
and JNglc = p∗OX′

(
−⌊B>1

X′⌋
)
are ideal sheaves on X such

that the following inclusions

JNgklt ⊂ INqklt(X,ω) and JNglc ⊂ INqlc(X,ω)

hold, where INqklt(X,ω) and INqlc(X,ω) are the defining ideal sheaves of Nqklt(X,ω) and
Nqlc(X,ω), respectively.

We note that in the above statement B and M become Q-b-divisors when

(X,ω, f : (Y,BY ) → X)

has a Q-structure.
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We will prove Theorem 1.1 by combining Kawamata’s X-method with Theorem 1.3 in
the framework of quasi-log schemes. We note that we do not use the minimal model
program in this paper.

Let us explain the idea of the proof of Theorem 1.1. For simplicity, we assume that S
is a point. By the standard argument in the theory of quasi-log schemes, we can reduce
the problem to the case where X is irreducible and ONqklt(X,ω)(mL) is generated by global
sections for everym ≫ 0. This implies that Bs |mL|∩Nqklt(X,ω) = ∅ for everym ≫ 0. Let
ν : Z → X be the normalization. Then [Z, ν∗ω] has a natural quasi-log scheme structure
with ν∗INqklt(Z,ν∗ω) = INqklt(X,ω). Moreover, we may assume that [Z, ν∗ω] satisfies Theorem
1.3. By the classical X-method, we can prove that there are many global sections of
OZ(mν∗L)⊗JNgklt for m ≫ 0, where JNgklt is the ideal sheaf defined in Theorem 1.3. By
JNgklt ⊂ INqklt(Z,ν∗ω) and ν∗INqklt(Z,ν∗ω) = INqklt(X,ω),

H0 (Z,OZ(mν∗L)⊗ JNgklt) ⊂ H0
(
X,OX(mL)⊗ INqklt(X,ω)

)
holds for everym. HenceOX(mL)⊗INqklt(X,ω) has many global sections such that Bs |mL|∩
(X \ Nqklt(X,ω)) = ∅. Therefore, we obtain Bs |mL| = ∅ for m ≫ 0.

This paper is organized as follows. In Section 2, we make some comments on base fields
and the Lefschetz principle for the reader’s convenience. In Section 3, we collect some basic
definitions. In Section 4, we slightly reformulate the Kawamata–Shokurov basepoint-free
theorem. The results in this section can be proved by Kawamata’s X-method without
difficulties. In Section 5, we quickly recall the definition of quasi-log schemes and basic slc-
trivial fibrations and explain some fundamental results. In Section 6, we prove Theorem 1.3,
which is one of the main results of this paper. Section 7 is devoted to the proof of Theorem
1.1. In Section 8, we make many comments on [A] to help the reader understand differences
between Ambro’s original approach in [A] and our framework of quasi-log schemes.

Acknowledgments. The author was partially supported by JSPS KAKENHI Grant
Numbers JP19H01787, JP20H00111, JP21H00974. He thanks Kenta Hashizume very much
for fruitful discussions.

We will work over C, the complex number field, throughout this paper. A scheme means
a separated scheme of finite type over C. A variety means an integral scheme, that is, an
irreducible and reduced separated scheme of finite type over C. We will freely use the
framework of quasi-log schemes established in [F23, Chapter 6]. We note that Z, Q, and
R denote the set of intergers, rational numbers, and real numbers, respectively. We also
note that Q>0 and R>0 are the set of positive rational numbers and positive real numbers,
respectively. In this paper, the expression ‘... for every m ≫ 0’ means that ‘there exists a
positive number m0 such that ... for every m ≥ m0.’

2. On the Lefschetz principle

In this short section, before starting the main contents of this paper, we make some
comments on base fields and the Lefschetz principle for the reader’s convenience.

Remark 2.1 (On the base field k). We mainly work over C, the complex number field,
in the papers on quasi-log schemes (see [F23, Chapter 6]). This is because the author’s
approach depends on the theory of mixed Hodge structures on cohomology with compact
support. However, almost all results on quasi-log schemes hold true over any algebraically
closed field k of characteristic zero. For example, we can prove the vanishing theorems
for quasi-log schemes over k by the Lefschetz principle. Hence the cone and contraction
theorem for quasi-log schemes can be proved as an application of some vanishing theorems.
When we treat sufficiently general fibers, uniruledness, rationally chain connectedness, and
so on, we have to take care of the base field k if the cardinality of k is countable (see
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[F35]). It is obvious that some results, for example, the simple connectedness of quasi-log
canonical Fano pairs, make sense only over C (see [FLw] and [F31]).

Let us quickly see how to use the Lefschetz principle. Let X be a projective scheme
defined over an algebraically closed field k of characteristic zero. Let L be a Cartier divisor
on X and let H be an ample Cartier divisor on X. We can take a subfield k0 of k,
which is finitely generated over Q, and a scheme X0 defined over k0, a Cartier divisor
L0 on X0, and an ample Cartier divisor H0 on X0 such that X ≃ X0 ×Spec k0 Spec k,
L ≃ L0 ×Spec k0 Spec k, and H ≃ H0 ×Spec k0 Spec k. We consider some embedding k0 ⊂ C
and the induced morphism SpecC → Spec k0. Then we put XC := X0 ×Spec k0 SpecC,
LC := L0 ×Spec k0 SpecC, and HC := H0 ×Spec k0 SpecC. Since H is ample, H0 and HC
are both ample. Note that L, L0, and LC are nef if and only if L + rH, L0 + rH0, and
LC + rHC are ample for every rational number r with 0 < r ≪ 1, respectively. Hence, L
is nef if and only if LC is nef.

3. Preliminaries

Here, we collect some basic definitions for the reader’s convenience. Let X be a scheme
and let Pic(X) be the group of line bundles on X, that is, the Picard group of X. An
element of Pic(X)⊗ZR (resp. Pic(X)⊗ZQ) is called an R-line bundle (resp. aQ-line bundle)
on X. We write the group law of Pic(X) ⊗Z Q additively for simplicity of notation. Let
Div(X) be the group of Cartier divisors onX. An element of Div(X)⊗ZR (resp. Div(X)⊗Z
Q) is called an R-Cartier divisor (resp. a Q-Cartier divisor) on X. Let ∆1 and ∆2 be
R-Cartier (resp. Q-Cartier) divisors on X. Then ∆1 ∼R ∆2 (resp. ∆1 ∼Q ∆2) means
that ∆1 is R-linearly (resp. Q-linearly) equivalent to ∆2. There exists a natural group
homomorphism Div(X) → Pic(X) given by A 7→ OX(A), where A is a Cartier divisor on
X. It induces a homomorphism δX : Div(X) ⊗Z R → Pic(X) ⊗Z R. We sometimes write
A + L ∼R B + M for A,B ∈ Div(X) ⊗Z R and L,M ∈ Pic(X) ⊗Z R. This means that
δX(A) + L = δX(B) + M holds in Pic(X) ⊗Z R. We usually use this type of abuse of
notation, that is, the confusion of R-line bundles with R-Cartier divisors. In the theory
of minimal models for higher-dimensional algebraic varieties, we sometimes use R-Cartier
divisors for ease of notation even when they should be R-line bundles.

