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Abstract. We introduce the notion of mixed-ω-sheaves and use it for the study of a
relative version of Fujita’s freeness conjecture. It is related to the Iitaka conjecture. We
note that the notion of mixed-ω-sheaves is a generalization of that of Nakayama’s ω-
sheaves in some sense. One of the main motivations of this paper is to make Nakayama’s
theory of ω-sheaves more accessible and make it applicable to the study of log canonical
pairs.

Contents

1. Introduction 1
2. Preliminary 6
3. Preliminary lemmas 8
4. Weakly positive sheaves and big sheaves 14
5. Mixed-ω-sheaves and mixed-ω-big sheaves 15
6. Basic properties: Part 1 19
7. Basic properties: Part 2 21
8. A special case 24
9. Fundamental theorem 27
10. Proof of Theorems 1.7, 1.8, and 1.9 35
11. Some other applications 38
12. On Iwai’s theorem: Theorem 1.6 41
References 42

1. Introduction

Let us recall Fujita’s famous freeness conjecture on adjoint bundles. Note that every-
thing is defined over C, the complex number field, in this paper.

Conjecture 1.1 (Takao Fujita). Let X be a smooth projective variety with dimX = n
and let L be any ample invertible sheaf on X. Then ωX ⊗ L⊗l is generated by global
sections for every l ≥ n+ 1.

Although there have already been many related results, Conjecture 1.1 is still open. As
a generalization of Conjecture 1.1, Popa and Schnell proposed the following conjecture,
which is a relative version of Fujita’s freeness conjecture.
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Conjecture 1.2 (Popa and Schnell, see [PS, Conjecture 1.3]). Let f : X → Y be a
surjective morphism between smooth projective varieties with dimY = n. Let L be any
ample invertible sheaf on Y . Then, for every positive integer k, the sheaf

f∗ω
⊗k
X ⊗ L⊗l

is generated by global sections for l ≥ k(n+ 1).

We can find some interesting results on Conjecture 1.2 in [De], [Du], [DuM], and [I].
In this paper, we do not directly treat Conjecture 1.2. When the base space Y is a curve
in Conjecture 1.2, we have the following stronger result. We note that we are mainly
interested in the case where k ≥ 2 for some geometric applications.

Theorem 1.3. Let f : X → C be a surjective morphism from a smooth projective variety
X onto a smooth projective curve C. Let H be an ample invertible sheaf on C with
degH ≥ 2 and let k be any positive integer. Then the sheaf

f∗ω
⊗k
X/C ⊗ ωC ⊗H

is generated by global sections. Let L be an ample invertible sheaf on C. Then

f∗ω
⊗k
X ⊗ L⊗l

is generated by global sections for l ≥ 2k. In particular, Conjecture 1.2 holds true when
the base space is a smooth projective curve.

Here, we give a detailed proof of Theorem 1.3 in order to explain our idea.

Proof of Theorem 1.3. If f∗ω
⊗k
X/C = 0, then there is nothing to prove. So we assume that

f∗ω
⊗k
X/C ̸= 0. We take any closed point P .

Claim. H1(C, f∗ω
⊗k
X/C ⊗ ωC ⊗H⊗OC(−P )) = 0.

Proof of Claim. By [Ka, Theorem 1], f∗ω
⊗k
X/C is a nef locally free sheaf. This fact also

follows from Viehweg’s weak positivity theorem since C is a smooth projective curve.
Therefore, E := f∗ω

⊗k
X/C ⊗ H ⊗ OC(−P ) is ample. If H1(C, E ⊗ ωC) ̸= 0, then we get

H0(C, E∗) ̸= 0 by Serre duality. This implies that there is a nontrivial inclusion 0 → OC →
E∗. By taking the dual of this inclusion, we have the following surjection E → OC → 0.
This is a contradiction since E is ample. Hence we have H1(C, E ⊗ ωC) = 0. □
By the Claim, the natural restriction map

H0(C, f∗ω
⊗k
X/C ⊗ ωC ⊗H) → f∗ω

⊗k
X/C ⊗ ωC ⊗H⊗ C(P )

is surjective. This means that f∗ω
⊗k
X/C ⊗ ωC ⊗H is generated by global sections. Since C

is a smooth projective curve, ωC ⊗L⊗2 is generated by global sections. This implies that

f∗ω
⊗k
X ⊗ L⊗l ≃ f∗ω

⊗k
X/C ⊗ ωC ⊗ L⊗(l−2(k−1)) ⊗

(
ωC ⊗ L⊗2

)⊗(k−1)

is generated by global sections because degL⊗(l−2(k−1)) ≥ 2 by assumption. □
A key point of Theorem 1.3 is the fact that f∗ω

⊗k
X/C is a nef locally free sheaf on C for

every positive integer k. When f : X → Y is a weakly semistable morphism in the sense
of Abramovich–Karu (see [AK]), it is conjectured that f∗ω

⊗k
X/Y is a nef locally free sheaf on

Y for every positive integer k (see [Fn4] and [Fn8, Conjecture 3.14]). Hence it is natural
to consider the case where f : X → Y is weakly semistable.
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Theorem 1.4 (see Theorem 8.2). Let f : X → Y be a surjective morphism from a normal
projective variety X onto a smooth projective variety Y with connected fibers. Assume that
f is weakly semistable in the sense of Abramovich–Karu and that the geometric generic
fiber Xη of f : X → Y has a good minimal model. Let H be an ample Cartier divisor on
Y , let k be a positive integer with k ≥ 2, and let A be an ample Cartier divisor on Y such
that |A| is free. Then (

s⊗
f∗ω

⊗k
X/Y

)
⊗ ωY ⊗OY (H + nA)

is generated by global sections for all integers s ≥ 1, where n = dim Y .

By Theorems 1.3 and 1.4, we propose a new conjecture similar to Conjecture 1.2.

Conjecture 1.5. Let f : X → Y be a surjective morphism between smooth projective
varieties with dimY = n. Let L be any ample invertible sheaf on Y . Then, for every
positive integer k, the sheaf

f∗ω
⊗k
X/Y ⊗ ωY ⊗ L⊗l

is generically generated by global sections for l ≥ n+ 1. More precisely,

f∗ω
⊗k
X/Y ⊗ ωY ⊗ L⊗l

is generated by global section on U for l ≥ n + 1, where U is the largest Zariski open set
of Y such that f is smooth over U .

Even when f is the identity in Conjecture 1.5, the generically generation, which is a
special case of Fujita’s conjecture (see Conjecture 1.1), looks like a difficult open problem.
We note that an example (see Example 10.1) shows that f∗ω

⊗k
X/Y ⊗ωY ⊗L⊗l is not always

generated by global sections in Conjecture 1.5. We only expect that it is generically
generated by global sections. The best known result on Conjecture 1.5 is the following
theorem. The author learned it from Masataka Iwai.

Theorem 1.6 (Masataka Iwai, see Theorem 12.1). Let f : X → Y be a surjective mor-
phism between smooth projective varieties with connected fibers and let L be an ample
invertible sheaf on Y . Let U be the largest Zariski open set of Y such that f is smooth
over U . We put dimY = n. Then

f∗ω
⊗a
X/Y ⊗ ωY ⊗ L⊗b

is generated by global sections on U for all integers a ≥ 1 and b ≥ n(n+1)
2

+ 1.

The proof of Theorem 1.6 is essentially analytic. We will give a sketch of the proof of
Theorem 1.6 in Section 12. On the other hand, by Nakayama’s theory of ω-sheaves (see
[N, Chapter V]), we can prove:

Theorem 1.7. Let f : X → Y be a surjective morphism between smooth projective va-
rieties and let H be an ample divisor on Y such that |H| is free. We put dimY = n.
Then (

s⊗
f∗ω

⊗k
X/Y

)∗∗

⊗ ωY ⊗OY (lH)

is generically generated by global sections for all integers k ≥ 1, s ≥ 1, and l ≥ n+ 1.
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Let H† be an ample divisor on Y such that |H†| is not necessarily free. Then the sheaf(
s⊗

f∗ω
⊗k
X/Y

)∗∗

⊗ ωY ⊗OY (lH
†)

is generically generated by global sections for all integers k ≥ 1, s ≥ 1, and l ≥ n2 +
min{2, k}.

In this paper, we will introduce the notion of mixed-ω-sheaves, which is a generalization
of that of Nakayama’s ω-sheaves, and establish Theorems 1.8 and 1.9. Then we will obtain
Theorem 1.7 as a special case of Theorems 1.8 and 1.9.

Theorem 1.8. Let f : X → Y be a surjective morphism from a normal projective variety
X onto a smooth projective variety Y with dimY = n. Let ∆ be an effective R-divisor
on X such that KX + ∆ is R-Cartier and that (X,∆) is log canonical over a nonempty
Zariski open set of Y . Let L be a Cartier divisor on X with L ∼R k(KX/Y +∆) for some
positive integer k. Let H be a big Cartier divisor on Y such that |H| is free. Then(

s⊗
f∗OX(L)

)∗∗

⊗OY (KY + lH)

is generically generated by global sections for all integers s ≥ 1 and l ≥ n+ 1.

Theorem 1.9. In Theorem 1.8, we assume that H† is a nef and big Cartier divisor on
Y such that |H†| is not necessarily free. Then we have that(

s⊗
f∗OX(L)

)∗∗

⊗OY (KY + lH†)

is generically generated by global sections for all integers s ≥ 1 and l ≥ n2 +min{2, k}.

We note that Iwai’s analytic method can not be applied to log canonical pairs because
it depends on L2 method. We also note that Nakayama’s theory of ω-sheaves can not be
directly applied to the study of log canonical pairs.

Let us quickly explain the idea of the proof of Theorem 1.7, which is mainly due to
Nakayama (see [N, Chapter V]). Let f : X → Y be a surjective morphism between smooth
projective varieties and let H be an ample Cartier divisor on Y such that |H| is free. We
fix a positive integer k ≥ 2. Then we can construct a surjective morphism g : Z → Y
from a smooth projective variety Z and a direct summand F of g∗OZ(KZ) such that there
exists a generically isomorphic injection

F ↪→
(
f∗ω

⊗k
X/Y ⊗ ωY ⊗OY (H)

)∗∗
.

By Kollár’s vanishing theorem, we have

H i(Y,F ⊗OY ((n+ 1− i)H)) = 0

for every i > 0, where n = dim Y . Therefore, by Castelnuovo–Mumford regularity,
F ⊗OY ((n+ 1)H) is generated by global sections. This implies that(

f∗ω
⊗k
X/Y

)∗∗
⊗ ωY ⊗OY ((n+ 2)H)

is generically generated by global sections. Note that we do not try to establish any
vanishing theorems for f∗ω

⊗k
X/Y ⊗ ωY ⊗ OY (H) directly. By the above observation, it is

natural to consider:
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Definition 1.10 (Mixed-ω-sheaf and pure-ω-sheaf, see Definition 5.1). A torsion-free
coherent sheaf F on a normal quasi-projective variety W is called a mixed-ω-sheaf if there
exist a projective surjective morphism f : V → W from a smooth quasi-projective variety
V and a simple normal crossing divisor D on V such that F is a direct summand of
f∗OV (KV +D). When D = 0, F is called a pure-ω-sheaf on W .

For the study of klt pairs, the notion of pure-ω-sheaves is sufficient and is essentially
due to Nakayama (see [N, Chapter V]). In this paper, we study some basic properties of
mixed-ω-sheaves. They are indispensable for the study of log canonical pairs. Of course,
the theory of mixed-ω-sheaves (resp. pure-ω-sheaves) in this paper is based on that of
mixed (resp. pure) Hodge structures. Roughly speaking, Nakayama only treats pure-ω-
sheaves in [N, Chapter V]. However, his theory of ω-sheaves is more sophisticated and
some of his results are much sharper than ours. We do not try to make the framework
discussed in this paper supersede Nakayama’s theory of ω-sheaves in [N, Chapter V].
One of the main purposes of this paper is to make Nakayama’s theory of ω-sheaves more
accessible and make it applicable to the study of log canonical pairs. Theorem 9.3 (and
Remark 9.4) is one of the main results of this paper, which we call a fundamental theorem
of the theory of mixed-ω-sheaves.

Theorem 1.11 (see [N, Chapter V, 3.35. Theorem], Theorem 9.3, and Remark 9.4). Let
f : X → Y be a surjective morphism from a normal projective variety X onto a smooth
projective variety Y . Let L be a Cartier divisor on X and let ∆ be an effective R-divisor
on X such that KX + ∆ is R-Cartier. Let D be an R-divisor on Y . Let k be a positive
integer with k ≥ 2. Assume the following conditions:

(i) (X,∆) is log canonical (resp. klt) over a nonempty Zariski open set of Y , and
(ii) L+ f ∗D − k(KX/Y +∆)− f ∗A is semi-ample for some big R-divisor A on Y .

If f∗OY (L) ̸= 0, then there exist a mixed-ω-big-sheaf (resp. pure-ω-big-sheaf) F on Y and
a generically isomorphic injection

F ↪→ OY (KY + ⌈D⌉)⊗ (f∗OX(L))
∗∗ .

For the precise definition of mixed-ω-big-sheaves and pure-ω-big-sheaves, see Definition
5.3 below.

As an application of Theorem 1.11, we give a detailed proof of:

Theorem 1.12 ([N, Chapter V, 4.1. Theorem (1)], [Fn11, Section 3], and Theorem 11.3).
Let f : X → Y be a surjective morphism from a normal projective variety X onto a smooth
projective variety Y with connected fibers. Let ∆ be an effective R-divisor on X such that
KX +∆ is R-Cartier and that (X,∆) is log canonical over a nonempty Zariski open set
of Y . Let D be an R-Cartier R-divisor on X such that D− (KX/Y +∆) is nef. Then, for
any R-divisor Q on Y , we have

κσ(X,D + f ∗Q) ≥ κσ(F,D|F ) + κ(Y,Q)

and
κσ(X,D + f ∗Q) ≥ κ(F,D|F ) + κσ(Y,Q)

where F is a sufficiently general fiber of f : X → Y .

We note that κσ(X,D) and κ(X,D) denote Nakayama’s numerical dimension and the
Iitaka dimension of D, respectively. Theorem 1.12 already played a crucial role in the
theory of minimal models. We need Theorem 1.12 for the proof of the following famous
and fundamental result on the existence theorem of good minimal models for klt pairs.
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Theorem 1.13 ([DHP, Remark 2.6], [GL, Theorem 4.3], and [Fn11, Theorem 3.2]). Let
(X,∆) be a projective klt pair such that ∆ is a Q-divisor. Then (X,∆) has a good minimal
model if and only if κσ(X,KX +∆) = κ(X,KX +∆).

