
No. 12] Proc. Japan Acad., 99, Ser. A (2023) 1

Log canonical inversion of adjunction

By Osamu Fujino

Department of Mathematics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan

Abstract: This is a short note on the log canonical inversion of adjunction.

Key words: inversion of adjunction; adjunction; log canonical singularities; complex

analytic spaces.

1. Introduction The following theorem is

Kawakita’s inversion of adjunction on log canonic-

ity (see [8, Theorem]). Although [8, Theorem] is

formulated and proved only for algebraic varieties,

his clever and mysterious proof in [8] works in the

complex analytic setting. Here we will prove it as

an application of the minimal model theory for pro-

jective morphisms of complex analytic spaces estab-

lished in [6] following the argument in [7] with some

suitable modifications. Our proof is more geometric

than Kawakita’s.

Theorem 1.1 (Log canonical inversion of ad-

junction, see [8, Theorem]). Let X be a normal

complex variety and let S + B be an effective R-
divisor on X such that KX + S + B is R-Cartier,
S is reduced, and S and B have no common irre-

ducible components. Let ν : Sν → S be the normal-

ization with KSν + BSν = ν∗(KX + S + B), where

BSν denotes Shokurov’s different. Then (X,S+B)

is log canonical in a neighborhood of S if and only

if (Sν , BSν ) is log canonical.

We note that X is not necessarily an algebraic

variety in Theorem 1.1. It is only a complex analytic

space. In this note, we will freely use [6] and [2]. We

assume that the reader is familiar with the basic

definitions and results of the minimal model theory

for algebraic varieties (see, for example, [9], [3], [4],

[5], and so on).

2. Quick review of the analytic MMP

In this section, we quickly explain the minimal

model theory for projective morphisms between

complex analytic spaces established in [6].

2.1 (Singularities of pairs). As in the alge-

braic case, we can define kawamata log terminal

pairs, log canonical pairs, purely log terminal pairs,

divisorial log terminal pairs, and so on, for complex

analytic spaces. For the details, see [6, Section 3].

One of the main contributions of [6] is to find

out a suitable complex analytic formulation in order

to make the original proof of [3] work with only

some minor modifications.
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2.2. Let π : X → Y be a projective mor-

phism between complex analytic spaces. A compact

subset of an analytic space is said to be Stein com-

pact if it admits a fundamental system of Stein open

neighborhoods. It is well known that if W is a Stein

compact semianalytic subset of Y then Γ(W,OY ) is

noetherian. From now on, we fix a Stein compact

subset W of Y such that Γ(W,OY ) is noetherian.

Then we can formulate and prove the cone and con-

traction theorem over some open neighborhood of

W as in the usual algebraic case. This is essentially

due to Nakayama (see [10]). We say that X is Q-

factorial over W if every prime divisor defined on

an open neighborhood of π−1(W ) is Q-Cartier at

any point x ∈ π−1(W ). Then, in [6], we show that

we can translate almost all the results in [3] into the

above analytic setting suitably (see [6, Section 1]).

Hence we have the minimal model program

with ample scaling as in the algebraic case. In Sec-

tion 4, we will use it in the proof of Theorem 1.1.

2.3 (Minimal model program with ample scal-

ing). Let (X,∆) be a divisorial log terminal pair

such that X is Q-factorial over W and let C ≥ 0

be a π-ample R-divisor on X such that (X,∆+C)

is log canonical and that KX + ∆ + C is nef over

W . Then we can run the (KX +∆)-minimal model

program with scaling of C over Y around W from

(X0,∆0) := (X,∆) as in the algebraic case. We

put C0 := C. Thus we get a sequence of flips and

divisorial contractions

(X0,∆0)
ϕ099K (X1,∆1)

ϕ199K · · ·
ϕi−199K (Xi,∆i)

ϕi99K (Xi+1,∆i+1)
ϕi+199K · · ·

over Y with ∆i := (φi−1)∗∆i−1 and Ci :=

(φi−1)∗Ci−1 for every i ≥ 1. We note that each step

φi exists only after shrinking Y around W suitably.

