
MINIMAL MODEL THEORY FOR LOG SURFACES

OSAMU FUJINO

Abstract. We discuss the log minimal model theory for log sur-
faces. We show that the log minimal model program, the finite
generation of log canonical rings, and the log abundance theorem
for log surfaces hold true under much weaker assumptions than
everybody expected.
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1. Introduction

We explain the log minimal model theory for log surfaces. This
paper completes Fujita’s results on the semi-ampleness of semi-positive
parts of Zariski decompositions of log canonical divisors and the finite
generation of log canonical rings for smooth projective log surfaces in
[Ft] and the log minimal model program for projective log canonical
surfaces discussed by Kollár and Kovács in [KK]. We show that the
log minimal model program for surfaces works and the log abundance
theorem and the finite generation of log canonical rings for surfaces
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hold true under much weaker assumptions than everybody expected
(cf. Theorems 3.3, 4.4, and 6.1).

It is obvious that the log minimal model program works for Q-
factorial log surfaces and log canonical surfaces by our new cone and
contraction theorem for log varieties (cf. [F3, Theorem 1.1]), which is
the culmination of the works of several authors. By our log minimal
model program for log surfaces, Fujita’s results in [Ft] are clarified and
generalized. In [Ft], Fujita treated a pair (X, ∆) where X is a smooth
projective surface and ∆ is a boundary Q-divisor on X without any
assumptions on singularities of the pair (X, ∆). We note that our log
minimal model program explained in this paper works for such pairs
(cf. Theorem 3.3). It is not necessary to assume that (X, ∆) is log
canonical.

Roughly speaking, we will prove the following theorem in this paper.
We think that nobody expected the case (A) in Theorem 1.1.

Theorem 1.1 (cf. Theorems 3.3 and 8.1). Let X be a normal projective
surface defined over C and ∆ an effective R-divisor on X such that
every coefficient of ∆ is less than or equal to one. Assume that one of
the following conditions holds:

(A) X is Q-factorial, or
(B) (X, ∆) is log canonical.

Then we can run the log minimal model program with respect to KX +∆
and obtain a sequence of extremal contractions

(X, ∆) = (X0, ∆0)
ϕ0→ (X1, ∆1)

ϕ1→ · · · ϕk−1→ (Xk, ∆k) = (X∗, ∆∗)

such that

(1) (Minimal model) KX∗ +∆∗ is semi-ample if KX +∆ is pseudo-
effective, and

(2) (Mori fiber space) there is a morphism g : X∗ → C such that
−(KX∗ + ∆∗) is g-ample, dim C < 2, and the relative Picard
number ρ(X∗/C) = 1, if KX + ∆ is not pseudo-effective.

Note that (X, ∆) is not necessarily log canonical in the case (A).

As a special case of Theorem 1.1, we obtain a generalization of Fu-
jita’s result in [Ft], where X is assumed to be smooth.

Corollary 1.2 (cf. [Ft]). Let X be a normal projective surface defined
over C and let ∆ be an effective Q-divisor on X such that every coef-
ficient of ∆ is less than or equal to one. Assume that X is Q-factorial
and KX + ∆ is pseudo-effective. Then the semi-positive part of the
Zariski decomposition of KX +∆ is semi-ample. In particular, KX +∆
is nef, then it is semi-ample.
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The following result is an obvious corollary of Theorem 1.1. It is
because X is Q-factorial if X has only rational singularities.

Corollary 1.3 (cf. Corollary 4.5). Let X be a projective surface with
only rational singularities. Then the canonical ring

R(X) =
⊕
m≥0

H0(X,OX(mKX))

is a finitely generated C-algebra.

Furthermore, if KX is big in Corollary 1.3, then we can prove that
the canonical model

Y = Proj
⊕
m≥0

H0(X,OX(mKX))

of X has only rational singularities (cf. Theorem 7.3). Therefore, the
notion of rational singularities is very appropriate to the minimal model
theory for log surfaces.

We note that the general classification theory of algebraic surfaces is
due essentially to the Italian school, and has been worked out in detail
by Kodaira, in Shafarevich’s seminar, and so on. The theory of log
surfaces was studied by Iitaka, Kawamata, Miyanishi, Sakai, Fujita,
and many others. See, for example, [M] and [S2]. Our viewpoint is
much more minimal model theoretic than any other works. We do not
use the notion of Zariski decomposition in this paper (see Remark 3.9).

Let us emphasize the major differences between traditional argu-
ments for log and normal surfaces (cf. [M], [S1], and [S2]) and our new
framework discussed in this paper.

1.4 (Intersection pairing in the sense of Mumford). Let X be a normal
projective surface and let C1 and C2 be curves on X. It is well known
that we can define the intersection number C1 · C2 in the sense of
Mumford without assuming that C1 or C2 is Q-Cartier. However, in
this paper, we only consider the intersection number C1 ·C2 under the
assumption that C1 or C2 is Q-Cartier. This is a key point of the
minimal model theory for surfaces from the viewpoint of Mori theory.

1.5 (Contraction theorems by Grauert and Artin). Let X be a normal
projective surface and let C1, · · · , Cn be irreducible curves on X such
that the intersection matrix (Ci ·Cj) is negative definite. Then we have
a contraction morphism f : X → Y which contracts

∪
i Ci to a finite

number of normal points. It is a well known and very powerful con-
traction theorem following from results by Grauert and Artin. In this
paper, we do not use this type of contraction theorem. A disadvantage
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of the above contraction theorem is that Y is not always projective. In
general, Y is only an algebraic space. Various experiences show that Y
sometimes has pathological properties. We only consider contraction
morphisms associated to negative extremal rays of the Kleiman–Mori
cone NE(X). In this case, Y is necessarily projective. It is very nat-
ural from the viewpoint of the higher dimensional log minimal model
program.

1.6 (Zariski decomposition). Let X be a smooth projective surface and
let D be a pseudo-effective divisor on X. Then we can decompose D
as follows.

D = P + N

The negative part N is an effective Q-divisor and either N = 0 or the
intersection matrix of the irreducible components of N is negative defi-
nite, and the semi-positive part P is nef and the intersection of P with
each irreducible component of N is zero. The Zariski decomposition
played crucial roles in the studies of log and normal surfaces. In this
paper, we do not use Zariski decomposition. Instead, we run the log
minimal model program because we are mainly interested in adjoint
divisors KX + ∆ and have a powerful framework of the log minimal
model program. In our case, if KX + ∆ is pseudo-effective, then we
have a contraction morphism f : X → X ′ such that

KX + ∆ = f ∗(KX′ + ∆′) + E(♠)

where KX′ +∆′ is nef, and E is effective and f -exceptional. Of course,
(♠) is the Zariski decomposition of KX + ∆. We think that it is more
natural and easier to treat KX′ + ∆′ on X ′ than f ∗(KX + ∆) on X.

1.7 (On Kodaira type vanishing theorems). Let X be a smooth projec-
tive surface and let D be a simple normal crossing divisor on X. In the
traditional arguments, OX(KX + D) was recognized to be Ω2

X(log D).
For our vanishing theorems which play important roles in this paper,
we have to recognize OX(KX +D) as HomOX

(OX(−D),OX(KX)) and
OX(−D) as the 0-th term of Ω•

X(log D) ⊗ OX(−D). For details, see
[F3, Section 5], [F4, Chapter 2], and [F6].

1.8 (Q-factoriality). In our framework, Q-factoriality will play crucial
roles. For surfaces, Q-factoriality seems to be more useful than every-
body expected.

Anyway, this paper gives a new and powerful framework for the study
of log and normal surfaces.

We summarize the contents of this paper. Section 2 collects some
preliminary results. In Section 3, we discuss the log minimal model
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program for log surfaces. It is a direct consequence of the cone and
contraction theorem for log varieties (cf. [F3, Theorem 1.1]). In Section
4, we show the finite generation of log canonical rings for log surfaces.
More precisely, we prove a special case of the log abundance theorem
for log surfaces. In Section 5, we treat the non-vanishing theorem for
log surfaces. It is an important step of the log abundance theorem for
log surfaces. In Section 6, we prove the log abundance theorem for log
surfaces. It is a generalization of Fujita’s main result in [Ft]. Section
7 is a supplementary section. We prove the finite generation of log
canonical rings and the log abundance theorem for log surfaces in the
relative setting. In Section 8, we generalize the relative log abundance
theorem in Section 7 for R-divisors. Consequently, Theorem 1.1 also
holds in the relative setting. In Section 9: Appendix, we prove the base
point free theorem for log surfaces in full generality (cf. Theorem 9.1),
though it is not necessary for the log minimal model theory for log sur-
faces discussed in this paper. It completely generalizes Fukuda’s base
point free theorem for log canonical surfaces (cf. [Fk, Main Theorem]).
The proof given there is different from Fukuda’s and depends on the
theory of quasi-log varieties (cf. [A], [F4], and [F7]).

