MOROMORO

OSAMU FUJINO

The next lemma is well known as the negativity lemma.

1em211 Lemma 0.1 (Negativity lemma). Let $h : Z \to Y$ be a proper birational morphism between normal varieties. Let -B be an h-nef \mathbb{R} -Cartier \mathbb{R} -divisor on Z. Then we have the following statements.

- (1) B is effective if and only if h_*B is.
- (2) Assume that B is effective. Then for every $y \in Y$, either $h^{-1}(y) \subset \operatorname{Supp} B$ or $h^{-1}(y) \cap \operatorname{Supp} B = \emptyset$.

Sketch of the proof. By Chow's lemma, we can assume that h is projective. We can also assume that Y is affine. By taking general hypersurfaces, we can reduce the problem to the case when dim Y = 2. Then we use the Hodge index theorem on Z. For the details, see [?, Lemma 3.39].

1. Semi-ample \mathbb{R} -divisors

defn4949 Definition 1.1 (Semi-ample \mathbb{R} -divisors). An \mathbb{R} -Cartier \mathbb{R} -divisor D on X is π -semi-ample if $D \sim_{\mathbb{R}} \sum_{i} a_i D_i$, where D_i is a π -semi-ample Cartier divisor on X and a_i is a positive real number for every i.

Remark 1.2. In Definition 1.1, we can replace $D \sim_{\mathbb{R}} \sum_{i} a_i D_i$ with $D = \sum_{i} a_i D_i$ since every principal Cartier divisor on X is π -semi-ample.

The following two lemmas seem to be missing in the literature.

49-1 Lemma 1.3. Let D be an \mathbb{R} -Cartier \mathbb{R} -divisor on X. Then the following conditions are equivalent.

- (1) D is π -semi-ample.
- (2) There exists a morphism $f : X \to Y$ over S such that $D \sim_{\mathbb{R}} f^*A$, where A is an \mathbb{R} -Cartier \mathbb{R} -divisor on Y which is ample over S.

Proof. It is obvious that (1) follows from (2). If $D_{\underline{defn4549}}$ is $\pi_{\underline{f}55}$ semi-ample, then we can write $D \sim_{\mathbb{R}} \sum_{i} a_i D_i$ as in Definition 1.1. By replacing D_i with its multiple, we can assume that $\pi^* \pi_* \mathcal{O}_X(D_i) \to \mathcal{O}_X(D_i)$ is

Date: 2010/1/15, Version 1.01.

OSAMU FUJINO

surjective for every *i*. Let $f: X \to Y$ be a morphism over *S* obtained by the surjection $\pi^*\pi_*\mathcal{O}_X(\sum_i D_i) \to \mathcal{O}_X(\sum_i D_i)$. Then it is easy to see that $f: Y \to X$ has the desired property. \Box

49-2 Lemma 1.4. Let D be a Cartier divisor on X. If D is π -semi-ample in the sense of Definition 1.1, then D is π -semi-ample in the usual sense, that is, $\pi^*\pi_*\mathcal{O}_X(mD) \to \mathcal{O}_X(mD)$ is surjective for some positive integer m. In particular, Definition 1.1 is well-defined.

Proof. We write $D \sim_{\mathbb{R}} \sum_{i \neq j \neq i} a_i D_i$ as in Definition $[1.1. \text{ Let } f : X \to Y]$ be a morphism in Lemma [1.3 (2). By taking the Stein factorization, we can assume that f has connected fibers. By the construction, $D_i \sim_{\mathbb{Q}, f} 0$ for every i. By replacing D_i with its multiple, we can assume that $D_i \sim f^* D'_i$ for some Cartier divisor D'_i on Y for every i. Let U be any Zariski open set of Y on which $D'_i \sim 0$ for every i. On $f^{-1}(U)$, we have $D \sim_{\mathbb{R}} 0$. This implies $D \sim_{\mathbb{Q}} 0$ on $f^{-1}(U)$ since D is Cartier. Therefore, there exists a positive integer m such that $f^* f_* \mathcal{O}_X(mD) \to \mathcal{O}_X(mD)$ is surjective. By this surjection, we have $mD \sim f^*A$ for a Cartier divisor A on Y which is ample over S. This means that D is π -semi-ample in the usual sense. \Box

 $\mathbf{2}$

We recommend the reader to see Cutkosky's interesting example in [Cu, Theorem 6], which is a cone over a generic Enriques surface. Our example seems to be slightly simpler.

Remark 2.1. In Example $\stackrel{\texttt{exe88}}{??}$, we have $H^i(S, \mathcal{O}_S) = 0$ for every i > 0 since S is rational. By Lemma 2.2 and Lemma $\stackrel{\texttt{exe88}}{??}$ (2), the cone singularity of X in Example $\stackrel{\texttt{exe88}}{??}$ is a rational singularity.

weakdel Lemma 2.2. Let $E \subset \mathbb{P}^2$ be a smooth cubic curve and $f: S \to \mathbb{P}^2$ the blow-up of nine general points on E. Then

 $H^i(S, \mathcal{O}_S(A)) = 0$

for every i > 0, where A is an ample Cartier divisor on S.

Proof. It is easy to see that $-K_S \sim E_S$, where E_S is the strict transform of E on S. Since $(E_S)^2 = 0$, we see that $-K_S$ is nef. Therefore, $-K_S + A$ is ample. Thus, $H^i(S, \mathcal{O}_S(A)) = H^i(S, \mathcal{O}_S(K_S - K_S + A)) = 0$ for every i > 0 by the Kodaira vanishing theorem. \Box

References

cutkosky

[Cu] S. Cutkosky, Weil divisors and symbolic algebras, Duke Math. J. 57 (1988), no. 1, 175–183.

 $\mathbf{2}$

MOROMORO

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, KYOTO UNIVERSITY, KYOTO 606-8502, JAPAN *E-mail address*: fujino@math.kyoto-u.ac.jp