We also note that

λi := inf{µ ∈ R≥0 | KXi
+∆i + µCi is nef over W}

and that each step φi is induced by a (KXi
+∆i)-

negative extremal ray Ri such that (KXi
+ ∆i +

λiCi) ·Ri = 0. We have

λ−1 := 1 ≥ λ0 ≥ λ1 ≥ · · ·
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such that this sequence is

• finite with λN−1 > λN = 0, or

• infinite with limi→∞ λi = 0.

Of course, it is conjectured that the above mini-

mal model program always terminates after finitely

many steps. Unfortunately, however, it is still

widely open even when π : X → Y is algebraic.

Anyway, for the details of the minimal model

theory for projective morphisms of complex analytic

spaces, see [6].

3. Zariski’s subspace theorem In this

short section, we quickly review Zariski’s subspace

theorem following [1].

3.1 (see [1, (1.1)]). Let R1 and R2 be noethe-

rian local rings. Then we say that R2 dominates R1

if R1 is a subring of R2 and mR1
⊂ mR2

holds,

where mR1 (resp. mR2) is the maximal ideal of R1

(resp. R2).

3.2 (see [1, (1,1)]). Let R1 and R2 be noethe-

rian local rings such that R1 is a subring of R2. We

say that R1 is a subspace of R2 if R1 with its Krull

topology is a subspace of R2 with its Krull topology.

This means that R2 dominates R1 and there exists

a sequence of non-negative integers a(n) such that

a(n) tends to infinity with n and R1∩mn
R2

⊂ m
a(n)
R1

holds for every n ≥ 0.

3.3 (see [1, (1.1)]). Let R1 and R2 be noethe-

rian local domains such that R1 is a subring of R2.

Then trdegR1
R2 denotes the transcendence degree

of the quotient field of R2 over the quotient field of

R1. Let h : R2 → R2/mR2
be the canonical surjec-

tion, where mR2 is the maximal ideal of R2. Let

k be the quotient field of h(R1) in h(R2). Then

trdegkh(R2) is called the residual transcendence de-

gree of R2 over R1 and is denoted by restrdegR1
R2.

We need the following form of Zariski’s sub-

space theorem.

Theorem 3.4 (see, for example, [1, (10.13)]).

Let R1 and R2 be noetherian local domains such

that R1 is analytically irreducible, R2 dominates

R1, trdegR1
R2 < ∞, and dimR1 + trdegR1

R2 =

dimR2 + restrdegR1
R2. Then R1 is a subspace of

R2.

Here we do not prove Theorem 3.4. For the

details, see [1, §10].
4. Proof of Theorem 1.1 Let us prove

Theorem 1.1 following the argument in [7], where

the log canonical inversion of adjunction was estab-

lished for log canonical centers of arbitrary dimen-

sion. Our proof given below uses Zariski’s subspace

theorem as in [8].

Proof of Theorem 1.1. In this proof, we will

closely follow the argument in [7] with some suit-

able modifications. If (X,S + B) is log canonical

in a neighborhood of S, then it is easy to see that

(Sν , BSν ) is log canonical by adjunction. Therefore,

it is sufficient to prove that (X,S+B) is log canon-

ical near S under the assumption that (Sν , BSν ) is

log canonical. Without loss of generality, we may

assume that S is irreducible. We take an arbitrary

point P ∈ S. We can replace X with a relatively

compact Stein open neighborhood of P since the

statement is local. From now on, we will freely

shrink X around P suitably throughout the proof

without mentioning it explicitly.

Step 1. In this step, we will see that we can

reduce the problem to the case where KX + S +B

is Q-Cartier.

The argument here is more or less well known

to the experts and is standard in the theory of min-

imal models. Hence we will only give a sketch of

the proof. As usual, we can write

KX + S +B =

q∑
p=1

rp(KX + S +Bp)

such that KX + S + Bp is Q-Cartier, 0 < rp < 1

for every p with
∑q

p=1 rp = 1, and (Sν , Bν
p ) is log

canonical for every p, where KSν +Bν
p = ν∗(KX +

S + Bp). Note that if (X,S + Bp) is log canonical

near S for every p then (X,S +B) is log canonical

in a suitable neighborhood of S. Therefore, we can

replace (X,S+B) with (X,S+Bp) and assume that

KX + S +B is Q-Cartier. This is what we wanted.