We will work over C, the complex number field, throughout this
paper. But we note that by using the Lefschetz principle, we can extend
everything to the case where the base field is an algebraically closed field
of characteristic zero. Our arguments heavily depend on the Kodaira
type vanishing theorem (cf. [F3]). So, we can not directly apply them
in characteristic p. We also note that [Ft] and [KK] treat algebraic
surfaces defined over an algebraically closed field of any characteristic.

Acknowledgments. The author would like to thank Professors Takao
Fujita and Fumio Sakai. He was partially supported by The Inamori
Foundation and by the Grant-in-Aid for Young Scientists (A) ]20684001
from JSPS. He thanks Takeshi Abe and Yoshinori Gongyo for com-
ments and discussions. He also thanks Professor Shigefumi Mori for
useful comments and warm encouragement.

2. Preliminaries

We collect some basic definitions and results. We will freely use the
notation and terminology in [KM] and [F3] throughout this paper.

2.1 (Q-divisors and R-divisors). Let X be a normal variety. For an R-
divisor D =

∑r
j=1 djDj on X such that Dj is a prime divisor for every

j and Di 6= Dj for i 6= j, we define the round-down xDy =
∑r

j=1xdjyDj

(resp. round-up pDq =
∑r

j=1pdjqDj), where for every real number x,
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xxy (resp. pxq) is the integer defined by x− 1 < xxy ≤ x (resp. pxq =
−x−xy). The fractional part {D} of D denotes D − xDy. We define

D>a =
∑
dj>a

djDj, D<a =
∑
dj<a

djDj

and

D=a =
∑
dj=a

djDj = a
∑
dj=a

Dj

for any real number a. We call D a boundary R-divisor if 0 ≤ dj ≤ 1 for
every j. We note that ∼Q (resp. ∼R) denotes the Q-linear equivalence
(resp. R-linear equivalence) of Q-divisors (resp. R-divisors). Of course,
∼ (resp. ≡) denotes the usual linear equivalence (resp. numerical equiv-
alence) of divisors.

Let f : X → Y be a morphism and B a Cartier divisor on X. We
say that B is linearly f -trivial (denoted by B ∼f 0) if and only if there
is a Cartier divisor B′ on Y such that B ∼ f ∗B′. Two R-Cartier R-
divisors B1 and B2 on X are called numerically f -equivalent (denoted
by B1 ≡f B2) if and only if B1 ·C = B2 ·C for every curve C such that
f(C) is a point.

We say that X is Q-factorial if every prime Weil divisor on X is
Q-Cartier. The following lemma is well known.

Lemma 2.2 (Projectivity). Let X be a complete normal Q-factorial
algebraic surface. Then X is projective. More precisely, a normal Q-
factorial algebraic surface is always quasi-projective.

Proof. Let X be a normal Q-factorial algebraic surface. Then it is easy
to construct a complete normal Q-factorial algebraic surface X which
contains X as a Zariski open subset. It is because X has only isolated
singularities. So, from now on, we treat a complete normal Q-factorial
algebraic surface. Let f : Y → X be a projective birational morphism
from a smooth projective surface Y . Let H be an effective general
ample Cartier divisor on Y . We consider the effective Q-Cartier Weil
divisor A = f∗H on X. Then A · C = H · f ∗C > 0 for every curve
C on X. Therefore, A is ample by Nakai’s criterion. Thus, X is
projective. �

2.3 (Singularities of pairs). Let X be a normal variety and ∆ an effec-
tive R-divisor on X such that KX + ∆ is R-Cartier. Let f : Y → X
be a resolution such that Exc(f) ∪ f−1

∗ ∆ has a simple normal crossing
support, where Exc(f) is the exceptional locus of f and f−1

∗ ∆ is the
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strict transform of ∆ on Y . We can write

KY = f ∗(KX + ∆) +
∑

i

aiEi.

We say that (X, ∆) is log canonical (lc, for short) if ai ≥ −1 for every i.
We say that (X, ∆) is Kawamata log terminal (klt, for short) if ai > −1
for every i. We usually write ai = a(Ei, X, ∆) and call it the discrep-
ancy coefficient of Ei with respect to (X, ∆). We note that Nklt(X, ∆)
(resp. Nlc(X, ∆)) denotes the image of

∑
ai≤−1 Ei (resp.

∑
ai<−1 Ei) and

is called the non-klt locus (resp. non-lc locus) of (X, ∆). If there exist a
resolution f : Y → X and a divisor E on Y such that a(E, X, ∆) = −1
and that f(E) 6⊂ Nlc(X, ∆), then f(E) is called a log canonical center
(lc center, for short) with respect to (X, ∆). If there exist a resolution
f : Y → X and a divisor E on Y such that a(E, X, ∆) ≤ −1, then
f(E) is called a non-klt center with respect to (X, ∆).

When X is a surface, the notion of numerically log canonical and nu-
merically dlt is sometimes useful. See [KM, Notation 4.1] and Propo-
sition 3.4 below.

2.4 (Kodaira dimension and numerical Kodaira dimension). We note
that κ (resp. ν) denotes the Iitaka–Kodaira dimension (resp. numerical
Kodaira dimension).

Let X be a normal projective variety, D a Q-Cartier Q-divisor on
X, and n a positive integer such that nD is Cartier. By definition,
κ(X, D) = −∞ if and only if h0(X,OX(mnD)) = 0 for every m > 0,
and κ(X, D) = k > −∞ if and only if

0 < lim sup
m>0

h0(X,OX(mnD))

mk
< ∞.

We see that κ(X, D) ∈ {−∞, 0, 1, · · · , dim X}. If D is nef, then

ν(X, D) = max{e ∈ Z≥0 |De is not numerically zero}.
We say that D is abundant if ν(X, D) = κ(X, D).

Let Y be a projective irreducible variety and B a Q-Cartier Q-divisor
on Y . We say that B is big if ν∗B is big, that is, κ(Z, ν∗B) = dim Z,
where ν : Z → Y is the normalization of Y ,

2.5 (Nef dimension). Let L be a nef Q-Cartier Q-divisor on a normal
projective variety X. Then n(X, L) denotes the nef dimension of L. It
is well known that

κ(X, L) ≤ ν(X, L) ≤ n(X,L).

For details, see [8]. We will use the reduction map associated to L in
Section 6.



8 OSAMU FUJINO

Let us quickly recall the reduction map and the nef dimension in
[8]. By [8, Theorem 2.1], for a nef Q-Cartier Q-divisor L on X, we can
construct an almost holomorphic, dominant rational map f : X 99K Y
with connected fibers, called a reduction map associated to L such that

(i) L is numerically trivial on all compact fibers F of f with dim F =
dim X − dim Y , and

(ii) for every general point x ∈ X and every irreducible curve C
passing through x with dim f(C) > 0, we have L · C > 0.

The map f is unique up to birational equivalence of Y . We define the
nef dimension of L as follows (cf. [8, Definition 2.7]):

n(X,L) := dim Y.

2.6 (Non-lc ideal sheaves). The ideal sheaf JNLC(X, ∆) denotes the
non-lc ideal sheaf associated to the pair (X, ∆). More precisely, let
X be a normal variety and ∆ an effective R-divisor on X such that
KX + ∆ is R-Cartier. Let f : Y → X be a resolution such that
KY + ∆Y = f ∗(KX + ∆) and that Supp∆Y is simple normal crossing.
Then we have

JNLC(X, ∆) = f∗OY (−x∆Y y + ∆=1
Y ) ⊂ OX .

For details, see, for example, [F3, Section 7], [F8], or [FST]. We note
that

J (X, ∆) = f∗OY (−x∆Y y) ⊂ OX

is the multiplier ideal sheaf associated to the pair (X, ∆).

2.7 (Kodaira type vanishing theorem). Let f : X → Y be a birational
morphism from a smooth projective variety X to a normal projective
variety Y . Let ∆ be a boundary Q-divisor on X such that Supp∆ is a
simple normal crossing divisor and L a Cartier divisor on X. Assume
that

L − (KX + ∆) ∼Q f∗H,

where H is a nef and big Q-Cartier Q-divisor on Y such that H|f(C) is
big for every lc center C of the pair (X, ∆). Then we obtain

H i(Y,Rjf∗OX(L)) = 0

for every i > 0 and j ≥ 0. It is a special case of [F4, Theorem 2.47],
which is the culmination of the works of several authors. We recom-
mend [F6] as an introduction to new vanishing theorems.

2.8. Let Λ be a linear system. Then BsΛ denotes the base locus of Λ.
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3. Minimal model program for log surfaces

Let us introduce the notion of log surfaces.

Definition 3.1 (Log surfaces). Let X be a normal algebraic surface
and ∆ a boundary R-divisor on X such that KX + ∆ is R-Cartier.
Then the pair (X, ∆) is called a log surface. We note that a boundary
R-divisor means an effective R-divisor whose coefficients are less than
or equal to one.

