LENGTHS OF EXTREMAL RAYS

OSAMU FUJINO

Contents

1.		1
1.1.	Lengths of extremal rays	1
1.2.	Shokurov's polytopes	5
References		11

sec16.5

1

1.1. Lengths of extremal rays. In this subsection, we discuss estimates of lengths of extremal rays. It is indispensable for the log minimal model program with scaling (see, for example, [BCHM]) and the geography of log models (see, for example, [Shokurov] and [SC]). See also the subsection [1.2] below. The results in this subsection were obtained in [Kollar2], [Kollar3], and [Ka2], [Shokurov], [Sh2], and [Birkar] with some extra assumptions.

Let us recall the following easy lemma.

Lemma 1.1 (cf. [Sh2, Lemma 1]). Let (X, B) be a log canonical pair, where B is an \mathbb{R} -divisor. Then there are positive real numbers r_i , effective \mathbb{Q} -divisors B_i for $1 \leq i \leq l$, and a positive integer m such that $\sum_{i=1}^{l} r_i = 1, K_X + B = \sum_{i=1}^{l} r_i(K_X + B_i), (X, B_i)$ is log canonical for every i, and $m(K_X + B_i)$ is Cartier for every i.

Proof. Let $\sum_k D_k$ be the irreducible decomposition of Supp*B*. We consider the finite dimensional real vector space $V = \bigoplus_k \mathbb{R} D_k$. We put

$$\mathcal{Q} = \{ D \in V \mid K_X + D \text{ is } \mathbb{R}\text{-Cartier} \}.$$

Date: 2010/5/26, Version 1.09.

This note is a revised and expanded version of the subsection 3.1.3 of my book. I thank Yoshinori Gongyo for useful discussions.

OSAMU FUJINO

Then, it is easy to see that \mathcal{Q} is an affine subspace of V defined over \mathbb{Q} . We put

$$\mathcal{L} = \{ D \in \mathcal{Q} \mid K_X + D \text{ is log canonical} \}.$$

Thus, by the definition of log canonicity, it is also easy to check that \mathcal{L} is a closed convex rational polytope in V. We note that \mathcal{L} is compact in the classical topology of V. By the assumption, $B \in \mathcal{L}$. Therefore, we can find the desired \mathbb{Q} -divisors $B_i \in \mathcal{L}$ and positive real numbers r_i .

The next result is essentially due to $\frac{\text{kawamata}}{[\text{Ka2}]}$ and $\frac{\text{sho}-7}{[\text{Sh2}]}$ Proposition 1]. We will prove a more general result in Theorem 1.7 whose proof depends on Theorem 1.2.

Theorem 1.2. Let X be a normal variety such that (X, B) is lc and let $\pi : X \to S$ be a projective morphism onto a variety S. Let R be a $(K_X + B)$ -negative extremal ray. Then we can find a rational curve C on X such that $[C] \in R$ and

$$0 < -(K_X + B) \cdot C \le 2 \dim X.$$

Proof. By shrinking S, we can assume that S is quasi-projective. By replacing $\pi: X \to S$ with the extremal contraction $\varphi_R: X \to Y$ over S, we can assume that the relative Picard number $\rho(X/S) = 1$. In particular, $-(K_X + B_i)$ is π -ample. Let $K_X + B = \sum_{i=1}^l r_i(K_X + B_i)$ be as in Lemma I.1. We assume that $-(K_X + B_1)$ is π -ample and $-(K_X + B_i) = -s_i(K_X + B_1)$ in $N^1(X/S)$ with $s_i \leq 1$ for every $i \geq 2$. Thus, it is sufficient to find a rational curve C such that $\pi(C)$ is a point and that $-(K_X + B_1) \cdot C \leq 2 \dim X$. So, we can assume that $K_X + B$ is \mathbb{Q} -Cartier and lc. By Theorem ??, there is a birational morphism $f: (V, B_V) \to (X, B)$ such that $K_V + B_V = f^*(K_X + B)$, V is \mathbb{Q} -factorial, and (V, B_V) is dlt. By [Ka2, Theorem 1] and [Matsuki, Theorem 10-2-1], we can find a rational curve C' on V such that $-(K_V + B_V) \cdot C' \leq 2 \dim V = 2 \dim X$ and that C' spans a $(K_V + B_V)$ -negative extremal ray. By the projection formula, the f-image of C' is a desired rational curve. So, we finish the proof.