Let us recall the definition of potentially nef divisors. We need it in Theorem 1.3.

Definition 3.1 (Potentially nef divisors, see [F30, Definition 2.5]). Let X be a normal
variety and let D be a divisor on X. If there exist a completion X♭ of X, that is, X♭ is a
complete normal variety and contains X as a dense Zariski open subset, and a nef divisor
D♭ on X♭ such that D = D♭|X , then D is called a potentially nef divisor on X. A finite
Q>0-linear (resp. R>0-linear) combination of potentially nef divisors is called a potentially
nef Q-divisor (resp. R-divisor).

Remark 3.2. (i) Let D be a nef R-divisor on a smooth projective variety X. Then D
is not necessarily a potentially nef R-divisor. This means that D is not always a finite
R>0-linear combination of nef Cartier divisors on X. (ii) Let X be a normal variety and
let D be a potentially nef R-divisor on X. Then D ·C ≥ 0 for every projective curve C on
X. In particular, D is π-nef for every proper morphism π : X → S to a scheme S.

It is convenient to use b-divisors to explain several results. We note that the notion of
b-divisors was first introduced by Shokurov.

Definition 3.3 (Canonical b-divisors). Let X be a normal variety and let ω be a top
rational differential form of X. Then (ω) defines a b-divisor K. We call K the canonical
b-divisor of X.
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Definition 3.4 (R-Cartier closures). The R-Cartier closure of an R-Cartier R-divisor D
on a normal variety X is the R-b-divisor D with trace

DY = f ∗D,

where f : Y → X is a proper birational morphism from a normal variety Y .

Definition 3.5 ([F30, Definition 2.12]). Let X be a normal variety. An R-b-divisor D
of X is b-potentially nef (resp. b-semi-ample) if there exists a proper birational morphism
X ′ → X from a normal variety X ′ such that D = DX′ , that is, D is the R-Cartier closure
of DX′ , and that DX′ is potentially nef (resp. semi-ample). An R-b-divisor D of X is
R-b-Cartier if there is a proper birational morphism X ′ → X from a normal variety X ′

such that D = DX′ .

Definition 3.6. Let X be an equidimensional reduced scheme. Note that X is not neces-
sarily regular in codimension one. Let D be an R-divisor (resp. a Q-divisor), that is, D is
a finite formal sum

∑
i diDi, where Di is an irreducible reduced closed subscheme of X of

pure codimension one and di ∈ R (resp. di ∈ Q) for every i such that Di ̸= Dj for i ̸= j.
We put

D<1 =
∑
di<1

diDi, D=1 =
∑
di=1

Di, D>1 =
∑
di>1

diDi, and ⌊D⌋ =
∑
i

⌊di⌋Di,

where ⌊di⌋ is the integer defined by di − 1 < ⌊di⌋ ≤ di. We note that ⌈D⌉ = −⌊−D⌋ and
{D} = D − ⌊D⌋. Similarly, we put

D≥1 =
∑
di≥1

diDi.

Let D be an R-divisor (resp. a Q-divisor) as above. We call D a subboundary R-divisor
(resp. Q-divisor) if D = D≤1 holds. When D is effective and D = D≤1 holds, we call D a
boundary R-divisor (resp. Q-divisor).

The following definition is standard and is well known.

Definition 3.7 (Singularities of pairs). Let X be a variety and let E be a prime divisor
on Y for some proper birational morphism f : Y → X from a normal variety Y . Then E
is called a divisor over X. A normal pair (X,∆) consists of a normal variety X and an
R-divisor ∆ on X such that KX + ∆ is R-Cartier. Let (X,∆) be a normal pair and let
f : Y → X be a proper birational morphism from a normal variety Y . Then we can write

KY = f ∗(KX +∆) +
∑
E

a(E,X,∆)E

with

f∗

(∑
E

a(E,X,∆)E

)
= −∆,

where E runs over prime divisors on Y . We call a(E,X,∆) the discrepancy of E with
respect to (X,∆). Note that we can define the discrepancy a(E,X,∆) for any prime
divisor E over X by taking a suitable resolution of singularities of X. If a(E,X,∆) ≥ −1
(resp. > −1) for every prime divisor E over X, then (X,∆) is called sub log canonical
(resp. sub kawamata log terminal). We further assume that ∆ is effective. Then (X,∆) is
called log canonical and kawamata log terminal if it is sub log canonical and sub kawamata
log terminal, respectively.

Let (X,∆) be a log canonical pair. If there exists a projective birational morphism
f : Y → X from a smooth variety Y such that both Exc(f), the exceptional locus of f , and
Exc(f) ∪ Supp f−1

∗ ∆ are simple normal crossing divisors on Y and that a(E,X,∆) > −1



ON QUASI-LOG SCHEMES 7

holds for every f -exceptional divisor E on Y , then (X,∆) is called divisorial log terminal
(dlt, for short).

Definition 3.8 (Log canonical centers, non-lc loci, and so on). Let (X,∆) be a normal
pair. If there exist a projective birational morphism f : Y → X from a normal variety Y
and a prime divisor E on Y such that (X,∆) is sub log canonical in a neighborhood of
the generic point of f(E) and that a(E,X,∆) = −1, then f(E) is called a log canonical
center of (X,∆).

From now on, we further assume that ∆ is effective. Let f : Y → X be a resolution with

KY +∆Y = f ∗(KX +∆)

such that Supp∆Y is a simple normal crossing divisor on Y . We put

J (X,∆) = f∗OY (−⌊∆Y ⌋).

Then J (X,∆) is an ideal sheaf on X and is known as the multiplier ideal sheaf associated
to the pair (X,∆). It is independent of the resolution f : Y → X. The closed subscheme
Nklt(X,∆) defined by J (X,∆) is called the non-klt locus of (X,∆). It is obvious that
(X,∆) is kawamata log terminal if and only if J (X,∆) = OX . Similarly, we put

JNLC(X,∆) = f∗OX(−⌊∆Y ⌋+∆=1
Y )

and call it the non-lc ideal sheaf associated to the pair (X,∆). We can check that it is
independent of the resolution f : Y → X. The closed subscheme Nlc(X,∆) defined by
JNLC(X,∆) is called the non-lc locus of (X,∆). It is obvious that (X,∆) is log canonical
if and only if JNLC(X,∆) = OX . By definition, the natural inclusion

J (X,∆) ⊂ JNLC(X,∆)

always holds. Therefore, we have

Nlc(X,∆) ⊂ Nklt(X,∆).

For the details of JNLC(X,∆), we recommend the reader to see [F9] and [F14].