Step 2. In this step, we will make a good par-

tial resolution of singularities of the pair (X,S+B)

by using the minimal model program established in

[6] (see also Section 2).

Let W be a Stein compact subset of X such

that Γ(W,OX) is noetherian and that W contains

some open neighborhood of P . By [6, Theorem

1.21], we can take a projective bimeromorphic mor-

phism µ : Y → X with KY +∆Y = µ∗(KX +S+B)

such that

(i) Y is Q-factorial over W ,

(ii) ∆Y is effective and ∆Y =
∑

j dj∆j is the irre-

ducible decomposition,

(iii) the pairY,∆′
Y :=

∑
dj≤1

dj∆j +
∑
dj>1

∆j


is divisorial log terminal, and

(iv) every µ-exceptional divisor appears in

(∆′
Y )

=1 :=
∑

dj≥1 ∆j .

Note that µ : Y → X is sometimes called a dlt blow-

up of (X,S +B) in the literature (see [6, Theorem

1.21]). We write ∆′
Y = T +Γ, where T is the strict

transform of S and Γ := ∆′
Y − T , and put

Σ := ∆Y − T − Γ = ∆Y −∆′
Y .

We take an effective Cartier divisor E on Y such

that −E is µ-ample and KY + T + Γ − E is µ-

nef over W . We note that we can choose E such
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that E and T have no common components. Then

we run the (KY + T + Γ)-minimal model program

with scaling of −E over X around W . We obtain a

sequence of flips and divisorial contractions:

(Y, T + Γ) =: (Y0, T0 + Γ0)
ϕ099K (Y1, T1 + Γ1)

ϕ199K (Y2, T2 + Γ2)
ϕ299K · · ·

ϕi−199K (Yi, Ti + Γi)
ϕi99K · · · .

Note that each step exists only after shrinking X

around W suitably. Let µi : Yi → X be the induced

morphism. For any divisor G on Y , we let Gi denote

the pushforward of G on Yi. We put λ−1 := 1. By

construction, there exists a non-increasing sequence

of rational numbers λi ≥ λi+1 with i ≥ 0 that is

either

• finite with λN−1 > λN = 0, or

• infinite with limi→∞ λi = 0

such that KYi
+ Ti + Γi − λEi is nef over W for

all λi−1 ≥ λ ≥ λi. Without loss of generality, we

may assume that each φi is a flip for every i ≥ i0 or

that i0 = N , that is, the minimal model program

stops at i0 = N . For any positive rational number

t, there is an effective Q-divisor Θt on Y such that

Θt ∼Q Γ− tE and (Y, T +Θt) is purely log terminal

with ⌊T + Θt⌋ = T . In this case, we see that if

t < λi−1 then (Yi, Ti +Θt,i) is purely log terminal.

In particular, (Yi,Θt,i) is kawamata log terminal.

Step 3. In this step, we will check that Ti ∩
Σi = ∅ holds for every i.

We note that Ti is normal since (Yi, Ti +Γi) is

a divisorial log terminal pair. Therefore, µi : Ti →
S factors through ν : Sν → S. By construction, we

have KYi
+ Ti +Γi +Σi = µ∗

i (KX + S +B). Hence

KTi
+DiffTi

(Γi +Σi) := (KYi
+ Ti + Γi +Σi) |Ti

= (µ′
i)

∗(KSν +BSν )

(4.1)

holds, where µ′
i : Ti → Sν . Assume that Ti ∩ Σi is

not empty. Then we see that (Ti,DiffTi
(Γi + Σi))

is not log canonical. By (4.1), this is a contradic-

tion since (Sν , BSν ) is log canonical by assumption.

This implies that Ti ∩ Σi = ∅ holds for every i. In

particular, we have

KTi
+DiffTi

(Γi +Σi) = (KYi
+ Ti + Γi +Σi) |Ti

= (KYi
+ Ti + Γi) |Ti

=: KTi +DiffTi(Γi).

Step 4. In this step, we will show that

φi|Ti
: Ti 99K Ti+1 is an isomorphism for every i.

Moreover, we will prove that if φi is a flip then φi is

an isomorphism on some open neighborhood of Ti.

