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Abstract. The normalization of an irreducible quasi-log canonical pair naturally be-
comes a quasi-log canonical pair.

Contents

1. Introduction 1
2. Quick review of the theory of quasi-log schemes 3
3. Proof 5
References 7

1. Introduction

In [A], Florin Ambro introduced the notion of quasi-log varieties, which are now called
quasi-log schemes, in order to establish the cone and contraction theorem for generalized
log varieties. Note that a generalized log variety is a pair (X,∆) consisting of a normal
irreducible variety X and an effective R-divisor ∆ on X such that KX + ∆ is R-Cartier.
Although the main result of [A] was recovered without using the theory of quasi-log schemes
in [F1], it became clear that quasi-log schemes are ubiquitous in the theory of minimal
models (see, for example, [F2] and [F5]). As Ambro said in [A], the definition of quasi-log
schemes is motivated by Kawamata’s X-method. Therefore, it is not surprising that quasi-
log schemes often appear naturally in the theory of minimal models. In this paper, we
prove that the normalization of an irreducible quasi-log canonical pair (qlc pair, for short)
becomes a quasi-log canonical pair. Note that the notion of quasi-log canonical pairs
is one of the useful generalizations of log canonical pairs in the framework of quasi-log
schemes. In general, a quasi-log canonical pair may be reducible and may not necessarily
be equidimensional. We also note that the result of this paper plays a crucial role when
we show that every quasi-log canonical pair has only Du Bois singularities in [FLh].

Let (X,∆) be a log canonical pair and let W be a log canonical center of (X,∆). Then
[W,ω] has a natural qlc structure, where ω = (KX + ∆)|W . For the details, see Example
2.11 below and [F5, 6.4.1 and 6.4.2]. Let ν : W ν → W be the normalization. Then we
expect that there exists an effective R-divisor ∆W ν on W ν such that (W ν ,∆W ν ) is log
canonical and that KW ν + ∆W ν ∼R ν∗ω. However, it is still a difficult open problem to
find ∆W ν with the above properties. For a related topic, see [FG]. By Theorem 1.1 below,
which is the main theorem of this paper, we see that [W ν , ν∗ω] naturally becomes a qlc
pair. Therefore, we can apply the theory of quasi-log schemes to [W ν , ν∗ω].

Theorem 1.1 (Normalization of qlc pairs). Let [X,ω] be a qlc pair such that X is irre-
ducible. Let ν : Z → X be the normalization. Then [Z, ν∗ω] naturally becomes a qlc pair
with the following properties:
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(i) if C is a qlc center of [Z, ν∗ω], then ν(C) is a qlc center of [X,ω], and
(ii) Nqklt(Z, ν∗ω) = ν−1(Nqklt(X,ω)). More precisely, the equality

ν∗INqklt(Z,ν∗ω) = INqklt(X,ω)

holds, where INqklt(X,ω) and INqklt(Z,ν∗ω) are the defining ideal sheaves of Nqklt(X,ω)
and Nqklt(Z, ν∗ω) respectively.

For the definition of qlc pairs and Nqklt(X,ω), see Definitions 2.4 and 2.7, respectively.
By the theory of quasi-log schemes discussed in [F5, Chapter 6] and Theorem 1.1, the
fundamental theorems of the minimal model program hold for [Z, ν∗ω]. More precisely,
the cone and contraction theorem and the basepoint-free theorem of Reid–Fukuda type
hold for [Z, ν∗ω] by [F5, Theorem 6.4.7] and [F5, Theorem 6.9.1] respectively (see also
[F4]). We can also apply various vanishing theorems to [Z, ν∗ω]. As a special case, we
have the following vanishing theorem.

Corollary 1.2 (Vanishing theorem for normalizations). We use the same notation as in
Theorem 1.1. Let π : X → S be a proper morphism onto a scheme S and let L be a Cartier
divisor on X such that L− ω is nef and log big over S with respect to [X,ω]. Then

Ri(π ◦ ν)∗OZ(ν
∗L) = 0

for every i > 0.

