A MEMO ON "SPECIAL TERMINATION AND REDUCTION TO PL FLIPS"BY O. FUJINO

OSAMU FUJINO

1. Y. Takano and H. Uehara pointed out that Example 4.4.2 in [F] is incorrect. The vector e_1 is contained in the cone $\langle e_2, e_4, e_5 \rangle$. I overlooked this mistake for a long time. I thank Y. Takano and H. Uehara.

Let $\varphi : X \to Y$ be a 3-dimensional toric flipping contraction such that X has only terminal singularities and that Y is affine. Then we can prove that X is Q-factorial and the unique rational curve that is contracted by φ passes through only one singular point of X. Therefore, $\varphi : X \to Y$ is the flip described in [M, Example-Claim 14-2-5].

2. Here, we give one example of 3-dimensional non-Q-factorial toric flips. Please replace [F, Example 4.4.2] with the following example. Note that there are no 3-dimensional non-Q-factorial *terminal* flips!

Example 3 (3-dimensional non- \mathbb{Q} -factorial flip). We fix a lattice $N = \mathbb{Z}^3$. Pick lattice points $v_1 = (1, 0, 1), v_2 = (-1, 1, 1), v_3 = (-1, 0, 1), v_4 = (0, -1, 1)$, and $v_5 = (1, 2, 0)$. We consider the following fans.

$$\Delta_X = \{ \langle v_1, v_2, v_3, v_4 \rangle, \langle v_1, v_2, v_5 \rangle, \text{ and their faces} \}, \\ \Delta_W = \{ \langle v_1, v_2, v_3, v_4, v_5 \rangle, \text{ and its faces} \}, \text{ and} \\ \Delta_{X^+} = \{ \langle v_1, v_4, v_5 \rangle, \langle v_2, v_3, v_5 \rangle, \langle v_3, v_4, v_5 \rangle, \text{ and their faces} \}.$$

We put $X := X(\Delta_X), X^+ := X(\Delta_{X^+})$, and $W := X(\Delta_W)$. Then we have a commutative diagram of toric varieties:

$$\begin{array}{cccc} X & \dashrightarrow & X^+ \\ \searrow & \swarrow \\ & W \end{array}$$

such that

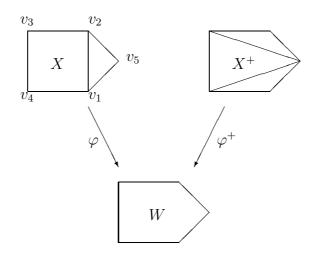
- (i) $\varphi \colon X \to W$ and $\varphi^+ \colon X^+ \to W$ are small projective toric morphisms,
- (ii) $\rho(X/W) = 1$ and $\rho(X^+/W) = 2$,
- (iii) X has two isolated singular points and X^+ has only one terminal quotient singularity,

Date: 2008/1/20.

OSAMU FUJINO

- (iv) $-K_X$ is φ -ample and K_{X^+} is φ^+ -ample, and
- (v) X is not \mathbb{Q} -factorial, but X^+ is \mathbb{Q} -factorial.

Thus, this diagram is a toric flip. Note that the ampleness of $-K_X$ (resp. K_{X^+}) follows from the convexity (resp. concavity) of the roofs of the maximal cones in Δ_X (resp. Δ_{X^+}). The figure below should help to understand this example.



One can check the following properties:

- (1) X has one isolated non-quotient canonical Gorenstein singularity and one terminal quotient singularity,
- (2) the flipping locus is \mathbb{P}^1 and it passes through the singular points of X,
- (3) X^+ has only one terminal quotient singularity, and
- (4) the flipped locus is $\mathbb{P}^1 \cup \mathbb{P}^1$ and these two \mathbb{P}^1 s intersect each other at the singular point of X^+ .

This example implies that the relative Picard number may increase after a flip when X is not \mathbb{Q} -factorial. So, we do not use the Picard number directly to prove the termination of the log MMP.

4. We can construct a 3-dimensional toric flipping diagram

$$\begin{array}{cccc} X & \dashrightarrow & X \\ \searrow & \swarrow \\ & W \end{array}$$

with the following properties,

- (i) X has only canonical Gorenstein singularities,
- (ii) $\rho(X/W) = 1$ and $\rho(X^+/W) = n$ for any $n \ge 2$, and

 $\mathbf{2}$

A MEMO

(iii) X is smooth.

I will discuss this example elsewhere.

References

- [F] O. Fujino, Special termination and reduction to pl flips, in *Flips for 3-folds and 4-folds* (Alessio Corti, ed.), 63–75, Oxford University Press, 2007.
- [M] K. Matsuki, Introduction to the Mori program, Universitext. Springer-Verlag, New York, 2002.

Graduate School of Mathematics, Nagoya University, Chikusa-ku Nagoya 464-8602 Japan

E-mail address: fujino@math.nagoya-u.ac.jp