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Abstract. We consider a smooth projective surjective morphism
between smooth complex projective varieties. We give a Hodge the-
oretic proof of the following well-known fact: If the anti-canonical
divisor of the source space is nef, then so is the anti-canonical
divisor of the target space. We do not use mod p reduction ar-
guments. In addition, we make some supplementary comments on
our paper: On images of weak Fano manifolds.
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1. Introduction

We will work over C, the complex number field. The following the-
orem is the main result of this paper. It is a generalization of [D,
Corollary 3.15 (a)].

Theorem 1.1 (Main theorem). Let f : X → Y be a smooth projec-
tive surjective morphism between smooth projective varieties. Let D be
an effective Q-divisor on X such that (X, D) is log canonical, SuppD
is a simple normal crossing divisor, and SuppD is relatively normal
crossing over Y . Let ∆ be a (not necessarily effective) Q-divisor on Y .
Assume that −(KX + D) − f ∗∆ is nef. Then −KY − ∆ is nef.

By setting D = 0 and ∆ = 0 in Theorem 1.1, we obtain the following
corollary.
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Corollary 1.2. Let f : X → Y be a smooth projective surjective mor-
phism between smooth projective varieties. Assume that −KX is nef.
Then −KY is nef.

By setting D = 0 and assuming that ∆ is a small ample Q-divisor, we
can recover [KMM, Corollary 2.9] by Theorem 1.1. Note that Theorem
1.1 is also a generalization of [FG, Theorem 4.8].

Corollary 1.3 (cf. [KMM, Corollary 2.9]). Let f : X → Y be a smooth
projective surjective morphism between smooth projective varieties. As-
sume that −KX is ample. Then −KY is ample.

In this paper, we give a proof of Theorem 1.1 without mod p reduc-
tion arguments. Our proof is Hodge theoretic. We use a generalization
of Viehweg’s weak positivity theorem following [CZ]. In our previ-
ous paper [FG], we just use Kawamata’s positivity theorem. We note
that Theorem 1.1 is better than [FG, Theorem 4.1] (see Theorem 2.4
below). We also note that Kawamata’s positivity theorem (cf. [FG,
Theorem 2.2]) and Viehweg’s weak positivity theorem (and its gener-
alization in [C, Theorem 4.13]) are obtained by the Fujita–Kawamata
semi-positivity theorem and its generalization, which follow from the
theory of the variation of (mixed) Hodge structure. We recommend
the readers to compare the proof of Theorem 1.1 with the arguments
in [FG, Section 4]. By the Lefschetz principle, all the results in this
paper hold over any algebraically closed field k of characteristic zero.
In this paper, we do not discuss the case when the characteristic of the
base field is positive.
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2. Proof of the main theorem

In this section, we prove Theorem 1.1. We closely follow the argu-
ments in [CZ].

Lemma 2.1. Let f : Z → C be a projective surjective morphism from
a (d + 1)-dimensional smooth projective variety Z to a smooth pro-
jective curve C. Let B be an ample Cartier divisor on Z such that
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Rif∗OZ(kB) = 0 for every i > 0 and k ≥ 1. Let H be a very
ample Cartier divisor on C such that Bd+1 < f ∗(H − KC) · Bd and
Bd+1 ≤ f∗H · Bd. Then

(f∗OZ(kB))∗ ⊗OC(lH)

is generated by global sections for l > k ≥ 1.

Proof. By the Grothendieck duality

RHom(Rf∗OZ(kB), ω•
C) ' Rf∗RHom(OZ(kB), ω•

Z),

we obtain

(f∗OZ(kB))∗ ' Rdf∗OZ(KZ/C − kB)

for k ≥ 1 and

Rif∗OZ(KZ/C − kB) = 0

for k ≥ 1 and i 6= d. We note that f∗OZ(kB) is locally free and
(f∗OZ(kB))∗ is its dual locally free sheaf. Therefore, we have

H1(C, (f∗OZ(kB))∗ ⊗OC((l − 1)H))

' H1(C, Rdf∗OZ(KZ/C − kB) ⊗OC((l − 1)H))

' Hd+1(Z,OZ(KZ − f ∗KC − kB + f ∗(l − 1)H))

for k ≥ 1. By the Serre duality,

Hd+1(Z,OZ(KZ − f ∗KC − kB + f ∗(l − 1)H))

is dual to

H0(Z,OZ(kB + f ∗KC − f∗(l − 1)H)).