We note that we assume nothing on singularities of (X, ∆).
From now on, we discuss the log minimal model program for log

surfaces. The following cone and contraction theorem is a special case
of [F3, Theorem 1.1], which is the culmination of the works of several
authors. For details, see [F3].

Theorem 3.2 (cf. [F3, Theorem 1.1]). Let (X, ∆) be a log surface and
π : X → S a projective morphism onto an algebraic variety S. Then
we have

NE(X/S) = NE(X/S)KX+∆≥0 +
∑

Rj

with the following properties.

(1) Rj is a (KX + ∆)-negative extremal ray of NE(X/S) for every
j.

(2) Let H be a π-ample R-divisor on X. Then there are only finitely
many Rj’s included in (KX +∆+H)<0. In particular, the Rj’s
are discrete in the half-space (KX + ∆)<0.

(3) Let R be a (KX +∆)-negative extremal ray of NE(X/S). Then
there exists a contraction morphism ϕR : X → Y over S with
the following properties.
(i) Let C be an integral curve on X such that π(C) is a point.

Then ϕR(C) is a point if and only if [C] ∈ R.
(ii) OY ' (ϕR)∗OX .
(iii) Let L be a line bundle on X such that L · C = 0 for every

curve C with [C] ∈ R. Then there exists a line bundle LY

on Y such that L ' ϕ∗
RLY .

A key point is that the non-lc locus of a log surface (X, ∆) is zero-
dimensional. So, there are no curves contained in the non-lc locus of
(X, ∆). We will prove that Rj in Theorem 3.2 (1) is spanned by a
rational curve Cj with −(KX + ∆) · Cj ≤ 3 in Proposition 3.7 below.

By Theorem 3.2, we can run the log minimal model program for log
surfaces under some mild assumptions.
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Theorem 3.3 (Minimal model program for log surfaces). Let (X, ∆)
be a log surface and π : X → S a projective morphism onto an algebraic
variety S. We assume one of the following conditions:

(A) X is Q-factorial.
(B) (X, ∆) is log canonical.

Then, by Theorem 3.2, we can run the log minimal model program over
S with respect to KX +∆. So, there is a sequence of at most ρ(X/S)−1
contractions

(X, ∆) = (X0, ∆0)
ϕ0→ (X1, ∆1)

ϕ1→ · · · ϕk−1→ (Xk, ∆k) = (X∗, ∆∗)

over S such that one of the following holds:

(1) (Minimal model) KX∗ +∆∗ is nef over S. In this case, (X∗, ∆∗)
is called a minimal model of (X, ∆).

(2) (Mori fiber space) There is a morphism g : X∗ → C over S such
that −(KX∗ + ∆∗) is g-ample, dim C < 2, and ρ(X∗/C) = 1.
We sometimes call g : (X∗, ∆∗) → C a Mori fiber space.

We note that Xi is Q-factorial (resp. (Xi, ∆i) is lc) for every i in the
case (A) (resp. (B)).

Proof. It is obvious by Theorem 3.2. In the case (B), we have to check
that (Xi, ∆i) is lc for ∆i = ϕi−1∗∆i−1. Since −(KXi−1

+ ∆i−1) is ϕi−1-
ample, it is easy to see that (Xi, ∆i) is numerically lc (cf. [KM, Notation
4.1]) by the negativity lemma. By Proposition 3.4 below, the pair
(Xi, ∆i) is log canonical. In particular, KXi

+ ∆i is R-Cartier. In the
case (A), we can easily check that Xi is Q-factorial for every i by the
usual method (cf. [KM, Proposition 3.36]). �

Let us contain [KM, Proposition 4.11] for the reader’s convenience.
The statement (2) in the following proposition is missing in the English
edition of [KM]. For definitions, see [KM, Notation 4.1].

Proposition 3.4 (cf. [KM, Proposition 4.11]). We have the following
two statements.

(1) Let (X, ∆) be a numerically dlt pair. Then every Weil divisor on
X is Q-Cartier, that is, X is Q-factorial.

(2) Let (X, ∆) be a numerically lc pair. Then it is lc.

Proof. In both cases, if ∆ 6= 0, then (X, 0) is numerically dlt by [KM,
Corollary 4.2] and we can reduce the problem to the case (1) with
∆ = 0. Therefore, we can assume that ∆ = 0 when we prove this
proposition. Let f : Y → X be a minimal resolution and ∆Y the f -
exceptional Q-divisor on Y such that KY + ∆Y ≡f 0. Then ∆Y ≥ 0
by [KM, Corollary 4.3].
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(1) See the proof of [KM, Proposition 4.11].
(2) We can assume that (X, 0) is not numerically dlt, that is, x∆Y y 6=

0. By [KM, Theorem 4.7], {∆Y } is a simple normal crossing divisor.
Since −x∆Y y ≡f KY + {∆Y }, we have

R1f∗OY (n(KY + ∆Y ) − x∆Y y) = 0

by the Kawamata–Viehweg vanishing theorem for n ∈ Z>0 such that
n∆Y is a Weil divisor. Therefore, we obtain a surjection

f∗OY (n(KY + ∆Y )) � f∗Ox∆Y y(n(KY + ∆Y )).

Therefore, if we check

n(KY + ∆Y )|x∆Y y ∼ 0,

then we obtain n(KY + ∆Y ) ∼f 0 and nKX = f∗(n(KY + ∆Y )) is a
Cartier divisor. This statement can be checked by [KM, Theorem 4.7]
as follows. By the classification, x∆Y y is a cycle and ∆Y = x∆Y y
(cf. [KM, Definition 4.6]), or x∆Y y is a simple normal crossing divisor
consisting of rational curves and the dual graph is a tree. In the former
case, we have K∆Y

∼ 0. So, n = 1 is sufficient. In the latter case, since
H1(Ox∆Y y) = 0, n(KY + ∆Y )|x∆Y y ∼ 0 if we choose n > 0 such that
n(KY + ∆Y ) is a numerically trivial Cartier divisor (cf. [KM, Theorem
4.13]). �

We give an important remark on rational singularities.

Remark 3.5. Let X be an algebraic surface. If X has only rational
singularities, then it is well known that X is Q-factorial. Therefore,
we can apply the log minimal model program in Theorem 3.3 for pairs
of surfaces with only rational singularities and boundary R-divisors on
them. We note that there are many two-dimensional rational singular-
ities which are not lc.

We take a rational non-lc surface singularity P ∈ X. Let π : Z → X
be the index one cover of X. In this case, Z is not log canonical nor
rational.

We note that our log minimal model program works inside the class
of surfaces with only rational singularities by the next proposition.
It is similar to [KM, Proposition 2.71]. It is mysterious that [KM,
Proposition 2.71] is also missing in the English edition of [KM].

Proposition 3.6. Let (X, ∆) be a log surface and f : X → Y a pro-
jective surjective morphism onto a normal surface Y . Assume that
−(KX + ∆) is f -ample. Then Rif∗OX = 0 for every i > 0. There-
fore, if X has only rational singularities, then Y also has only rational
singularities.
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Proof. We consider the short exact sequence

0 → JNLC(X, ∆) → OX → OX/JNLC(X, ∆) → 0,

where JNLC(X, ∆) is the non-lc ideal sheaf associated to the pair
(X, ∆). By the vanishing theorem (cf. [F3, Theorem 8.1]), we know
Rif∗JNLC(X, ∆) = 0 for every i > 0. Since ∆ is a boundary R-
divisor, we have dimC Supp(OX/JNLC(X, ∆)) = 0. So, we obtain
Rif∗(OX/JNLC(X, ∆)) = 0 for every i > 0. Thus, Rif∗OX = 0 for
all i > 0. �

As a corollary, we can check the following result.

Proposition 3.7 (Extremal rational curves). Let (X, ∆) be a log sur-
face and π : X → S a projective surjective morphism onto a variety
S. Let R be a (KX + ∆)-negative extremal ray. Then R is spanned by
a rational curve C on X such that −(KX + ∆) · C ≤ 3. Moreover, if
X 6' P2, then we can choose C with −(KX + ∆) · C ≤ 2.