We explain the organization of this paper. In Section 2, we collect some basic definitions.
In Section 3, we prepare some useful and important lemmas. They will play a crucial role
in this paper. In Section 4, we quickly explain some basic properties of Viehweg’s weakly
positive sheaves and big sheaves. In Section 5, we introduce mixed-ω-sheaves and mixed-
ω-big-sheaves. In Sections 6 and 7, we prove some basic properties of mixed-ω-sheaves
based on the theory of mixed Hodge structures. In Section 8, we treat a very special but
interesting case. More precisely, we treat weakly semistable morphisms f : X → Y in the
sense of Abramovich–Karu with the assumption that the geometric generic fiber Xη of
f : X → Y has a good minimal model. In this case, we can prove some strong results
with the aid of the theory of minimal models. Section 9 is the main part of this paper.
We prove Theorem 1.11. Section 10 is devoted to the proof of Theorems 1.7, 1.8, and
1.9. In Section 11, we prove Theorem 1.12, which has already played a crucial role in
the theory of minimal models, and a slight generalization of the twisted weak positivity
theorem, which is an extension of results of various people. In the final section: Section
12, we give a sketch of the proof of Theorem 1.6. The proof is essentially analytic and is
independent of the other sections.

Acknowledgments. During the preparation of this paper, the author was partially sup-
ported by JSPS KAKENHI Grant Numbers JP16H03925, JP16H06337, JP19H01787,
JP20H00111, JP21H00974, JP21H04994. He thanks Masataka Iwai, Takumi Murayama,
and Sho Ejiri for useful comments, suggestions, and discussions. In 2020, he gave a series
of lectures based on a preprint version of this paper in Tianyuan Workshop, which was
organized by Lei Zhang. The author thanks him and every audience.

We will work over C, the complex number field, throughout this paper. We note that
a scheme is a separated scheme of finite type over C and a variety is an integral scheme.

2. Preliminary

In this section, we collect some basic definitions. For the details, see [Fn2], [Fn6], and
[Fn10].

Let us start with the definition of canonical sheaves and canonical divisors.

Definition 2.1 (Canonical sheaf and canonical divisor). Let X be an equidimensional
scheme of dimension n and let a : X → SpecC be the structure morphism. Then the
dualizing complex of X is ω•

X = a!C, where a! is the functor obtained in [H, Chapter
VII. Corollary 3.4 (a)] (see also [C, Section 3.3]). Then we put

ωX := h−n(ω•
X)

and call it the canonical sheaf of X.
We further assume that X is normal. Then a canonical divisor KX of X is a Weil

divisor on X such that
OXsm(KX) ≃ Ωn

Xsm

holds, where Xsm is the largest smooth Zariski open set of X.
It is well known that

OX(KX) ≃ ωX

holds when X is normal.
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If f : X → Y is a morphism between Gorenstein schemes, then we put

ωX/Y := ωX ⊗ f ∗ω⊗−1
Y .

If f : X → Y is a morphism from a normal scheme X to a normal Gorenstein scheme
Y , then we put

KX/Y := KX − f ∗KY .

Let us quickly look at the definition of singularities of pairs.

Definition 2.2 (Singularities of pairs). Let X be a normal variety and let ∆ be an
effective R-divisor on X such that KX +∆ is R-Cartier. Let f : Y → X be a resolution
of singularities of X such that Exc(f)∪ f−1

∗ ∆ has simple normal crossing support, where
Exc(f) is the exceptional locus of f on Y and f−1

∗ ∆ is the strict transform of ∆ on Y .
Then we can write

KY = f ∗(KX +∆) +
∑
i

aiEi

with f∗ (
∑

i aiEi) = −∆. We say that (X,∆) is log canonical (resp. klt) if ai ≥ −1
(resp. ai > −1) for every i. If ∆ = 0 and ai ≥ 0 holds for every i, then we say that X has
only canonical singularities.

If (X,∆) is log canonical and there exist a resolution of singularities f : Y → X as
above and a prime divisor Ei on Y with ai = −1, then f(Ei) is called a log canonical
center of (X,∆).

Definition 2.3 (Dlt pairs). Let (X,∆) be a log canonical pair. If there exists a resolution
of singularities f : Y → X such that the exceptional locus Exc(f) of f is a divisor on Y ,
Exc(f) ∪ f−1

∗ ∆ has simple normal crossing support, and

KY = f ∗(KX +∆) +
∑
i

aiEi

with ai > −1 for every f -exceptional divisor Ei, then the pair (X,∆) is called a dlt pair.

The following definitions are very useful in this paper.

Definition 2.4 (Horizontal and vertical divisors). Let f : X → Y be a dominant mor-
phism between normal varieties and let D be an R-divisor on X. We can write

D = Dhor +Dver

such that every irreducible component of Dhor (resp. Dver) is mapped (resp. not mapped)
onto Y . If D = Dhor (resp. D = Dver), then D is said to be horizontal (resp. vertical).

Definition 2.5 (Operations for R-divisors). LetD =
∑

i diDi be an R-divisor on a normal
variety X, where Di is a prime divisor on X for every i, Di ̸= Dj for i ̸= j, and di ∈ R
for every i. Then we put

⌊D⌋ =
∑
i

⌊di⌋Di, {D} = D − ⌊D⌋, and ⌈D⌉ = −⌊−D⌋.

Note that ⌊di⌋ is the integer which satisfies di − 1 < ⌊di⌋ ≤ di. We also note that ⌊D⌋,
⌈D⌉, and {D} are called the round-down, round-up, and fractional part of D respectively.

If 0 ≤ di ≤ 1 for every i, then we say that D is a boundary R-divisor on X. We
note that ∼Q (resp. ∼R) denotes the Q-linear (resp. R-linear) equivalence of Q-divisors
(resp. R-divisors).
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In this paper, we will repeatedly use the following notation:

D=1 =
∑
di=1

Di, D>1 =
∑
di>1

diDi, and D<0 =
∑
di<0

diDi.

We recall the following definition for the reader’s convenience.

Definition 2.6 (Generic generation). Let F be a coherent sheaf on a variety X. We say
that F is generated by global sections on U , where U is a Zariski open set of X, if the
natural map

H0(X,F)⊗OX → F
is surjective on U . We simply say that F is generated by global sections when U = X. We
say that F is generically generated by global sections if F is generated by global sections
on some nonempty Zariski open set of X.

We close this section with the definition of exceptional divisors for proper surjective
morphisms between normal varieties.

Definition 2.7 (Exceptional divisors). Let f : X → Y be a proper surjective morphism
between normal varieties. Let E be a Weil divisor on X. We say that E is f -exceptional
if codimY f(SuppE) ≥ 2. We note that f is not always assumed to be birational.

3. Preliminary lemmas

In this section, we collect some useful and important lemmas for the reader’s conve-
nience. They are more or less well known to the experts.

Let us start with the following easy lemmas on R-divisors. We will use them repeatedly
in this paper.

Lemma 3.1. Let A be a Cartier divisor on a normal variety V . Let B be an R-Cartier
R-divisor on V such that B =

∑
i∈I biBi where bi ∈ R and Bi is a prime divisor on V

for every i with Bi ̸= Bj for i ̸= j. Assume that A ∼R B. Then we can take a Q-Cartier
Q-divisor C =

∑
i∈I ciBi on V such that

(i) A ∼Q C,
(ii) ci = bi holds if bi ∈ Q, and
(iii) |ci − bi| ≪ 1 holds for bi ∈ R \Q.

In particular, SuppC = SuppB, ⌊C⌋ = ⌊B⌋, ⌈C⌉ = ⌈B⌉, and Supp{C} = Supp{B}.

Proof. It is an easy exercise. For the details, see, for example, the proof of [Fn2, Lemma
4.15]. □
Lemma 3.2. Let D =

∑
i∈I aiDi be an R-divisor on a smooth projective variety V , where

ai ∈ R and Di is a prime divisor on V for every i with Di ̸= Dj for i ̸= j. Assume that
D is semi-ample. Then we can construct a Q-divisor D† =

∑
i∈I biDi such that

(i) D† is semi-ample,
(ii) bi = ai holds if ai ∈ Q, and
(iii) |bi − ai| ≪ 1 holds for ai ∈ R \Q.

Proof. Since D is semi-ample, we can write D =
∑

j∈J mjMj where mj is a positive real
number and Mj is a semi-ample Cartier divisor on V for every j. As usual, by perturbing
mjs suitably, we get a desired semi-ample Q-divisor D† on V . For the details, see, for
example, the proof of [Fn2, Lemma 4.15]. □
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Next, we treat a very useful covering trick, which is essentially due to Yujiro Kawamata.
We will use it in the proof of Theorem 9.3.

Lemma 3.3. Let f : V → W be a projective surjective morphism between smooth quasi-
projective varieties and let H be a Cartier divisor on W . Let d be an arbitrary positive
integer. Then we can take a finite flat morphism τ : W ′ → W from a smooth quasi-
projective variety W ′ and a Cartier divisor H ′ on W ′ such that τ ∗H ∼ dH ′ and that V ′ =
V ×W W ′ is a smooth quasi-projective variety with ωV ′/W ′ = ρ∗ωV/W , where ρ : V ′ → V .
By construction, we may assume that τ : W ′ → W is Galois.

Proof. We take general very ample Cartier divisors D1 and D2 with the following prop-
erties.

(i) H ∼ D1 −D2,
(ii) D1, D2, f

∗D1, and f ∗D2 are smooth,
(iii) D1 and D2 have no common components, and
(iv) Supp(D1 +D2) and Supp(f ∗D1 + f ∗D2) are simple normal crossing divisors.

We take a finite flat cover due to Kawamata with respect to W and D1 + D2 (see [EV,
3.19. Lemma] and [V3, Lemma 2.5]). Then we obtain τ : W ′ → W and H ′ such that
τ ∗H ∼ dH ′. By the construction of the above Kawamata cover τ : W ′ → W , we may
assume that the ramification locus Σ of τ in W is a general simple normal crossing divisor.
This means that f ∗P is a smooth divisor for any irreducible component P of Σ and that
f ∗Σ is a simple normal crossing divisor on V . In this situation, we can easily check that
V ′ = V ×W W ′ is a smooth quasi-projective variety.

V ′ ρ //

f ′

��

V

f
��

W ′
τ

// W

By construction, we can also easily check that ωV ′/W ′ = ρ∗ωV/W by the Hurwitz formula.
Let us see the construction of f ′ : V ′ → W ′ more precisely for the reader’s convenience.

Let A be an ample invertible sheaf on W such that A⊗d⊗OW (−Di) is generated by global
sections for i = 1, 2. We put n = dimW . We take smooth divisors

H
(1)
1 , . . . , H (1)

n , H
(2)
1 , . . . , H (2)

n

on W in general position such that A⊗d = OW (Di +H
(i)
j ) for 1 ≤ j ≤ n and i = 1, 2. Let

Z
(i)
j be the cyclic cover associated to A⊗d = OW (Di + H

(i)
j ) for 1 ≤ j ≤ n and i = 1, 2.

Then W ′ is the normalization of(
Z

(1)
1 ×W · · · ×W Z(1)

n

)
×W

(
Z

(2)
1 ×W · · · ×W Z(2)

n

)
.

We note that W ′ is smooth since
n⋂

j=1

(Di ∩H
(i)
j ) = ∅

for i = 1, 2. For the details, see, for example, [EV, 3.19. Lemma] and [V3, Lemma 2.5].

Let S
(i)
j be the cyclic cover of V associated to (f ∗A)⊗d = OV (f

∗Di + f ∗H
(i)
j ). Then we

define V ′ as the normalization of(
S
(1)
1 ×V · · · ×V S(1)

n

)
×V

(
S
(2)
1 ×V · · · ×V S(2)

n

)
.
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As before, V ′ is smooth since
n⋂

j=1

(f ∗Di ∩ f ∗H
(i)
j ) = ∅

for i = 1, 2. Note that ρ : V ′ → V is a finite flat morphism between smooth quasi-
projective varieties. Since V ×W W ′ → V is finite and flat and V is smooth, V ×W W ′ is
Cohen–Macaulay (see, for example, [KM, Corollary 5.5]). We put

Σ = D1 +D2 +
∑
i,j

H
(i)
j .

Then Σ is a simple normal crossing divisor on W . Let U be the largest Zariski open set
of W such that f is smooth over U . We put

Π = Σsing ∪ ((W \ U) ∩ Σ) ,

where Σsing is the singular locus of Σ. Since

D1, D2, H
(1)
1 , . . . , H (1)

n , H
(2)
1 , . . . , H (2)

n

are general, codimWΠ ≥ 2 and codimV f
−1Π ≥ 2 hold. We note that τ : W ′ → W is

étale outside Σ. Let P be any closed point of Σ \ Π. Then f : V → W is smooth over
a neighborhood of P . Hence we can check that V ×W W ′ is smooth in codimension
one. Therefore, V ×W W ′ is normal. Since ρ factors through V ×W W ′ by construction,
we see that V ′ = V ×W W ′ by Zariski’s main theorem. By the above description, if
KW ′ = τ ∗KW + R, then KV ′ = ρ∗KV + f ′∗R. Therefore, ωV ′/W ′ = ρ∗ωV/W holds. By the
above construction of τ : W ′ → W , we see that τ : W ′ → W is Galois. □
We give a very important remark on Lemma 3.3.

Remark 3.4. In the proof of Lemma 3.3, let S be any simple normal crossing divisor
on V . Then we can choose the ramification locus Σ of τ such that f ∗P ̸⊂ S for any
irreducible component P of Σ and that f ∗Σ∪S is a simple normal crossing divisor on V .
If we choose Σ as above, then we obtain that ρ∗S is a simple normal crossing divisor on
V ′.

Lemma 3.5 is an elementary property of semi-ample R-divisors. We give a proof for
the sake of completeness.

Lemma 3.5. Let f : V → W be a surjective morphism between normal projective vari-
eties. Let D be a nef and f -semi-ample R-divisor on V and let H be an ample R-divisor
on W . Then aD + bf ∗H is semi-ample for any positive real numbers a and b.

Proof. Since D is f -semi-ample, there exists a surjective morphism g : V → Z with the
following commutative diagram

V

f   A
AA

AA
AA

A
g // Z

h~~}}
}}
}}
}}

W

such that

(i) Z is a normal projective variety, and
(ii) D ∼R g∗A, where A is a nef and h-ample R-divisor on Z.
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We can take a large positive real number c such that A + ch∗H is ample because H is
ample and A is h-ample. If b/a ≥ c holds, then

aA+ bh∗H = a(A+ ch∗H) + (b− ac)h∗H

is ample. If b/a < c holds, then

aA+ bh∗H = (a− b/c)A+ (b/c)(A+ ch∗H)

is ample. Hence aA+ bh∗H is always ample. This implies that

aD + bf ∗H ∼R g∗(aA+ bh∗H)

is semi-ample for any positive real numbers a and b. □
Finally, let us explain Viehweg’s fiber product trick. We include the proof for the

benefit of the reader. We will use it in the proof of Theorems 1.8 and 1.9 in Section 10.

Lemma 3.6 (see [M, (4.9) Lemma]). Let V be a reduced Gorenstein scheme. Note that
V may be reducible. We consider

V ′ δ−→ V ν ν−→ V

where ν : V ν → V is the normalization and δ : V ′ → V ν is a resolution of singularities.
Then, for every positive integer n, we have

(3.1) ν∗OV ν (nKV ν ) ⊂ ω⊗n
V

and

(3.2) δ∗OV ′(nKV ′ + E) ⊂ OV ν (nKV ν )

where E is any δ-exceptional divisor on V ′. In particular, we have

(3.3) (ν ◦ δ)∗OV ′(nKV ′ + E) ⊂ ω⊗n
V

for every positive integer n. If U is a Zariski open set of V such that ν◦δ is an isomorphism
over U , then the inclusion (3.3) is an isomorphism over U .

