A SAMPLE COMPUTATION OF HIGHER COHOMOLOGY GROUPS

OSAMU FUJINO

Example 3 is a sample computation of the higher cohomology groups of ample vector bundles on \mathbb{P}^n .

Lemma 1. Let X be a projective variety and E an ample vector bundle on X. Then $H^0(X, E^*) = 0$.

Proof. We assume that $H^0(X, E^*) \neq 0$. Then there is an injection $0 \to \mathcal{O}_X \to E^*$. By taking the dual, we obtain $E \to \mathcal{O}_X \to 0$. It contradicts the ampleness of E.

Corollary 2. Let X be a projective toric n-fold and E an ample vector bundle on X. Then $H^n(X, E) = 0$.

Proof. By the Serre duality, it is sufficient to prove $H^0(X, E^* \otimes \mathcal{O}(K_X)) = 0$. On the other hand, $0 \to \mathcal{O}(K_X) \to \mathcal{O}_X$ since X is toric. So, this corollary follows from the above lemma.

Example 3. Let $X = \mathbb{P}^n$ be an *n*-dimensional projective space over \mathbb{C} . Let $F : \mathbb{P}^n \to \mathbb{P}^n$ be the (n+2)-times multiplication map (see [F]). We put $\mathcal{E} = \bigoplus_{p=1}^{n-1} F^*(\wedge^p T_{\mathbb{P}^n}) \otimes \mathcal{O}_{\mathbb{P}^n}(K_{\mathbb{P}^n})$. Then \mathcal{E} is an ample equivariant vector bundle on \mathbb{P}^n . We can check that $H^i(\mathbb{P}^n, \mathcal{E}) \neq 0$ for i < n and $H^n(\mathbb{P}^n, \mathcal{E}) = 0$.

Proof. We consider the Euler sequence

$$0 \to \mathcal{O}_{\mathbb{P}^n} \to \mathcal{O}_{\mathbb{P}^n}(1)^{\oplus n+1} \to T_{\mathbb{P}^n} \to 0.$$

By taking F^* and \wedge^p for $p = 1, \dots, n$, we obtain

$$0 \to F^*(\wedge^{p-1}T_{\mathbb{P}^n}) \to \wedge^p(\mathcal{O}_{\mathbb{P}^n}(n+2)^{\oplus n+1}) \to F^*(\wedge^p T_{\mathbb{P}^n}) \to 0.$$

Since $(\wedge^p(\mathcal{O}_{\mathbb{P}^n}(n+2)^{\oplus n+1})) \otimes \mathcal{O}_{\mathbb{P}^n}(K_{\mathbb{P}^n}) \simeq \bigoplus \mathcal{O}_{\mathbb{P}^n}(p(n+2)-(n+1))$ is an ample vector bundle on \mathbb{P}^n , so is $F^*(\wedge^p T_{\mathbb{P}^n}) \otimes \mathcal{O}_{\mathbb{P}^n}(K_{\mathbb{P}^n})$. We know that there is a split injection $\mathcal{O}_{\mathbb{P}^n}(K_{\mathbb{P}^n}) \to F_*\mathcal{O}_{\mathbb{P}^n}(K_{\mathbb{P}^n})$. Therefore, we have

$$\underline{H^{i}(\mathbb{P}^{n},\wedge^{p}T_{\mathbb{P}^{n}}\otimes\mathcal{O}_{\mathbb{P}^{n}}(K_{\mathbb{P}^{n}}))\subset H^{i}(\mathbb{P}^{n},F^{*}(\wedge^{p}T_{\mathbb{P}^{n}})\otimes\mathcal{O}_{\mathbb{P}^{n}}(K_{\mathbb{P}^{n}}))$$

Date: 2008/5/29.

This note was written in October 2006 to discuss vanishing theorems for ample vector bundles on toric varieties with Sam Payne. See [HMP, Example 4.8].

OSAMU FUJINO

for all *i*. By the Serre duality, the left hand side is not zero if i = n-p. So, $H^{n-p}(\mathbb{P}^n, F^*(\wedge^p T_{\mathbb{P}^n}) \otimes \mathcal{O}_{\mathbb{P}^n}(K_{\mathbb{P}^n})) \neq 0$ by the above inclusion. Therefore, \mathcal{E} is an ample vector bundle on \mathbb{P}^n and has the desired property. \Box

References

- [F] O. Fujino, Multiplication maps and vanishing theorems for toric varieties, Math. Z. 257 (2007), no. 3, 631–641.
- [HMP] M. Hering, M. Mustata, S. Payne, Positivity for toric vector bundles, preprint (2008), arXiv:0805.4035v1.

Graduate School of Mathematics, Nagoya University, Chikusa-ku Nagoya 464-8602 Japan

E-mail address: fujino@math.nagoya-u.ac.jp