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Abstract. Roughly speaking, by using the semi-stable minimal
model program, we prove that the moduli part of an lc-trivial fi-
bration coincides with that of a klt-trivial fibration induced by
adjunction after taking a suitable generically finite cover. As an
application, we obtain that the moduli part of an lc-trivial fibration
is b-nef and abundant by Ambro’s result on klt-trivial fibrations.

Résumé. Grosso modo, en utilisant le programme des modèles
minimaux semi-stables, nous montrons que la partie modulaire
d’une fibration lc-triviale cöıncide avec celle d’une fibration klt-
triviale induite par adjonction aprés changement de base par un
morphisme génériquement fini. Comme application, eu utilisant
le résultat de Ambro sur fibrations klt-triviales, on obtient que la
partie modulaire d’une fibration lc-triviale est b-nef et abondante.
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1. Introduction

In this paper, we prove the following theorem. More precisely, we
reduce Theorem 1.1 to Ambro’s result (see [A2, Theorem 3.3]) by using
the semi-stable minimal model program (see, for example, [F7]). For a
related result, see [Fl, Theorem 1.4].

Theorem 1.1 (cf. [A2, Theorem 3.3]). Let f : X → Y be a projective
surjective morphism between normal projective varieties with connected
fibers. Assume that (X,B) is log canonical and KX +B ∼Q,Y 0. Then
the moduli Q-b-divisor M is b-nef and abundant.

Let us recall the definition of b-nef and abundant Q-b-divisors.

Definition 1.2 ([A2, Definition 3.2]). A Q-b-divisor M of a normal
complete algebraic variety Y is called b-nef and abundant if there ex-
ists a proper birational morphism Y ′ → Y from a normal variety Y ′,
endowed with a proper surjective morphism h : Y ′ → Z onto a normal
variety Z with connected fibers, such that:

(1) MY ′ ∼Q h
∗H, for some nef and big Q-divisor H of Z;

(2) M = MY ′ .

Let us quickly explain the idea of the proof of Theorem 1.1. We
assume that the pair (X,B) in Theorem 1.1 is dlt for simplicity. Let
W be a log canonical center of (X,B) which is dominant onto Y and is
minimal over the generic point of Y . We set KW +BW = (KX +B)|W
by adjunction. Then we have KW + BW ∼Q,Y 0. Let h : W → Y ′

be the Stein factorization of f |W : W → Y . Note that (W,BW ) is
klt over the generic point of Y ′. We prove that the moduli part M of
f : (X,B) → Y coincides with the moduli part Mmin of h : (W,BW ) →
Y ′ after taking a suitable generically finite base change by using the
semi-stable minimal model program. We do not need the mixed period
map nor the infinitesimal mixed Torelli theorem (see [A2, Section 2]
and [SSU]) for the proof of Theorem 1.1. We just reduce the problem
on lc-trivial fibrations to Ambro’s result on klt-trivial fibrations, which
follows from the theory of period maps. Our proof of Theorem 1.1
partially answers the questions in [Kol, 8.3.8 (Open problems)].

It is conjectured that M is b-semi-ample (see, for example, [A1,
0. Introduction], [PS, Conjecture 7.13.3], [Fl], [BC], and [F10, Section
3]). The b-semi-ampleness of the moduli part has been proved only for
some special cases (see, for example, [Kaw], [F2], and [PS, Section 8]).
See also Remark 4.1 below.
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We will work over C, the complex number field, throughout this
paper. We will make use of the standard notation as in [F8].

2. Preliminaries

Throughout this paper, we do not use R-divisors. We only use Q-
divisors.