First, we assume that φi is a flip. We consider

the following flipping diagram

(Yi, Ti + Γi)
ϕi //_______

φi
%%KK

KKK
KKK

KK
(Yi+1, Ti+1 + Γi+1)

φ+
iwwooo

ooo
ooo

ooo

Zi

and we let Wi denote the normalization of ϕi(Ti).

Let C be any flipping curve. If C is contained in Ti,

then we obtain

(4.2) (KYi+Ti+Γi)·C = (KYi+Ti+Γi+Σi)·C = 0

since Ti ∩ Σi = ∅ by Step 3. This is absurd. Hence

this implies that the natural map Ti → Wi is an iso-

morphism. By the same argument, we see that the

natural map Ti+1 → Wi is also an isomorphism.

This means that φi|Ti : Ti 99K Ti+1 is an isomor-

phism when φi is a flip. By the above argument, we

see that Ti+1 (resp. Ti) does not contain any flipped

(resp. flipping) curves. Note that if Ti ·C > 0 holds

for some flipping curve C then −Ti+1 is ϕ+
i -ample.

Hence Ti is disjoint from the flipping locus. This

implies that φi is an isomorphism near Ti when φi

is a flip.

Next, we assume that φi is a divisorial contrac-

tion. In this case, φi|Ti
: Ti 99K Ti+1 is obviously a

projective bimeromorphic morphism between nor-

mal complex varieties. Let C be any curve con-

tracted by φi. Assume that C is contained in Ti.

Then, by the same computation as in (4.2), we get

a contradiction. This means that φi|Ti
: Ti → Ti+1

does not contract any curves. Thus, φi|Ti
: Ti 99K

Ti+1 is an isomorphism.

We get the desired statement.

Step 5. In this step, we will prove that the

natural restriction map

(µi0)∗OYi0
(−mΣi0 − aEi0) → (µi0)∗OTi0

(−aEi0)

is surjective over some open neighborhood of P for

every positive integer m ≥ a/λi0−1 such that mΣ is

an integral divisor, where a is the smallest positive

integer such that aEi0 is Cartier.

By definition, aEi0 is Cartier. By Step 4,

Yi0 99K Yi is an isomorphism on some open neigh-

borhood of Ti0 for every i ≥ i0. Therefore, aEi is

Cartier on some open neighborhood of Ti for every

i ≥ i0. Since (Yi, Ti + Γi) is divisorial log terminal

and Ti is a Q-Cartier integral divisor, we have the

following short exact sequence:

0 → OYi
(−mΣi − aEi − Ti) → OYi

(−mΣi − aEi)

→ OTi(−aEi) → 0

(4.3)

for every i ≥ i0 and every m such that mΣi is in-

tegral (cf. [9, Proposition 5.26]). Here, we used the

fact that Ti ∩ Σi = ∅ (see Step 3). Let U be an

open neighborhood of P contained in W . For every

positive integer m ≥ a such that mΣ is an integral
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divisor, there exists i such that λi−1 ≥ a/m ≥ λi.

If further m ≥ a/λi0−1, then i ≥ i0. Since

−mΣi − aEi − Ti −
(
KYi

+Θ a
m ,i

)
∼Q,µi

(m− 1)
(
KYi

+ Ti + Γi −
a

m
Ei

)
,(

Yi,Θ a
m ,i

)
is kawamata log terminal, KYi

+Ti+Γi−
a
mEi is nef over U , we obtain that

(4.4) R1(µi)∗OYi
(−mΣi − aEi − Ti) = 0

on U by the Kawamata–Viehweg vanishing theorem

for projective bimeromorphic morphisms of com-

plex analytic spaces. Hence the natural restriction

map

(µi)∗OYi
(−mΣi − aEi) →(µi)∗OTi

(−mΣi − aEi)

= (µi)∗OTi(−aEi)

is surjective on U by (4.3) and (4.4). Note that

(µi)∗OYi(−mΣi − aEi)

= (µi0)∗OYi0
(−mΣi0 − aEi0)

and

(µi)∗OTi
(−aEi) = (µi0)∗OTi0

(−aEi0)

hold because Yi0 99K Yi is an isomorphism in codi-

mension one and Yi0 99K Yi is an isomorphism on

some open neighborhood of Ti0 by Step 4, respec-

tively. Thus, the natural restriction map

(4.5)

(µi0)∗OYi0
(−mΣi0 − aEi0) → (µi0)∗OTi0

(−aEi0)

is surjective on U for every positive integer m ≥
a/λi0−1 such that mΣ is an integral divisor. This

is what we wanted.