On the other hand, by the assumptions

(kB + f∗KC − f ∗(l − 1)H) · Bd < 0

if l − 1 ≥ k. Thus, we obtain

H0(Z,OZ(kB + f∗KC − f ∗(l − 1)H)) = 0

for l > k. This means that

H1(C, (f∗OZ(kB))∗ ⊗OC((l − 1)H)) = 0

for k ≥ 1 and l > k. Therefore, (f∗OZ(kB))∗ ⊗ OC(lH) is generated
by global sections for k ≥ 1 and l > k. �

The following lemma directly follows from [C, Theorem 4.3]. It is a
key lemma for the proof of Theorem 1.1.
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Lemma 2.2. Let f : V → W be a proper surjective morphism between
smooth projective varieties with connected fibers. Let ∆ be an effective
Q-divisor on V such that (V, ∆) is log canonical. Assume that m∆
is Cartier for some positive integer m. Then f∗OV (m(KV/W + ∆)) is
weakly positive over some non-empty Zariski open set U of W .

For the basic properties of weakly positive sheaves, see, for exam-
ple, [V, Section 2.3]. Although the original proof of [C, Theorem 4.3]
depends on Kawamata’s difficult result (see [K, Theorem 32]), [F, The-
orem 3.9] and [FF, Theorem 1.1] are sufficient for the proof of our
lemma: Lemma 2.2.

Let us start the proof of Theorem 1.1.

Proof of Theorem 1.1. We note that, by the Stein factorization, we
may assume that f has connected fibers (see [FG, Lemma 2.4]). We
prove the following claim.

Claim. Let π : C → Y be a projective morphism from a smooth pro-
jective curve C and let L be an ample Cartier divisor on C. Then
(−π∗KY − π∗∆ + 2εL) · C ≥ 0 for any positive rational number ε.

Let us start the proof of Claim. We fix an arbitrary positive rational
number ε. We may assume that π(C) is a curve, that is, π is finite.
We consider the following base change diagram

Z
p−−−→ X

g

y yf

C −−−→
π

Y

where Z = X ×Y C. Then g : Z → C is smooth, Z is smooth,
Supp(p∗D) is relatively normal crossing over C, and Supp(p∗D) is a
simple normal crossing divisor on Z. Let A be a very ample Cartier
divisor on X and let δ be a small positive rational number such that
0 < δ � ε. Since −(KX +D)−f ∗∆+δA is ample, we can take a general
effective Q-divisor F on X such that −(KX + D) − f ∗∆ + δA ∼Q F .
Then we have

KX/Y + D + F ∼Q δA − f∗KY − f ∗∆.

By taking the base change, we obtain

KZ/C + p∗D + p∗F ∼Q δp∗A − g∗π∗KY − g∗π∗∆.

Without loss of generality, we may assume that Supp(p∗D + p∗F ) is
a simple normal crossing divisor, p∗D and p∗F have no common irre-
ducible components, and (Z, p∗D + p∗F ) is log canonical. Let m be a
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sufficiently divisible positive integer such that mδ and mε are integers,
mp∗D, mp∗F , and m∆ are Cartier divisors, and

m(KZ/C + p∗D + p∗F ) ∼ m(δp∗A − g∗π∗KY − g∗π∗∆).

We apply the weak positivity theorem (see Lemma 2.2) and obtain that

g∗OZ(m(KZ/C + p∗D + p∗F )) ' g∗OZ(m(δp∗A − g∗π∗KY − g∗π∗∆))

is weakly positive over some non-empty Zariski open set U of C. There-
fore,

E1 := Sn(g∗OZ(m(δp∗A − g∗π∗KY − g∗π∗∆))) ⊗OC(nmεL)

' Sn(g∗OZ(mδp∗A)) ⊗OC(−nmπ∗KY − nmπ∗∆ + nmεL)

is generated by global sections over U for every n � 0. On the other
hand, by Lemma 2.1, if mδ � 0, then we have that

E2 := OC(nmεL) ⊗ Sn((g∗OZ(mδp∗A))∗)

is generated by global sections because 0 < δ � ε and p∗A is ample on
Z. We note that

E2 ' Sn(OC(mεL) ⊗ (g∗OZ(mδp∗A))∗).

Thus there is a homomorphism

α :
⊕
finite

OC → E := E1 ⊗ E2

which is surjective over U . By using the non-trivial trace map

Sn(g∗OZ(mδp∗A)) ⊗ Sn((g∗OZ(mδp∗A))∗) → OC ,

we have a non-trivial homomorphism⊕
finite

OC
α−→ E β−→ OC(−nmπ∗KY − nmπ∗∆ + 2nmεL),

where β is induced by the above trace map. We note that g∗OZ(mδp∗A)
is locally free and

Sn((g∗OZ(mδp∗A))∗) ' (Sn(g∗OZ(mδp∗A)))∗.

Thus we obtain

(−nmπ∗KY −nmπ∗∆+2nmεL)·C = nm(−π∗KY −π∗∆+2εL)·C ≥ 0.