Remark 1.3 It is conjectured that the estimate $\leq 2 \dim X$ in Theorem 1.2 should be replaced by $\leq \dim X + 1$. When X is smooth projective, it is true by Mori's famous result (cf. [Mori]). See, for example, [KM, Theorem 1.13]. When X is a toric variety, it is also true by [F3] and [F5].

 $\mathbf{2}$

¹dlt blow-ups

Remark 1.4. In the proof of Theorem 1.2, we need Kawamata's estimate on the length of an extremal rational curve (cf. [Ka2, Theorem 1] and [Matsuki, Theorem 10-2-1]). It depends on Mori's bend and break technique to create rational curves. So, we need the mod p reduction technique there.

re-03 Remark 1.5. Let (X, D) be an lc pair such that D is an \mathbb{R} -divisor. Let $\phi : X \to Y$ be a projective morphism and H a Cartier divisor, on X. Assume that $H - (K_X + D)$ is f-ample. By Theorem ???, $R^q \phi_* \mathcal{O}_X(H) = 0$ for every q > 0 if X and Y are algebraic varieties. If this vanishing theorem holds for analytic spaces X and Y, then Kawamata's original argument in [Ka2] works directly for lc pairs. In that case, we do not need the results in [BCHM] in the proof of Theorem [1.2.]

We consider the proof of [Matsuki, Theorem 10-2-1] when (X, D) is Q-factorial dlt. We need $R^1\phi_*\mathcal{O}_X(H) = 0$ after shrinking X and Y analytically. In our situation, $(X, D - \varepsilon \square D \square)$ is klt for $0 < \varepsilon \ll 1$. Therefore, $H - (K_X + D - \varepsilon \square D \square)$ is ϕ -ample and $(X, D - \varepsilon \square D \square)$ is klt for $0 < \varepsilon \ll 1$. Thus, we can apply the analytic version of the relative Kawamata–Viehweg vanishing theorem. So, we do not need the analytic version of Theorem ??.

Remark 1.6. We give a remark on [BCHM]. We use the same notation as in [BCHM, 3.8]. In the proof of [BCHM, Corollary 3.8.2], we can assume that $K_X + \Delta$ is klt by [BCHM, Lemma 3.7.4]. By perturbing the coefficients of B slightly, we can further assume that B is a \mathbb{Q} divisor. By applying the usual cone theorem to the klt pair (X, B), we obtain that there are only finitely many $(K_X + \Delta)$ -negative extremal rays of $\overline{NE}(X/U)$. We note that [BCHM, Theorem 3.8.1] is only used in the proof of [BCHM, Corollary 3.8.2]. Therefore, we do not need the estimate of lengths of extremal rays in [BCHM]. In particular, we do not need mod p reduction arguments for the proof of the main results in [BCHM].

The final result in this subsection is an estimate of lengths of extremal rays which are relatively ample at non-lc loci (cf. [Kollar2], [Kollar3]).

thm-la Theorem 1.7. Let X be a normal variety, B an effective \mathbb{R} -divisor on X such that $K_X + B$ is \mathbb{R} -Cartier, and $\pi : X \to S$ a projective morphism onto a variety S. Let R be a $(K_X + B)$ -negative extremal

²Kawamata–Viehweg for lc pairs

³Kawamata–Viehweg for lc pairs

OSAMU FUJINO

ray of $\overline{NE}(X/S)$ which is relatively ample at Nlc(X, B). Then we can find a rational curve C on X such that $[C] \in R$ and

$$0 < -(K_X + B) \cdot C \le 2 \dim X.$$

Proof. By shrinking S, we can assume that S is quasi-projective. By replacing $\pi : X \to S$ with the extremal contraction $\varphi_R : X \to Y$ over S (cf. Theorem ??⁴), we can assume that the relative Picard number $\rho(X/S) = 1$ and that π is an isomorphism in a neighborhood of Nlc(X, B). In particular, $-(K_X + B)$ is π -ample. By Theorem ??,⁵ there is a projective birational morphism $f: Y \to X$ such that

(i)
$$K_Y + B_Y = f^*(K_X + B) + \sum_{\substack{a(E,X,B) < -1}} (a(E,X,B) + 1)E$$
, where
 $B_Y = f_*^{-1}B + \sum_{\substack{E: f \text{-exceptional}}} E$,

(ii)
$$(Y, B_Y)$$
 is a Q-factorial dlt pair, and

(iii)
$$D = B_Y + F$$
, where $F = -\sum_{a(E,X,B) < -1} (a(E,X,B) + 1)E \ge 0$.