4. Classical basepoint-free theorems

In this section, we will reformulate some classical results in order to apply them to the
proof of Theorem 1.1. Everything in this section can be proved by the X-method. For the
details of the X-method, see [KMM], [KM], and [M]. We note that this section is similar
to [F16, Section 2].

Let us start with Shokurov’s nonvanishing theorem.

Theorem 4.1 (Shokurov’s nonvanishing theorem). Let X be a smooth variety and let B
be an R-divisor on X such that SuppB is a simple normal crossing divisor on X with
⌊B⌋ ≤ 0. Let π : X → S be a proper morphism to a scheme S and let D be a π-nef Cartier
divisor on X. Assume that aD− (KX +B) is nef and big over S for some positive integer
a. Then π∗OX(mD + ⌈−B⌉) ̸= 0 for every m ≫ 0.

Sketch of Proof. By taking the Stein factorization and considering a sufficiently general
fiber of π : X → S, we may assume that S is a point. By taking a resolution of singularities
of X and using Kodaira’s lemma, we may further assume that X is projective, aD−(KX+
B) is ample, and B is a Q-divisor. In this case, the statement is well known. For the details,
see [KMM], [KM], and [M]. □

For the proof of Theorem 1.1, the following formulation of the Kawamata–Shokurov
basepoint-free theorem is very useful.
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Theorem 4.2 (Kawamata–Shokurov basepoint-free theorem). Let X be a smooth variety
and let B be an R-divisor on X such that SuppB is a simple normal crossing divisor on
X with ⌊B⌋ ≤ 0. Let π : X → S be a proper morphism to a scheme S and let D be a π-nef
Cartier divisor on X. Assume the following conditions:

(1) aD − (KX +B) is nef and big over S for some positive integer a, and
(2) there exists a positive integer k such that the natural inclusion

π∗OX(lD) ↪→ π∗OX(lD + ⌈−B⌉)
is an isomorphism for every l ≥ k.

Then OX(mD) is π-generated for every m ≫ 0.

Sketch of Proof. The proof of the Kawamata–Shokurov basepoint-free theorem, which is
now usually called the X-method, works without any changes (see [KMM], [KM], and [M]).
For the details, see also the proof of Lemma 4.3 below. □
We need a somewhat artificial lemma for the proof of Theorem 1.1.

Lemma 4.3. Let π : X → S be a proper morphism from a normal variety X to an affine
scheme S and let D be a π-nef Cartier divisor on X. Let p : Z → X be a proper birational
morphism from a smooth variety Z and let B be an R-divisor on Z such that SuppB
is a simple normal crossing divisor, B<0 is p-exceptional, and B≥1 ̸= 0. Assume that
ap∗D− (KZ +B) is nef and big over S for some positive real number a and that Bs |mD|∩
p(B≥1) = ∅ for some positive integer m, where Bs |mD| denotes the base locus of |mD|
with the reduced scheme structure. Then there exists a positive integer s such that

(4.1) H0 (X,OX(m
sD)⊗ p∗OZ(−⌊B⌋))⊗OX → OX(m

sD)

is surjective on X \ p(B≥1). Note that p∗OZ(−⌊B⌋) is an ideal sheaf on X. In particular,
OX(m

sD) is π-generated.

Proof. The well-known X-method works with some minor modifications.

Step 1. Let q : Z ′ → Z be a projective birational morphism from a smooth quasi-projective
variety Z ′ such that KZ′+BZ′ = q∗(KZ+B) and that SuppBZ′ is a simple normal crossing
divisor on Z ′. It is easy to see that q∗OZ′(−⌊BZ′⌋) = OZ(−⌊B⌋). Hence we can replace
(Z,B) and p : Z → X with (Z ′, BZ′) and p ◦ q : Z ′ → X, respectively. Therefore, we may
assume that there exists a simple normal crossing divisor G on Z such that G =

∑
j Fj is

the irreducible decomposition with the following properties:

(1) the support of G+ SuppB is contained in a simple normal crossing divisor on Z,
(2) p∗mD = L +

∑
j rjFj for some nonnegative integers rj and a π ◦ p-free Cartier

divisor L on Z such that

H0(X,OX(mD)) = H0(Z,OZ(L))

and that Bs |mD| =
∪

rj>0 p(Fj), and

(3) ap∗D − (KZ +B)−
∑

j pjFj is ample over S for suitable 0 < pj ≪ 1.

Step 2. By the usual argument in Kawamata’s X-method, we can perturb pj suitably and
choose c > 0 such that (

B + c
∑
j

rjFj +
∑
j

pjFj

)>1

= 0

on Z \ SuppB≥1 and (
B + c

∑
j

rjFj +
∑
j

pjFj

)=1
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is a prime divisor F on Z \ SuppB≥1. We note that if rj > 0 then Fj is disjoint from
SuppB≥1 by the assumption Bs |mD| ∩ p(B≥1) = ∅. We put

F +B′ = B + c
∑
j

rjFj +
∑
j

pjFj.

Then, by construction, ⌊F+B′⌋ = F+⌊B′⌋, Supp(B′)≥1 = SuppB≥1, and p∗OZ(−⌊B′⌋) ⊂
p∗OZ(−⌊B⌋). Note that F is disjoint from Supp(B′)≥1 by construction.

Step 3. Let b be a positive integer such that b ≥ cm+ a. We consider an R-divisor

N(b) := bp∗D − (KZ + F +B′)

= (b− cm− a)p∗D + cL+

(
ap∗D − (KZ +B)−

∑
j

pjFj

)
.

Therefore, we see that N(b) is ample over S. By the Kawamata–Viehweg vanishing theo-
rem,

H1(Z,OZ(KZ + ⌈N(b)⌉)) = H1(Z,OZ(bp
∗D − F − ⌊B′⌋)) = 0.

Hence the restriction map

(4.2) H0(Z,OZ(bp
∗D − ⌊B′⌋)) → H0(F,OF (bp

∗D + ⌈−B′|F ⌉))

is surjective. Note that

N(b)|F = bp∗D|F − (KZ + F +B′)|F
= bp∗D|F − (KF +B′|F )

is ample over S. By construction, SuppB′|F is a simple normal crossing divisor on F and
⌊B′|F ⌋ ≤ 0 holds. By Theorem 4.1, we obtain that H0(F,OF (bp

∗D + ⌈−B′|F ⌉)) ̸= 0 for
every b ≫ 0. Therefore, H0(Z,OZ(bp

∗D − ⌊B′⌋)) has a section which does not vanish on
the generic point of F for every b ≫ 0 by the surjection (4.2). This means that there exists
some positive integer t such that

H0
(
X,OX(m

tD)⊗ p∗OZ(−⌊B⌋)
)
⊗OX → OX(m

tD)

is surjective at the generic point of p(F ). It is obvious that Bs |mtD| ∩ p(B≥1) = ∅ holds.
Hence we can apply the same argument as above to mtD. Then, by Noetherian induction,
we can find a sufficiently large positive integer s such that the map in (4.1) is surjective.