Proof. In Steps 1 and 2, we will prove (3.2) and (3.1), respectively.

Step 1. By taking the double dual of δ∗OV ′(nKV ′+E), we obtain OV ν (nKV ν ). Therefore,
we have

δ∗OV ′(nKV ′ + E) ⊂ OV ν (nKV ν )

for every integer n.

Step 2. Since ν is birational, the trace map ν∗OV ν (KV ν ) → ωV is a generically isomorphic
injection

(3.4) ν∗OV ν (KV ν ) ↪→ ωV .

More precisely, the above trace map is an isomorphism over the isomorphism locus of ν
and then it is injective since ν∗OV ν (KV ν ) is torsion-free. Since ν is finite,

(3.5) ν∗ν∗OV ν (KV ν ) → OV ν (KV ν )

is surjective. Since OV ν (KV ν ) is torsion-free, the kernel of (3.5) is the torsion part of
ν∗ν∗OV ν (KV ν ). Therefore, by (3.4), we get an inclusion

(3.6) OV ν (KV ν ) ↪→ ν∗ωV

because ν∗ωV is torsion-free. Let n be a positive integer with n ≥ 2. Then we have

OV ν (nKV ν ) = OV ν (KV ν + (n− 1)KV ν ) ↪→ OV ν (KV ν )⊗ ν∗ω⊗n−1
V



12 OSAMU FUJINO

by (3.6). Therefore, by taking ν∗, we get

ν∗OV ν (nKV ν ) ↪→ ν∗OV ν (KV ν )⊗ ω⊗n−1
V ↪→ ω⊗n

V

by (3.4). This is what we wanted.

By the above construction of (3.1) and (3.2), it is obvious that the inclusion

(ν ◦ δ)∗OV ′(nKV ′ + E) ⊂ ω⊗n
V

is an isomorphism over U . □

Lemma 3.7. Let f : X0 → Y0 be a projective surjective morphism between smooth quasi-
projective varieties and let ∆0 be an effective R-divisor on X0 such that Supp∆0 is a simple
normal crossing divisor on X0 and (X0,∆0) is log canonical over a nonempty Zariski open
set of Y0. Let L0 be a Cartier divisor on X0 such that L0 ∼R k(KX0/Y0 + ∆0) for some
positive integer k. Assume that f is flat. We consider the s-fold fiber product

Xs
0 := X0 ×Y0 X0 ×Y0 · · · ×Y0 X0︸ ︷︷ ︸

s

of X0 over Y0 and let f s : Xs
0 → Y0 be the induced morphism. We take a resolution of

singularities ρ : X
(s)
0 → Xs

0 which is an isomorphism over a nonempty Zariski open set of
Y0. Then we can write

O
X

(s)
0
(K

X
(s)
0
) = ρ∗ωXs

0
⊗O

X
(s)
0
(R)

where R is an (f s ◦ ρ)-vertical Cartier divisor by construction. Let pi : X
s
0 → X0 be the

i-th projection. We put πi = pi ◦ ρ : X(s)
0 → X0. We consider

L
(s)
0 :=

s∑
i=1

π∗
iL0 + kR.

We further assume that f∗OX0(L0) is locally free. Then there exists a generically isomor-
phic injection

f (s)
∗ O

X
(s)
0
(L

(s)
0 ) ↪→

s⊗
i=1

f∗OX0(L0)

with f (s) = f s ◦ ρ. We have

L
(s)
0 ∼R k

(
K

X
(s)
0 /Y0

+
s∑

i=1

π∗
i∆0

)
.

Note that (
X

(s)
0 ,

s∑
i=1

π∗
i∆0

)
is log canonical over a nonempty Zariski open set of Y0. We also note that X

(s)
0 may be

reducible, that is, X
(s)
0 may be a disjoint union of smooth varieties.

Proof. By the flat base change theorem, we have

ωXs
0/Y0 =

s⊗
i=1

p∗iωX0/Y0 .
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In particular, Xs
0 is Gorenstein. We note that

L
(s)
0 =

s∑
i=1

ρ∗p∗i (kKX0/Y0 + (L0 − kKX0/Y0)) + kR

∼ kK
X

(s)
0 /Y0

+
s∑

i=1

π∗
i (L0 − kKX0/Y0).

(3.7)

Claim. We have the following isomorphism of locally free sheaves:

f s
∗OXs

0

(
s∑

i=1

p∗iL0

)
≃

s⊗
f∗OX0(L0).

Proof of Claim. We use induction on s. If s = 1, then the statement is obvious. So we
assume that s ≥ 2. We consider the following commutative diagram

Xs
0

fs

""E
EE

EE
EE

EE

ps

��

q // Xs−1
0

fs−1

��
X0

f
// Y0

where q = (p1, · · · , ps−1). Then we have

(3.8) OXs
0

(
s∑

i=1

p∗iL0

)
≃ OXs

0
(p∗sL0)⊗ q∗OXs−1

0

(
s−1∑
i=1

p∗iL0

)
.

Therefore, we obtain

f s
∗OXs

0

(
s∑

i=1

p∗iL0

)
≃ f∗ps∗

(
OXs

0
(p∗sL0)⊗ q∗OXs−1

0

(
s−1∑
i=1

p∗iL0

))

≃ f∗

(
OX0(L0)⊗ ps∗q

∗OXs−1
0

(
s−1∑
i=1

p∗iL0

))

≃ f∗

(
OX0(L0)⊗ f ∗f s−1

∗ OXs−1
0

(
s−1∑
i=1

p∗iL0

))

≃ f∗

(
OX0(L0)⊗ f ∗

(
s−1⊗

f∗OX0(L0)

))

≃ f∗OX0(L0)⊗
s−1⊗

f∗OX0(L0)

≃
s⊗

f∗OX0(L0).

Note that the first isomorphism follows from (3.8), the second one is due to the projection
formula, the third one is obtained by the flat base change theorem, the fourth one is due
to induction on s, and the fifth one follows from the projection formula. Hence we obtain
the desired isomorphism. □
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Let us go back to the proof of Lemma 3.7. We have an inclusion

ρ∗OX
(s)
0
(L

(s)
0 ) ⊂ ω⊗k

Xs
0/Y0

⊗OXs
0

(
s∑

i=1

p∗i (L0 − kKX0/Y0)

)

≃ OXs
0

(
s∑

i=1

p∗iL0

)
by (3.7) and Lemma 3.6, which is an isomorphism over a nonempty Zariski open set of
Y0. By taking f s

∗ , the Claim yields a generically isomorphic injection

f (s)
∗ O

X
(s)
0
(L

(s)
0 ) ⊂ f s

∗OXs
0

(
s∑

i=1

p∗iL0

)

≃
s⊗

i=1

f∗OX0(L0),

where f (s) = f s ◦ ρ : X(s)
0 → Y0. By assumption, L0 − kKX0/Y0 ∼R k∆0. Therefore,

L
(s)
0 ∼R k

(
K

X
(s)
0 /Y0

+
s∑

i=1

π∗
i∆0

)
by (3.7). We can take a nonempty Zariski open set U of Y0 such that f is smooth over
U , Supp∆ is relatively simple normal crossing over U , and ρ is an isomorphism over U .

Then we see that
(
X

(s)
0 ,
∑s

i=1 π
∗
i∆0

)
is log canonical over U . □

4. Weakly positive sheaves and big sheaves

We briefly recall some basic properties of Viehweg’s weakly positive sheaves and big
sheaves. For the details, see [Fn10, Chapter 3], [V1], [V2], and [V3].

Definition 4.1 (Weak positivity and bigness). Let F be a torsion-free coherent sheaf
on a smooth quasi-projective variety W . We say that F is weakly positive if, for every
positive integer α and every ample invertible sheaf H, there exists a positive integer β

such that Ŝαβ(F)⊗H⊗β is generically generated by global sections. We say that a nonzero
torsion-free coherent sheaf F is big (in the sense of Viehweg) if, for every ample invertible

sheaf H, there exists a positive integer a such that Ŝa(F)⊗H⊗−1 is weakly positive.

Remark 4.2. In this paper and [Fn10], we adopt Viehweg’s definition of weakly positive
sheaves in [V2, Definition 3.1]. Note that it is slightly weaker than [V1, Definition 2.1].
The definition of weakly positive sheaves depends on the literature. Definition 4.1 seems
to be sufficient and suitable for applications to the Iitaka conjecture (see [Fn10]).

Example 4.3. Let D be a Cartier divisor on a smooth projective variety W . Then
OW (D) is weakly positive if and only if D is pseudo-effective in the usual sense. We note
that OW (D) is big in the sense of Definition 4.1 if and only if D is big in the usual sense,
that is, κ(W,D) = dimW .

For the reader’s convenience, let us recall the following basic properties of big sheaves
without proof.

Lemma 4.4 ([V2, Lemma 3.6] and [Fn10, Lemma 3.1.15]). Let F be a nonzero torsion-
free coherent sheaf on a smooth quasi-projective variety W . Then the following three
conditions are equivalent.
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(i) There exist an ample invertible sheaf H on W , some positive integer ν, and an

inclusion
⊕

H ↪→ Ŝν(F), which is an isomorphism over a nonempty Zariski open
set of W .

(ii) For every invertible sheaf M on W , there exists some positive integer γ such that

Ŝγ(F)⊗M⊗−1 is weakly positive. In particular, F is a big sheaf.
(iii) There exist some positive integer γ and an ample invertible sheaf M on W such

that Ŝγ(F)⊗M⊗−1 is weakly positive.

We will use the following three easy lemmas on big sheaves in this paper. So we
explicitly state them here for the reader’s convenience.

Lemma 4.5. Let F be a weakly positive sheaf and let H be an ample invertible sheaf on
a smooth quasi-projective variety W . Then F ⊗H is big.

We give a proof for the sake of completeness.

Proof of Lemma 4.5. Since F is weakly positive, Ŝ2b(F)⊗H⊗b is generically generated by
global sections for some positive integer b. By replacing b with a multiple, we may assume

that H⊗b−1 is generated by global sections. Then Ŝ2b(F ⊗H)⊗H⊗−1 = Ŝ2b(F)⊗H⊗2b−1

is generically generated by global sections. In particular, Ŝ2b(F ⊗ H) ⊗ H⊗−1 is weakly
positive. This implies that F ⊗H is big by Lemma 4.4. □
Lemma 4.6. Let G be any nonzero torsion-free coherent sheaf on a smooth quasi-projective
variety W and let H be an ample invertible sheaf on W . Then there exists a positive in-
teger l such that G ⊗H⊗l is big.

Proof. Since H is ample, G⊗H⊗m is generated by global sections for some positive integer
m. Therefore, there exists a surjection⊕

finite

OW → G ⊗H⊗m.

This implies that G ⊗H⊗m is weakly positive (see [Fn10, Lemma 3.1.12 (ii)]). By Lemma
4.5, we obtain that G ⊗H⊗l is big for every integer l ≥ m+ 1. □
Lemma 4.7. Let F be a torsion-free coherent sheaf on a smooth quasi-projective variety
W and let τ : W ′ → W be a finite surjective morphism from a smooth quasi-projective
variety W ′. Assume that τ ∗F is big. Then F is a big sheaf on W .

We include the proof for the benefit of the reader.

Proof of Lemma 4.7. We take an ample invertible sheaf H on W . By replacing W with
W \ Σ for some suitable closed subset Σ of codimension ≥ 2 (see, for example, [Fn10,
Lemma 3.1.12 (i)]), we may assume that F is locally free. Since τ ∗F is big by assumption,
there exists a positive integer a such that Sa(τ ∗F) ⊗ τ ∗H⊗−1 = τ ∗ (Sa(F)⊗H⊗−1) is
weakly positive (see Lemma 4.4). Therefore, Sa(F) ⊗H⊗−1 is weakly positive since τ is
finite (see, for example, [Fn10, Lemma 3.1.12 (v)]). This means that F is big by Lemma
4.4. □

5. Mixed-ω-sheaves and mixed-ω-big sheaves

In this section, we introduce mixed-ω-sheaves, mixed-ω-big-sheaves, mixed-ω̂-sheaves,
and mixed-ω̂-big-sheaves. We also treat some important examples in Lemmas 5.5, 5.9,
and 5.10.

Let us start with the definition of mixed-ω-sheaves and pure-ω-sheaves.
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Definition 5.1 (Mixed-ω-sheaf and pure-ω-sheaf). A torsion-free coherent sheaf F on
a normal quasi-projective variety W is called a mixed-ω-sheaf if there exist a projective
surjective morphism f : V → W from a smooth quasi-projective variety V and a simple
normal crossing divisor D on V such that F is a direct summand of f∗OV (KV + D).
When D = 0, F is called a pure-ω-sheaf on W .

We give a very important remark on Definition 5.1.

Remark 5.2 (Pure-ω-sheaves versus Nakayama’s ω-sheaves). The notion of pure-ω-
sheaves is essentially the same as that of Nakayama’s ω-sheaves in [N] when we treat
torsion-free coherent sheaves on normal projective varieties (see the Remark after [N,
Chapter V, 3.8. Definition]). However, the definition of pure-ω-sheaves in Definition 5.1
does not coincide with [N, Chapter V, 3.8. Definition]. Our definition seems to be more
reasonable than Nakayama’s from the mixed Hodge theoretic viewpoint.

For some geometric applications, the notion of mixed-ω-big-sheaves and pure-ω-big-
sheaves is very useful.

Definition 5.3 (Mixed-ω-big-sheaf and pure-ω-big-sheaf). Let F be a torsion-free co-
herent sheaf on a normal quasi-projective variety W . If there exist projective surjective
morphisms f : V → W , p : V → Z, and an ample divisor A on Z satisfying the following
conditions:

(i) V is a smooth quasi-projective variety,
(ii) Z is a normal quasi-projective variety,
(iii) D is a simple normal crossing divisor on V ,
(iv) there exists a projective surjective morphism q : Z → W such that f = q ◦ p, and
(v) F is a direct summand of f∗OV (KV +D + P ), where P is a Cartier divisor on V

such that P ∼Q p∗A,

then F is called a mixed-ω-big-sheaf on W . As in Definition 5.1, F is called a pure-ω-
big-sheaf on W when D = 0. The relationships between V , W , Z and f , p, q can be
visualized as follows.

V

f

��

p

  A
AA

AA
AA

A

Z

q~~}}
}}
}}
}}

W

Remark 5.4. Of course, we defined mixed-ω-big-sheaves and pure-ω-big-sheaves referring
to [N, Chapter V, 3.16. Definition (1)]. However, Nakayama’s definition of ω-bigness is
different from ours. Roughly speaking, we treat only a special case where X = Y in [N,
Chapter V, 3.16. Definition (1)].

Lemma 5.5 gives a very basic example of mixed-ω-sheaves.

Lemma 5.5. Let V be a smooth quasi-projective variety and let D be a simple normal
crossing divisor on V . Let L be a semi-ample Cartier divisor on V . Then OV (KV +D+L)
is a mixed-ω-sheaf on V and OV (KV + L) is a pure-ω-sheaf on V .