2.1 (Pairs). A pair (X,B) consists of a normal variety X over C and
a Q-divisor B on X such that KX + B is Q-Cartier. A pair (X,B)
is called subklt (resp. sublc) if for any projective birational morphism
g : Z → X from a normal variety Z, every coefficient of BZ is < 1
(resp. ≤ 1) where KZ +BZ := g∗(KX +B). A pair (X,B) is called klt
(resp. lc) if (X,B) is subklt (resp. sublc) and B is effective. Let (X,B)
be an lc pair. If there is a log resolution g : Z → X of (X,B) such that
Exc(g) is a divisor and that the coefficients of the g-exceptional part of
BZ are < 1, then the pair (X,B) is called divisorial log terminal (dlt,
for short). Let (X,B) be a sublc pair and let W be a closed subset
of X. Then W is called a log canonical center of (X,B) if there are a
projective birational morphism g : Z → X from a normal variety Z and
a prime divisor E on Z such that multE BZ = 1 and that g(E) = W .
Moreover we say that W is minimal if it is minimal with respect to
inclusion.

In this paper, we use the notion of b-divisors introduced by Shokurov.
For details, we refer to [C, 2.3.2] and [F9, Section 3].

2.2 (Canonical b-divisors). Let X be a normal variety and let ω be a
top rational differential form of X. Then (ω) defines a b-divisor K. We
call K the canonical b-divisor of X.

2.3 (A(X,B) and A∗(X,B)). The discrepancy b-divisor A = A(X,B)
of a pair (X,B) is the Q-b-divisor of X with the trace AY defined by
the formula

KY = f ∗(KX +B) + AY ,
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where f : Y → X is a proper birational morphism of normal varieties.
Similarly, we define A∗ = A∗(X,B) by

A∗
Y =

∑
ai>−1

aiAi

for

KY = f ∗(KX +B) +
∑

aiAi,

where f : Y → X is a proper birational morphism of normal varieties.
Note that A(X,B) = A∗(X,B) when (X,B) is subklt.

By the definition, we have OX(dA∗(X,B)e) ' OX if (X,B) is lc (see
[F9, Lemma 3.19]). We also have OX(dA(X,B)e) ' OX when (X,B)
is klt.

2.4 (b-nef and b-semi-ample Q-b-divisors). Let X be a normal variety
and let X → S be a proper surjective morphism onto a variety S. A
Q-b-divisor D of X is b-nef over S (resp. b-semi-ample over S) if there
exists a proper birational morphism X ′ → X from a normal variety X ′

such that D = DX′ and DX′ is nef (resp. semi-ample) relative to the
induced morphism X ′ → S.

2.5. Let D =
∑

i diDi be a Q-divisor on a normal variety, where Di is
a prime divisor for every i, Di 6= Dj for i 6= j, and di ∈ Q for every i.
Then we set

D≥0 =
∑
di≥0

diDi and D≤0 =
∑
di≤0

diDi.

3. A quick review of lc-trivial fibrations

In this section, we quickly recall some basic definitions and results
on klt-trivial fibrations and lc-trivial fibrations (see also [F10, Section
3]).

Definition 3.1 (Klt-trivial fibrations). A klt-trivial fibration f : (X,B) →
Y consists of a proper surjective morphism f : X → Y between nor-
mal varieties with connected fibers and a pair (X,B) satisfying the
following properties:

(1) (X,B) is subklt over the generic point of Y ;
(2) rank f∗OX(dA(X,B)e) = 1;
(3) There exists a Q-Cartier Q-divisor D on Y such that

KX +B ∼Q f
∗D.

Note that Definition 3.1 is nothing but [A1, Definition 2.1], where a
klt-trivial fibration is called an lc-trivial fibration. So, our definition of
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lc-trivial fibrations in Definition 3.2 is different from the original one
in [A1, Definition 2.1].

Definition 3.2 (Lc-trivial fibrations). An lc-trivial fibration f : (X,B) →
Y consists of a proper surjective morphism f : X → Y between nor-
mal varieties with connected fibers and a pair (X,B) satisfying the
following properties:

(1) (X,B) is sublc over the generic point of Y ;
(2) rank f∗OX(dA∗(X,B)e) = 1;
(3) There exists a Q-Cartier Q-divisor D on Y such that

KX +B ∼Q f
∗D.

In Section 4, we sometimes take various base changes and construct
the induced lc-trivial fibrations and klt-trivial fibrations. For the de-
tails, see [A1, Section 2].