Step 4. By (4.1), Bs |msD|∩ (X \p(B≥1)) = ∅. On the other hand, Bs |mD|∩p(B≥1) = ∅
by assumption. Hence Bs |msD| ∩ p(B≥1) = ∅. Therefore, we obtain Bs |msD| = ∅. This
means that OX(m

sD) is π-generated.

We finish the proof of Lemma 4.3. □

We close this section with a remark on the X-method.

Remark 4.4. As is well known, the X-method works very well for kawamata log terminal
pairs. Precisely speaking, the notion of kawamata log terminal pairs was introduced to
make the X-method work well. Unfortunately, however, it is not so powerful for log canon-
ical pairs. Hence we proposed a new approach in order to prove the cone and contraction
theorem for log canonical pairs (see [F13] and [F14]). Our approach is based on some
vanishing theorems obtained by the theory of mixed Hodge structures on cohomology with
compact support (see [F7], [F22], [F23, Chapter 5], and [F27]). In some sense, it is simpler
than the X-method.
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5. Quasi-log schemes and basic slc-trivial fibrations

In this section, let us quickly review the theory of quasi-log schemes and the framework
of basic slc-trivial fibrations.

Let Y be a simple normal crossing divisor on a smooth variety M and let B be an
R-divisor on M such that Supp(B+Y ) is a simple normal crossing divisor on M and that
B and Y have no common irreducible components. We put BY = B|Y and consider the
pair (Y,BY ). We call (Y,BY ) a globally embedded simple normal crossing pair and M the
ambient space of (Y,BY ). A stratum of (Y,BY ) is a log canonical center of (M,Y + B)
that is contained in Y .

Let us recall the definition of quasi-log schemes.

Definition 5.1 (Quasi-log schemes, see [F23, Definition 6.2.2]). A quasi-log scheme is
a scheme X with an R-Cartier divisor (or R-line bundle) ω on X, a closed subscheme
X−∞ ⊊ X, and a finite collection {C} of subvarieties of X such that there exists a proper
morphism f : (Y,BY ) → X from a globally embedded simple normal crossing pair satisfying
the following properties:

(1) f ∗ω ∼R KY +BY holds,
(2) the natural map OX → f∗OY (⌈−(B<1

Y )⌉) induces an isomorphism

IX−∞
≃−→ f∗OY (⌈−(B<1

Y )⌉ − ⌊B>1
Y ⌋),

where IX−∞ is the defining ideal sheaf of X−∞, and
(3) the collection of subvarieties {C} coincides with the images of the strata of (Y,BY )

that are not included in X−∞.

If there is no risk of confusion, then we simply write [X,ω] to denote the above data

(X,ω, f : (Y,BY ) → X) .

The subvarieties C are called the qlc strata of [X,ω] and X−∞ is called the non-qlc locus
of [X,ω]. We usually use Nqlc(X,ω) to denote X−∞. If a qlc stratum C of [X,ω] is not
an irreducible component of X, then it is called a qlc center of [X,ω]. The union of X−∞
with all qlc centers of [X,ω] is denoted by Nqklt(X,ω).

We say that (X,ω, f : (Y,BY ) → X) or [X,ω] has a Q-structure if BY is a Q-divisor, ω is
a Q-Cartier divisor (or Q-line bundle), and f ∗ω ∼Q KY +BY holds in the above definition.

We need the notion of nef and log big R-divisors in order to formulate the basepoint-free
theorem of Reid–Fukuda type.

Definition 5.2 (Nef and log bigness). Let L be an R-Cartier divisor (or R-line bundle)
on a quasi-log scheme [X,ω] and let π : X → S be a proper morphism between schemes.
Then L is said to be nef and log big over S with respect to [X,ω] if L|W is π-nef and L|W
is π-big for every qlc stratum W of [X,ω].

The following example is very important. By this example, we can apply the results for
quasi-log schemes to normal pairs.

Example 5.3. Let X be a normal variety and let B be an effective R-divisor on X such
that KX +B is R-Cartier. Let f : Y → X be a proper birational morphism from a smooth
variety Y with KY + BY = f ∗(KX + B) such that SuppBY is a simple normal crossing
divisor on Y . Then

(X,KX +B, f : (Y,BY ) → X)

naturally becomes a quasi-log scheme. Note thatW is a qlc center of [X,KX+B] if and only
if W is a log canonical center of (X,B). By construction, Nqlc(X,KX +B) = Nlc(X,B).
Hence (X,B) is log canonical if and only if Nqlc(X,KX +B) = ∅.
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A pair (X,B) which is Zariski locally isomorphic to a globally embedded simple normal
crossing pair at any point is called a simple normal crossing pair. Let (X,B) be a simple
normal crossing pair and let ν : Xν → X be the normalization. We defineBν byKXν+Bν =
ν∗(KX +B), that is, Bν is the sum of the inverse images of B and the singular locus of X.
We note that Xν is a disjoint union of smooth varieties and SuppBν is a simple normal
crossing divisor on Xν . Then we say that W is a stratum of (X,B) if and only if W is an
irreducible component of X or the ν-image of some log canonical center of (Xν , Bν). Let
(X,B) be a simple normal crossing pair as above and let X =

∪
i∈I Xi be the irreducible

decomposition ofX. Then a stratum ofX means an irreducible component ofXi1∩· · ·∩Xik

for some {i1, . . . , ik} ⊂ I. It is not difficult to see that W is a stratum of X if and only
if W is a stratum of (X, 0). By definition, it is obvious that a globally embedded simple
normal crossing pair is a simple normal crossing pair.

Let us recall the definition of basic slc-trivial fibrations.

Definition 5.4 (Basic slc-trivial fibrations). A basic Q-slc-trivial (resp. R-slc-trivial) fi-
bration f : (X,B) → Y consists of a projective surjective morphism f : X → Y and a
simple normal crossing pair (X,B) satisfying the following properties:

(1) Y is a normal variety,
(2) every stratum of X is dominant onto Y and f∗OX ≃ OY ,
(3) B is a Q-divisor (resp. an R-divisor) such that B = B≤1 holds over the generic

point of Y ,
(4) there exists a Q-Cartier Q-divisor (resp. an R-Cartier R-divisor) D on Y such that

KX +B ∼Q f ∗D (resp. KX +B ∼R f ∗D), and
(5) rank f∗OX(⌈−(B<1)⌉) = 1.