Although this lemma is well known, we give a proof for the sake of completeness.
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Proof of Lemma 5.5. Let m be a positive integer such that |mL| is free. We take a general
section s ∈ H0(V,OV (mL)), whose zero divisor is B. We may assume that B is a smooth
divisor, B and D have no common irreducible components, and Supp(B +D) is a simple
normal crossing divisor on V . The dual of

s : OV → OV (mL)

defines an OV -algebra structure on

m−1⊕
i=0

OV (−iL).

We put

π : Z := SpecV

m−1⊕
i=0

OV (−iL) → V.

Then Z is a smooth quasi-projective variety and π∗D is a simple normal crossing divisor
on Z by construction. We can check that

π∗OZ(KZ + π∗D) ≃
m−1⊕
i=0

OV (KV +D + iL)

since π∗OV =
⊕m−1

i=0 OV (−iL). This means that OV (KV +D + L) is a mixed-ω-sheaf on
V . We put D = 0 in the above argument. Then we see that OV (KV +L) is a pure-ω-sheaf
on V . □

We treat two elementary lemmas.

Lemma 5.6. Let F be a mixed-ω-big-sheaf (resp. pure-ω-big-sheaf) on a normal quasi-
projective variety W . Then F is a mixed-ω-sheaf (resp. pure-ω-sheaf) on W .

Proof. We may assume that F is a direct summand of f∗OV (KV +D+P ) as in Definition
5.3. By Lemma 5.5, OV (KV +D + P ) is a mixed-ω-sheaf on V . Therefore, we see that
F is a mixed-ω-sheaf on W . If we put D = 0, then we see that F is a pure-ω-sheaf on
W . □
Lemma 5.7. Let F be a mixed-ω-sheaf (resp. pure-ω-sheaf) on a normal quasi-projective
variety W and let A be an ample invertible sheaf on W . Then F⊗A is a mixed-ω-big-sheaf
(resp. pure-ω-big-sheaf) on W .

Proof. We may assume that F is a direct summand of f∗OV (KV +D) as in Definition 5.1.
We put Z = W . Let A be an ample divisor on W such that OW (A) = A. Then F ⊗A is
a direct summand of f∗OV (KV +D + f ∗A). Therefore, F ⊗A is a mixed-ω-big-sheaf on
W . When D = 0, we see that F ⊗A is a pure-ω-big-sheaf on W . □

We can not replace the assumption that A is ample with one that A is big in Lemma
5.7.

Remark 5.8. Let F be a pure-ω-sheaf on a normal quasi-projective variety W and let
B be an effective big Cartier divisor on W . A simple example (see Example 7.2 below)
shows that F ⊗OW (B) is not necessarily a mixed-ω-big-sheaf on W .

Lemmas 5.9 and 5.10 give many nontrivial important examples of mixed-ω-sheaves and
mixed-ω-big-sheaves in the study of higher-dimensional algebraic varieties.
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Lemma 5.9. Let f : V → W be a projective surjective morphism from a smooth projec-
tive variety V onto a normal projective variety W . Let D be a simple normal crossing
divisor on V and let M be an R-divisor on V such that M − f ∗H is semi-ample for
some ample Q-divisor H on W . We assume that D and Supp{M} have no common
irreducible components and Supp(D + {M}) is a simple normal crossing divisor on V .
Then f∗OV (KV + D + ⌈M⌉) is a mixed-ω-big-sheaf on W and f∗OV (KV + ⌈M⌉) is a
pure-ω-big-sheaf on W .

Proof. By Lemma 3.2, we can construct a Q-divisor M † on V such that M † − f ∗H is
semi-ample, Supp{M †} = Supp{M}, and ⌈M †⌉ = ⌈M⌉. Therefore, we may assume that
M is a Q-divisor by replacing M with M †. By Kawamata’s covering construction, we can
construct a finite Galois cover π : V ′ → V from a smooth projective variety V ′ with the
following properties:

(i) π∗D is a simple normal crossing divisor on V ′,
(ii) π∗{M} is a Z-divisor on V ′,
(iii) Supp(π∗D + π∗{M}) is a simple normal crossing divisor on V ′, and

(iv) (π∗OV ′(KV ′ + π∗D + π∗M))G ≃ OV (KV +D+⌈M⌉), where G is the Galois group
of π : V ′ → V .

By assumption, π∗M is semi-ample. Let us consider the contraction morphism p : V ′ → Z
associated to |mπ∗M | for some sufficiently large and divisible positive integer m. Since
π∗M − (f ◦ π)∗H is semi-ample, we have a morphism q : Z → W with the following
commutative diagram:

V ′

f◦π

��

p

  A
AA

AA
AA

A

Z

q~~}}
}}
}}
}}

W

such that

(a) Z is a normal projective variety, and
(b) there is an ample Q-divisor A on Z with π∗M ∼Q p∗A.

Therefore, f∗OV (KV +D+⌈M⌉) is a mixed-ω-big-sheaf on W since it is a direct summand
of (f ◦π)∗OV ′(KV ′+π∗D+π∗M). We put D = 0 in the above argument. Then f∗OV (KV +
⌈M⌉) is a pure-ω-big-sheaf on W . □
Lemma 5.10. Let V be a smooth quasi-projective variety and let D be a simple normal
crossing divisor on V . Let B be a Q-divisor on V such that rB ∼ 0 for some positive
integer r, Supp{B} and D have no common irreducible components, and Supp({B}+D)
is a simple normal crossing divisor on V . Then there exist a generically finite proper
morphism π : V ′ → V from a smooth quasi-projective variety V ′ and a simple normal
crossing divisor D′ on V ′ such that OV (KV +D+⌈B⌉) is a direct summand of π∗OV ′(KV ′+
D′). In particular, OV (KV +D+ ⌈B⌉) is a mixed-ω-sheaf on V . When D = 0, OV (KV +
⌈B⌉) is obviously a pure-ω-sheaf on V .

Proof. If B ∼ 0, then there is nothing to prove. By replacing r suitably, we may assume
that iB ̸∼ 0 for 1 ≤ i ≤ r − 1 and that r ≥ 2. We consider the following OV -algebra

A =
r−1⊕
i=0

OV (⌊−iB⌋)



ON MIXED-ω-SHEAVES 19

defined by an isomorphism OV (−rB) ≃ OV . Let Z be the normalization of SpecVA.
Then we have

τ∗OZ(KZ + τ ∗D) ≃
r−1⊕
i=0

OV (KV +D + ⌈iB⌉)

where τ : Z → V . By construction, we see that (Z, τ ∗D) is dlt. We take a suitable
resolution of singularities ρ : V ′ → Z and write

KV ′ +D′ = ρ∗(KZ + τ ∗D) + E

where D′ is a reduced simple normal crossing divisor on V ′ and E is an effective ρ-
exceptional Q-divisor on V ′. We put π := τ ◦ ρ : V ′ → V . Then

π∗OV ′(KV ′ +D′) ≃ τ∗OZ(KZ + τ ∗D)

≃
r−1⊕
i=0

OV (KV +D + ⌈iB⌉).

Therefore, we have the desired statement. □
We close this section with the definition of mixed-ω̂-sheaves, mixed-ω̂-big-sheaves, pure-

ω̂-sheaves, and pure-ω̂-big-sheaves.

Definition 5.11 (Mixed-ω̂-sheaf, mixed-ω̂-big-sheaf, pure-ω̂-sheaf, and pure-ω̂-big-sheaf).
A torsion-free coherent sheaf G on a normal quasi-projective variety W is called a mixed-
ω̂-sheaf (resp. mixed-ω̂-big-sheaf) if there exist a mixed-ω-sheaf (resp. mixed-ω-big-sheaf)
F on W and a generically isomorphic injection F ↪→ G∗∗ into the double dual G∗∗ of G.
If F is a pure-ω-sheaf (resp. pure-ω-big-sheaf) in the above inclusion F ↪→ G∗∗, then G is
called a pure-ω̂-sheaf (resp. pure-ω̂-big-sheaf).

Remark 5.12. Let X be a smooth projective variety, let D be a simple normal crossing
divisor on X, let H be an ample Cartier divisor on X, and let B be an effective Cartier
divisor on X. Then OX(KX) is a pure-ω-sheaf, OX(KX + H) is a pure-ω-big-sheaf,
OX(KX+B) is a pure-ω̂-sheaf, and OX(KX+H+B) is a pure-ω̂-big-sheaf. By definition,
it is obvious that OX(KX+D) is a mixed-ω-sheaf, OX(KX+D+H) is a mixed-ω-big-sheaf,
OX(KX +D+B) is a mixed-ω̂-sheaf, and OX(KX +D+H +B) is a mixed-ω̂-big-sheaf.

Let f : X → Y be a surjective morphism between smooth projective varieties and let
∆ be a simple normal crossing divisor on X. Let k be a positive integer with k ≥ 2 and
let H be an ample Cartier divisor on Y . Then we will show that

OY (KY +H)⊗ f∗OX(k(KX/Y +∆))

is a mixed-ω̂-big-sheaf on Y when f∗OX(k(KX/Y + ∆)) ̸= 0. This is a special case of
Theorem 9.3, which we call a fundamental theorem of the theory of mixed-ω-sheaves.

6. Basic properties: Part 1

In this section, we treat the weak positivity and the bigness of mixed-ω-sheaves and
mixed-ω-big-sheaves, respectively.

Let us start with the following weak positivity theorem, which follows from the theory
of mixed Hodge structures.

Theorem 6.1. Let f : V → W be a projective surjective morphism between smooth quasi-
projective varieties. Let D be a simple normal crossing divisor on V . Then f∗OV (KV/W +
D) is weakly positive.
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Proof. We may assume that V and W are smooth projective varieties by compactifying
f : V → W suitably. Then this result is more or less well known. For the proof based
on the theory of variations of mixed Hodge structure (see [Fn1], [FFS], [FF], [Fs], and
so on), see [Fn9, Theorem 7.8 and Corollary 7.11]. For the proof based on the vanishing
theorem, see [Fn3, Theorem 8.4]. □

As an easy consequence of Theorem 6.1, we have:

Theorem 6.2 (Weak positivity). Let F be a mixed-ω-sheaf on a smooth quasi-projective
variety W . Then F ⊗ ω⊗−1

W is weakly positive.

Proof. We may assume that F is a direct summand of f∗OV (KV +D) as in Definition 5.1.
By Theorem 6.1, f∗OV (KV/W +D) is weakly positive. Then F ⊗ ω⊗−1

W is weakly positive
since it is a direct summand of f∗OV (KV/W +D). □
When F is a mixed-ω-big-sheaf on W in Theorem 6.2, F ⊗ ω⊗−1

W is not only weakly
positive but also big.

Theorem 6.3 (Bigness). Let F be a mixed-ω-big-sheaf on a smooth quasi-projective va-
riety W . Then F ⊗ ω⊗−1

W is big.

Proof. Without loss of generality, we may assume that F is a direct summand of f∗OV (KV+
D+P ) as in Definition 5.3. It is sufficient to prove that f∗OV (KV/W +D+P ) is big. Let

V

f

��

p

  A
AA

AA
AA

A

Z

q~~}}
}}
}}
}}

W

and A be as in Definition 5.3. Let H be an ample Cartier divisor on W . We take
a positive integer m such that mA − q∗H is ample. We can take a finite surjective
morphism τ : W ′ → W from a smooth quasi-projective variety W ′ and get the following
commutative diagram

V ′

f ′

� �

ρ // V

f

��
W ′

τ
// W

such that τ ∗H ∼ mH ′ for some Cartier divisor H ′, V ′ = V ×W W ′ is a smooth quasi-
projective variety, ρ∗D is a simple normal crossing divisor, and ρ∗ω⊗n

V/W = ω⊗n
V ′/W ′ holds

for every integer n (see Lemma 3.3 and Remark 3.4). By Lemma 4.7, It is sufficient to
prove that

τ ∗f∗OV (KV/W +D + P ) ≃ f ′
∗OV ′(KV ′/W ′ + ρ∗D + ρ∗P )

is a big sheaf on W ′. By construction, we see that ρ∗P − f ′∗H ′ is a semi-ample Cartier
divisor on V ′ since it isQ-linearly equivalent to ρ∗p∗(A−(1/m)q∗H). Therefore, by Lemma
5.5, OV ′(KV ′ + ρ∗D + ρ∗P − f ′∗H ′) is a mixed-ω-sheaf on V ′. Thus, E := f ′

∗OV ′(KV ′ +
ρ∗D + ρ∗P − f ′∗H ′) is a mixed-ω-sheaf on W ′. We note that

f ′
∗OV ′(KV ′/W ′ + ρ∗D + ρ∗P ) ≃ E ⊗ ω⊗−1

W ′ ⊗OW ′(H ′).

By Theorem 6.2, E ⊗ω⊗−1
W ′ is weakly positive. By Lemma 4.5, E ⊗ω⊗−1

W ′ ⊗OW ′(H ′) is big
since H ′ is ample. This is what we wanted. □
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We close this section with an obvious corollary.

Corollary 6.4. Let F be a mixed-ω̂-sheaf (resp. mixed-ω̂-big-sheaf) on a smooth quasi-
projective variety W . Then F ⊗ ω⊗−1

W is weakly positive (resp. big).

Proof. We note that F⊗ω⊗−1
W is weakly positive (resp. big) if and only if so is F∗∗⊗ω⊗−1

W .
Therefore, the desired statement follows from Theorems 6.2 and 6.3. □

7. Basic properties: Part 2

In this section, we discuss some vanishing theorems for mixed-ω-sheaves and several
related topics.

Lemma 7.1 (Vanishing theorem for mixed-ω-big-sheaf). Let F be a mixed-ω-big-sheaf
on a normal projective variety W . Then H i(W,F ⊗N ) = 0 for every i > 0 and every nef
invertible sheaf N on W .

Proof. We may assume that F is a direct summand of f∗OV (KV +D+P ) as in Definition
5.3. Let N be a Cartier divisor on W such that N ≃ OW (N). It is sufficient to prove that
H i(W, f∗OV (KV +D+P+f ∗N)) = 0 for every i > 0. We take an ample Q-divisor H onW
such that A−q∗H is an ample Q-divisor on Z, where A and q : Z → W are as in Definition
5.3. Then we can take a boundary Q-divisor ∆ on V such that ∆ ∼Q D + P − f ∗H and
that Supp∆ is a simple normal crossing divisor on V . Then we have

KV +D + P + f ∗N − (KV +∆) ∼Q f ∗(H +N).

We note that H + N is ample. Therefore, by [Fn2, Theorem 6.3 (ii)] (see also [Fn6,
Theorem 3.16.3 (ii) and Theorem 5.6.2 (ii)], and so on), we obtain that H i(W, f∗OV (KV +
D + P + f ∗N)) = 0 for every i > 0. □
Example 7.2 shows that the vanishing theorem does not necessarily hold for mixed-ω̂-

big-sheaves.