We note that $K_Y + D = f^*(K_X + B)$. Therefore, we have

$$f_*(\overline{NE}(Y/S)_{K_Y+D\geq 0})\subseteq \overline{NE}(X/S)_{K_X+B\geq 0}=\{0\}.$$

We also note that

$$f_*(NE(Y/S)_{Nlc(Y,D)}) = \{0\}.$$

Thus, there is a $(K_Y + D)$ -negative extremal ray $R' \circ f NE(Y/S)$ which is relatively ample at Nlc(Y, D). By Theorem ???, R' is spanned by a curve C^{\dagger} . Since $-(K_Y + D) \cdot C^{\dagger} > 0$, we see that $f(C^{\dagger})$ is a curve. If $C^{\dagger} \subset \text{Supp}F$, then $f(C^{\dagger}) \subset \text{Nlc}(X, B)$. It is a contradiction because $\pi \circ f(C^{\dagger})$ is a point. Thus, $C^{\dagger} \not\subset \text{Supp}F$. Since $-(K_Y + B_Y) =$ $-(K_Y + D) + F$, we can see that R' is a $(K_Y + B_Y)$ -negative extremal ray of $\overline{NE}(Y/S)$. Therefore, we can find a rational curve C' on Y such that C' spans R' and that

$$0 < -(K_Y + B_Y) \cdot C' \le 2 \dim X$$

by Theorem I.2. By the above argument, we can easily see that $C' \not\subset$ Supp*F*. Therefore, we obtain

$$0 < -(K_Y + D) \cdot C' = -(K_Y + B_Y) \cdot C' - F \cdot C'$$

$$\leq -(K_Y + B_Y) \cdot C' \leq 2 \dim X.$$

Since $K_Y + D = f^*(K_X + B)$, C = f(C') is a rational curve on X such that $\pi(C)$ is a point and $0 < -(K_X + B) \cdot C \le 2 \dim X$.

⁴cone and contraction theorem

⁵dlt blow-ups

 $^{^{6}}$ cone theorem

Remark 1.8. In Theorem $\lim_{t \to 1^{-1a}} C$ can prove $0 < K_X + B \cdot C \leq \dim X + 1$ when dim $X \leq 2$. For details, see [F16, Proposition 3.7].

1.2. Shokurov's polytopes. In this subsection, we discuss a very important result obtained by Shokurov (cf. Shokurov_models First Main Theorem]), which is an application of Theorem 1.2. We closely follow Birkar's treatment in Birkar2, Section 3].

- **say-a01 1.9.** Let $\pi : X \to S$ be a projective morphism from a normal variety X to a variety S. A curve Γ on X is called *extremal* over S if the following properties hold.
 - (1) Γ generates an extremal ray R of NE(X/S).
 - (2) There is a π -ample Cartier divisor H on X such that

$$H \cdot \Gamma = \min\{H \cdot C\},\$$

where C ranges over curves generating R.

We note that every $(K_X + \Delta)$ -negative extremal ray R of NE(X/S) is spanned by a curve if Δ is an effective \mathbb{R} -divisor on X such that (X, Δ) is log canonical. It is a consequence of the cone and contraction theorem (cf. Theorem ???).