If there is no danger of confusion, we simply use basic slc-trivial fibrations to denote
basic Q-slc-trivial fibrations or basic R-slc-trivial fibrations. Let f : (X,B) → Y be a basic
slc-trivial fibration as in Definition 5.4 and let ν : Xν → X be the normalization with
KXν +Bν = ν∗(KX+B) as before. Let P be a prime divisor on Y . By shrinking Y around
the generic point of P , we assume that P is a Cartier divisor. We set

bP = max

{
t ∈ R

∣∣∣∣ (Xν , Bν + tν∗f ∗P ) is sub log canonical
over the generic point of P

}
and put

BY =
∑
P

(1− bP )P,

where P runs over prime divisors on Y . Then BY is a well-defined R-divisor on Y and is
called the discriminant R-divisor of f : (X,B) → Y . We set

MY = D −KY −BY

and call MY the moduli R-divisor of f : (X,B) → Y . By definition, we have

KX +B ∼R f ∗(KY +BY +MY ).

Let σ : Y ′ → Y be a proper birational morphism from a normal variety Y ′. Then we have
the following commutative diagram:

(X♯, B♯)
µ //

��

(Xν , Bν)

f◦ν
��

Y ′
σ

// Y,

where X♯ is the normalization of the main components of X ×Y Y ′ and B♯ is defined
by KX♯ + B♯ = µ∗(KXν + Bν). As above, we can define R-divisors BY ′ , KY ′ and MY ′
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for (X♯, B♯) → Y ′ such that σ∗D = KY ′ + BY ′ + MY ′ , σ∗BY ′ = BY , σ∗KY ′ = KY and
σ∗MY ′ = MY hold. Hence there exist a unique R-b-divisor B such that BY ′ = BY ′ for
every σ : Y ′ → Y and a unique R-b-divisor M such that MY ′ = MY ′ for every σ : Y ′ → Y .
We call B the discriminant R-b-divisor associated to f : (X,B) → Y . The R-b-divisor M
is called the moduli R-b-divisor associated to f : (X,B) → Y . When f : (X,B) → Y is a
basic Q-slc-trivial fibration, it is easy to see thatB andM are Q-b-divisors by construction.

By using the theory of mixed Hodge structures on cohomology with compact support
(see [F23, Chapter 5]), we have:

Theorem 5.5 ([F23, Theorem 6.3.5]). Let [X,ω] be a quasi-log scheme and let X ′ be the
union of X−∞ with a (possibly empty) union of some qlc strata of [X,ω]. Then we have
the following properties.

(i) (Adjunction for quasi-log schemes). Assume that X ′ ̸= X−∞. Then X ′ naturally
becomes a quasi-log scheme with ω′ = ω|X′ and X ′

−∞ = X−∞. Moreover, the qlc
strata of [X ′, ω′] are exactly the qlc strata of [X,ω] that are included in X ′.

(ii) (Vanishing theorem for quasi-log schemes). Assume that π : X → S is a proper
morphism between schemes. Let L be a Cartier divisor on X such that L−ω is nef
and log big over S with respect to [X,ω]. Then Riπ∗(IX′ ⊗ OX(L)) = 0 for every
i > 0, where IX′ is the defining ideal sheaf of X ′ on X.

Theorem 5.5 is a key result in the theory of quasi-log schemes.

Remark 5.6. If Nqklt(X,ω) ̸= Nqlc(X,ω), then [Nqklt(X,ω), ω|Nqklt(X,ω)] naturally be-
comes a quasi-log scheme by adjunction (see Theorem 5.5 (i)).

By using the theory of variations of mixed Hodge structure on cohomology with compact
support (see [FF] and [FFS]), we have:

Theorem 5.7 ([FH2, Theorem 5.1]). Let f : (X,B) → Y be a basic R-slc-trivial fibration
such that Y is a smooth quasi-projective variety. We write KX + B ∼R f ∗D. Assume
that there exists a simple normal crossing divisor Σ on Y such that SuppD ⊂ Σ and that
every stratum of (X, SuppB) is smooth over Y \Σ. Let B and M be the discriminant and
moduli R-b-divisors associated to f : (X,B) → Y , respectively. Then

(i) K+B = KY +BY holds, where K is the canonical b-divisor of Y , and
(ii) MY is a potentially nef R-divisor on Y with M = MY .

Theorem 5.7 is the most fundamental property of basic slc-trivial fibrations.

Remark 5.8. It is conjectured that MY is semi-ample in Theorem 5.7. Unfortunately,
however, it is still widely open. We note that MY is known to be semi-ample when Y is a
curve (see [FFL] and [FH2]).

Very roughly speaking, in the author’s opinion, the theory of quasi-log schemes is a pow-
erful framework to use mixed Hodge structures on cohomology with compact support for
the study of higher-dimensional algebraic varieties and the theory of basic slc-trivial fibra-
tions was constructed in order to make the theory of variations of mixed Hodge structure
on cohomology with compact support applicable for some geometric problems.

Finally, we note that Theorems 5.5 and 5.7 hold true over any algebraically closed field
k of characteristic zero (see Section 2).

6. On normal irreducible quasi-log schemes

In this section, we will prove Theorem 1.3. For the proof of Theorem 1.3, we prepare an
elementary lemma.
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Lemma 6.1. Let m be any positive integer and let a be any nonnegative real number. If
t ≤ − a

m
, then the following inequality

(6.1) m (1 + ⌊−t⌋) ≥ 1 + ⌊a⌋
holds.

Proof. We can uniquely write

a = mk + l

for some nonnegative integer k with 0 ≤ l < m. Then

m(1 + ⌊−t⌋)− (1 + ⌊a⌋) ≥ m
(
1 +

⌊ a
m

⌋)
− (1 + ⌊a⌋)

≥ m(1 + k)− (1 +mk +m− 1)

= 0

holds. This implies the desired inequality. □
Let us prove Theorem 1.3.

Proof of Theorem 1.3. We divide the proof into several small steps. Steps 1 and 2 are more
or less well known. Step 3 is new.

Step 1. By definition, IX−∞ = f∗OY (⌈−(B<1
Y )⌉ − ⌊B>1

Y ⌋) is an ideal sheaf on X and
Supp⌊B>1

Y ⌋ is not dominant onto X by f . Therefore, rank f∗OY (⌈−(B<1
Y )⌉) = 1 holds. In

particular, we have rank f∗OX = 1. Let f : Y → Z → X be the Stein factorization of
f : Y → X. Since every irreducible component of Y is dominant onto X and rank f∗OY =
1, Z → X is a finite birational morphism from a variety Z onto a normal variety X. Then,
by Zariski’s main theorem, Z → X is an isomorphism. This means that the natural map
OX → f∗OY is an isomorphism. Hence f : (Y,BY ) → X is a basic R-slc-trivial fibration.
By [FH2, Corollary 5.2], we can take a birational morphism p : X ′ → X from a smooth
quasi-projective variety X ′ satisfying (i), (ii), and (iii). By the argument in Step 3 in the
proof of [F30, Theorem 7.1], we can make p : X ′ → X satisfy (iv). We note that we can
directly apply the argument in Step 3 in the proof of [F30, Theorem 7.1] to the basic
R-slc-trivial fibration f : (Y,BY ) → X by [FH2, Corollary 5.2]. Moreover, by the same
argument, we can check (v).