Step 6. In this final step, we will get a con-

tradiction by assuming that (X,S + B) is not log

canonical at P . Here, we will use Zariski’s subspace

theorem as in [8].

The assumption implies that P ∈ µ(Σ). Note

that the non-log canonical locus of (X,S + B) is

µ(Σ) set theoretically. By construction, (Yi, Ti +

Γi) is divisorial log terminal. Therefore, the non-

log canonical locus of (Yi, Ti + Γi + Σi) is nothing

but the support of Σi. Therefore, µ(Σ) = µi(Σi)

holds set theoretically for every i. Hence we have

P ∈ µi0(Σi0).

Claim. Let OX,P be the localization of OX

at P and let mP denote the maximal ideal of OX,P .

For every positive integer n, there exists a divisible

positive integer ν(n) such that

(µi0)∗OYi0
(−ν(n)Σi0 − aEi0)P ⊂ mn

P ⊂ OX,P

holds, where (µi0)∗OYi0
(−ν(n)Σi0 −aEi0)P denotes

the localization of (µi0)∗OYi0
(−ν(n)Σi0 − aEi0) at

P .

Proof of Claim. We take Q ∈ Σi0 such that

µi0(Q) = P . We consider OX,P ↪→ OYi0
,Q, where

OYi0
,Q is the localization of OYi0

at Q. It is well

known that OX,P is excellent. Therefore, OX,P is

analytically irreducible since X is normal. Since

µi0 : Yi0 → X is a projective bimeromorphic mor-

phism, the quotient field of OYi0
,Q coincides with

the one of OX,P . We note that the natural map

OX,P → OYi0
,Q/mQ is surjective, where mQ is the

maximal ideal of OYi0
,Q. Hence we can use Zariski’s

subspace theorem (see Theorem 3.4). Thus we get

a large and divisible positive integer ν(n) with the

desired property.

We consider the localization of the following

restriction map OX ≃ (µi0)∗OYi0
→ (µi0)∗OTi0

at

P . We put A = OX,P , M =
(
(µi0)∗OTi0

)
P
, and

N =
(
(µi0)∗OTi0

(−aEi0)
)
P
. Then, by the surjec-

tion (4.5) in Step 5 and Claim, we obtain that N =

(0) by Lemma 4.1 below. This is a contradiction.

Hence, we obtain that (X,S+B) is log canoni-

cal at P . Since P is an arbitrary point of S, (X,S+

B) is log canonical in a neighborhood of S. We fin-

ish the proof of Theorem 1.1.

We used the following easy commutative alge-

bra lemma in the above proof of Theorem 1.1.

Lemma 4.1. Let (A,m) be a noetherian local

ring, let M be a finitely generated A-module, and

let ϕ : A → M be a homomorphism of A-modules.

Let I1 ⊃ I2 ⊃ · · · ⊃ Ik ⊃ · · · be a chain of ideals

of A such that there exists ν(n) satisfying Iν(n) ⊂
mn for every positive integer n. Let N be an A-

submodule of M . Assume that ϕ(Ik) = N holds for

every positive integer k. Then we have N = (0).

Proof. Let b be any element of N . Then we

can take a ∈ Iν(n) ⊂ mn such that ϕ(a) = b. This

implies that b = ϕ(a) ∈ mnM . Hence b ∈ mnM

holds for every positive integer n. Thus we obtain

b ∈
∩

n m
nM = (0). Therefore, b = 0 holds, that is,

N = (0).

We close this short note with a remark.

Remark 4.2. If (X,S + B) is algebraic in

Theorem 1.1, then we do not need [6]. It is suffi-

cient to use the minimal model program at the level

of [3], the well-known relative Kawamata–Viehweg

vanishing theorem, and Zariski’s subspace theorem

(see, for example, [1, (10.6)]). Our proof given here

is longer than Kawakita’s one (see [8]). However, it

looks more accessible for the experts of the minimal

model program since the argument is more or less

standard.
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