Example 7.2. We put X = PP1(OP1 ⊕ OP1(1)). Let C be the unique (−1)-curve on
X. It is not difficult to see that there exists an ample Cartier divisor H on X such that
C ·H = 1. By definition, OX(KX + C) is a mixed-ω-sheaf on X. Then, by Lemma 5.7,
OX(KX + C +H) is a mixed-ω-big-sheaf on X. By definition, OX(KX + C +H + C) is
a mixed-ω̂-big-sheaf on X. Let us consider the following short exact sequence

0 → OX(KX + C +H) → OX(KX + C +H + C) → OC(KC +H|C + C|C) → 0.

Since C ≃ P1 and H · C = 1, we obtain

OC(KC +H|C + C|C) ≃ OP1(KP1).

Since H i(X,OX(KX + C +H)) = 0 for i = 1 and 2, we have

H1(X,OX(KX + C +H + C)) ≃ H1(P1,OP1(KP1)) = C.
In particular, OX(KX +C +H +C) is not a mixed-ω-big-sheaf on X by Lemma 7.1. We
note that OX(KX) is a pure-ω-sheaf and that H + 2C is an effective big Cartier divisor.
However, OX(KX +H + 2C) is not a mixed-ω-big-sheaf.

As an easy consequence of Lemma 7.1, we have:

Lemma 7.3. Let F be a mixed-ω-sheaf (resp. mixed-ω-big-sheaf) on a normal projective
variety W with dimW = n. Let A be an ample invertible sheaf on W such that |A| is
free. Then F ⊗A⊗n+1 (resp. F ⊗A⊗n) is generated by global sections.



22 OSAMU FUJINO

Proof. This is a direct consequence of Lemmas 5.7, 7.1, and Castelnuovo–Mumford regu-
larity. □

Let us recall a vanishing theorem for dlt pairs.

Lemma 7.4. Let f : V → W be a surjective morphism from a smooth projective variety
V onto a normal projective variety W . Let ∆ be an effective R-divisor on V such that
(V,∆) is dlt and that every log canonical center of (V,∆) is dominant onto W . Let L be
a Cartier divisor on V such that L − (KV +∆) ∼R f ∗H for some nef and big R-divisor
H on W . Then H i(W,Rjf∗OV (L) ⊗ N ) = 0 for i > 0, j ≥ 0, and every nef invertible
sheaf N on W .

Sketch of Proof. By Kodaira’s lemma, we can write H ∼R A+E such that A is an ample
R-divisor on W and E is an effective R-Cartier R-divisor on W . Since every log canonical
center of (V,∆) is dominant onto W , (V,∆ + εf ∗E) is dlt for 0 < ε ≪ 1. Let N be a
Cartier divisor on W such that N ≃ OW (N). We note that

L+ f ∗N − (KV +∆+ εf ∗E) ∼R f ∗(N + (1− ε)H + εA)

and that N + (1− ε)H + εA is ample for 0 < ε ≪ 1. By [Fn9, Lemma 7.14],

H i(W,Rjf∗OV (L)⊗N ) = 0

for i > 0 and j ≥ 0. □

In Lemmas 7.5 and 7.6, we treat mixed-ω̂-big-sheaves on smooth projective curves.

Lemma 7.5. Let G be a mixed-ω̂-big-sheaf on a smooth projective curve C. Then H1(C,G⊗
N ) = 0 holds for every nef invertible sheaf N on C.

Proof. We note that G is locally free since C is a smooth curve. By definition, we have
a mixed-ω-big-sheaf F on C and a generically isomorphic injection ι : F ↪→ G. Note that
the cokernel of ι is a skyscraper sheaf on C. By Lemma 7.1, H1(C,F ⊗ N ) = 0 holds.
Therefore, we haveH1(C,G⊗N ) = 0 by the surjectionH1(C,F⊗N ) → H1(C,G⊗N ). □

Lemma 7.6. Let E be a locally free sheaf on a smooth projective curve C and let P be
a closed point of C. If E ⊗ OC(−P ) ⊗ N⊗−1 is a mixed-ω̂-big-sheaf on C for some nef
invertible sheaf N on C, then E is generated by global sections at P .

Proof. By Lemma 7.5, H1(C, E ⊗ OC(−P )) = 0. This means that the natural restriction
map

H0(C, E) → E ⊗ C(P )

is surjective. Therefore, E is generated by global sections at P . □

Let us discuss generically global generations of mixed-ω-big-sheaves.

Lemma 7.7. Let F be a mixed-ω-sheaf on a normal projective variety W with dimW = n.
Let H be a big Cartier divisor on W such that |H| is free. Then F ⊗ OW ((n + 1)H) is
generically generated by global sections.

Proof. If W is a curve, then H is ample. Therefore, the statement follows from Lemma
7.3 when n = 1. We will use induction on n. We may assume that F = f∗OV (KV +D)
as in Definition 5.1.
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Step 1. Let µ : Ṽ → V be a projective birational morphism from a smooth projective

variety Ṽ such that

KṼ + D̃ = µ∗(KV +D) + E

where D̃ and E are effective divisors and have no common irreducible components. Since

µ∗OṼ (KṼ + D̃) ≃ OV (KV +D), we may replace (V,D) and f : V → W with (Ṽ , D̃) and

f ◦ µ : Ṽ → W , respectively. By taking µ : Ṽ → V suitably, we may assume that all the
log canonical centers of (V,Dhor) are dominant onto W , where Dhor is the horizontal part
of D. Since f∗OV (KV +Dhor) ↪→ f∗OV (KV +D) is a generically isomorphic injection, we
may replace D with Dhor.

Step 2. We will prove that f∗OV (KV +D) ⊗OV ((n + 1)H) is generically generated by
global sections by induction on n = dimW . We take a general member W ′ of |H|. We
put f−1(W ′) = V ′. Then we have a short exact sequence

0 → OV (KV +D) → OV (KV + V ′ +D) → OV ′(KV ′ +D|V ′) → 0

by adjunction. Since W ′ is a general member of |H|,
R1f∗OV (KV +D)⊗OW (nH) → R1f∗OV (KV + V ′ +D)⊗OW (nH)

is injective. Hence we get a short exact sequence

0 → f∗OV (KV +D)⊗OW (nH) → f∗OV (KV + V ′ +D)⊗OW (nH)

→ f∗OV ′(KV ′ +D|V ′)⊗OW ′(nH|W ′) → 0.
(7.1)

By the vanishing theorem (see Lemma 7.4), we have

(7.2) H1(W, f∗OV (KV +D)⊗OW (nH)) = 0.

Therefore, the restriction map

H0(W, f∗OV (KV +D)⊗OW ((n+ 1)H)) → H0(W ′, f∗OV ′(KV ′ +D|V ′)⊗OW ′(nH|W ′))

is surjective by (7.1) and (7.2). By induction on n, f∗OV ′(KV ′ +D|V ′)⊗OW ′(nH|W ′) is
generically generated by global sections. This implies that so is f∗OV (KV +D)⊗OW ((n+
1)H).

We obtain the desired statement. □
Lemma 7.8 is similar to Lemma 7.7.

Lemma 7.8. Let F be a mixed-ω-big-sheaf on a normal projective variety W with dimW =
n. Let H be a big Cartier divisor on W such that |H| is free. Then F⊗OW (nH) is gener-
ically generated by global sections.

The proof of Lemma 7.8 is essentially the same as that of Lemma 7.7.

Sketch of Proof of Lemma 7.8. If n = 0, then the statement is trivial. If n = 1, then it
follows from Lemma 7.6. Therefore, we assume that n ≥ 2. As in the proof of Lemma
7.7, we may assume that F = f∗OV (KV +D+P ) as in Definition 5.3. Moreover, we may
further assume that D = Dhor and that every log canonical center of (V,D) is dominant
onto W (see Step 1 in the proof of Lemma 7.7). We take a general member W ′ of |H|
and put V ′ = f−1(W ′). Then the natural restriction map

H0(W, f∗OV (KV +D + P )⊗OW (nH))

→ H0(W ′, f∗OV ′(KV ′ +D|V ′ + P |V ′)⊗OW ′((n− 1)H|W ′))
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is surjective as in Step 2 in the proof of Lemma 7.7. By induction on dimension, we see
that

f∗OV (KV +D + P )⊗OW (nH)

is generically generated by global sections. □
We close this section with the following result, which is due to [DuM]. We will use it

in the proof of Theorem 1.9.

Lemma 7.9. Let F be a mixed-ω-sheaf on a normal projective variety W and let H be a
nef and big Cartier divisor on W . We put dimW = n. Then F ⊗OW (lH) is generically
generated by global sections for l ≥ n2 + 1.

Proof. We may assume that F = f∗OV (KV + D) as in Definition 5.1. Then, by [EKL,
Theorem 1] and [DuM, Theorems C and 2.20], F ⊗ OW (lH) is generically generated by
global sections for l ≥ n2 + 1. □
For the details of Lemma 7.9, we recommend the reader to see [DuM].

8. A special case

In this section, we freely use the standard notation and some basic results in the theory
of minimal models (see, for example, [Fn2], [Fn6], and [Fn10]). We treat weakly semistable
morphisms f : X → Y in the sense of Abramovich–Karu with the assumption that the
geometric generic fiber Xη of f : X → Y has a good minimal model. In this case, we
can prove some strong results with the aid of the theory of minimal models. We do not
need the results of this section in the subsequent sections. Hence the reader can skip this
section.

Here we adopt the following definition of weakly semistable morphisms in the sense of
Abramovich–Karu (see [AK]).

Definition 8.1 (Weakly semistable morphisms). Let f : X → Y be a projective surjective
morphism between normal quasi-projective varieties with connected fibers. We say that
f : X → Y is weakly semistable if

(i) the varieties X and Y admit toroidal structures (UX ⊂ X) and (UY ⊂ Y ) with
UX = f−1(UY ),

(ii) with this structure, the morphism f is toroidal,
(iii) the morphism f is equidimensional,
(iv) all the fibers of the morphism f are reduced, and
(v) Y is smooth.

The following result is the main theorem of this section.

Theorem 8.2. Let f : X → Y be a surjective morphism from a normal projective variety
X onto a smooth projective variety Y with connected fibers. Assume that f is weakly
semistable in the sense of Abramovich–Karu and that the geometric generic fiber Xη of
f : X → Y has a good minimal model. Let H be an ample Cartier divisor on Y . Let k be
a positive integer such that k ≥ 2 and f∗ω

⊗k
X/Y ̸= 0. Then

f∗ω
⊗k
X/Y ⊗ ωY ⊗OY (H)

is locally free and is a pure-ω-big-sheaf on Y . More generally, we obtain that(
s⊗

f∗ω
⊗k
X/Y

)
⊗ ωY ⊗OY (H)
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is a pure-ω-big-sheaf on Y for every positive integer s. Therefore, if A is an ample Cartier
divisor on Y such that |A| is free, then(

s⊗
f∗ω

⊗k
X/Y

)
⊗ ωY ⊗OY (H + nA)

is generated by global sections, where n = dim Y .

Proof. As mentioned above, we will freely use some basic results in the theory of minimal
models. We note that X has only rational Gorenstein singularities by [AK, Lemma
6.1] since f : X → Y is weakly semistable by assumption. Hence X has only canonical
Gorenstein singularities.

Step 1. By the proof of [Fn4, Theorem 1.6] (see also [Fn5]), we have already known that
f∗ω

⊗m
X/Y is a nef locally free sheaf on Y for every m ≥ 1.

Step 2. We consider a relative good minimal model f ′ : X ′ → Y of f : X → Y (see [Fn4,
Theorem 3.3]).

X

f   @
@@

@@
@@

@
ϕ //_______ X ′

f ′
~~}}
}}
}}
}}

Y

Since

f∗ω
⊗m
X/Y ≃ f ′

∗OX′(mKX′/Y )

holds for every m ≥ 1, it is sufficient to prove that

f ′
∗OX′(KX′ + (k − 1)KX′/Y + f ′∗H)

is a pure-ω-big-sheaf on Y .

Step 3. In this step, we will prove:

Claim. KX′/Y is nef and f ′-semi-ample.

Proof of Claim. Since f ′ : X ′ → Y is a relative good minimal model of f : X → Y , KX′/Y

is f ′-semi-ample. Therefore,

f ′∗f ′
∗OX′(lKX′/Y ) → OX′(lKX′/Y )

is surjective for a sufficiently large and divisible positive integer l. Since f ′
∗OX′(lKX′/Y ) ≃

f∗ω
⊗l
X/Y is a nef locally free sheaf, KX′/Y is nef by the above surjection. □

Step 4. Since KX′/Y is nef and f ′-semi-ample, (k − 1)KX′/Y + af ′∗H is semi-ample for
every positive rational number a by Lemma 3.5. Since X ′ is a relative minimal model of
f : X → Y and X has only canonical singularities, X ′ also has only canonical singularities.

We take a birational morphism ρ : X̃ → X ′ from a smooth projective variety X̃ such that

the exceptional locus Exc(ρ) of ρ is a simple normal crossing divisor on X̃. Since X ′ has
only canonical singularities, we see that

ρ∗OX̃(KX̃ + ⌈(k − 1)ρ∗KX′/Y + ρ∗f ′∗H⌉) ≃ OX′(KX′ + (k − 1)KX′/Y + f ′∗H)

holds. By Lemma 5.9,

(f ′ ◦ ρ)∗OX̃(KX̃ + ⌈(k − 1)ρ∗KX′/Y + ρ∗f ′∗H⌉) ≃ f ′
∗OX′(KX′ + (k − 1)KX′/Y + f ′∗H)
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is a pure-ω-big-sheaf on Y since

(k − 1)ρ∗KX′/Y + ρ∗f ′∗H − 1

2
ρ∗f ′∗H

is semi-ample. This means that

f∗ω
⊗k
X/Y ⊗ ωY ⊗OY (H)

is locally free and a pure-ω-big-sheaf on Y .

Step 5. In this step, we will briefly explain how to prove that(
s⊗

f∗ω
⊗k
X/Y

)
⊗ ωY ⊗OY (H)

is a pure-ω-big-sheaf on Y for every positive integer s.
Let

Xs = X ×Y X ×Y · · · ×Y X︸ ︷︷ ︸
s

be the s-fold fiber product of f : X → Y and let f s : Xs → Y be the induced morphism.
Then we can check that Xs has only rational Gorenstein singularities since f : X → Y is
weakly semistable (see [Fn4, Section 5] and Step 4 in the proof of [Fn10, Theorem 4.3.1]).
Therefore, Xs has only canonical Gorenstein singularities. Let F be a general fiber of
f : X → Y . Then F has a good minimal model by assumption and [Fn4, Theorem 3.3].
This implies that

F s = F × F × · · · × F︸ ︷︷ ︸
s

also has a good minimal model. We note that F s is a general fiber of f s : Xs → Y . Hence
f s : Xs → Y has a relative good minimal model over Y by [Fn4, Theorem 3.3]. By the
flat base change theorem and the projection formula, we can check that

(8.1)

(
s⊗

f∗ω
⊗k
X/Y

)
≃ f s

∗ω
⊗k
Xs/Y

holds (see [Fn4, Section 5] and Step 4 in the proof of [Fn10, Theorem 4.3.1]). In particular,
f s
∗ω

⊗k
Xs/Y is a nef locally free sheaf on Y . By applying the arguments in Steps 2, 3, and 4

to f s : Xs → Y , we obtain that

(8.2) f s
∗ω

⊗k
Xs/Y ⊗ ωY ⊗OY (H)

is a pure-ω-big-sheaf on Y . Therefore, by (8.1) and (8.2), we have that(
s⊗

f∗ω
⊗k
X/Y

)
⊗ ωY ⊗OY (H)

is a pure-ω-big-sheaf on Y for every positive integer s.