Step 2. In this step, we will check that JNgklt and JNglc are well-defined ideal sheaves on
X, that is, they are independent of p : X ′ → X.
Let q : X ′′ → X ′ be a projective birational morphism from a smooth quasi-projective

variety X ′′ such that KX′′ +BX′′ = q∗(KX′ +BX′) and that SuppBX′′ is a simple normal
crossing divisor on X ′′. Since (X ′, {BX′}) is kawamata log terminal, q∗⌊BX′⌋ − ⌊BX′′⌋ is
an effective q-exceptional divisor on X ′′. Hence we have

q∗OX′′(−⌊BX′′⌋) = OX′(−⌊BX′⌋)
by projection formula. By this fact and Hironaka’s resolution of singularities, we can
easily see that JNgklt is independent of p : X

′ → X. Since BX is effective by construction
(see [F30, Lemma 11.2]), SuppB<0

X′ is p-exceptional. Hence JNgklt is an ideal sheaf on X

and JNgklt = p∗OX′
(
−⌊B≥1

X′⌋
)
holds. Of course, JNgklt is a generalization of well-known

multiplier ideal sheaves (see [La]). Similarly, since (X ′, {BX′} + B=1
X′ ) is divisorial log

terminal, q∗ (⌊BX′⌋ −B=1
X′ ) − (⌊BX′′⌋ −B=1

X′′) is an effective q-exceptional divisor on X ′′.
Hence

q∗OX′′
(
−⌊BX′′⌋+B=1

X′′

)
= OX′

(
−⌊BX′⌋+B=1

X′

)
.

This means that JNglc is independent of p : X ′ → X by Hironaka’s resolution of singu-
larities. Since ⌈−(B<1

X′ )⌉ is effective and p-exceptional, JNglc is an ideal sheaf on X and
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JNglc = p∗OX′
(
−⌊B>1

X′⌋
)
holds. By definition, JNglc is a generalization of non-lc ideal

sheaves.

Step 3. In this step, we will check the inclusions JNgklt ⊂ INqklt(X,ω) and JNglc ⊂ INqlc(X,ω).
We note that INqklt(X,ω) = f∗OY (−⌊BY ⌋) holds (see [F23, Propositions 6.3.1 and 6.3.2]

and the proof of [F23, Theorem 6.3.5 (i)]). Let P be an irreducible component of SuppB≥1
Y .

We take a suitable birational modification p : X ′ → X satisfying (i)–(v) and consider the
induced basic R-slc-trivial fibration f ′ : (Y ′, BY ′) → X ′ (see [FH2, Definition 3.4]). We
have the following commutative diagram.

(Y ′, BY ′)
q //

f ′

��

(Y,BY )

f
��

X ′
p

// X

Note that f ′ : (Y ′, BY ′) → X ′ is a basic R-slc-trivial fibration withKY ′+BY ′ = q∗(KY +BY )
such that f ′ : (Y ′, BY ′) → X ′ coincides with the base change of f : (Y,BY ) → X by
p : X ′ → X over some nonempty Zariski open subset of X ′. Without loss of generality, by
using the flattening theorem (see [RG, Théorème (5.2.2)]), we may assume that the image
of P ′ := q−1

∗ P by f ′ is a prime divisor Q on X ′. We put coeffP BY = 1+ a with a ≥ 0 and
coeffP ′ f ′∗Q = m > 0. Then coeffQBX′ = 1− t with t ≤ − a

m
. By Lemma 6.1,

m (1 + ⌊−t⌋) ≥ 1 + ⌊a⌋.
This means that if

h ∈ Γ(U,JNgklt) = Γ
(
U, p∗OX′

(
−⌊B≥1

X′⌋
))

then

f ∗h ∈ Γ
(
f−1(U),OY

(
−⌊B≥1

Y ⌋
))

for any Zariski open subset U of X. Therefore, we obtain the desired inclusion

JNgklt ⊂ f∗OY (−⌊BY ⌋) = INqklt(X,ω).

This is what we wanted. The same argument as above works for JNglc and INqlc(X,ω) =
f∗OY (−⌊BY ⌋+B=1

Y ). Hence we obtain the desired inclusion JNglc ⊂ INqlc(X,ω).

We finish the proof of Theorem 1.3. □

7. Proof of Theorem 1.1

In this section, we will prove Theorem 1.1 and Corollary 1.2. Our proof of Theorem 1.1
here, which is a combination of Kawamata’s X-method with Theorem 1.3 in the framework
of quasi-log schemes, is completely different from the proof given in [F20]. A key idea of
the proof of Theorem 1.1 below is due to the argument in [FLh2]. Let us prove Theorem
1.1.

Proof of Theorem 1.1. We divide the proof into several small steps.

Step 1. If dimX \ X−∞ = 0, then Theorem 1.1 obviously holds true. From now on, we
assume that Theorem 1.1 holds for any quasi-log scheme Z with dimZ\Z−∞ < dimX\X−∞
by induction on dimX \X−∞.

Step 2. We take a qlc stratum W of [X,ω]. We put X ′ = W ∪X−∞. Then, by adjunction
(see Theorem 5.5 (i)), X ′ has a natural quasi-log scheme structure induced by [X,ω]. By
the vanishing theorem (see Theorem 5.5 (ii)), we have

R1π∗(IX′ ⊗OX(mL)) = 0
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for every m ≥ q, where IX′ is the defining ideal sheaf of X ′ on X. Therefore, we obtain
that the restriction map

π∗OX(mL) → π∗OX′(mL)

is surjective for every m ≥ q. Thus, we may assume that X \X−∞ is irreducible for the
proof of Theorem 1.1 by the following commutative diagram.

π∗π∗OX(mL) //

��

π∗π∗OX′(mL) //

��

0

OX(mL) // OX′(mL) // 0

Step 3. We put W = X \X−∞. By Step 2, W is irreducible. In this step, we further
assume that W ∩ Nqklt(X,ω) = ∅. In this case, W is a normal variety (see [F23, Lemma
6.3.9]) and [W,ω|W ] is a quasi-log canonical pair (see [F23, Lemma 6.3.12]). By [F30, Theo-
rem 1.7] (see also Theorem 1.3), there exists a projective birational morphism p : W ′ → W
from a smooth quasi-projective variety W ′ such that

p∗ω|W = KW ′ +BW ′ +MW ′ ,

SuppBW ′ is a simple normal crossing divisor, BW ′ = B<1
W ′ , SuppB<0

W ′ is p-exceptional, and
MW ′ is a potentially nef R-divisor onW ′. Hence q(p∗L|W )−(KW ′+BW ′) is nef and big over
S and ⌈−BW ′⌉ is effective and π ◦ p-exceptional. Then, by Theorem 4.2, OW ′(mp∗L|W )
is π ◦ p-generated for every m ≫ 0. Hence OW (mL|W ) is π-generated for every m ≫ 0.
Since W ∩X−∞ = ∅ by assumption, OX(mL) is π-generated for every m ≫ 0. Therefore,
from now on, we may assume that W ∩ Nqklt(X,ω) ̸= ∅.