Let us discuss some conjectures for qlc pairs. The second author poses the following
conjecture on Du Bois singularities.

Conjecture 1.3. Let [X,ω] be a qlc pair. Then X has only Du Bois singularities.

The statement of Conjecture 1.3 is a complete generalization of [K, Corollary 6.32]. For
the details of Du Bois singularities, see [F5, Section 5.3] and [K, Chapter 6]. By Theorem
1.1, we have:

Proposition 1.4. It is sufficient to prove Conjecture 1.3 under the extra assumption that
X is normal.

Finally, we pose the following conjecture on normal qlc pairs.

Conjecture 1.5. Let [X,ω] be a qlc pair such that X is quasi-projective and normal. Then
there exists an effective Q-divisor ∆ on X such that (X,∆) is log canonical.

We note that [F3, Theorem 1.1] strongly supports Conjecture 1.5. Of course, Conjec-
ture 1.3 follows from Conjecture 1.5 by Proposition 1.4. This is because log canonical
singularities are known to be Du Bois (see [K]).

Although Theorem 1.1 may look somewhat artificial, it plays an important role in
[FLw1], [FLw2], and [FLh]. Roughly speaking, in [F6], we prove that X is generalized
lc in the sense of Birkar–Zhang (see [BZ]) with some good properties when [X,ω] is a
normal irreducible quasi-log canonical pair. We can see it as a weak solution of Conjec-
ture 1.5. We note that [F6] heavily depends on the theory of variations of mixed Hodge
structure on cohomology with compact support (see [FF]). Then, in [FLh], we completely
confirm Conjecture 1.3, that is, we show that X has only Du Bois singularities if [X,ω] is
a quasi-log canonical pair.

We will work over C, the complex number field, throughout this paper. A scheme means
a separated scheme of finite type over C. A variety means a reduced scheme, that is, a
reduced separated scheme of finite type over C. We will freely use the basic notation of
the minimal model program as in [F1], [F2], and [F5]. For the details of the theory of
quasi-log schemes, we recommend the reader to see [F5, Chapter 6].
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2. Quick review of the theory of quasi-log schemes

In this section, we quickly review the theory of quasi-log schemes because it is not so
popular yet.

Before we explain the definition of quasi-log canonical pairs, we prepare some basic
definitions.

Definition 2.1 (R-divisors). Let X be an equidimensional variety, which is not necessarily
regular in codimension one. LetD be an R-divisor, that is,D is a finite formal sum

∑
i diDi,

where Di is an irreducible reduced closed subscheme of X of pure codimension one and di
is a real number for every i such that Di ̸= Dj for i ̸= j. We put

D<1 =
∑
di<1

diDi, D≤1 =
∑
di≤1

diDi, and ⌈D⌉ =
∑
i

⌈di⌉Di,

where ⌈di⌉ is the integer defined by di ≤ ⌈di⌉ < di + 1.
Let B1 and B2 be R-Cartier divisors on X. Then B1 ∼R B2 means that B1 is R-linearly

equivalent to B2.

We note that we can define Q-divisors and ∼Q similarly.

The notion of globally embedded simple normal crossing pairs play a crucial role in the
theory of quasi-log schemes described in [F5, Chapter 6].

Definition 2.2 (Globally embedded simple normal crossing pairs). Let Y be a simple
normal crossing divisor on a smooth variety M and let B be an R-divisor on M such that
Y and B have no common irreducible components and that the support of Y + B is a
simple normal crossing divisor on M . In this situation, (Y,BY ), where BY := B|Y , is
called a globally embedded simple normal crossing pair.

Definition 2.3 (Strata of simple normal crossing divisors). Let Y be a simple normal
crossing divisor on a smooth variety and let Y =

∪
i∈I Yi be the irreducible decomposition

of Y . A stratum of Y is an irreducible component of Yi1∩· · ·∩Yik for some {i1, . . . , ik} ⊂ I.

Let us recall the definition of quasi-log canonical pairs.