Proof. We consider the extremal contraction ϕR : X → Y over S
associated to R. Let f : Z → X be the minimal resolution such
that KZ + ∆Z = f ∗(KX + ∆). Note that ∆Z is effective. First, we
assume that Y is a point. Let D be a general curve on Z. Then
D · (KZ + ∆Z) = D · f∗(KX + ∆) < 0. Therefore, κ(Z, KZ) = −∞.
If X ' P2, then the statement is obvious. So, we can assume that
X 6' P2. In this case, there exists a morphism g : Z → B onto a
smooth curve B. Let D be a general fiber of g. Then D ' P1 and
−(KZ + ∆Z) · D = −f∗(KX + ∆) · D ≤ 2. Thus, C = f(D) ⊂ X has
the desired properties. Next, we assume that Y is a curve. In this case,
we take a general fiber of ϕR◦f : Z → X → Y . Then, it gives a desired
curve as in the previous case. Finally, we assume that ϕR : X → Y is
birational. Let E be an irreducible component of the exceptional locus
of ϕR. We consider the short exact sequence

0 → IE → OX → OE → 0,

where IE is the defining ideal sheaf of E on X. By Proposition 3.6,
R1ϕR∗OX = 0. Therefore, R1ϕR∗OE = H1(E,OE) = 0. Thus, E ' P1.
Let F be the strict transform of E on Z. Then the coefficient of F in ∆Z

is ≤ 1 and F 2 < 0. Therefore, −f∗(KX +∆) ·F = −(KZ +∆Z) ·F ≤ 2.
This means that −(KX + ∆) · E ≤ 2 and E spans R. �

We note the following easy result.

Proposition 3.8 (Uniqueness). Let (X, ∆) be a log surface and π :
X → S a projective morphism onto a variety S as in Theorem 3.3.
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Let (X∗, ∆∗) and (X†, ∆†) be minimal models of (X, ∆) over S. Then
(X∗, ∆∗) ' (X†, ∆†) over S.

Proof. We consider

KX + ∆ = f ∗(KX∗ + ∆∗) + E,

and
KX + ∆ = g∗(KX† + ∆†) + F,

where f : X → X∗ and g : X → X†. We note that SuppE = Exc(f)
and SuppF = Exc(g). By the negativity lemma, we obtain E = F .
Therefore, (X∗, ∆∗) ' (X†, ∆†) over S. �

We close this section with a remark on the Zariski decomposition.

Remark 3.9. Let (X, ∆) be a projective log surface such that KX +∆
is Q-Cartier and pseudo-effective. Assume that (X, ∆) is log canoni-
cal or X is Q-factorial. Then there exists the unique minimal model
(X∗, ∆∗) of (X, ∆) by Theorem 3.3 and Proposition 3.8. Let f : X →
X∗ be the natural morphism. Then we can write

KX + ∆ = f ∗(KX∗ + ∆∗) + E,

where E is an effective Q-divisor such that SuppE = Exc(f). It is easy
to see that f ∗(KX∗ +∆∗) (resp. E) is the semi-positive (resp. negative)
part of the Zariski decomposition of KX + ∆. By Theorem 6.1 below,
the semi-positive part f ∗(KX∗ + ∆∗) of the Zariski decomposition of
KX + ∆ is semi-ample.

4. Finite generation of log canonical rings

In this section, we prove that the log canonical ring of a Q-factorial
projective log surface is finitely generated.

First, we prove a special case of the log abundance conjecture for
log surfaces. Our proof heavily depends on the Kodaira type vanishing
theorem.

Theorem 4.1 (Semi-ampleness). Let (X, ∆) be a Q-factorial projective
log surface. Assume that KX + ∆ is nef and big and that ∆ is a Q-
divisor. Then KX + ∆ is semi-ample.

Proof. If (X, ∆) is klt, then KX + ∆ is semi-ample by the Kawamata–
Shokurov base point free theorem. Therefore, we can assume that
(X, ∆) is not klt. We divide the proof into several steps.

Step 0. Let x∆y =
∑

i Ci be the irreducible decomposition. We put

A =
∑

Ci·(KX+∆)=0

Ci and B =
∑

Ci·(KX+∆)>0

Ci.
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Then x∆y = A + B. We note that (Ci)
2 < 0 if Ci · (KX + ∆) = 0

by the Hodge index theorem. We can decompose A into the connected
components as follows:

A =
∑

j

Aj.

First, let us recall the following well-known easy result. Strictly
speaking, Step 1 is redundant by more sophisticated arguments in Step
5 and Step 6.

Step 1. Let P be an isolated point of Nklt(X, ∆). Then P 6∈ Bs|n(KX+
∆)|, where n is a divisible positive integer.

Proof of Step 1. Let J (X, ∆) be the multiplier ideal sheaf associated
to (X, ∆). Then we have

H i(X,OX(n(KX + ∆)) ⊗ J (X, ∆)) = 0

for every i > 0 by the Kawamata–Viehweg–Nadel vanishing theorem
(cf. 2.7). Therefore, the restriction map

H0(X,OX(n(KX + ∆))) → H0(X,OX(n(KX + ∆))/J (X, ∆))

is surjective. By assumption, the evaluation map

H0(X,OX(n(KX + ∆))) → OX(n(KX + ∆)) ⊗ C(P )

at P is surjective. This implies that P 6∈ Bs|n(KX + ∆)|. �
Next, we will check that Bs|n(KX + ∆)| contains no non-klt centers

for a divisible positive integer n from Step 2 to Step 7 (cf. [F3, Theorem
12.1] and [F5, Theorem 1.1]).

Step 2. We consider Aj such that Nlc(X, ∆) ∩ Aj 6= ∅. Let Aj =∑
i Di be the irreducible decomposition. We can easily check that Di

is rational for every i and that there exists a point P ∈ Nlc(X, ∆) such
that P ∈ Di for every i by calculating differents (see, for example,
[F3, Section 14]). We can also see that Dk ∩ Dl = P for k 6= l and
that Di is smooth outside P for every i by inversion of adjunction.
If Di ∩ (∆ − Di) 6= ∅, then Di spans a (KX + Di)-negative extremal
ray. So, we can contract Di in order to prove that Bs|n(KX + ∆)|
contains no non-klt centers (see Remark 4.2 below). We note that
(KX + ∆) ·Di = 0. Therefore, by replacing X with its contraction, we
can assume that Aj is irreducible. We can further assume that Aj is
isolated in Supp∆. It is because we can contract Aj if Aj is not isolated
in Supp∆.

If Aj is P1, then it is easy to see that OAj
(n(KX + ∆)) ' OAj

since
Aj · (KX + ∆) = 0.
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If Aj is singular, then we obtain H1(Aj,OAj
) 6= 0. Therefore, by

Serre duality, we obtain H0(Aj, ωAj
) 6= 0, where ωAj

is the dualizing
sheaf of Aj. We note that

0 → T → OX(KX + Aj) ⊗OAj
→ ωAj

→ 0

is exact, where T is the torsion part of OX(KX + Aj) ⊗ OAj
. See

Lemma 4.3 below. Since Aj is a curve, T is a skyscraper sheaf on Aj.
So, H0(Aj, ωAj

) 6= 0 implies

Hom(OAj
,OX(KX + Aj) ⊗OAj

) ' H0(Aj,OX(KX + Aj) ⊗OAj
) 6= 0.

More precisely, we can lift every section in H0(Aj, ωAj
) to

H0(Aj,OX(KX + Aj) ⊗OAj
)

by H1(Aj, T ) = 0. Therefore, we obtain an inclusion map

OAj
→ OX(n(KX + Aj)) ⊗OAj

' OAj
(n(KX + ∆))

for a divisible positive integer n. Since Aj · (KX + ∆) = 0, we see that
OAj

(n(KX + ∆)) ' OAj
.

Remark 4.2. Let f : (X, ∆) → (X ′, ∆′) be a proper birational mor-
phism between log surfaces such that KX + ∆ = f ∗(KX′ + ∆′). Let C
be a non-klt center of the pair (X, ∆). Then it is obvious that f(C) is
a non-klt center of the pair (X ′, ∆′).

Step 3. If Nlc(X, ∆) ∩ Aj = ∅, then OAj
(n(KX + ∆)) ' OAj

for
some divisible positive integer n by the abundance theorem for semi
log canonical curves (cf. [F1]).

Anyway, we obtain OA(n(KX + ∆)) ' OA for a divisible positive
integer n.

Step 4. We have A ∩ Bs|n(KX + ∆)| = ∅.

Proof of Step 4. Let f : Y → X be a resolution such that KY + ∆Y =
f ∗(KX + ∆). We can assume that

(1) f−1(A) has a simple normal crossing support, and
(2) Suppf−1

∗ ∆ ∪ Exc(f) is a simple normal crossing divisor on Y .

Let W1 be the union of the irreducible components of ∆=1
Y which are

mapped into A by f . We write ∆=1
Y = W1 + W2. Then

−W1 − x∆>1
Y y + p−(∆<1

Y )q − (KY + {∆Y } + W2) ∼Q −f ∗(KX + ∆).

We put

J1 = f∗OY (−W1 − x∆>1
Y y + p−(∆<1

Y )q) ⊂ OX .
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Then we can easily check that

0 → J1 → OX(−A) → δ → 0

is exact, where δ is a skyscraper sheaf, and

H i(X,OX(n(KX + ∆)) ⊗ J1) = 0

for every i > 0 by 2.7, where n is a divisible positive integer. By the
above exact sequence, we obtain

H i(X,OX(n(KX + ∆)) ⊗OX(−A)) = 0

for i > 0. By this vanishing theorem, we see that the restriction map

H0(X,OX(n(KX + ∆))) → H0(A,OA(n(KX + ∆)))

is surjective. Since OA(n(KX+∆)) ' OA, we have Bs|n(KX+∆)|∩A =
∅. �

Step 5. Let P be a zero-dimensional lc center of (X, ∆). Then P 6∈
Bs|n(KX + ∆)|, where n is a divisible positive integer.