We finish the proof of Claim.
Since ε is an arbitrary small positive rational number, we obtain

π∗(−KY − ∆) · C ≥ 0. This means that −KY − ∆ is nef on Y . �
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Remark 2.3. In Theorem 1.1, if −(KX + D) is semi-ample, then we
can simply prove that −KY is nef as follows. First, by the Stein factor-
ization, we may assume that f has connected fibers (see [FG, Lemma
2.4]). Next, in the proof of Theorem 1.1, we can take δ = 0 and ∆ = 0
when −(KX + D) is semi-ample. Then

g∗OZ(m(KZ/C + p∗D + p∗F )) ' OC(−mπ∗KY )

is weakly positive over some non-empty Zariski open set U of C. This
means that −mπ∗KY is pseudo-effective. Since C is a smooth projec-
tive curve, −π∗KY is nef. Therefore, −KY is nef. In this case, we do
not need Lemma 2.1. The proof given here is simpler than the proof
of [FG, Theorem 4.1].

We apologize the readers of [FG] for misleading them on [FG, The-
orem 4.1]. A Hodge theoretic proof of [FG, Theorem 4.1] is implicitly
contained in Viehweg’s theory of weak positivity (see, for example,
[V]). Here we give a proof of [FG, Theorem 4.1] following Viehweg’s
arguments.

Theorem 2.4 ([FG, Theorem 4.1]). Let f : X → Y be a smooth
projective surjective morphism between smooth projective varieties. If
−KX is semi-ample, then −KY is nef.

Proof. By the Stein factorization, we may assume that f has connected
fibers (see [FG, Lemma 2.4]). Note that a locally free sheaf E on Y is
nef, equivalently, semi-positive in the sense of Fujita–Kawamata, if and
only if E is weakly positive over Y (see, for example, [V, Proposition
2.9 e)]). Since f is smooth and −KX is semi-ample, f∗OX(KX/Y −KX)
is locally free and weakly positive over Y (cf. [V, Proposition 2.43]).
Therefore, we obtain that OY (−KY ) ' f∗OX(KX/Y − KX) is nef. �

Note that our Hodge theoretic proof of [FG, Theorem 4.1], which
depends on Kawamata’s positivity theorem, is different from the proof
given above and plays important roles in [FG, Remark 4.2] and the
proof of Theorem 2.5 below.

Theorem 2.5 (see [BC, Theorem 1.3]). Let f : X → Y be a smooth
projective surjective morphism between smooth projective varieties. If
−KX is semi-ample, then −KY is also semi-ample.

Theorem 2.5 is a complete solution of our conjecture: [FG, Conjec-
ture 1.3]. The proof of Theorem 2.5 in [BC] uses the minimal model
theory. For the details, see [BC].

2.6 (Analytic method). Sebastien Boucksom pointed out that the fol-
lowing theorem, which is a special case of [B, Theorem 1.2], implies
[FG, Theorem 4.1] and [KMM, Corollary 2.9].
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Theorem 2.7 (cf. [B, Theorem 1.2]). Let f : X → Y be a proper
smooth morphism from a compact Kähler manifold X to a compact
complex manifold Y . If −KX is semi-positive (resp. positive), then
−KY is semi-positive (resp. positive).

The proof of [B, Theorem 1.2] is analytic and does not use mod p
reduction arguments. For the details, see [B].

2.8 (Varieties of Fano type). Let X be a normal projective variety. If
there is an effective Q-divisor on X such that (X, ∆) is klt and that
−(KX + ∆) is ample, then X is said to be of Fano type.

In [PS, Theorem 2.9] and [FG, Corollary 3.3], the following statement
was proved.

Let f : X → Y be a proper surjective morphism between normal
projective varieties with connected fibers. If X is of Fano type, then
so is Y .

It is indispensable for the proof of the main theorem in [FG] (see
[FG, Theorem 1.1]). The proofs in [PS] and [FG] need the theory of the
variation of Hodge structure. It is because we use Ambro’s canonical
bundle formula or Kawamata’s positivity theorem. In [GOST], Okawa,
Sannai, Takagi, and the second author give a new proof of the above
result without using the theory of the variation of Hodge structure.
It deeply depends on the minimal model theory and the theory of F -
singularities.

We close this paper with a remark on [D]. By modifying the proof
of Theorem 1.1 suitably, we can generalize [D, Corollary 3.14] without
any difficulties. We leave the details as an exercise for the readers.

Corollary 2.9 (cf. [D, Corollary 3.14]). Let f : X → Y be a projective
surjective morphism from a smooth projective variety X such that Y
is smooth in codimension one. Let D be an effective Q-divisor on X
such that SuppDhor, where Dhor is the horizontal part of D, is a simple
normal crossing divisor on X and that (X, D) is log canonical over
the generic point of Y . Let ∆ be a not necessarily effective Q-Cartier
Q-divisor on Y .

(a) If −(KX + D) − f∗∆ is nef, then −KY − ∆ is generically nef.
(b) If −(KX + D) − f ∗∆ is ample, then −KY − ∆ is generically

ample.
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