Definition 2.4 (Quasi-log canonical pairs). Let X be a scheme and let ω be an R-Cartier
divisor (or an R-line bundle) on X. Let f : Y → X be a proper morphism from a globally
embedded simple normal crossing pair (Y,BY ). If BY is a subboundary R-divisor, that is,
BY = B≤1

Y , f ∗ω ∼R KY +BY holds, and the natural map

OX → f∗OY (⌈−(B<1
Y )⌉)

is an isomorphism, then (X,ω, f : (Y,BY ) → X) is called a quasi-log canonical pair (qlc
pair, for short). If there is no danger of confusion, we simply say that [X,ω] is a qlc pair.

The notion of qlc strata and qlc centers is very important. It is indispensable for inductive
treatments of quasi-log canonical pairs.

Definition 2.5 (Qlc strata and qlc centers). Let (X,ω, f : (Y,BY ) → X) be a quasi-log
canonical pair as in Definition 2.4. Let ν : Y ν → Y be the normalization. We put

KY ν +Θ = ν∗(KY +BY ),
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that is, Θ is the sum of the inverse images of BY and the singular locus of Y . Then (Y ν ,Θ)
is sub log canonical in the usual sense. LetW be a log canonical center of (Y ν ,Θ) or an irre-
ducible component of Y ν . Then f ◦ν(W ) is called a qlc stratum of (X,ω, f : (Y,BY ) → X).
If there is no danger of confusion, we simply call it a qlc stratum of [X,ω]. If C is a qlc
stratum of [X,ω] but it is not an irreducible component of X, then C is called a qlc center
of (X,ω, f : (Y,BY ) → X) or simply of [X,ω].

One of the most important results in the theory of quasi-log schemes is adjunction.

Theorem 2.6 (Adjunction, see [F5, Theorem 6.3.5]). Let [X,ω] be a qlc pair and let X ′

be the union of some qlc strata of [X,ω]. Then [X ′, ω|X′ ] is a qlc pair such that the qlc
strata of [X ′, ω|X′ ] are exactly the qlc strata of [X,ω] that are contained in X ′.

We strongly recommend the reader to see [F5, Theorem 6.3.5] and its proof for the
details of Theorem 2.6. Theorem 2.6 is a special case of [F5, Theorem 6.3.5 (i)].

Definition 2.7 (Union of all qlc centers). Let [X,ω] be a qlc pair. The union of all qlc
centers of [X,ω] is denoted by Nqklt(X,ω). It is very important that

[Nqklt(X,ω), ω|Nqklt(X,ω)]

has a quasi-log canonical structure induced from (X,ω, f : (Y,BY ) → X) by adjunction
(see Theorem 2.6 and [F5, Theorem 6.3.5 (i)]).

The vanishing theorem is also a very important result. Theorem 2.8 is a special case of
[F5, Theorem 6.3.5 (ii)].

Theorem 2.8 (Vanishing theorem, see [F5, Theorem 6.3.5]). Let [X,ω] be a qlc pair and
let π : X → S be a proper morphism between schemes. Let L be a Cartier divisor on X
such that L − ω is nef and log big over S with respect to [X,ω], that is, L − ω is π-nef
and (L− ω)|W is π-big for every qlc stratum W of [X,ω]. Then Riπ∗OX(L) = 0 for every
i > 0.

The notion of Q-structures is introduced in [F6].

Definition 2.9 (Q-structures). If ω is a Q-Cartier divisor (or a Q-line bundle) on X,
BY is a Q-divisor on Y , and f ∗ω ∼Q KY + BY holds in Definition 2.4, then we say that
(X,ω, f : (Y,BY ) → X) has a Q-structure or simply say that [X,ω] has a Q-structure.

Remark 2.10. If [X,ω] has a Q-structure, then we can easily see that for any union of
qlc strata X ′ the qlc pair [X ′, ω|X′ ] naturally has a Q-structure in Theorem 2.6. For the
details, see the proof of [F5, Theorem 6.3.5].

We close this section with an important example.