3.3 (Induced lc-trivial fibrations by base changes). Let f : (X,B) → Y
be a klt-trivial (resp. an lc-tirivial) fibration and let σ : Y ′ → Y be
a generically finite morphism. Then we have an induced klt-trivial
(resp. lc-trivial) fibration f ′ : (X ′, BX′) → Y ′, where BX′ is defined by
µ∗(KX +B) = KX′ +BX′ :

(X ′, BX′)
µ //

f ′

��

(X,B)

f

��
Y ′

σ
// Y,

Note that X ′ is the normalization of the main component of X ×Y Y
′.

We sometimes replace X ′ with X ′′ where X ′′ is a normal variety such
that there is a proper birational morphism ϕ : X ′′ → X ′. In this case,
we set KX′′ +BX′′ = ϕ∗(KX′ +BX′).

Let us explain the definitions of the discriminant and moduli Q-b-
divisors.

3.4 (Discriminant Q-b-divisors and moduli Q-b-divisors). Let f : (X,B) →
Y be an lc-trivial fibration as in Definition 3.2. Let P be a prime di-
visor on Y . By shrinking Y around the generic point of P , we assume
that P is Cartier. We set

bP = max

{
t ∈ Q

∣∣∣∣ (X,B + tf ∗P ) is sublc over
the generic point of P

}
and set

BY =
∑

P

(1 − bP )P,
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where P runs over prime divisors on Y . Then it is easy to see that BY is
a well-defined Q-divisor on Y and is called the discriminant Q-divisor
of f : (X,B) → Y . We set

MY = D −KY −BY

and call MY the moduli Q-divisor of f : (X,B) → Y . Let σ : Y ′ → Y
be a proper birational morphism from a normal variety Y ′ and let
f ′ : (X ′, BX′) → Y ′ be the induced lc-trivial fibration by σ : Y ′ → Y
(see 3.3). We can defineBY ′ , KY ′ andMY ′ such that σ∗D = KY ′+BY ′+
MY ′ , σ∗BY ′ = BY , σ∗KY ′ = KY and σ∗MY ′ = MY . Hence there exist
a unique Q-b-divisor B such that BY ′ = BY ′ for every σ : Y ′ → Y and
a unique Q-b-divisor M such that MY ′ = MY ′ for every σ : Y ′ → Y .
Note that B is called the discriminant Q-b-divisor and that M is called
the moduli Q-b-divisor associated to f : (X,B) → Y . We sometimes
simply say that M is the moduli part of f : (X,B) → Y .

For the basic properties of the discriminant and moduli Q-b-divisors,
see [A1, Section 2].

Let us recall the main theorem of [A1]. Note that a klt-trivial fi-
bration in the sense of Definition 3.1 is called an lc-trivial fibration in
[A1].

Theorem 3.5 (see [A1, Theorem 2.7]). Let f : (X,B) → Y be a klt-
trivial fibration and let π : Y → S be a proper morphism. Let B and
M be the induced discriminant and moduli Q-b-divisors of f . Then,

(1) K + B is Q-b-Cartier, that is, there exists a proper birational
morphism Y ′ → Y from a normal variety Y ′ such that K+B =
KY ′ + BY ′,

(2) M is b-nef over S.

Theorem 3.5 has some important applications, see, for example, [F6,
Proof of Theorem 1.1] and [F9, The proof of Theorem 1.1].

By modifying the arguments in [A1, Section 5] suitably with the aid
of [F4, Theorems 3.1, 3.4, and 3.9] (see also [FF]), we can generalize
Theorem 3.5 as follows.

Theorem 3.6. Let f : (X,B) → Y be an lc-trivial fibration and let
π : Y → S be a proper morphism. Let B and M be the induced
discriminant and moduli Q-b-divisors of f . Then,

(1) K + B is Q-b-Cartier,
(2) M is b-nef over S.