Step 4. By [F35, Lemma 4.19], [W,ω|W ] has a natural quasi-log scheme structure induced
by [X,ω] such that INqklt(W,ω|W ) = INqklt(X,ω) holds. Let ν : Z → W be the normaliza-
tion. Then, by [F35, Theorem 1.9] (see also [FLh1]), there exists a proper surjective
morphism f ′ : Y ′ → Z from a quasi-projective globally embedded simple normal crossing
pair (Y ′, BY ′) such that every stratum of Y ′ is dominant onto Z and that

(Z, ν∗(ω|W ), f ′ : (Y ′, BY ′) → Z)

naturally becomes a quasi-log scheme with

ν∗INqklt(Z,ν∗(ω|W )) = INqklt(W,ω|W ) = INqklt(X,ω).

By Theorem 1.3, we can take a projective birational morphism p : Z ′ → Z from a smooth
quasi-projective variety Z ′ with

KZ′ +BZ′ +MZ′ = p∗ν∗(ω|W )

satisfying (i)–(v) in Theorem 1.3 such that the following inclusion

JNgklt = p∗OZ′(−⌊BZ′⌋) ⊂ INqklt(Z,ν∗(ω|W ))

holds.

Step 5. By induction on dimW (see Step 1) or the assumption that OX−∞(mL) is π-
generated for every m ≫ 0, ONqklt(X,ω)(mL|Nqklt(X,ω)) is π-generated for every m ≫ 0. As
in Step 2, the restriction map

π∗OX(mL) → π∗ONqklt(X,ω)(mL|Nqklt(X,ω))

is surjective for m ≥ q since R1π∗(INqklt(X,ω) ⊗OX(mL)) = 0 for m ≥ q by the vanishing
theorem (see Theorem 5.5 (ii)). Therefore, the relative base locus of OX(mL) is disjoint
from Nqklt(X,ω) for every m ≫ 0.



16 OSAMU FUJINO

Step 6. Without loss of generality, we may further assume that S is affine. Let ℓ be a
sufficiently large prime integer. Then Bs |ℓL| ∩ Nqklt(Z, ν∗(ω|W )) = Bs |ℓL| ∩ p(B≥1

Z′ ) = ∅
by Step 5. We note that B<0

Z′ is p-exceptional and that MZ′ is nef over S. By Lemma 4.3,

H0 (Z,OZ(ℓ
sν∗(L|W ))⊗ p∗OZ′(−⌊BZ′⌋))⊗OZ → OZ(ℓ

sν∗(L|W ))

is surjective on Z \ p(B≥1
Z′ ) for some positive integer s. We note that

H0 (Z,OZ(mν∗(L|W ))⊗ p∗OZ′(−⌊BZ′⌋))
⊂ H0

(
Z,OZ(mν∗(L|W ))⊗ INqklt(Z,ν∗(ω|W ))

)
= H0

(
W,OW (mL|W )⊗ INqklt(W,ω|W )

)
= H0

(
X,OX(mL)⊗ INqklt(X,ω)

)
holds for every integer m. Therefore, Bs |ℓsL| ∩ (X \ Nqklt(X,ω)) = ∅. This implies
that Bs |ℓsL| = ∅. We take a sufficiently large prime integer ℓ′ with ℓ′ ̸= ℓ. By the
same argument as above, we can find a positive integer s′ such that Bs |ℓ′s′L| = ∅. Hence
Bs |mL| = ∅ for every m ≫ 0 by Lemma 7.1 below.

We finish the proof of Theorem 1.1. □

We have already used the following easy lemma. We give a proof for the sake of com-
pleteness.

Lemma 7.1. Let a and b be positive integers with 1 < a < b such that gcd(a, b) = 1.
Then, for any positive integer m with m ≥ a

(
b−

⌈
b
a

⌉)
, there exist nonnegative integers u

and v such that m = ua+ vb.

Proof. We can uniquely write m = qa+ r such that q and r are integers with q ≥ b−
⌈
b
a

⌉
and 0 ≤ r ≤ a − 1. If r = 0, then it is sufficient to put u = q and v = 0. From now on,
we assume r ̸= 0. Then there exists a positive integer c such that cb =

⌊
cb
a

⌋
a + r with

1 ≤ c ≤ a− 1. Hence m =
(
q −

⌊
cb
a

⌋)
a+ cb. Note that

q −
⌊
cb

a

⌋
≥ b−

⌈
b

a

⌉
−
⌊
(a− 1)b

a

⌋
= 0.

Thus it is sufficient to put u = q −
⌊
cb
a

⌋
and v = c. □

We close this section with the proof of Corollary 1.2.

Proof of Corollary 1.2. Let (X,∆) be a log canonical pair. We put ω = KX + ∆. Then
[X,ω] naturally becomes a quasi-log scheme with Nqlc(X,ω) = ∅ (see Example 5.3). By
assumption, qL − ω is nef and log big over S with respect to [X,ω]. Hence OX(mL) is
π-generated for every m ≫ 0 by Theorem 1.1. □

8. Comments on Ambro’s paper: Quasi-log varieties

In this section, we make many comments on [A] to help the reader understand differences
between Ambro’s original approach in [A] and our framework of quasi-log schemes mainly
discussed in [F23, Chapter 6]. Note that [F11] is a gentle introduction to the theory of
quasi-log varieties. We also note that a quasi-log variety in [A] and [F11] is called a quasi-log
scheme in the author’s recent papers because it may have non-reduced components.
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8.0. Introduction. By [A, Definition 1], a generalized log variety (X,B) is a pair consist-
ing of a normal variety X and an effective R-divisor B on X such that KX+B is R-Cartier.
Note that we sometimes call (X,B) a normal pair in some literature. When (X,B) is log
canonical, it is called a log variety. The main result of [A] is the cone and contraction the-
orem for generalized log varieties (see [A, Theorem 2]). In order to establish the cone and
contraction theorem, Ambro introduced the notion of quasi-log varieties, which was moti-
vated by Kawamata’s X-method. He also said that the motivation behind [A] is Shokurov’s
idea that log varieties and non-kawamata log terminal loci should be treated on an equal
footing. In [F14], we recovered [A, Theorem 2] without using the framework of quasi-log
schemes. The approach in [F14] was influenced by not only Kawamata’s X-method but
also the theory of (algebraic) multiplier ideal sheaves (see [La]). If the reader is interested
only in the cone and contraction theorem for generalized log varieties, then we recommend
him or her to see [F14], which seems to be more accessible than [A]. We note that [F7]
and [F13] may help the reader understand [F14]. The cone and contraction theorem for
generalized log varieties (see [A, Theorem 2] and [F14, Theorem 1.1]) plays a crucial role
in the minimal model theory for log surfaces (see [F15], [F19], [F32], [F33], and [FT]).