Example 2.11. Let (X,∆) be a log canonical pair. We put ω = KX +∆. Let f : Y → X
be a resolution such that KY + BY = f ∗(KX +∆). We assume that the support of BY is
a simple normal crossing divisor on Y . Then we can easily see that (Y,BY ) is a globally
embedded simple normal crossing pair, BY = B≤1

Y , and the natural map

OX → f∗OY (⌈(−B<1
Y )⌉)

is an isomorphism. Therefore, we can see that (X,ω, f : (Y,BY ) → X) is a qlc pair. In
this situation, W is a qlc stratum of [X,ω] if and only if W is a log canonical center of
(X,∆) or X itself.

Anyway, we recommend the reader to see [F5, Chapter 6] for the theory of quasi-log
schemes.
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3. Proof

Let us start the proof of Theorem 1.1.

Proof of Theorem 1.1. Let f : (Y,BY ) → X be a proper surjective morphism from a glob-
ally embedded simple normal crossing pair (Y,BY ) as in Definition 2.4. By [F5, Proposition
6.3.1], we may assume that the union of all strata of (Y,BY ) mapped to Nqklt(X,ω), which
is denoted by Y ′′, is a union of some irreducible components of Y . We put Y ′ = Y − Y ′′

and KY ′ +BY ′ = (KY +BY )|Y ′ . Then we obtain the following commutative diagram:

Y ′

f ′

��

� � ι // Y

f
��

V p
// X

where ι : Y ′ → Y is a natural closed immersion and

Y ′ f ′
// V

p // X

is the Stein factorization of f ◦ ι : Y ′ → X. By construction, ι : Y ′ → Y is an isomorphism
over the generic point of X. By construction again, the natural map OV → f ′

∗OY ′ is an
isomorphism and every stratum of Y ′ is dominant onto V . Therefore, p is birational.

Claim 1. V is normal.

Proof of Claim 1. (cf. the proof of [F5, Lemma 6.3.9]). Let π : V n → V be the normaliza-
tion. Since every stratum of Y ′ is dominant onto V , there exists a closed subset Σ of Y ′

such that codimY ′Σ ≥ 2 and that π−1 ◦ f ′ : Y ′ 99K V n is a morphism on Y ′ \ Σ. Let Ỹ be
the graph of π−1 ◦ f ′ : Y ′ 99K V n. Then we have the following commutative diagram:

Ỹ

f̃
��

q // Y ′

f ′

��
V n

π
// V

where q and f̃ are natural projections. Note that q : Ỹ → Y ′ is an isomorphism over
Y \ Σ by construction. Since Y ′ is a simple normal crossing divisor on a smooth variety
and codimY ′Σ ≥ 2, the natural map OY ′ → q∗OỸ is an isomorphism. Therefore, the
composition

OV → π∗OV n → π∗f̃∗OỸ = f ′
∗q∗OỸ ≃ OV

is an isomorphism. Thus we have OV ≃ π∗OV n . This implies that V is normal. □

Therefore, p : V → X is nothing but the normalization ν : Z → X. So we have the
following commutative diagram.

Y ′

f ′

��

� � ι // Y

f
��

Z ν
// X

Claim 2. The natural map

α : OZ → f ′
∗OY ′(⌈−(B<1

Y ′ )⌉)

is an isomorphism.
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Proof of Claim 2. Note that ν : Z → X is an isomorphism overX\Nqklt(X,ω). Therefore,
α is an isomorphism outside ν−1(Nqklt(X,ω)). Since Z is normal and f ′

∗OY ′(⌈−(B<1
Y ′ )⌉)

is torsion-free, it is sufficient to see that α is an isomorphism in codimension one. Let P
be any prime divisor on Z such that P ⊂ ν−1(Nqklt(X,ω)). Then, by construction, there
exists an irreducible component of B=1

Y ′ which maps onto P . We note that every fiber of
f is connected by f∗OY ≃ OX . Therefore, the effective divisor ⌈−(B<1

Y ′ )⌉ does not contain
the whole fiber of f ′ over the generic point of P . Thus, α is an isomorphism at the generic
point of P . This means that α is an isomorphism. □
Therefore, by Claim 2, f ′ : (Y ′, BY ′) → Z defines a quasi-log structure on [Z, ν∗ω].