Theorem 3.5 is proved by using the theory of variations of Hodge
structure. On the other hand, Theorem 3.6 follows from the theory of
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variations of mixed Hodge structure. We do not adopt the formulation
in [F3, Section 4] (see also [Kol, 8.5]) because the argument in [A1]
suits our purposes better. For the reader’s convenience, we include the
main ingredient of the proof of Theorem 3.6, which easily follows from
[F4, Theorems 3.1, 3.4, and 3.9] (see also [FF]).

Theorem 3.7 (cf. [A1, Theorem 4.4]). Let f : X → Y be a projective
morphism between algebraic varieties. Let ΣX (resp. ΣY ) be a simple
normal crossing divisor on X (resp. Y ) such that f is smooth over Y \
ΣY , ΣX is relatively normal crossing over Y \ΣY , and f−1(ΣY ) ⊂ ΣX .
Assume that f is semi-stable in codimension one. Let D be a simple
normal crossing divisor on X such that SuppD ⊂ ΣX and that every
irreducible component of D is dominant onto Y . Then the following
properties hold.

(1) Rpf∗ωX/Y (D) is a locally free sheaf on Y for every p.
(2) Rpf∗ωX/Y (D) is semi-positive for every p.
(3) Let ρ : Y ′ → Y be a projective morphism from a smooth variety

Y ′ such that ΣY ′ = ρ−1(ΣY ) is a simple normal crossing divisor
on Y ′. Let π : X ′ → X ×Y Y ′ be a resolution of the main
component of X ×Y Y ′ such that π is an isomorphism over
Y ′ \ ΣY ′. Then we obtain the following commutative diagram:

X ′ //

f ′

��

X

f

��
Y ′

ρ
// Y.

Assume that f ′ is projective, D′ is a simple normal crossing
divisor on X ′ such that D′ coincides with D×Y Y

′ over Y ′\ΣY ′,
and every stratum of D′ is dominant onto Y ′. Then there exists
a natural isomorphism

ρ∗(Rpf∗ωX/Y (D)) ' Rpf ′
∗ωX′/Y ′(D′)

which extends the base change isomorphism over Y \ ΣY for
every p.

Remark 3.8. For the proof of Theorem 3.6, Theorem 3.7 for p = 0
is sufficient. Note that all the local monodromies on Rq(f0)∗CX0\D0

around ΣY are unipotent for every q because f is semi-stable in codi-
mension one, where X0 = f−1(Y \ ΣY ), D0 = D|X0 , and f0 = f |X0\D0 .

More precisely, let C
[d]
0 be the disjoint union of all the codimension d

log canonical centers of (X0, D0). If d = 0, then we put C
[0]
0 = X0. In
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this case, we have the following weight spectral sequence

WE
−d,q+d
1 = Rq−d(f |

C
[d]
0

)∗CC
[d]
0

=⇒ Rq(f0)∗CX0\D0

which degenerates at E2 (see, for example, [D, Corollaire (3.2.13)]).
Since f is semi-stable in codimension one, all the local monodromies
on Rq−d(f |

C
[d]
0

)∗CC
[d]
0

around ΣY are unipotent for every q and d (see, for

example, [Kat, VII. The Monodromy theorem]). By the above spectral
sequence, we obtain that all the local monodromies on Rq(f0)∗CX0\D0

around ΣY are unipotent.

We add a remark on the proof of Theorem 3.6. In Remark 3.9,
we explain how to modify the arguments in the proof of [A1, Lemma
5.2] in order to treat lc-trivial fibrations. It will help the reader to
understand the main difference between klt-trivial fibrations and lc-
trivial fibrations and the reason why we need Theorem 3.7.

Remark 3.9. We use the notation in [A1, Lemma 5.2]. We only as-
sume that (X,B) is sublc over the generic point of Y in [A1, Lemma
5.2]. We write

B =
∑
i∈I

diBi

where Bi is a prime divisor for every i and Bi 6= Bj for i 6= j. We set

J = {i ∈ I |Bi is dominant onto Y and di = 1}

and set

D =
∑
i∈J

Bi.

