MINIMAL MODEL THEORY FOR LOG SURFACES

OSAMU FUJINO

Contents

1.	Minimal model theory for log surfaces	1
Ref	erences	3

1. MINIMAL MODEL THEORY FOR LOG SURFACES

In this section, we quickly recall the main result of [F16], where the minimal model theory for log surfaces is discussed in full generality.

thm-ls1 Theorem 1.1 (Minimal model theory for log surfaces). Let X be a normal surface and let Δ be a boundary \mathbb{R} -divisor on X such that $K_X + \Delta$ is \mathbb{R} -Cartier. Let $f : X \to S$ be a projective morphism onto an algebraic variety S. Assume that one of the following conditions holds:

- (A) X is \mathbb{Q} -factorial, or
- (B) (X, Δ) is log canonical.

Then we can run the log minimal model program over S with respect to $K_X + \Delta$ and obtain a sequence of extremal contractions

$$(X,\Delta) = (X_0,\Delta_0) \xrightarrow{\varphi_0} (X_1,\Delta_1) \xrightarrow{\varphi_1} \cdots \xrightarrow{\varphi_{k-1}} (X_k,\Delta_k) = (X^*,\Delta^*)$$

 $over \ S \ such \ that$

- (1) (Minimal model) $K_{X^*} + \Delta^*$ is semi-ample over S if $K_X + \Delta$ is f-pseudo-effective, and
- (2) (Mori fiber space) there is a morphism $g: X^* \to C$ over S such that $-(K_{X^*} + \Delta^*)$ is g-ample, dim C < 2, and the relative Picard number $\rho(X^*/C) = 1$, if $K_X + \Delta$ is not f-pseudo-effective.

Note that (X, Δ) is not necessarily log canonical in the case (A).

A key point of Theorem 1.1 is as follows. Let X be a normal surface and let Δ be a boundary \mathbb{R} -divisor on X such that $K_X + \Delta$ is \mathbb{R} -Cartier. Then the non-lc locus $Nlc(X, \Delta)$ is empty or consists of points.

Date: 2010/8/16.

I will add this note to my book.

Therefore, $Nl_{F_{1},1,0}^{c}(X, \Delta)$ contains no curves. Anyway, we recommend the reader to see [F16] for the details.

Remark 1.2. In Theorem [1,1], if X is \mathbb{Q} -factorial, then X_i is always \mathbb{Q} -factorial for every i. If (X, Δ) is log canonical, then (X_i, Δ_i) is log canonical for every i.

Remark 1.3 (Surfaces with only rational singularities). If X is an algebraic surface with only rational singularities, then it is well known that X is Q-factorial. Therefore, we can apply Theorem 1.1 for surfaces with only rational singularities. Moreover, we can prove that X_i has only rational singularities for every *i* if X has only rational singularities. Thus, the minimal model program for log surfaces is closed for surfaces with only rational singularities.

As a corollary of Theorem 1.1, we obtain the following theorem.

Corollary 1.4 (Finite generation of log canonical rings for log surfaces). Let X be a normal surface and let Δ be a boundary \mathbb{Q} -divisor on X such that $K_X + \Delta$ is \mathbb{Q} -Cartier. Let $f : X \to S$ be a projective morphism onto an algebraic variety S. Assume that (X, Δ) is log canonical or X is \mathbb{Q} -factorial. Then the relative log canonical ring

$$R(X/S,\Delta) = \bigoplus_{m>0} f_*\mathcal{O}_X(\llcorner m(K_X + \Delta) \lrcorner)$$

is a finitely generated \mathcal{O}_S -algebra.

Theorem 1.1 contains the following result, which is a generalization of Fujita's abundance theorem for log surfaces in [Fujita].

thm-1s5 Theorem 1.5 (Abundance theorem for log surfaces). Let X be a normal surface and let Δ be a boundary \mathbb{R} -divisor on X such that (X, Δ) is \mathbb{R} -Cartier. Let $f : X \to S$ be a projective surjective morphism onto an algebraic variety S. Assume that $K_X + \Delta$ is f-nef. Then $K_X + \Delta$ is f-semi-ample.

The proof of Theorem 1.5 is the main part of F16. We can also prove the following theorem.

[thm-ls6] Theorem 1.6. Let X be a projective surface with only rational singularities. Then

$$\operatorname{Proj} \bigoplus_{m \ge 0} H^0(X, \mathcal{O}_X(\llcorner m(K_X + \Delta) \lrcorner))$$

has only rational singularities.

By Theorem 1.6, we know that the notion of rational singularities is suited for the minimal model theory for surfaces.

References

[F16] O. Fujino, Minimal model theory for log surfaces, preprint.

[Fujita] T. Fujita,

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, KYOTO UNIVERSITY, Куото 606-8502, Japan

E-mail address: fujino@math.kyoto-u.ac.jp