Proof of Step 5. If P ∈ A, then it is obvious by Step 4. So, we can
assume that P ∩ SuppA = ∅. Let f : Y → X be the resolution as in
the proof of Step 4. We can further assume that

(3) f−1(P ) has a simple normal crossing support.

Let W3 be the union of the irreducible components of ∆=1
Y which are

mapped into A ∪ P by f . We put ∆=1
Y = W3 + W4. Then

−W3 − x∆>1
Y y + p−(∆<1

Y )q − (KY + {∆Y } + W4) ∼Q −f ∗(KX + ∆).

We put

J2 = f∗OY (−W3 − x∆>1
Y y + p−(∆<1

Y )q) ⊂ OX .

Then, we have

H i(X,OX(n(KX + ∆)) ⊗ J2) = 0

for every i > 0 by 2.7, where n is a divisible positive integer. Thus, the
restriction map

H0(X,OX(n(KX + ∆))) → H0(X,OX(n(KX + ∆)) ⊗OX/J2)

is surjective. Therefore, the evaluation map

H0(X,OX(n(KX + ∆))) → OX(n(KX + ∆)) ⊗ C(P )

is surjective since P ∩SuppA = ∅. So, we have P 6∈ Bs|n(KX +∆)|. �

Step 6. Let P ∈ Nlc(X, ∆). Then P 6∈ Bs|n(KX + ∆)|.
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Proof of Step 6. If P ∈ A, then it is obvious by Step 4. So, we can
assume that P ∩ SuppA = ∅. By the proof of Step 4, we obtain that
the restriction map

H0(X,OX(n(KX + ∆))) → H0(X,OX(n(KX + ∆)) ⊗OX/J1)

is surjective. Since P ∩ SuppA = ∅, we see that the evaluation map

H0(X,OX(n(KX + ∆))) → OX(n(KX + ∆)) ⊗ C(P )

is surjective. So, we have P 6∈ Bs|n(KX + ∆)|. �

Step 7. We see that Ei 6⊂ Bs|n(KX + ∆)|, where Ei is any irreducible
component of B and n is a divisible positive integer.

Proof of Step 7. We can assume that Ei ∩A = ∅ by Step 4 and (X, ∆)
is log canonical in a neighborhood of Ei by Step 6. We note that
OEi

(n(KX + ∆)) is ample. So, OEi
(n(KX + ∆)) is generated by global

sections. Let f : Y → X be the resolution as in the proof of Step 4.
We can further assume that

(4) f−1(Ei) has a simple normal crossing support.

Let W5 be the union of the irreducible components of ∆=1
Y which are

mapped into A
∐

Ei by f . We put ∆=1
Y = W5 + W6. Then

−W5 − x∆>1
Y y + p−(∆<1

Y )q − (KY + {∆Y } + W6) ∼Q −f ∗(KX + ∆).

We put

J3 = f∗OY (−W5 − x∆>1
Y y + p−(∆<1

Y )q) ⊂ OX .

Then, we have

H i(X,OX(n(KX + ∆)) ⊗ J3) = 0

for every i > 0, where n is a divisible positive integer. We note that
there exists a short exact sequence

0 → J3 → OX(−A − Ei) → δ′ → 0,

where δ′ is a skyscraper sheaf on X. Thus,

H i(X,OX(n(KX + ∆)) ⊗OX(−A − Ei)) = 0

for every i > 0, Therefore, the restriction map

H0(X,OX(n(KX + ∆))) → H0(Ei,OEi
(n(KX + ∆)))

is surjective since SuppEi ∩ SuppA = ∅.
This implies that Ei 6⊂ Bs|n(KX + ∆)| for every irreducible compo-

nent Ei of B. �
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Therefore, we have checked that Bs|n(KX + ∆)| contains no non-klt
centers of (X, ∆).

Finally, we will prove that KX + ∆ is semi-ample.

Step 8. If |n(KX +∆)| is free, then there are nothing to prove. So, we
assume that Bs|n(KX +∆)| 6= ∅. We take general members Ξ1, Ξ2, Ξ3 ∈
|n(KX + ∆)| and put Θ = Ξ1 + Ξ2 + Ξ3. Then Θ contains no non-klt
centers of (X, ∆) and KX + ∆ + Θ is not lc at the generic point of
any irreducible component of Bs|n(KX + ∆)| (see, for example, [F3,
Lemma 13.2]). We put

c = max{t ∈ R |KX + ∆ + tΘ is lc outside Nlc(X, ∆)}.
Then we can easily check that c ∈ Q and 0 < c < 1. In this case,

KX + ∆ + cΘ ∼Q (1 + cn)(KX + ∆)

and there exists an lc center C of (X, ∆+ cΘ) contained in Bs|(n(KX +
∆)|. We take positive integer l and m such that

l(KX + ∆ + cΘ) ∼ mn(KX + ∆).

Replace n(KX + ∆) with l(KX + ∆ + cΘ) and apply the previous
arguments. Then, we obtain C 6⊂ Bs|kl(KX +∆+cΘ)| for some positive
integer k. Therefore, we have

Bs|kmn(KX + ∆)| ( Bs|n(KX + ∆)|.
It is because there is an lc center C of (X, ∆ + cΘ) such that C ⊂
Bs|n(KX + ∆)|, and l(KX + ∆ + cΘ) ∼ mn(KX + ∆). By noetherian
induction, we obtain that (KX + ∆) is semi-ample.

We finish the proof of Theorem 4.1. �
We used the following lemma in the proof of Theorem 4.1.

Lemma 4.3 (Adjunction). Let X be a normal projective surface and
D a pure one-dimensional reduced irreducible closed subscheme. Then
we have the following short exact sequence:

0 → T → ωX(D) ⊗OD → ωD → 0,

where T is the torsion part of ωX(D) ⊗ OD. In particular, T is a
skyscraper sheaf on D.

Proof. We consider the following short exact sequence

0 → OX(−D) → OX → OD → 0.

By tensoring ωX(D), where ωX(D) = (ωX ⊗OX(D))∗∗, we obtain

ωX(D) ⊗OX(−D) → ωX(D) → ωX(D) ⊗OD → 0.
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On the other hand, by taking ExtiOX
( , ωX), we obtain

0 → ωX → ωX(D) → ωD ' Ext1OX
(OD, ωX) → 0.

Note that ωX(D) ' HomOX
(OX(−D), ωX). The natural homomor-

phism

α : ωX(D) ⊗OX(−D) → ωX ' (ωX(D) ⊗OX(−D))∗∗

induces the following commutative diagram.

0

��
T

��
ωX(D) ⊗OX(−D)

α

��

// ωX(D) // ωX(D) ⊗OD

��

// 0

0 // ωX

��

// ωX(D) // ωD //

��

0

T

��

0

0

It is easy to see that α is surjective in codimension one and T is the
torsion part of ωX(D) ⊗OD. �

The next theorem is a generalization of Fujita’s result in [Ft].

Theorem 4.4 (Finite generation of log canonical rings). Let (X, ∆) be
a Q-factorial projective log surface such that ∆ is a Q-divisor. Then
the log canonical ring

R(X, ∆) =
⊕
m≥0

H0(X,OX(xm(KX + ∆)y))

is a finitely generated C-algebra.

Proof. Without loss of generality, we can assume that κ(X, KX +∆) ≥
0. By Theorem 3.3, we can further assume that KX + ∆ is nef. If
KX +∆ is big, then KX +∆ is semi-ample by Theorem 4.1. Therefore,
R(X, ∆) is finitely generated. If κ(X, KX +∆) = 1, then we can easily
check that κ(X,KX +∆) = ν(X, KX +∆) = 1 and that KX +∆ is semi-
ample (cf. [Ft, (4.1) Theorem]). So, R(X, ∆) is finitely generated. If
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κ(X, KX +∆) = 0, then it is obvious that R(X, ∆) is finitely generated.
�

As a corollary, we obtain the finite generation of canonical rings for
projective surfaces with only rational singularities.

Corollary 4.5. Let X be a projective surface with only rational singu-
larities. Then the canonical ring

R(X) =
⊕
m≥0

H0(X,OX(mKX))

is a finitely generated C-algebra.