By Lemma 7.3, (
s⊗

f∗ω
⊗k
X/Y

)
⊗ ωY ⊗OY (H + nA)

is generated by global sections. □



ON MIXED-ω-SHEAVES 27

Remark 8.3. In the proof of [Fn4, Theorem 3.3], which was used in the proof of Theorem
8.2, we need Theorem 1.13 (see [Fn4, Theorem 3.4]). We note that we will not use Theorem
8.2 in the subsequent sections. Hence there is no problem.

We note that the global generation of(
s⊗

f∗ωX/Y

)
⊗ ωY ⊗OY (H + nA)

was already treated in [Ko, Theorem 3.6]. In some sense, Theorem 8.2 generalizes [SY,
Theorem 1.8].

Theorem 8.2 predicts that f∗ω
⊗k
X/Y ⊗ ωY ⊗ OY (H) has good properties. Of course, we

strongly hope to prove Theorem 8.2 without using the assumption that Xη has a good
minimal model.

9. Fundamental theorem

This section is the main part of this paper. The main result of this section is Theorem
9.3, which we call a fundamental theorem of the theory of mixed-ω-sheaves.

Let us start with the following lemma.

Lemma 9.1 ([N, Chapter V, 3.34. Lemma]). Let f : X → Y be a surjective morphism
from a normal projective variety X onto a smooth projective variety Y . Let L be a Cartier
divisor on X and let ∆ be an effective R-divisor on X such that KX + ∆ is R-Cartier.
Let k be a positive integer with k ≥ 2. We assume the following conditions:

(i) (X,∆) is log canonical over a nonempty Zariski open set of Y , and
(ii) L− k(KX/Y +∆) is nef and f -semi-ample.

Let H be an ample divisor on Y . We assume that f∗OY (L) ̸= 0. We take a positive
integer l such that

OY (lH)⊗ f∗OX(L)

is big. Then

OY (KY + (l − ⌊l/k⌋)H)⊗ f∗OX(L)

is a mixed-ω̂-big-sheaf on Y . Hence we obtain that

OY (KY + (k − 1)H)⊗ f∗OX(L)

is always a mixed-ω̂-big-sheaf on Y .

We include all the details although Lemma 9.1 is essentially the same as [N, Chapter
V, 3.34. Lemma].

Proof of Lemma 9.1. We divide the proof into several small steps.

Step 1 (Resolution of singularities). Let µ : X̃ → X be a projective birational morphism

from a smooth projective variety X̃ such that KX̃ + ∆̃ = µ∗(KX + ∆) and that Supp∆̃

is a simple normal crossing divisor on X̃. We put E = ⌈−(∆̃<0)⌉. Then E is an effective

µ-exceptional divisor on X̃, ∆̃ + E is effective, and (X̃, ∆̃ + E) is log canonical over a
nonempty Zariski open set of Y by construction. We note that

µ∗L+ kE − k(KX̃/Y + ∆̃ + E) = µ∗(L− k(KX/Y +∆))
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and that µ∗OX̃(µ
∗L+ kE) ≃ OX(L). Therefore, by replacing f : X → Y , L, and ∆ with

f ◦ µ : X̃ → Y , µ∗L+ kE, and ∆̃ +E respectively, we may assume that X is smooth and
Supp∆ is a simple normal crossing divisor on X.

Step 2. We note that by Lemma 4.6 we can always take a positive integer l such that
OY (lH)⊗ f∗OX(L) is big since H is an ample divisor on Y . Since OY (lH)⊗ f∗OX(L) is
big, we can take a positive integer a such that

Ŝa(OY (lH)⊗ f∗OX(L))⊗OY (−H) = OY ((al − 1)H)⊗ Ŝa(f∗OX(L))

is generically generated by global sections by Lemma 4.4.

Step 3. We take an effective f -exceptional divisor E on X such that

(f∗OX(bL))
∗∗ ≃ f∗OX(b(L+ E))

holds for every 1 ≤ b ≤ a. For a related result, see [Fn12, Theorem 1.2]. By taking a
resolution of singularities as in Step 1, we may assume that Supp(∆ + E) is a simple
normal crossing divisor on X. Since

(L+ E)− k(KX/Y +∆+ (1/k)E) = L− k(KX/Y +∆),

we may replace L and ∆ with L+ E and ∆ + (1/k)E, respectively. This is because

OY (KY + (l − ⌊l/k⌋)H)⊗ f∗OX(L)

is a mixed-ω̂-big-sheaf on Y if and only if so is

OY (KY + (l − ⌊l/k⌋)H)⊗ (f∗OX(L))
∗∗ .

Hence we may assume that f∗OX(bL) is reflexive for every 1 ≤ b ≤ a.

Step 4. By taking a suitable birational modification of X again (see Step 1), we may
further assume that the image of the natural map

f ∗f∗OX(L) → OX(L)

is invertible and can be written as OX(L−B) such that Supp(∆+B) is a simple normal
crossing divisor on X. By the definition of B, we have f∗OX(L− B) = f∗OX(L).

Step 5. We note that we can take an effective f -exceptional divisor E on X such that
the map f ∗f∗OX(L) → OX(L− B) induces

f ∗Ŝa(f∗OX(L)) → OX(a(L− B) + E).

Then we have the following map

(9.1) H0(Y,OY ((al− 1)H)⊗ Ŝa(f∗OX(L)))⊗OX → OX(a(L−B) +E + (al− 1)f ∗H).

By taking a suitable birational modification of X again (see Step 1), we may assume that
the image of (9.1) is

OX(a(L− B) + E − F + (al − 1)f ∗H)

for some effective f -vertical divisor F on X. We may further assume that Supp(∆+B +
E + F ) is a simple normal crossing divisor on X. We put

N := a(L− B) + E − F + (al − 1)f ∗H.

Then |N | is free by (9.1) and the definition of F .
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Step 6. We take a positive number ε. Then, by Lemma 3.5, we obtain that L−k(KX/Y +
∆)+εf ∗H is semi-ample because L−k(KX/Y +∆) is nef and f -semi-ample by assumption.
We put

M := L− (KX/Y +∆)− k − 1

k
B +

k − 1

ak
(E − F ) +

(
l −
⌊
l

k

⌋)
f ∗H.

We note that
(al − 1)(k − 1)

ak
<

⌈
l(k − 1)

k

⌉
= l −

⌊
l

k

⌋
.

Then

M − k − 1

ak
N − 1

k
(L− k(KX/Y +∆) + εf ∗H) = αf ∗H

for some α > 0 if ε is sufficiently small. Thus M and M−αf ∗H are semi-ample. Without
loss of generality, we may assume that ε and α are rational numbers since(

l −
⌊
l

k

⌋)
− (al − 1)(k − 1)

k
− ε

k
= α.

Step 7. We consider ⌊
k − 1

k
B +∆

⌋
.

We put

B0 = max

{
T

∣∣∣∣T is a Weil divisor with 0 ≤ T ≤ B and T ≤
⌊
k − 1

k
B +∆

⌋}
.

We write ⌊
k − 1

k
B +∆

⌋
− B0 = ∆1 +∆2

where ∆1 is the horizontal part and ∆2 is the vertical part. We note the following easy
Claim.

Claim. Let r be a real number with 0 ≤ r ≤ 1, let k be a positive integer with k ≥ 2, and
let b be a nonnegative integer. Then⌊

k − 1

k
b+ r

⌋
−min

{
b,

⌊
k − 1

k
b+ r

⌋}
=

{
1 if r = 1 and b = 0,

0 otherwise.

Proof of Claim. We assume that

b ≤
⌊
k − 1

k
b+ r

⌋
− 1

holds. Then

b ≤ k − 1

k
b+ r − 1.

Hence we obtain 0 ≤ b
k
≤ r − 1 ≤ 0. Thus we get r = 1 and b = 0. By this observation,

we obtain the desired result. □

By assumption (i) and the Claim, ∆1 = ∆=1
1 . By construction and the Claim, we see

that ∆1 ⊂ Supp∆=1 and that ∆1 and Supp{M} have no common irreducible components.
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Step 8. We have the following generically isomorphic injections:

f∗OX(KX +∆1 + ⌈M⌉) ↪→ ωY ((l − ⌊l/k⌋)H)⊗
(
f∗OX

(
L−

⌊
k − 1

k
B +∆

⌋
+∆1

))∗∗

= ωY ((l − ⌊l/k⌋)H)⊗ (f∗OX (L− B0 −∆2))
∗∗

↪→ ωY ((l − ⌊l/k⌋)H)⊗ f∗OX(L).

We note that

f∗OX(L) = f∗OX(L− B) ⊂ f∗OX(L− B0) ⊂ f∗OX(L).

This implies that

OY (KY + (l − ⌊l/k⌋)H)⊗ f∗OX(L)

is a mixed-ω̂-big-sheaf on Y because f∗OX(KX + ∆1 + ⌈M⌉) is a mixed-ω-big-sheaf by
Lemma 5.9.

Step 9. Let l0 be the minimum positive integer such that

OY (KY + l0H)⊗ f∗OX(L)

is a mixed-ω̂-big-sheaf on Y . By Theorem 6.3,

OY (l0H)⊗ f∗OX(L)

is big. By the result obtained above,

OY (KY + (l0 − ⌊l0/k⌋)H)⊗ f∗OX(L)

is a mixed-ω̂-big-sheaf on Y . This implies that l0 − ⌊l0/k⌋ ≥ l0. Thus we get l0 ≤ k − 1.
Hence we have

OY (KY + (k − 1)H)⊗ f∗OX(L)

is a mixed-ω̂-big-sheaf on Y .

Thus we get the desired statements. □
Remark 9.2. In Lemma 9.1, we further assume that (X,∆) is klt over a nonempty Zariski
open set of Y . Then we can easily see that ∆1 = 0 in Step 7 in the proof of Lemma 9.1.
Therefore, we obtain that

OY (KY + (l − ⌊l/k⌋)H)⊗ f∗OX(L)

and

OY (KY + (k − 1)H)⊗ f∗OX(L)

are pure-ω̂-big-sheaves on Y .

Theorem 9.3 is the most important result in the theory of mixed-ω-sheaves. So we call
it a fundamental theorem of the theory of mixed-ω-sheaves.

Theorem 9.3 ([N, Chapter V, 3.35. Theorem]). Let f : X → Y be a surjective morphism
from a normal projective variety X onto a smooth projective variety Y . Let L be a Cartier
divisor on X and let ∆ be an effective R-divisor on X such that KX + ∆ is R-Cartier.
Let D be an R-divisor on Y . Let k be a positive integer with k ≥ 2. Assume the following
conditions:

(i) (X,∆) is log canonical over a nonempty Zariski open set of Y , and
(ii) L+ f ∗D − k(KX/Y +∆)− f ∗A is semi-ample for some big R-divisor A on Y .



ON MIXED-ω-SHEAVES 31

If f∗OY (L) ̸= 0, then
OY (KY + ⌈D⌉)⊗ f∗OX(L)

is a mixed-ω̂-big-sheaf on Y .

Proof. We divide the proof into several small steps.

Step 1 (Reductions). By taking a resolution as in Step 1 in the proof of Lemma 9.1, we
may assume that X is a smooth projective variety and that Supp∆ is a simple normal
crossing divisor on X. We note that

L+ f ∗⌈D⌉ − k

(
KX/Y +∆+

1

k
f ∗{−D}

)
− f ∗A = L+ f ∗D − k(KX/Y +∆)− f ∗A.

Therefore, by replacing L and ∆ with L + f ∗⌈D⌉ and ∆ + 1
k
f ∗{−D}, respectively, we

may assume that D = 0. By Kodaira’s lemma, we have A ∼R A1 + A2 such that A1 is
an ample R-divisor and A2 is an effective R-divisor. By replacing A and ∆ with A1 and
∆ + 1

k
f ∗A2 respectively, we may further assume that A is an ample R-divisor on Y . We

take an ample Cartier divisor H on Y and a positive integer m such that A − k−1
m

H is
ample. Then

L− k(KX/Y +∆)− k − 1

m
f ∗H

is semi-ample. Therefore, we may replace A with k−1
m

H. By taking a resolution as in Step
1 in the proof of Lemma 9.1 again, we may assume that X is a smooth projective variety
and that Supp∆ is a simple normal crossing divisor on X. By Lemma 3.2, we may further
assume that ∆ is a Q-divisor. We take an effective f -exceptional divisor E and replace L
and ∆ with L + E and ∆ + (1/k)E respectively. Then we may assume that f∗OX(L) is
reflexive. By taking a birational modification of X, we may assume that the image of

f ∗f∗OX(L) → OX(L)

is OX(L − B) for some effective divisor B such that Supp(∆ + B) is a simple normal
crossing divisor on X. Let S denote the union of all f -exceptional divisors on X. We
may assume that Supp(∆+ B + S) is a simple normal crossing divisor on X by taking a
suitable birational modification of X again (see Step 1 in the proof of Lemma 9.1).

Step 2. By Lemma 3.3 and Remark 3.4, we take a finite flat Galois cover τ : Y ′ → Y
from a smooth projective variety Y ′ and get the following commutative diagram

X ′

f ′

��

ρ // X

f

��
Y ′

τ
// Y

such that X ′ = X ×Y Y ′ is a smooth projective variety, τ ∗H ∼ mH ′ for some ample
Cartier divisor H ′ on Y ′, and ρ∗ω⊗n

X/Y = ω⊗n
X′/Y ′ for every integer n. Let G denote the

Galois group of τ : Y ′ → Y . By construction (see the proof of Lemma 3.3), we may
assume that H ′ is G-invariant. We put L′ = ρ∗L, B′ = ρ∗B, ∆′ = ρ∗∆, and S ′ = ρ∗S.
Without loss of generality, we may assume that Supp(∆′ + B′ + S ′) is a simple normal
crossing divisor on X ′ and that ρ∗(KX/Y +∆) = KX′/Y ′ +∆′ holds (see Remark 3.4). We
note that

L′ − (k − 1)f ′∗H ′ − k(KX′/Y ′ +∆′) ∼Q ρ∗
(
L− k(KX/Y +∆)− k − 1

m
f ∗H

)
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by construction. This implies that (L′ − (k − 1)f ′∗H ′)− k(KX′/Y ′ +∆′) is semi-ample.

Step 3. We apply Lemma 9.1 to

(L′ − (k − 1)f ′∗H ′)− k(KX′/Y ′ +∆′).

Then we obtain that OY ′(KY ′) ⊗ f ′
∗OX′(L′) is a mixed-ω̂-big-sheaf on Y ′. Therefore,

f ′
∗OX′(L′) is a big sheaf on Y ′ by Theorem 6.3. Thus we can take a positive integer a such

that Ŝa(f ′
∗OX′(L′)) is generically generated by global sections (see Lemma 4.4). Then we

take an effective G-invariant f ′-exceptional divisor E ′ on X ′ such that

(f ′
∗OX′(bL′))

∗∗ ≃ f ′
∗OX′(b(L′ + E ′))

holds for every 1 ≤ b ≤ a. By replacing L′, ∆′, and B′ with L′ + E ′, ∆′ + (1/k)E ′, and
B′ + E ′ respectively, we may assume that f ′

∗OX′(bL′) is reflexive for every 1 ≤ b ≤ a.