In Ambro’s original setting in [A1, Lemma 5.2], we have D = 0 because
(X,B) is subklt over the generic point of Y . In the proof of [A1, Lemma
5.2 (4)], we have to replace

f̃∗ω eX/Y =
b−1⊕
i=0

f∗OX(d(1 − i)KX/Y − iB + if ∗BY + if ∗MY e) · ψi.

with

f̃∗ω eX/Y (π∗D) =
b−1⊕
i=0

f∗OX(d(1−i)KX/Y −iB+D+if ∗BY +if ∗MY e)·ψi

in order to treat lc-trivial fibrations. We leave the details as exercises
for the reader.

The following theorem is a part of [A2, Theorem 3.3].
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Theorem 3.10 (see [A2, Theorem 3.3]). Let f : (X,B) → Y be a
klt-trivial fibration such that Y is complete, the geometric generic fiber
Xη = X×Spec C(η) is a projective variety, and Bη = B|Xη

is effective,
where η is the generic point of Y . Then the moduli Q-b-divisor M is
b-nef and abundant.

4. Proof of Theorem 1.1

Let us give a proof of Theorem 1.1.

Proof of Theorem 1.1. By taking a dlt blow-up, we may assume that
the pair (X,B) is Q-factorial and dlt (see, for example, [F7, Section
4]). If (X,B) is klt over the generic point of Y , then Theorem 1.1
follows from [A2, Theorem 3.3] (see Theorem 3.10). Therefore, we may
also assume that (X,B) is not klt over the generic point of Y . Let
σ1 : Y1 → Y be a suitable projective birational morphism such that
M = MY1 and MY1 is nef by Theorem 3.6. Let W be an arbitrary log
canonical center of (X,B) which is dominant onto Y and is minimal
over the generic point of Y . We set

KW +BW = (KX +B)|W
by adjunction (see, for example, [F5, 3.9]). By the construction, we
have KW + BW ∼Q,Y 0. We consider the Stein factorization of f |W :
W → Y and denote it by h : W → Y ′. Then KW +BW ∼Q,Y ′ 0. We see
that h : (W,BW ) → Y ′ is a klt-trivial fibration since the general fibers
of f |W are klt pairs. Let Y2 be a suitable resolution of Y ′ which factors
through σ1 : Y1 → Y . By taking the base change by σ2 : Y2 → Y1,
we obtain MY2 = σ∗

2MY1 (see [A1, Proposition 5.5]). Note that the
proof of [A1, Proposition 5.5] works for lc-trivial fibrations by some
suitable modifications. By the construction, on the induced lc-trivial
fibration f2 : (X2, BX2) → Y2, where X2 is the normalization of the
main component of X ×Y Y2, there is a log canonical center W2 of
(X2, BX2) such that f2|W ν

2
: (W ν

2 , BW ν
2
) → Y2 is a klt-trivial fibration,

which is birationally equivalent to h : (W,BW ) → Y ′. Note that ν :
W ν

2 → W2 is the normalization, KW ν
2

+BW ν
2

= ν∗(KX2 +BX2)|W2 , and
f2|W ν

2
= f2|W2 ◦ ν. It is easy to see that

KY2 + MY2 + BY2 ∼Q KY2 + Mmin
Y2

+ Bmin
Y2

where Mmin and Bmin are the induced moduli and discriminant Q-b-
divisors of f2|W ν

2
: (W ν

2 , BW ν
2
) → Y2 such that

KW ν
2

+BW ν
2
∼Q (f2|W ν

2
)∗(KY2 + Mmin

Y2
+ Bmin

Y2
).
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By replacing Y2 birationally, we may further assume that Mmin = Mmin
Y2

by Theorem 3.5. By Theorem 3.10, we see that Mmin
Y2

is nef and abun-
dant. Let σ3 : Y3 → Y2 be a suitable generically finite morphism such
that the induced lc-trivial fibration f3 : (X3, BX3) → Y3 has a semi-
stable resolution in codimension one (see, for example, [KKMS], [SSU,
(9.1) Theorem], and [A1, Theorem 4.3]). Note that X3 is the normal-
ization of the main component of X×Y Y3. Here we draw the following
big diagram for the reader’s convenience.

