NON-Q-FACTORIAL DLT BIRATIONAL TRANSFORMATIONS

OSAMU FUJINO

0.1. Non-Q-factorial dlt birational modifications. In this subsection, we give a remark on the log minimal model program for non-Q-factorial dlt pairs. It heavily depends on [BCHM].

non-q-fac-dlt

Theorem 0.1. Let (X, Δ) be a dlt pair and $f : X \to Y$ a projective birational morphism between quasi-projective varieties. Assume that $-(K_X + \Delta)$ is f-ample. Then there exists a log terminal model (X', Δ') of (X, Δ) over Y. Moreover, we see that $K_{X'} + \Delta'$ is f'-semi-ample. In particular, we have the log canonical model of (X, Δ) over Y.

Proof. Since $-(K_X + \Delta)$ is *f*-ample and *Y* is quasi-projective, we can write

$$\Delta - \varepsilon (K_X + \Delta) \sim_{\mathbb{R},f} \Theta$$

such that (X, Θ) is klt for $0 < \varepsilon \ll 1$ (cf. $\mathbb{K}^{\mathsf{M}}_{\mathsf{K}}$ A. Proposition 2.43]). By [BCHM, Theorem C] (see also Theorem ??), we have a log terminal model $\phi : X \dashrightarrow X'$ over Y. Since $K_X + \Theta \sim_{\mathbb{R},f} (1 - \varepsilon)(K_X + \Delta)$, $\phi \stackrel{\cdot}{\underset{\mathsf{Chm}}{} X \dashrightarrow X'$ is also a log terminal model of the pair (X, Δ) . By [BCHM, Theorem 3.9.1], $K_{X'} + \Delta'$ is f'-semi-ample. Therefore, the log canonical model of (X, Δ) over Y exists. \Box

By Theorem 0.1, Step ?? in ?? always works for dlt pairs.

References

bchm km

[BCHM]

[KM]

Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606-8502, Japan

This note will be contained in my book. ¹Add a label!

E-mail address: fujino@math.kyoto-u.ac.jp

Date: 2009/11/28, Version 1.01.