Step 4. We can take an effective G-invariant f ′-exceptional divisor E ′ on X ′ such that
the surjective map

f ′∗f ′
∗OX′(L′) → OX′(L′ − B′)

induces

f ′∗Ŝa(f ′
∗OX′(L′)) → OX′(a(L′ − B′) + E ′).

Then we have the following map

(9.2) H0(Y ′, Ŝa(f ′
∗OX′(L′)))⊗OX′ → OX′(a(L′ − B′) + E ′).

By taking an equivariant resolution of singularities of X ′, we may assume that the image
of (9.2) is

OX′(a(L′ − B′) + E ′ − F ′)

for some effective G-invariant f ′-vertical divisor F ′ on X ′. Of course, we may assume that
Supp(∆′ +B′ + E ′ + F ′) is a simple normal crossing divisor on X ′. We put

N ′ := a(L′ − B′) + E ′ − F ′.

Then |N ′| is free by (9.2) and the definition of F ′. We put

M ′ := L′ − (KX′/Y ′ +∆′)− k − 1

k
B′ +

k − 1

ak
(E ′ − F ′).

Then

M ′ − k − 1

ak
N ′ − 1

k
(L′ − k(KX′/Y ′ +∆′)− (k − 1)f ′∗H ′) =

k − 1

k
f ′∗H ′.

In particular, M ′ and M ′ − k−1
k
f ′∗H ′ are semi-ample.

Step 5. We put ⌊
k − 1

k
B′ +∆′

⌋
= B′

0 +∆′
1 +∆′

2

as in Step 7 in the proof of Lemma 9.1. Then ∆′
1 is a G-invariant f ′-horizontal simple

normal crossing divisor on X ′. As before, Supp{M ′} and ∆′
1 have no common irreducible

components. Thus, by Lemma 5.9, f ′
∗OX′(KX′ + ∆′

1 + ⌈M ′⌉) is a mixed-ω-big-sheaf on
Y ′. Note that the Galois group G acts on f ′

∗OX′(KX′ +∆′
1 + ⌈M ′⌉).
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Step 6. Therefore, we get the following generically isomorphic G-equivariant embedding:

(9.3) f ′
∗OX′(KX′ +∆′

1 + ⌈M ′⌉) ↪→ OY ′(KY ′)⊗ f ′
∗OX′(L′)

as in Step 8 in the proof of Lemma 9.1. We note that f ′
∗OX′(L′) ≃ τ ∗f∗OX(L) by the flat

base change theorem. We take τ∗ of (9.3) and then take the G-invariant parts. Thus, we
get a mixed-ω-big-sheaf

F := (τ∗f
′
∗OX′(KX′ +∆′

1 + ⌈M ′⌉))G

on Y and a generically isomorphic injection

F ↪→ OY (KY )⊗ f∗OX(L).

This means that OY (KY )⊗ f∗OX(L) is a mixed-ω̂-big-sheaf on Y .

Hence we obtain that OY (KY + ⌈D⌉)⊗ f∗OX(L) is a mixed-ω̂-big-sheaf on Y . □

Remark 9.4. As in Remark 9.2, we further assume that (X,∆) is klt over a nonempty
Zariski open set of Y in Theorem 9.3. Then we see that ∆′

1 = 0 in Step 5 in the proof of
Theorem 9.3. Hence we obtain that

OY (KY + ⌈D⌉)⊗ f∗OX(L)

is a pure-ω̂-big-sheaf on Y .

As a corollary of Theorem 9.3, we have:

Corollary 9.5 ([N, Chapter V. 3.37. Corollary]). Let f : X → Y be a surjective morphism
from a normal projective variety X onto a smooth projective variety Y with dimY = n.
Let L be a Cartier divisor on X and let ∆ be an effective R-divisor on X such that KX+∆
is R-Cartier. Let D be an R-divisor on Y . Let k be a positive integer with k ≥ 2. Assume
the following conditions:

(i) (X,∆) is log canonical over a nonempty Zariski open set of Y , and
(ii) L+ f ∗D − k(KX/Y +∆) is nef and f -semi-ample.

Then the following properties hold.

(1) There exists a Cartier divisor G on Y , which depends only on f : X → Y , such
that

OY (G+ ⌈D⌉)⊗ f∗OX(L)

is generically generated by global sections.
(2) Let H be a big Cartier divisor on Y such that |H| is free. Then

OY (KY + ⌈D⌉+ (n+ 1)H)⊗ (f∗OX(L))
∗∗

is generically generated by global sections.
(3) Let H† be a nef and big Cartier divisor on Y such that |H†| is not necessarily free.

Then the sheaf

OY (KY + ⌈D⌉+ lH†)⊗ (f∗OX(L))
∗∗

is generically generated by global sections for l ≥ n2 + 2.

Proof. In Step 1, we will treat (2) and (3), which are direct consequences of Theorem 9.3.
In Step 2, we will prove (1), which is much more difficult than (2) and (3).
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Step 1. By Kodaira’s lemma, we have H ∼Q A + B such that A is an ample Q-divisor
and B is an effective Q-divisor on Y . Let us consider

L+ f ∗H + f ∗D − k(KX/Y +∆)− f ∗
(
1

2
A+B

)
.

Note that it is semi-ample by Lemma 3.5. We also note that 1
2
A + B is big. Therefore,

by Theorem 9.3,

OY (KY + ⌈D⌉+H)⊗ f∗OX(L)

is a mixed-ω̂-big-sheaf on Y . Thus, by Lemma 7.8,

OY (KY + ⌈D⌉+ (n+ 1)H)⊗ (f∗OX(L))
∗∗

is generically generated by global sections. By the same argument, we see that

OY (KY + ⌈D⌉+H†)⊗ f∗OX(L)

is a mixed-ω̂-big-sheaf on Y . Thus, by Lemma 7.9, the sheaf

OY (KY + ⌈D⌉+ lH†)⊗ (f∗OX(L))
∗∗

is generically generated by global sections for l ≥ n2 + 2.

Step 2. By taking a resolution of singularities as in Step 1 in the proof of Lemma 9.1, we
may assume that X is smooth. By replacing L and ∆ with L+ f ∗⌈D⌉ and ∆+ 1

k
f ∗{−D}

respectively, we may assume that D = 0. By the flattening theorem, there is a birational
morphism τ : Y ′ → Y from a smooth projective variety Y ′ such that the main component
of X ×Y Y ′ is flat over Y ′. Let X ′ be a resolution of the main component of X ×Y Y ′.
Then we get the following commutative diagram.

X ′

f ′

��

ρ // X

f

��
Y ′

τ
// Y

By construction, any f ′-exceptional divisor is ρ-exceptional. We put KX′ +B = ρ∗(KX +
∆). We may assume that SuppB is a simple normal crossing divisor on X ′. We write

(9.4) KY ′ = τ ∗KY +R

where R is an effective τ -exceptional divisor on Y ′. We put

L′ := ρ∗L+ k⌈−(B<0)⌉ − kf ′∗R

and ∆′ = B + ⌈−(B<0)⌉. Note that ⌈−(B<0)⌉ is effective and ρ-exceptional. Then we
have

L′ − k(KX′/Y ′ +∆′) = ρ∗(L− k(KX/Y +∆)).

We take an effective f ′-exceptional divisor E on X ′ such that

(f ′
∗OX′(L′))

∗∗ ≃ f ′
∗OX′(L′ + E).

Note that E is ρ-exceptional and that there is a generically isomorphic injection

τ∗f
′
∗OX′(L′ + E) = f∗ρ∗OX′(L′ + E) ⊂ f∗OX(L).

Therefore, we have a generically isomorphic injection

(9.5) τ∗ ((f
′
∗OX′(L′))∗∗) ⊂ f∗OX(L).
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By Kodaira’s lemma, we have τ ∗H ∼Q A + B such that A is an ample Q-divisor and B
is an effective Q-divisor. Note that

L′ + E + f ′∗τ ∗H − k

(
KX′/Y ′ +∆′ +

1

k
E +

1

k
f ′∗B

)
− 1

2
f ′∗A

= L′ − k(KX′/Y ′ +∆′) +
1

2
f ′∗A

is semi-ample by Lemma 3.5. Therefore, by Theorem 9.3,

OY ′(KY ′ + τ ∗H)⊗ f ′
∗OX′(L′ + E)

is a mixed-ω̂-big-sheaf on Y ′. Thus, by Lemma 7.8,

OY ′(KY ′ + (n+ 1)τ ∗H)⊗ (f ′
∗OX′(L′))∗∗

is generically generated by global sections. If we take a Cartier divisor G on Y such that
|τ ∗G− (KY ′ + (n+ 1)τ ∗H)| ̸= ∅, then

OY ′(τ ∗G)⊗ (f ′
∗OX′(L′))

∗∗

is generically generated by global sections. By (9.5), we obtain that so is OY (G) ⊗
f∗OX(L).

We complete the proof of Corollary 9.5. □

We note that [N, Chapter V, 3.37. Corollary] needs the assumption that (X,∆) is klt
over a nonempty Zariski open set of Y . On the other hand, Corollary 9.5 can be applied
to log canonical pairs. This is the main difference between [N, Chapter V, 3.37. Corollary]
and Corollary 9.5.

Sho Ejiri pointed out the following example, which was constructed by Hiroshi Sato.
For some related example, see Example 10.1 below.

Example 9.6 ([FG, Example 4.6]). There exists a flat toric morphism f : X → Y from
a smooth projective toric threefold X onto Y = PP1(OP1 ⊕OP1(3)). Let ∆ be the union
of all torus invariant divisors on X. Then it is well known that (X,∆) is log canonical
with KX +∆ ∼ 0. In this case,

f∗OX(k(KX/Y +∆))⊗OY (KY ) ≃ OY (−(k − 1)KY )

holds for every integer k. Note that −KY is not nef by Y = PP1(OP1 ⊕ OP1(3)). Hence
there are no ample Cartier divisors A on Y such that

f∗OX(k(KX/Y +∆))⊗OY (KY + A) ≃ OY (−(k − 1)KY + A)

is generated by global sections for every positive integer k ≥ 2. We note that if OY (−(k−
1)KY + A) were generated by global sections for every integer k ≥ 2 then −KY would
be nef. This is a contradiction. Therefore, we can not replace generic generations with
global generations in Corollary 9.5.

10. Proof of Theorems 1.7, 1.8, and 1.9

In this section, we prove Theorems 1.7, 1.8, and 1.9 in Section 1.

Let us first prove Theorem 1.8.

Proof of Theorem 1.8. We divide the proof into small steps.
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Step 1. By taking a suitable resolution of singularities of X, we may assume that X is a
smooth projective variety and Supp∆ is a simple normal crossing divisor on X (see Step
1 in the proof of Lemma 9.1). We may further assume that every log canonical center of
(X,∆hor) is dominant onto Y .

Step 2. In this step, we will prove the generic generation of f∗OX(L) ⊗ OY (KY + lH)
when k = 1.

By replacing L and ∆ with L − ⌊∆ver⌋ and ∆ − ⌊∆ver⌋ respectively, we may further
assume that (X,∆) is dlt and that every log canonical center of (X,∆) is dominant onto Y .
By the arguments in Step 2 in the Proof of Lemma 7.7, we see that f∗OX(L)⊗OY (KY +lH)
is generically generated by global sections.

Step 3. In this step, we will see that (f∗OX(L))
∗∗⊗OY (KY + lH) is generically generated

by global sections when k ≥ 2.

This follows directly from Corollary 9.5. More precisely, we put D = 0 and apply
Corollary 9.5 (2).

Step 4. In this final step, we treat the case when s ≥ 2. We take the s-fold fiber product

Xs := X ×Y X ×Y · · · ×Y X︸ ︷︷ ︸
s

ofX over Y . Let f s : Xs → Y be the induced morphism. Let ρ : X(s) → Xs be a resolution
of singularities of the dominant components of Xs such that ρ is an isomorphism over a
nonempty Zariski open set of Y . We put f (s) = f s ◦ρ : X(s) → Y . We note that X(s) may
be reducible, that is, a disjoint union of some smooth projective varieties. We can take
a Zariski open set U of Y such that codimY (Y \ U) ≥ 2, f∗OX(L) is locally free on U ,
and f is flat over U . By applying Lemma 3.7 to f−1(U) → U , we can construct a Cartier
divisor L(s) on X(s) and an effective R-divisor ∆(s) on X(s) such that

L(s) ∼R k(KX(s)/Y +∆(s)),

(X(s),∆(s)) is log canonical over a nonempty Zariski open set of Y , and there exists a
generically isomorphic injection(

f (s)
∗ OX(s)(L(s))

)∗∗ ⊂ ( s⊗
f∗OX(L)

)∗∗

.

By Theorem 9.3,

OY (KY +H)⊗ f (s)
∗ OX(s)(L(s))

is a finite direct sum of mixed-ω̂-big-sheaves when k ≥ 2. Note that X(s) may be reducible.
Therefore,

OY (KY +H)⊗

(
s⊗

f∗OX(L)

)∗∗

is also a finite direct sum of mixed-ω̂-big-sheaves. Thus, by Lemma 7.8,

OY (KY + lH)⊗

(
s⊗

f∗OX(L)

)∗∗

is generically generated by global sections for l ≥ n + 1 when k ≥ 2 (see also Corollary
9.5 (2)).
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If k = 1, then we can check that OY (KY + lH)⊗f
(s)
∗ OX(s)(L(s)) is generically generated

by global sections for l ≥ n+ 1 by the arguments in Steps 1 and 2. Therefore,

OY (KY + lH)⊗

(
s⊗

f∗OX(L)

)∗∗

is generically generated by global sections for l ≥ n+ 1 when k = 1.

Hence we have obtained the desired statements. □
Next we prove Theorem 1.9.

Sketch of Proof of Theorem 1.9. It is not difficult to modify the proof of Theorem 1.8.

Step 1. In this step, we will treat the case when k = 1.

As usual, by taking a suitable birational modification of X, we may assume that X is
smooth and Supp∆ is a simple normal crossing divisor on X. By replacing L and ∆ with
L − ⌊∆>1⌋ and ∆ − ⌊∆>1⌋ respectively, we may assume that ∆ is a boundary R-divisor
on X. Note that ∆>1 is f -vertical. By perturbing the coefficients of ∆, we may further
assume that ∆ is a Q-divisor with L ∼Q KX/Y +∆. By Lemma 5.10,

OX(KX + ⌊∆⌋+ ⌈L−KX/Y −∆⌉) ≃ OX(L)⊗ f ∗OY (KY )

is a mixed-ω-sheaf on X. Therefore, f∗OX(L)⊗OY (KY ) is a mixed-ω-sheaf on Y . Thus,
by Lemma 7.9, f∗OX(L)⊗OY (KY + lH†) is generically generated by global sections for

l ≥ n2+1. Similarly, we may assume that the sheaf f
(s)
∗ OX(s)(L(s))⊗OY (KY ) in the proof

of Theorem 1.8 is a finite direct sum of mixed-ω-sheaves on Y when k = 1. Therefore,(
s⊗

f∗OX(L)

)∗∗

⊗OY (KY + lH†)

is generically generated by global sections for l ≥ n2 + 1.