(V,BV )
log-res.

&&MMMMMMMMMMM

(X3, B3) //

f3

��

(X2, B2) //

f2

��

(X,B)

f

��

(W3, BW3)

g3

&&NNNNNNNNNNNN

88qqqqqqqqqqq
W ν

2

f2|Wν
2 ))SSSSSSSSSSSSSSSSSSS ν

norm. // W2

, �

::vvvvvvvvv

f2|W2

$$I
IIIIIIIII W

- 

<<xxxxxxxxx

h
���� ## ##F

FF
FF

FF
FF

F

Y3

semistab.

33 Y2

desing. //

σ2
$$I

IIIIIIIII Y ′ Stein // Y

Y1

σ1

;;wwwwwwwwww

Note that g3 : (W3, BW3) → Y3 is the induced klt-trivial fibration from
f2|W ν

2
: W ν

2 → Y2 by σ3 : Y3 → Y2. On Y3, we will see the following
claim by using the semi-stable minimal model program.

Claim. The following equality

BY3 = Bmin
Y3

holds.

Proof of Claim. By taking general hyperplane cuts, we may assume
that Y3 is a curve. We write

BY3 =
∑

P

(1 − bP )P and Bmin
Y3

=
∑

P

(1 − bmin
P )P.

Let ϕ : (V,BV ) → (X3, BX3) be a resolution of (X3, BX3) with the
following properties:

• KV +BV = ϕ∗(KX3 +BX3);
• π∗Q is a reduced simple normal crossing divisor on V for every
Q ∈ Y3, where π : V → X3 → Y3;

• Supp π∗Q ∪ SuppBV is a simple normal crossing divisor on V
for every Q ∈ Y3;
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• π is projective.

Let Σ be a reduced divisor on Y3 such that π is smooth over Y3 \Σ and
that SuppBV is relatively normal crossing over Y3 \Σ. We consider the
set of prime divisors {Ei} where Ei is a prime divisor on V such that
π(Ei) ∈ Σ and

multEi
(BV +

∑
P∈Σ

bPπ
∗P )≥0 < 1.

We run the minimal model programs with ample scaling with respect
to

KV + (BV +
∑
P∈Σ

bPπ
∗P )≥0 + ε

∑
i

Ei

over X3 and Y3 for some small positive rational number ε. Note that

(V, (BV +
∑

P

bPπ
∗P )≥0 + ε

∑
i

Ei)

is a Q-factorial dlt pair because 0 < ε� 1. We set

E = −(BV +
∑

P

bPπ
∗P )≤0 + ε

∑
i

Ei.

Then it holds that

KV + (BV +
∑

P

bPπ
∗P )≥0 + ε

∑
i

Ei ∼Q,Y3 E ≥ 0.

First we run a minimal model program with ample scaling with respect
to

KV + (BV +
∑

P

bPπ
∗P )≥0 + ε

∑
i

Ei ∼Q,X3 E ≥ 0

overX3. Note that every irreducible component of E which is dominant
onto Y3 is exceptional over X3 by the construction. Thus, if E is
dominant onto Y3, then it is not contained in the relative movable
cone over X3. Therefore, after finitely many steps, we may assume
that every irreducible component of E is contained in a fiber over Y3

(see, for example, [F7, Theorem 2.2]). Next we run a minimal model
program with ample scaling with respect to

KV + (BV +
∑

P

bPπ
∗P )≥0 + ε

∑
i

Ei ∼Q,Y3 E ≥ 0

over Y3. Then the minimal model program terminates at V ′ (see, for
example, [F7, Theorem 2.2]). Note that all the components ofE+

∑
iEi

are contracted by the above minimal model programs. Thus, we have

KV ′ + (BV ′ +
∑

P

bPπ
′∗P )≥0 ∼Q,Y3 0,
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where π′ : V ′ → Y3 and BV ′ is the pushforward of BV on V ′. Note that
BV ′ +