Remark 4.6. In Theorems 4.1 and 4.4, the assumption that ∆ is a
boundary Q-divisor is crucial. By Zariski’s example, we can easily
construct a smooth projective surface X and an effective Q-divisor ∆
on X such that Supp∆ is simple normal crossing, KX + ∆ is nef and
big, and

R(X, ∆) =
⊕
m≥0

H0(X,OX(xm(KX + ∆)y))

is not a finitely generated C-algebra. Of course, KX + ∆ is not semi-
ample. See, for example, [L, 2.3.A Zariski’s Construction].

5. Non-vanishing theorem

In this section, we prove the following non-vanishing theorem.

Theorem 5.1 (Non-vanishing theorem). Let (X, ∆) be a Q-factorial
projective log surface such that ∆ is a Q-divisor. Assume that KX +∆
is pseudo-effective. Then κ(X, KX + ∆) ≥ 0.

Proof. By Theorem 3.3, we can assume that KX + ∆ is nef. Let f :
Y → X be the minimal resolution. We put KY + ∆Y = f ∗(KX + ∆).
We note that ∆Y is effective. If κ(Y, KY ) ≥ 0, then it is obvious that

κ(X, KX + ∆) = κ(Y,KY + ∆Y ) ≥ κ(Y,KY ) ≥ 0.

So, from now on, we assume κ(Y, KY ) = −∞. When Y is rational,
we can easily check κ(Y, KY + ∆Y ) ≥ 0 by the Riemann–Roch formula
(see, for example, the proof of [FM, 11.2.1 Lemma]). Therefore, we can
assume that Y is an irrational ruled surface. Let p : Y → C be the
Albanese fibration. We can write KY +∆Y = KY +∆1 +∆2, where ∆1

is an effective Q-divisor on Y such that ∆1 has no vertical components
with respect to p, 0 ≤ ∆1 ≤ ∆Y , (KY +∆1)·F = 0 for any general fiber
F of p, and ∆2 = ∆Y − ∆1 ≥ 0. When we prove κ(Y,KY + ∆Y ) ≥ 0,
we can replace ∆Y with ∆1 because κ(Y,KY + ∆Y ) ≥ κ(Y, KY + ∆1).
Therefore, we can assume that ∆Y = ∆1. By taking blow-ups, we can
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further assume that Supp∆Y is smooth. We note the following easy
but important lemma.

Lemma 5.2. Let B be any smooth irreducible curve on Y such that
p(B) = C. Then B is not f -exceptional.

Proof of Lemma 5.2. Let {Ei}i∈I be the set of all f -exceptional divi-
sors. We consider the subgroup G of Pic(B) generated by {OB(Ei)}i∈I .
Let L = OC(D) be a sufficiently general member of Pic0(C). We note
that the genus g(C) of C is positive. Then

(p|B)∗L ∈ Pic0(B) ⊗Z Q \ G ⊗Z Q.

Assume that B is f -exceptional. We consider E = p∗D on Y . Since X
is Q-factorial,

E ∼Q f ∗f∗E +
∑
i∈I

aiEi

with ai ∈ Q for every i. By restricting the above relation to B, we
obtain (p|B)∗L ∈ G ⊗Z Q. It is a contradiction. Therefore, B is not
f -exceptional. �

Thus, every irreducible component B of ∆Y is not f -exceptional. So,
its coefficient in ∆Y is not greater than one because ∆ is a boundary
Q-divisor. By applying [Ft, (2.2) Theorem], we obtain that κ(Y, KY +
∆Y ) ≥ 0. We finish the proof. �

6. Abundance theorem for log surfaces

In this section, we prove the log abundance theorem for Q-factorial
projective log surfaces.

Theorem 6.1 (Abundance theorem). Let (X, ∆) be a Q-factorial pro-
jective log surface such that ∆ is a Q-divisor. Assume that KX + ∆ is
nef. Then KX + ∆ is semi-ample.

Proof. By Theorem 5.1, we have κ(X,KX +∆) ≥ 0. If κ(X,KX +∆) =
2, then KX + ∆ is semi-ample by Theorem 4.1. If κ(X,KX + ∆) = 1,
then κ(X,KX + ∆) = ν(X,KX + ∆) = 1 and we can easily check that
KX +∆ is semi-ample (cf. [Ft, (4.1) Theorem]). Therefore, all we have
to do is to prove KX +∆ ∼Q 0 when κ(X, KX +∆) = 0. It is Theorem
6.2 below. �

The proof of the following theorem depends on the argument in [Ft,
§5. The case κ = 0] and Sakai’s classification result in [S1].

Theorem 6.2. Let (X, ∆) be a Q-factorial projective log surface such
that ∆ is a Q-divisor. Assume that KX +∆ is nef and κ(X, KX +∆) =
0. Then KX + ∆ ∼Q 0.
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Proof. Let f : V → X be the minimal resolution. We put KV + ∆V =
f ∗(KX + ∆). We note that ∆V is effective. It is sufficient to see that
KV + ∆V ∼Q 0. Let

ϕ : V =: V0
ϕ0→ V1

ϕ1→ · · · ϕk−1→ Vk =: S

be a sequence of blow-downs such that

(1) ϕi is a blow-down of a (−1)-curve Ci on Vi,
(2) ∆Vi+1

= ϕi∗∆Vi
, and

(3) (KVi
+ ∆Vi

) · Ci = 0,

for every i. We can assume that there are no (−1)-curves C on S with
(KS + ∆S) · C = 0. We note that KV + ∆V = ϕ∗(KS + ∆S). It is
sufficient to see that KS +∆S ∼Q 0. By assumption, there is a member
Z of |m(KS + ∆S)| for some divisible positive integer m. Then, for
every positive integer t, tZ is the unique member of |tm(KS + ∆S)|.
We can easily check the following lemma. See, for example, [Ft, (5.4)].

Lemma 6.3 (cf. [Ft, (5.5) Lemma]). Let Z =
∑

i ξiZi be the prime
decomposition of Z. Then KS · Zi = ∆S · Zi = Z · Zi = 0 for every i.

We will derive a contradiction assuming Z 6= 0, equivalently, ν(S,KS+
∆S) = 1. We can decompose Z into the connected components as fol-
lows:

Z =
r∑

i=1

µiYi,

where µiYi is a connected component of Z such that µi is the greatest
common divisor of the coefficients of prime components of Yi in Z for
every i, and µiYi 6= µjYj for i 6= j. Then we obtain ωYi

' OYi
for every

i. It is because Yi is indecomposable of canonical type in the sense of
Mumford by Lemma 6.3 (see, for example, [Ft, (5.6)]).

Step 1 (cf. [Ft, (5.7)]). We assume that κ(S,KS) ≥ 0. Since 0 ≤
κ(S,KS) ≤ κ(S,KS + ∆S) = 0, we obtain κ(S,KS) = 0. If S is not
minimal, then we can find a (−1)-curve E on S such that E · (KS +
∆S) = 0. Therefore, S is minimal by the construction of (S, ∆S). We
show κ(S,KS + ∆S) = κ(S, Z) ≥ 1 in order to get a contradiction.
By taking an étale cover, we can assume that S is an Abelian surface
or a K3 surface. In this case, it is easy to see that κ(S,KS + ∆S) =
κ(S,Z) ≥ 1 since Z 6= 0.

From now on, we assume that κ(S, KS) = −∞.

Step 2. We further assume that H1(S,OS) = 0. If n(S, KS +∆S) = 1,
then there is a surjective morphism g : S → T onto a smooth projective
curve T and a nef Q-divisor A 6≡ 0 on T such that KS + ∆S ≡ g∗A
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(cf. [8, Proposition 2.11]). Here, g is the reduction map associated
to KS + ∆S. Since H1(S,OS) = 0, we obtain KS + ∆S ∼Q g∗A.
Therefore, κ(S,KS + ∆S) = 1 because A is an ample Q-divisor on T .
It is a contradiction.

Step 3. Under the assumption that H1(S,OS) = 0, we further assume
that n(S,KS + ∆S) = 2. By [S1, Proposition 4], we know r = 1, that
is, Z = µ1Y1. In this case, S is a degenerate del Pezzo surface, that is,
nine times blow-ups of P2, and Z ∈ |−nKS| for some positive integer n
(cf. [S1, Proposition 5]). Since κ(S,−KS) = 0 and m(KS +∆S) ∼ Z ∼
−nKS, we obtain m∆S = (m + n)D, where D is the unique member
of | − KS|. Thus,

∆S =
m + n

m
D and Z = nD.

In particular, we obtain ∆S = ∆>1
S . We will see that OD(aD) ' OD for

some positive integer a in Step 4. This implies that the normal bundle
ND = OD(D) is a torsion. It is a contradiction by [S1, Proposition 5].

Step 4. In this step, we will prove that OD(aD) ' OD for some
positive integer a. We put Dk = D and construct Di inductively.
It is easy to see that ϕi : Vi → Vi+1 is the blow-up at Pi+1 with
multPi+1

∆Vi+1
≥ 1 for every i by calculating discrepancy coefficients

since ∆Vi
is effective. If multPi+1

Di+1 = 0, then we put Di = ϕ∗
i+1Di+1.