Step 2. In this step, we will treat the case when k ≥ 2.

If we use Lemma 7.9 instead of Lemma 7.8, then the proof of Theorem 1.8 implies that

OY (KY + lH†)⊗

(
s⊗

f∗OX(L)

)∗∗

is generically generated by global sections for l ≥ n2 + 2 (see also Corollary 9.5 (3)).

Thus we get the desired statements. □
Finally, we prove Theorem 1.7.

Proof of Theorem 1.7. We put L = kKX/Y . Then this theorem directly follows from
Theorems 1.8 and 1.9. □
In [FF, Section 8], we constructed the following example, which shows that we can not

replace the generic generation with the global generation in Conjecture 1.5.

Example 10.1. There exists a surjective morphism f : X → Y between smooth projective
varieties with the following properties.

(i) Y is a Kummer surface. In particular, ωY ≃ OY holds.
(ii) Ci is a (−2)-curve on Y for 1 ≤ i ≤ 16.
(iii) f is smooth over U = Y \

∑16
i=1 Ci.
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(iv) LX/Y is a Weil divisor on Y which is numerically equivalent to 1
2

∑16
i=1 Ci.

(v) We have

f∗ω
⊗k
X/Y ≃

{
OY (

∑16
i=1 lCi) k = 2l,

OY (LX/Y +
∑16

i=1 lCi) k = 2l + 1.

Let H be an ample Cartier divisor on Y . By Reider’s theorem (see, for example, [BHPV,
Chapter IV, (11.4) Theorem]), |3H| is free. We note that LX/Y +3H is ample by Nakai’s
ampleness criterion. Therefore, by Reider’s theorem again, |LX/Y + 3H| is free. This
means that

f∗ω
⊗k
X/Y ⊗ ωY ⊗OY (3H)

is generated by global sections on U . On the other hand, we have(
f∗ω

⊗k
X/Y ⊗ ωY ⊗OY (3H)

)
· Ci = −k + 3H · Ci.

Therefore, if k > 3H · Ci0 holds for some 1 ≤ i0 ≤ 16, then

f∗ω
⊗k
X/Y ⊗ ωY ⊗OY (3H)

is not generated by global sections.

We close this section with an easy remark.

Remark 10.2. Let Y be a smooth projective variety and let H be an ample Cartier divisor
on Y . Let m be any positive integer. Then we can construct a finite cover f : X → Y
from a smooth projective variety X such that OY (−mH) is a direct summand of f∗OX .
Therefore, we need the condition k ≥ 1 in Theorems 1.7, 1.8, and 1.9.

11. Some other applications

In this section, we treat Nakayama’s inequality on κσ and a slight generalization of the
twisted weak positivity theorem. Theorem 11.3 and a special case of Theorem 11.7 have
already played a crucial role in the theory of minimal models.

Let us first recall the definition of κσ for the reader’s convenience.

Definition 11.1 (Nakayama’s numerical dimension, see [N, Chapter V.2.5. Definition]).
Let D be a pseudo-effective R-Cartier divisor on a normal projective variety X and let
A be a Cartier divisor on X. If H0(X,OX(⌊mD⌋ + A)) ̸= 0 for infinitely many positive
integers m, then we set

σ(D;A) = max

{
k ∈ Z≥0

∣∣∣∣ lim sup
m→∞

dimH0(X,OX(⌊mD⌋+ A))

mk
> 0

}
.

If H0(X,OX(⌊mD⌋+A)) ̸= 0 only for finitely many m ∈ Z≥0, then we set σ(D;A) = −∞.
We define Nakayama’s numerical dimension κσ by

κσ(X,D) = max{σ(D;A) |A is a Cartier divisor on X}.
It is well known that κσ(X,D) ≥ 0 (see, for example, [N, Chapter V. 2.7. Proposition]).
If D is not pseudo-effective, then we put κσ(X,D) = −∞. By this convention, we can
define κσ(X,D) for every R-Cartier divisor D on X. It is obvious that

κσ(X,D) ≥ κ(X,D)

always holds for every R-Cartier divisor D on X by definition, where κ(X,D) denotes the
Iitaka dimension of D.
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For the details of κσ(X,D) and κ(X,D), we recommend the reader to see [N]. The
following remark is easy but very useful.

Remark 11.2 ([N, Chapter V, 2.6. Remark (6)]). Let X be a smooth projective variety
and let D be an R-divisor on X. We put

σ(D;A)′ = max

{
k ∈ Z≥0 ∪ {−∞}

∣∣∣∣ lim sup
m→∞

dimH0(X,OX(⌈mD⌉+ A))

mk
> 0

}
,

where A is a divisor on X. Then we have the following equality

κσ(X,D) = max{σ(D;A)′ |A is a divisor}.

We will use this characterization of κσ in the proof of Theorem 11.3 below.
We note the following easy but important fact that κσ(X, lD) = κσ(X,D) holds for

every positive integer l (see [Fn11, Remark 2.2]), which will be useful in the proof of
Theorem 11.3 below.

The inequalities in Theorem 11.3 are indispensable in the theory of minimal models
(see Remarks 11.4 and 11.5).

Theorem 11.3 ([N, Chapter V, 4.1. Theorem (1)] and [Fn11, Section 3]). Let f : X → Y
be a surjective morphism from a normal projective variety X onto a smooth projective
variety Y with connected fibers. Let ∆ be an effective R-divisor on X such that KX +∆ is
R-Cartier and that (X,∆) is log canonical over a nonempty Zariski open set of Y . Let D
be an R-Cartier R-divisor on X such that D−(KX/Y +∆) is nef. Then, for any R-divisor
Q on Y , we have

κσ(X,D + f ∗Q) ≥ κσ(F,D|F ) + κ(Y,Q)

and

κσ(X,D + f ∗Q) ≥ κ(F,D|F ) + κσ(Y,Q)

where F is a sufficiently general fiber of f : X → Y .

Before we prove Theorem 11.3, we give two important remarks.

Remark 11.4. We think that one of the most important results of Nakayama’s theory
of ω-sheaves is the inequality on κσ in [N, Chapter V, 4.1. Theorem (1)]. However, as
we explained in [Fn7, Remark 3.8] and [Fn11, Section 3], the proof of [N, Chapter V,
4.1. Theorem (1)] is incomplete. For the details, see, for example, [Fn11, Section 1]. So,
in Theorem 11.3, we claim two weaker inequalities than Nakayama’s original one (see
[Fn11, (3.3) and (3.4)]). The first inequality in Theorem 11.3 is still sufficiently powerful
for some geometric applications (see [Fn11, Section 3]).

Remark 11.5 (see [Fn11, Section 3]). The troubles in the proof of [DHP, Remark 2.6]
and [GL, Theorem 4.3] caused by the incompleteness of [N, Chapter V, 4.1. Theorem
(1)] can be corrected by using the first inequality in Theorem 11.3. For the details, we
recommend the reader to see [HH, Lemma 2.11].

Let us prove Theorem 11.3.

Proof of Theorem 11.3. If Q is not pseudo-effective, then the desired inequalities are ob-
viously true. So we may assume that Q is pseudo-effective. Similarly, we may further
assume that D|F is pseudo-effective. As usual (see Step 1 in the proof of Lemma 9.1),
we may assume that X is smooth and Supp∆ is a simple normal crossing divisor on X
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by the basic properties of κσ and κ. We take a sufficiently ample Cartier divisor A on X
such that A+ {−mD} is ample for every integer m. Then

⌈mD⌉+ A−m(KX/Y +∆) = m(D − (KX/Y +∆)) + A+ {−mD}
is ample for every positive integer m. Then we can take an ample Cartier divisor H on
Y such that OY (H) ⊗ f∗OX(⌈mD⌉ + A) is generically generated by global sections for
every positive integer m by Corollary 9.5 (1). Thus there exists a generically isomorphic
injection

O⊕r(mD;A)
Y ↪→ OY (H)⊗ f∗OX(⌈mD⌉+ A),

where r(mD;A) := rankf∗OX(⌈mD⌉+ A). This induces the following injection

OY (⌊mQ⌋+H)⊕r(mD;A) ↪→ OY (⌊mQ⌋+ 2H)⊗ f∗OX(⌈mD⌉+ A).

Therefore, we have

dimC H
0(X,OX(⌈m(D + f ∗Q)⌉+ A+ 2f ∗H)

≥ dimC H
0(X,OX(⌈mD⌉+ f ∗(⌊mQ⌋) + A+ 2f ∗H))

≥ r(mD;A) · dimC H
0(Y,OY (⌊mQ⌋+H))

(11.1)

for every positive integer m. We can take a positive integer m0 and a positive real number
C0 such that

(11.2) C0m
κ(F,D|F ) ≤ r(mm0D;A)

for every large positive integer m (see, for example, [N, Chapter II, 3.7. Theorem]). Thus
we have

dimH0(X,OX(⌈mm0(D + f ∗Q)⌉+ A+ 2f ∗H))

≥ C0m
κ(F,D|F ) · dimH0(Y,OY (⌊mm0Q⌋+H))

(11.3)

for every large positive integer m by (11.1) and (11.2). We may assume that H is suffi-
ciently ample. Then we get

(11.4) lim sup
m→∞

dimH0(X,OX(⌈mm0(D + f ∗Q)⌉+ A+ 2f ∗H))

mκ(F,D|F )+κσ(Y,Q)
> 0

by (11.3) and the definition of κσ(Y,Q). This means that the following inequality

(11.5) κσ(X,D + f ∗Q) ≥ κ(F,D|F ) + κσ(Y,Q)

holds.
Similarly, we can take a positive integer m1 and a positive real number C1 such that

C1m
κ(Y,Q) ≤ dimH0(Y,OY (⌊mm1Q⌋))

≤ dimH0(Y,OY (⌊mm1Q⌋+H))
(11.6)

for every large positive integer m (see, for example, [N, Chapter II, 3.7. Theorem]) if H
is a sufficiently ample Cartier divisor. Then, by (11.1) and (11.6), we have

dimH0(X,OX(⌈mm1(D + f ∗Q)⌉+ A+ 2f ∗H))

≥ C1m
κ(Y,Q) · r(mm1D;A)

(11.7)

for every large positive integer m. Therefore, we get

(11.8) lim sup
m→∞

dimH0(X,OX(⌈mm1(D + f ∗Q)⌉+ A+ 2f ∗H))

mκσ(F,D|F )+κ(Y,Q)
> 0
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when A is sufficiently ample. Note that

(11.9) σ(m1D|F ;A|F )′ = max

{
k ∈ Z≥0 ∪ {−∞}

∣∣∣∣ lim sup
m→∞

r(mm1D;A)

mk
> 0

}
for a sufficiently general fiber F of f : X → Y and that

κσ(F,D|F ) = κσ(F,m1D|F )
= max{σ(m1D|F ;A|F )′ |A is very ample}.

(11.10)

Hence we have the inequality

(11.11) κσ(X,D + f ∗Q) ≥ κσ(F,D|F ) + κ(Y,Q)

by (11.8). □

It is highly desirable to solve the following conjecture. As we explained in [Fn11],
Nakayama’s original inequality on κσ (see [N, Chapter V, 4.1. Theorem (1)]) follows from
Conjecture 11.6 and the argument in the proof of Theorem 11.3.

Conjecture 11.6 ([Fn11, Conjecture 1.4]). Let X be a smooth projective variety and let
D be a pseudo-effective R-divisor on X. Then there exist a positive integer m0, a positive
rational number C, and an ample Cartier divisor A on X such that

Cmκσ(X,D) ≤ dimH0(X,OX(⌊mm0D⌋+ A))

holds for every large positive integer m.

Finally, we treat a slight generalization of the twisted weak positivity theorem.

Theorem 11.7 (Twisted weak positivity theorem). Let f : X → Y be a surjective mor-
phism from a normal projective variety X onto a smooth projective variety Y . Let ∆
be an effective R-divisor on X such that KX + ∆ is R-Cartier and that (X,∆) is log
canonical over a nonempty Zariski open set of Y . Let L be a Cartier divisor on X with
L ∼R k(KX/Y +∆) for some positive integer k. Then the sheaf f∗OX(L) is weakly positive.

Proof. Let α be a positive integer and let H be an ample invertible sheaf on Y . By
Theorem 1.8 or Theorem 1.9, we can take a positive integer β which depends only on Y
such that (

s⊗
f∗OX(L)

)∗∗

⊗H⊗β

is generically generated by global sections for every positive integer s. This implies that

Ŝαβ(f∗OX(L))⊗H⊗β

is generically generated by global sections. This means that f∗OX(L) is weakly positive.
□

12. On Iwai’s theorem: Theorem 1.6

This section is independent of the other sections. Here we explain the following result
due to Masataka Iwai. The proof of Theorem 12.1 is analytic and is completely different
from the arguments in this paper.
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Theorem 12.1 (Masataka Iwai). Let f : X → Y be a surjective morphism between smooth
projective varieties with connected fibers and let L be an ample invertible sheaf on Y . Let
U be the largest Zariski open set of Y such that f is smooth over U . We put dimY = n.
Then

f∗ω
⊗a
X/Y ⊗ ωY ⊗ L⊗b

is generated by global sections on U for all integers a ≥ 1 and b ≥ n(n+1)
2

+ 1.

Sketch of Proof. Here we will only explain how to modify the proof of [I, Theorem 1.4].
As in [I, Theorem 2.3], we take a smooth hermitian metric hL on L, a Kähler metric ω
on Y , and a quasi-plurisubharmonic function ϕ on Y . Let ha be the singular hermitian
metric on ω⊗a

X/Y in [I, Theorem 2.4]. We put

L† = ω
⊗(a−1)
X/Y ⊗ f ∗L⊗(N+1+b†) and hL† = h

a−1
a

a f ∗hN+1+b†

L ,

where N = n(n+1)
2

and b† = b− (N + 1) ≥ 0. Then we consider the adjoint bundle

ωX ⊗ L† ≃ ω⊗a
X/Y ⊗ f ∗(ωY ⊗ L⊗b).

In this situation, the proof of [I, Theorem 1.4] implies that

H0(Y, f∗(ωX ⊗ L†))⊗OY → f∗(ωX ⊗ L†)

is surjective on U , equivalently,

H0(Y, f∗ω
⊗a
X/Y ⊗ ωY ⊗ L⊗b)⊗OY → f∗ω

⊗a
X/Y ⊗ ωY ⊗ L⊗b

is surjective on U . This is what we wanted. □
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39, Birkhäuser Boston, Boston, MA, 1983.

[V3] E. Viehweg, Quasi-projective moduli for polarized manifolds, Ergebnisse der Mathematik und
ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 30. Springer-Verlag,
Berlin, 1995.



44 OSAMU FUJINO

Department of Mathematics, Graduate School of Science, Kyoto University, Kyoto
606-8502, Japan

Email address : fujino@math.kyoto-u.ac.jp