By construction, the property (i) automatically holds. Let us consider the following ideal
sheaf:

I = f ′
∗OY ′(⌈−(B<1

Y ′ )⌉ − Y ′′|Y ′) ⊂ f ′
∗OY ′(⌈−(B<1

Y ′ )⌉) = OZ .

We note that I = INqklt(Z,ν∗ω) since Nqklt(Z, ν∗ω) = f ′(Y ′′|Y ′).

Claim 3. f∗OY ′(⌈−(B<1
Y ′ )⌉ − Y ′′|Y ′) = INqklt(X,ω) holds.

Proof of Claim 3. (cf. the proof of [F5, Theorem 6.3.5 (i)]). SinceOY ′(⌈−(B<1
Y ′ )⌉−Y ′′|Y ′) ⊂

OY (⌈−(B<1
Y )⌉), we get

f∗OY ′(⌈−(B<1
Y ′ )⌉ − Y ′′|Y ′) ⊂ f∗OY (⌈−(B<1

Y )⌉) = OX ,

that is, f∗OY ′(⌈−(B<1
Y ′ )⌉ − Y ′′|Y ′) is an ideal sheaf on X. By construction,

f∗OY ′(⌈−(B<1
Y ′ )⌉ − Y ′′|Y ′) = INqklt(X,ω)

holds. Here, we used the fact that every fiber of f is connected. □
Claim 3 implies that

ν∗I = ν∗f
′
∗OY ′(⌈−(B<1

Y ′ )⌉ − Y ′′|Y ′) = f∗OY ′(⌈−(B<1
Y ′ )⌉ − Y ′′|Y ′) = INqklt(X,ω).

Since ν is finite, I = ν−1INqklt(X,ω)·OZ . Therefore, we have ν
−1(Nqklt(X,ω)) = Nqklt(Z, ν∗ω).

This means that (ii) holds. □
Proof of Corollary 1.2. This follows from Theorems 1.1 and 2.8 (see also [F5, Theorem
6.3.5 (ii)]). □
Finally, we prove Proposition 1.4

Proof of Proposition 1.4. We prove Conjecture 1.3 under the extra assumption that Con-
jecture 1.3 holds true for normal qlc pairs. Let [X,ω] be a qlc pair. LetX1 be an irreducible
component of X and let X2 be the union of the irreducible components of X other than
X1. Then X1, X2, and X1 ∩ X2 are qlc pairs by adjunction (see Theorem 2.6 and [F5,
Theorem 6.3.5 (i)]). In particular, they are seminormal (see [F5, Remark 6.2.11]). Then
we have the following short exact sequence

0 → OX → OX1 ⊕OX2 → OX1∩X2 → 0

(see, for example, [K, Lemma 10.21]). By [F5, Lemma 5.3.9], it is sufficient to prove
Conjecture 1.3 under the extra assumption that X is irreducible by induction on dimX
and the number of the irreducible components of X. Therefore, from now on, we assume
that X is irreducible. Let ν : Z → X be the normalization. Then, by Theorem 1.1, we
have

(3.1) Rν∗INqklt(Z,ν∗ω) = INqklt(X,ω).

By induction on dimension, Nqklt(Z, ν∗ω) and Nqklt(X,ω) are Du Bois since they are qlc
(see Definition 2.7). Since Z is normal and [Z, ν∗ω] is qlc, Z is Du Bois by assumption.
Therefore, by [K, Corollary 6.28] and (3.1), X is Du Bois. This is what we wanted. □
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We close this section with a remark on Q-structures.

Remark 3.1. If [X,ω] has a Q-structure in Theorem 1.1, then we can easily see that
[Z, ν∗ω] also has a Q-structure by the proof of Theorem 1.1.
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