If multPi+1
Di+1 > 0, then we put Di = ϕ∗

i+1Di+1 − Ci, where Ci is the
exceptional curve of ϕi. We note that multP ∆Vi+1

> multP Di+1 for
every P ∈ Vi+1 and multP Di+1 ∈ Z. Thus, we obtain D0 on V0 = V .
We can see that D0 is effective and SuppD0 ⊂ Supp∆>1

V by the above
construction. We note that ϕi∗ODi

' ODi+1
for every i. It is because

ϕi∗OVi
(−Di) ' OVi+1

(−Di+1) and R1ϕi∗OVi
(−Di) = 0 for every i. See

the following commutative diagram.

0 // OVi+1
(−Di+1)

'
��

// OVi+1

'
��

// ODi+1

��

// 0

0 // ϕi∗OVi
(−Di) // ϕi∗OVi

// ϕi∗ODi
// R1ϕi∗OVi

(−Di) = 0

Therefore, we obtain ϕ∗OD0 ' OD. Since SuppD0 ⊂ Supp∆>1
V , we see

that D0 is f -exceptional. Since KV + ∆V = f∗(KX + ∆), we obtain
OD0(b(KV + ∆V )) ' OD0 for some positive divisible integer b. Thus,

OD(b(KS + ∆S)) ' ϕ∗OD0(b(KV + ∆V )) ' OD.
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In particular, OD(aD) ' OD for some positive integer a. It is because

b(KS + ∆S) ∼ bn

m
D.

Step 5. Finally, we assume that S is an irrational ruled surface. Let
α : S → B be the Albanese fibration. In this case, we can easily check
that every irreducible component of Supp∆>1

S is vertical with respect
to α (cf. Lemma 5.2). Therefore, [Ft, (5.9)] works without any changes.
Thus, we get a contradiction.

We finish the proof of Theorem 6.2. �
We close this section with the following corollary.

Corollary 6.4 (Abundance theorem for log canonical surfaces). Let
(X, ∆) be a complete log canonical surface such that ∆ is a Q-divisor.
Assume that KX + ∆ is nef. Then KX + ∆ is semi-ample.

Proof. Let f : V → X be the minimal resolution. We put KV + ∆V =
f ∗(KX +∆). Since (X, ∆) is log canonical, ∆V is a boundary Q-divisor.
Since V is smooth, V is automatically projective. Apply Theorem 6.1
to the pair (V, ∆V ). We obtain KV +∆V is semi-ample. It implies that
KX + ∆ is semi-ample. �

7. Relative setting

In this section, we discuss the finite generation of log canonical rings
and the log abundance theorem in the relative setting.

Theorem 7.1 (Relative finite generation). Let (X, ∆) be a log surface
such that ∆ is a Q-divisor. Let π : X → S be a proper surjective
morphism onto a variety S. Assume that X is Q-factorial or that
(X, ∆) is log canonical. Then

R(X/S, ∆) =
⊕
m≥0

π∗OX(xm(KX + ∆)y)

is a finitely generated OS-algebra.

Proof. (cf. Proof of Theorem 1.1 in [F2]). When (X, ∆) is log canonical,
we replace X with its minimal resolution. So, we can always assume
that X is Q-factorial. If κ(Xη, KXη + ∆η) = −∞, where η is the
generic point of S, Xη is the generic fiber of π, and ∆η = ∆|Xη , then
the statement is trivial. So, we assume that κ(Xη, KXη + ∆η) ≥ 0.
We further assume that S is affine by shrinking π : X → S. By
compactifying π : X → S, we can assume that S is projective. Since
X is Q-factorial, X is automatically projective (cf. Lemma 2.2). In



MINIMAL MODEL THEORY FOR LOG SURFACES 25

particular, π is projective. Let H be a very ample divisor on S and G
a general member of |4H|. We run the log minimal model program for
(X, ∆+π∗G). By Proposition 3.7, this log minimal model program is a
log minimal model program over S. It is because any (KX +∆+π∗G)-
negative extremal ray of NE(X) is a (KX + ∆)-negative extremal ray
of NE(X/S). When we prove this theorem, by Theorem 3.3, we can
assume that KX + ∆ + π∗G is nef over S, equivalently, KX + ∆ + π∗G
is nef. By Theorem 6.1, KX + ∆ + π∗G is semi-ample. In particular,
KX + ∆ is π-semi-ample. Thus,

R(X/S, ∆) =
⊕
m≥0

π∗OX(xm(KX + ∆)y)

is a finitely generated OS-algebra. �
Theorem 7.2 (Relative abundance theorem). Let (X, ∆) be a log sur-
face such that ∆ is a Q-divisor. Let π : X → S be a proper surjective
morphism onto a variety S. Assume that X is Q-factorial or that
(X, ∆) is log canonical. We further assume that KX + ∆ is π-nef.
Then KX + ∆ is π-semi-ample.

Proof. As in the proof of Theorem 7.1, we can always assume that X
is Q-factorial. By Theorem 6.1, we can assume that dimS ≥ 1. By
Theorem 7.1, we have that

R(X/S, ∆) =
⊕
m≥0

π∗OX(xm(KX + ∆)y)

is a finitely generated OS-algebra. It is easy to see that KXη +∆η is nef
and abundant. Therefore, KX + ∆ is π-semi-ample (see, for example,
[F2, Lemma 3.12]). �

We recommend the reader to see [F2, 3.1. Appendix] for related
topics. Here, we give an easy application.

Theorem 7.3. Let X be a normal algebraic variety with only rational
singularities and π : X → S a projective morphism onto a variety S.
Assume that KX is π-big. Then the relative canonical model

Y = ProjS
⊕
m≥0

π∗OX(mKX)

of X over S has only rational singularities.

Proof. By Theorem 3.3, we can assume that KX is π-nef and π-big. By
Theorem 7.2, there exists the birational morphism ϕ : X → Y over S
induced by the surjection π∗π∗OX(lKX) → OX(lKX) for some positive
divisible integer l. We note that KX = ϕ∗KY by construction. Let
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f : V → X be a resolution such that KV + ∆V = f∗KX and that
Supp∆V is a simple normal crossing divisor. We consider the following
short exact sequence

0 → JNLC(X, 0) → OX → OX/JNLC(X, 0) → 0.

Note that

p−(∆<1
V )q − x∆>1

V y − (KV + {∆V } + ∆=1
V ) ∼Q −f ∗KX

and that JNLC(X, 0) = f∗OV (p−(∆<1
V )q − x∆>1

V y). Then we obtain

Riϕ∗JNLC(X, 0) = 0

for every i > 0 by [F4, Theorem 2.74 (ii)] (see also 2.7). Here, we note
that Supp({∆V } + ∆=1

V ) is f -exceptional. Since we have

dimC Supp(OX/JNLC(X, 0)) = 0,

we obtain Riϕ∗OX = 0 for every i > 0. Therefore, Y has only ratio-
nal singularities since X has only rational singularities. It is because
Rig∗OV ' Riϕ∗OX = 0 for every i > 0, where g = ϕ ◦ f : V → Y . �

8. Abundance theorem for R-divisors

In this section, we generalize the relative log abundance theorem
(cf. Theorem 7.2) for R-divisors.

Theorem 8.1 (Relative abundance theorem for R-divisors). Let (X, ∆)
be a log surface and let π : X → S be a proper surjective morphism
onto a variety S. Assume that X is Q-factorial or that (X, ∆) is log
canonical. We further assume that KX + ∆ is π-nef. Then KX + ∆ is
π-semi-ample.

The following proof is essentially due to [Sh, Proof of Theorem 2.7].

Proof. As in the proof of Theorem 7.1, we can always assume that X
is Q-factorial. We put F = Supp∆ and consider the real vector space
V =

⊕
k RFk, where F =

∑
k Fk is the irreducible decomposition. We

put

P = {D ∈ V | (X, D) is a log surface}.
Then it is obvious that

P = {
∑

k

dkFk | 0 ≤ dk ≤ 1 for every k}.

Let {Rλ}λ∈Λ be the set of all the extremal rays of NE(X/S) spanned
by curves. We put

N = {D ∈ P | (KX + D) · Rλ ≥ 0 for every λ ∈ Λ}.
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Then we can prove that N is a rational polytope in P by using Propo-
sition 3.7 (cf. [Sh, 6.2. First Main Theorem]). For the proof, see, for
example, the proof of [B, Proposition 3.2]. We note that we can easily
see

N = {D ∈ P |KX + D is nef}.
By the above construction, ∆ ∈ N . Let F be the minimal face of
N containing ∆. Then we can take Q-divisors ∆1, · · · , ∆l on X and
positive real numbers r1, · · · , rl such that ∆i is in the relative interior
of F for every i, KX + ∆ =

∑
i ri(KX + ∆i), and

∑
i ri = 1. By

Theorem 7.2, KX + ∆i is π-semi-ample for every i since KX + ∆i is
π-nef. Therefore, KX + ∆ is π-semi-ample. �

We note the following easy but important remark on Theorem 8.1.