∑
P bPπ

′∗P is effective since Supp(E +
∑

iEi) is contracted by
the above minimal model programs. Of course, we see that

(V ′, (BV ′ +
∑

P

bPπ
′∗P )≥0) = (V ′, BV ′ +

∑
P

bPπ
′∗P )

is a Q-factorial dlt pair. By the construction, the induced proper bira-
tional map

(V,BV +
∑

P

bPπ
∗P ) 99K (V ′, BV ′ +

∑
P

bPπ
′∗P )

over Y3 is B-birational (see [F1, Definition 1.5]), that is, we have a
common resolution

Z
a

��~~
~~

~~
~

b

  A
AA

AA
AA

V //_______ V ′

over Y3 such that

a∗(KV +BV +
∑
P∈Σ

bPπ
∗P ) = b∗(KV ′ +BV ′ +

∑
P∈Σ

bPπ
′∗P ).

Let S be any log canonical center of (V ′, BV ′ +
∑

P bPπ
′∗P ) which is

dominant onto Y3 and is minimal over the generic point of Y3. Then
(S,BS), where

KS +BS = (KV ′ +BV ′ +
∑

P

bPπ
′∗P )|S,

is not klt but lc over every P ∈ Σ since it holds that

BV ′ +
∑
P∈Σ

bPπ
′∗P ≥

∑
P∈Σ

π′∗P.(♠)

Note that (♠) follows from the fact that all the components of
∑

iEi are
contracted in the minimal model programs. Let g3 : (W3, BW3) → Y3 be
the induced klt-trivial fibration from (W ν

2 , BW ν
2
) → Y2 by σ2 : Y3 → Y2.

By [F1, Claims (An) and (Bn) in the proof of Lemma 4.9], there is a
log canonical center S0 of (V ′, BV ′ +

∑
P bPπ

′∗P ) which is dominant
onto Y3 and is minimal over the generic point of Y3 such that there is
a B-birational map

(W3, BW3 +
∑
P∈Σ

bPg
∗
3P ) 99K (S0, BS0)
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over Y3, where

KS0 +BS0 = (KV ′ +BV ′ +
∑
P∈Σ

bPπ
′∗P )|S0 .

This means that there is a common resolution

T
α

~~}}
}}

}}
}} β

��@
@@

@@
@@

W3
//_______ S0

over Y3 such that

α∗(KW3 +BW3 +
∑

P

bPg
∗
3P ) = β∗(KS0 +BS0).

This implies that bP = bmin
P for every P ∈ Σ. Therefore, we have

BY3 = Bmin
Y3

. �
Then we obtain

MY3 ∼Q Mmin
Y3

= σ∗
3M

min
Y2

because

KY3 + MY3 + BY3 ∼Q KY3 + Mmin
Y3

+ Bmin
Y3
.

Thus, MY3 is nef and abundant. Since

MY3 = σ∗
3MY2 = σ∗

3σ
∗
2MY1 ,

M is b-nef and abundant. Moreover, by replacing Y3 with a suitable
generically finite cover, we have that MY3 and Mmin

Y3
are both Cartier

(see [A1, Lemma 5.2 (5), Proposition 5.4, and Proposition 5.5]) and
MY3 ∼ Mmin

Y3
. �

We close this paper with a remark on the b-semi-ampleness of M.
For some related topics, see [F10, Section 3].

Remark 4.1 (b-semi-ampleness). Let f : X → Y be a projective sur-
jective morphism between normal projective varieties with connected
fibers. Assume that (X,B) is log canonical and KX +B ∼Q,Y 0. With-
out loss of generality, we may assume that (X,B) is dlt by taking a dlt
blow-up. We set

df (X,B) =

{
dimW − dimY

∣∣∣∣ W is a log canonical center of
(X,B) which is dominant onto Y

}
.

If df (X,B) ∈ {0, 1}, then the b-semi-ampleness of the moduli part M
follows from [Kaw] and [PS] by the proof of Theorem 1.1. Moreover, it
is obvious that M ∼Q 0 when df (X,B) = 0.
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