8.1. Section 1. Preliminary. In Section 1 in [A], some standard definitions are col-
lected. In the theory of quasi-log schemes, we usually treat highly singular reducible
schemes. Moreover, we have to treat R-Cartier divisors and R-line bundles. We note that
Kleiman’s famous ampleness criterion does not necessarily hold true for singular complete
non-projective schemes (see [F5] and [F32]). On the other hand, the Nakai–Moishezon
ampleness criterion for R-line bundles holds for any complete schemes (see [FMi2]). It
sometimes may be very useful when we treat R-line bundles on highly singular schemes.
Moreover, the Nakai–Moishezon ampleness criterion on complete algebraic spaces is crucial
for the proof of the projectivity of some moduli spaces (see [F28]).

8.2. Section 2. Normal crossing pairs. Ambro defined multicrossing singularities and
considered their associated hypercoverings (see [A, Definition 2.1 and Lemma 2.2]). More-
over, he defined multicrossing divisors. Then he finally introduced the notion of (embedded)
normal crossing pairs (see [A, Definitions 2.3 and 2.7]). He used embedded normal cross-
ing pairs to define quasi-log varieties. On the other hand, our framework of the theory of
quasi-log schemes in [F23, Chapter 6] uses the notion of globally embedded simple normal
crossing pairs. Note that [F23, Propositions 6.3.1, 6.3.2, and 6.3.3] is much more flexible
than [A, Proposition 2.8]. We think that our approach is more accessible than Ambro’s
because globally embedded simple normal crossing pairs are much easier to treat than em-
bedded normal crossing pairs. We can use the standard techniques in the theory of minimal
models for higher-dimensional algebraic varieties to treat globally embedded simple nor-
mal crossing pairs. In general, simple normal crossing divisors behave much better than
normal crossing divisors (see [F6]).

8.3. Section 3. Vanishing theorems. Section 3 in [A] is a short section on injectivity,
vanishing, and torsion-free theorems. The proof of [A, Theorems 3.1 and 3.2] is hard to
follow. In [F23, Chapter 5] (see also [F7], [F14], [F22], [F27], and so on), we give a rigorous
proof of [A, Theorems 3.1 and 3.2] and treat some more general results. Our approach is
slightly different from Ambro’s and is based on the theory of mixed Hodge structures on
cohomology with compact support. A survey article [F26] may help the reader understand
our approach to vanishing theorems. The reader can find some related vanishing theorems
in [F17], [F18], [F29], and so on.

8.4. Section 4. Quasi-log varieties. As we mentioned above, a quasi-log variety is called
a quasi-log scheme in [F23]. Section 4 is the main part of [A]. In Section 4, Ambro defined
quasi-log varieties in [A, Definition 4.1]. Ambro’s definition is slightly different from ours
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in [F23, Definition 6.2.2]. Note that (Y,BY ) in [A, Definition 4.1] is an embedded normal
crossing pair and (Y,BY ) in [F23, Definition 6.2.2] is a globally embedded simple normal
crossing pair. For the details of this difference, see [F24]. The most important result in this
section is [A, Theorem 4.4], which is adjunction and vanishing for quasi-log varieties. In
[F23, Section 6.3], we prepare some useful propositions (see [F23, Propositions 6.3.1, 6.3.2,
and 6.3.3]) and prove adjunction and vanishing for quasi-log schemes in [F23, Theorem
6.3.5]. We also discuss some other basic properties of quasi-log schemes in [F23, Sections
6.3 and 6.4]. Note that a qlc center in [A] is called a qlc stratum in [F23, Chapter 6]. We also
note that a qlc center which is not maximal with respect to the inclusion in [A] is called a qlc
center in [F23, Chapter 6]. Hence LCS(X) in [A, Definition 4.6] is nothing but Nqklt(X,ω)
in [F23, Chapter 6]. We can recover [A, Proposition 4.7] by [F23, Lemma 6.3.9]. Our proof
seems to be simpler. Note that [A, Proposition 4.8] is [F23, Theorem 6.3.11]. In [FH2]
(see also [FH3]), we completely generalize [A, Theorem 4.9]. Our treatment depends on
the theory of variations of mixed Hodge structure on cohomology with compact support
(see [FF], [FFS], [F30], and [FFL]). On the other hand, [A, Theorem 4.11] only uses the
theory of variations of pure Hodge structure.

8.5. Section 5. The cone theorem. In [A, Section 5], the cone and contraction theorem
for quasi-log schemes was established in full generality. The results in [A, Section 5] are
recovered in [F23, Sections 6.5, 6.6, and 6.7]. Although we slightly changed and improved
some arguments, the treatment in [F23, Sections 6.5, 6.6, and 6.7] is essentially the same as
that in [A, Section 5]. The basepoint-free theorem for quasi-log schemes (see [A, Theorem
5.1] and [F23, Theorem 6.5.1]) is generalized in various directions (see [F8], [F10], [F21],
[F25], [F34], [FLh2], [FMi1], and [Li]). The theory of quasi-log schemes gives a very
powerful framework for basepoint-freeness (see also the proof of Theorem 1.1 in Section 7
in this paper).

8.6. Section 6. Quasi-log Fano contractions. In [A, Section 6], Ambro specialized
some results in [A, Section 5] for quasi-log Fano contraction morphisms. In [F23, Section
6.8], we treat (relative) quasi-log Fano schemes. Moreover, in [FLw], [F31], [F35], and
[FH1], we discuss simple connectedness, rationally chain connectedness, lengths of rational
curves for (relative) quasi-log Fano schemes. In [F31] and [F35], we use not only quasi-
log schemes but also some results obtained by the theory of basic slc-trivial fibrations.
Moreover, in [FH1], we also use the minimal model program for log canonical pairs. Hence
the results in [F31], [F35], and [FH1] are much more general than those in [A, Section 6].

8.7. Section 7. The log big case. In Section 7, Ambro replaced the ampleness in some
theorems with the nef and log bigness. Note that [A, Theorem 7.2] is the basepoint-free
theorem of Reid–Fukuda type for quasi-log schemes, which is Theorem 1.1 in this paper.
In [A], there is no detail of the proof of [A, Theorem 7.2]. Now we have a rigorous proof of
[A, Theorem 7.2]. The reader can find vanishing theorems for nef and log big divisors in
[F23, Theorem 5.8.2 and Theorem 6.3.5 (ii)]. We note that [F23, Theorem 6.3.8] is a slight
generalization of [A, Theorem 7.3]. We know that everything in [A, Section 7] holds true.
We note that the proof of Theorem 1.1 in this paper depends on some deep results in the
theory of variations of mixed Hodge structure on cohomology with compact support (see
[FF], [FFS], [F30], [F35], [FH2], and so on).
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