Remark 8.2 (Stability of Iitaka fibrations). In the proof of Theorem
8.1, we note the following property. If C is a curve on X such that π(C)
is a point and (KX +∆i0) ·C = 0 for some i0, then (KX +∆i) ·C = 0 for
every i. It is because we can find ∆′ ∈ F such that (KX + ∆′) · C < 0
if (KX + ∆i) · C > 0 for some i 6= i0. It is a contradiction. Therefore,
there exists a contraction morphism f : X → Y over S and g-ample
Q-Cartier Q-divisors A1, · · · , Al on Y , where g : Y → S, such that
KX + ∆i ∼Q f∗Ai for every i. In particular, we obtain

KX + ∆ ∼R f ∗(
∑

i

riAi).

Note that
∑

i riAi is g-ample. Roughly speaking, the Iitaka fibration
of KX + ∆ is the same as that of KX + ∆i for every i.

Anyway, we obtain the relative log minimal model program for log
surfaces (cf. Theorem 3.3) and the relative log abundance theorem for
log surfaces (cf. Theorem 8.1) in full generality. Therefore, we can
freely use the log minimal model theory for log surfaces in the relative
setting.

9. Appendix: Base point free theorem for log surfaces

In this appendix, we prove the base point free theorem for log sur-
faces in full generality. It completely generalizes Fukuda’s base point
free theorem for log canonical surfaces (cf. [Fk, Main Theorem]). Our
proof is different from Fukuda’s and depends on the theory of quasi-
log varieties. We note that this result is not necessary for the minimal
model theory for log surfaces discussed in this paper. We also note that
a much more general result was stated in [A, Theorem 7.2] without any
proofs (cf. [F4, Theorem 4.1]).
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Theorem 9.1 (Base point free theorem for log surfaces). Let (X, ∆)
be a log surface and π : X → S a proper surjective morphism onto
a variety S. Let L be a π-nef Cartier divisor on X. Assume that
aL − (KX + ∆) is π-nef and π-big and that (aL − (KX + ∆))|C is
π-big for every lc center C of the pair (X, ∆), where a is a positive
number. Then there exists a positive integer m0 such that OX(mL) is
π-generated for every m ≥ m0.

Remark 9.2. In Theorem 9.1, the condition that (aL − (KX + ∆))|C
is π-big for every lc center C of the pair (X, ∆) is equivalent to the
following condition: (aL − (KX + ∆)) · C > 0 for every irreducible
component C of x∆y such that π(C) is a point.

Proof. Without loss of generality, we can assume that S is affine since
the problem is local. We divide the proof into several steps.

Step 1 (Quasi-log structures). Since (X, ∆) is a log surface, the pair
[X, ω], where ω = KX + ∆, has a natural quasi-log structure. It in-
duces a quasi-log structure [V, ω′] on V = Nklt(X, ∆) with ω′ = ω|V .
More precisely, let f : Y → X be a resolution such that KY + ∆Y =
f ∗(KX + ∆) and that Supp∆Y is a simple normal crossing divisor on
Y . By the relative Kawamata–Viehweg vanishing theorem, we obtain
the following short exact sequence

0 → f∗OY (−x∆Y y) → f∗OY (p(−∆<1
Y )q − x∆>1

Y y)

→ f∗O∆=1
Y

(p(−∆<1
Y )q − x∆>1

Y y) → 0.

Note that
−x∆Y y = p(−∆<1

Y )q − x∆>1
Y y − ∆=1

Y .

We also note that the scheme structure of V is defined by the multiplier
ideal sheaf J (X, ∆) = f∗OY (−x∆Y y) of the pair (X, ∆) and that X−∞
(resp. V−∞) is defined by the ideal sheaf f∗OY (p(−∆<1

Y )q− x∆>1
Y y) =:

IX−∞ (resp. f∗O∆=1
Y

(p(−∆<1
Y )q − x∆>1

Y y) =: IV−∞). By construction,

X−∞ ' V−∞ and X−∞ = Nlc(X, ∆). We note the following commuta-
tive diagram.

0 // J (X, ∆) // IX−∞
//

��

IV−∞
//

��

0

0 // J (X, ∆) // OX
// OV

// 0

For details, see [A, Section 4], [F4, Section 3.2], and [F7].

Step 2 (Freeness on Nklt(X, ∆)). By assumption, aL|V −ω′ is π-ample
and OV−∞(mL) is π|V−∞-generated for every m ≥ 0. We note that V
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is one-dimensional and V−∞ is zero-dimensional. Therefore, by [F4,
Theorem 3.66], OV (mL) is π-generated for every m � 0.

Step 3 (Lifting of sections). We consider the following short exact
sequence

0 → J (X, ∆) → OX → OV → 0,

where J (X, ∆) is the multiplier ideal sheaf of (X, ∆). Then we obtain
that the restriction map

H0(X,OX(mL)) → H0(V,OV (mL))

is surjective for every m ≥ a since

H1(X,J (X, ∆) ⊗OX(mL)) = 0

for m ≥ a by the relative Kawamata–Viehweg–Nadel vanishing the-
orem. Thus, there exists a positive integer m1 such that Bs|mL| ∩
Nklt(X, ∆) = ∅ for every m ≥ m1.

So, all we have to do is to prove that |mL| is free for every m � 0
under the assumption that Bs|nL| ∩Nklt(X, ∆) = ∅ for every n ≥ m1.

Step 4 (Kawamata’s X-method). Let f : Y → X be a resolution with
a simple normal crossing divisor F =

∑
j Fj on Y . We can assume the

following conditions.

(a) KY = f ∗(KX + ∆) +
∑

j ajFj for some aj ∈ R.

(b) f ∗|plL| = |M |+
∑

j rjFj, where |M | is free, p is a prime number

such that pl ≥ m1, and
∑

j rjFj is the fixed part of f ∗|plL| for
some rj ∈ Z with rj ≥ 0.

(c) f ∗(aL− (KX + ∆))−
∑

j δjFj is π-ample for some δj ∈ R with
0 < δj � 1.

We set

c = min

{
aj + 1 − δj

rj

}
where the minimum is taken for all the j such that rj 6= 0. Then, we
obtain c > 0. Here, we used the fact that aj > −1 if rj > 0. It is
because Bs|plL| ∩ Nklt(X, ∆) = ∅. By a suitable choice of the δj, we
can assume that the minimum is attained at exactly one value j = j0.
We put

A =
∑

j

(−crj + aj − δj)Fj.
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We consider

N := pl′f ∗L − KY +
∑

j

(−crj + aj − δj)Fj

= (pl′ − cpl − a)f ∗L (π-nef if pl′ ≥ cpl + a)

+ c(plf ∗L −
∑

j

rjFj) (π-free)

+ f ∗(aL − (KX + ∆)) −
∑

j

δjFj (π-ample)

for some positive integer l′ > l. Then N is π-ample if pl′ ≥ cpl + a. By
the relative Kawamata–Viehweg vanishing theorem, we have

H i(Y,OY (KY + pNq)) = 0

for every i > 0. We can write pAq = B − F − D, where B is
an effective f -exceptional Cartier divisor, F = Fj0 , D is an effec-
tive Cartier divisor such that SuppD ⊂ Supp

∑
aj≤−1 Fj, and SuppB,

SuppF , and SuppD have no common irreducible components one an-
other by Bs|plL| ∩ Nklt(X, ∆) = ∅. We note that KY + pNq =
pl′f ∗L + pAq. Then the restriction map

H0(Y,OY (pl′f ∗L + B))

→ H0(F,OF (pl′f∗L + B)) ⊕ H0(D,OD(pl′f∗L + B))

is surjective. Here, we used the fact that SuppF ∩ SuppD = ∅. Thus
we obtain that

H0(X,OX(pl′L)) ' H0(Y,OY (pl′f∗L + B)) → H0(F,OF (pl′f ∗L + B))

is surjective. We note that H0(F,OF (pl′f ∗L+B)) 6= 0 for every l′ � 0
since F is a smooth curve and

N |F = (pl′f ∗L − KY + B − F − D − {−A})|F
= (pl′f ∗L + B)|F − (KF + {−A}|F )

is π-ample (cf. Shokurov’s non-vanishing theorem). Therefore, we have
Bs|pl′L| ( Bs|plL| for some l′ � 0 since f(F ) ⊂ Bs|plL|. By noetherian
induction, we obtain Bs|pkL| = ∅ for some positive integer k.

Let q be a prime number with q 6= p. Then we can find k′ > 0 such
that Bs|qk′

L| = ∅ by the same argument as in Step 4. So, we can find
a positive integer m0 such that Bs|mL| = ∅ for m ≥ m0. �
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