Let B be an effective \mathbb{R} -divisor on X such that (X, B) is log canonical and let R be a $(K_X + B)$ -negative extremal ray of $\overline{NE}(X/S)$. Then we can take a rational curve C such that C spans R and that $0 < -(K_X + B) \cdot C \leq 2 \dim X$ by Theorem 1.2. Let Γ be an extremal curve generating R. Then we have

$$\frac{-(K_X+B)\cdot\Gamma}{H\cdot\Gamma} = \frac{-(K_X+B)\cdot C}{H\cdot C}.$$

Therefore,

$$-(K_X + B) \cdot \Gamma = (-(K_X + B) \cdot C) \cdot \frac{H \cdot \Gamma}{H \cdot C} \le 2 \dim X.$$

Let F be a reduced divisor on X. We consider the finite dimensional real vector space $V = \bigoplus_k \mathbb{R}F_k$ where $F = \sum_k F_k$ is the irreducible decomposition. We have already seen that

 $\mathcal{L} = \{\Delta \in V \,|\, (X, \Delta) \text{ is log canonical}\}\$

is a rational polytope in V, that is, it is the convex hull of finitely many rational points in V (see Lemma 1.1).

Let B_1, \dots, B_r be the vertices of \mathcal{L} and let m be a positive integer such that $m(K_X + B_j)$ is Cartier for every j. We take an \mathbb{R} -divisor $B \in \mathcal{L}$. Then we can find non-negative real numbers a_1, \dots, a_r such that $B = \sum_j a_j B_j$, $\sum_j a_j = 1$, and (X, B_j) is log canonical for every

sub-a1

 $^{^{7}}$ cone theorem

j (see Lemma 1.1). For every curve C on X, the intersection number $-(K_X + B) \cdot C$ can be written as

$$\sum_{j} a_j \frac{n_j}{m}$$

such that $n_j \in \mathbb{Z}$ for every j. If C is an extremal curve, then we can see that $n_j \leq 2m \dim X$ for every j by the above arguments.

On the real vector space V, we consider the following norm

$$\|B\| = \max_i \{|b_j|\},\$$

where $B = \sum_{j} b_j F_j$.

We explain Shokurov's important results (cf. [Shokurov]) following birkar2, Proposition 3.2].

Theorem 1.10. We use the same notation as in $[1.9, We \text{ fix an } \mathbb{R}$ divisor $B \in \mathcal{L}$. Then we can find positive real numbers α and δ , which depend on (X, B) and F, with the following properties.

- (1) If Γ is any extremal curve over S and $(K_X + B) \cdot \Gamma > 0$, then $(K_X + B) \cdot \Gamma > \alpha$.
- (2) If $\Delta \in \mathcal{L}$, $\|\Delta B\| < \delta$, and $(K_X + \Delta) \cdot R \leq 0$ for an extremal curve Γ , then $(K_X + B) \cdot \Gamma \leq 0$.
- (3) Let $\{R_t\}_{t\in T}$ be any set of extremal rays of $\overline{NE}(X/S)$. Then

$$\mathcal{N}_T = \{ \Delta \in \mathcal{L} \, | \, (K_X + \Delta) \cdot R_t \ge 0 \text{ for every } t \in T \}$$

is a rational polytope in V.

Proof. (1) If B is a Q-divisor, then the claim is obvious even if Γ is not extremal. We assume that B is not a Q-divisor. Then we can write $K_X + B = \sum_j a_j(K_X + B_j)$ as in 1.9. Then $(K_X + B) \cdot \Gamma = \sum_j a_j(K_X + B_j) \cdot \Gamma$. If $(K_X + B) \cdot \Gamma < 1$, then

$$-2\dim X \le (K_X + B_{j_0}) \cdot \Gamma < \frac{1}{a_{j_0}} \{ -\sum_{j \ne j_0} a_j (K_X + B_j) \cdot \Gamma + 1 \}$$
$$\le \frac{2\dim X + 1}{a_{j_0}}$$

for $a_{j_0} \neq 0$. It is because $(K_X + B_j) \cdot \Gamma \geq -2 \dim X$ for every j. Thus there are only finitely many possibilities of the intersection numbers $(K_X + B_j) \cdot \Gamma$ for $a_j \neq 0$ when $(K_X + B) \cdot \Gamma < 1$. Therefore, the existence of α is obvious.

(2) If we take δ sufficiently small, then, for every $\Delta \in \mathcal{L}$ with $\|\Delta - B\| < \delta$, we can always find $\Delta' \in \mathcal{L}$ such that

$$K_X + \Delta = (1 - s)(K_X + B) + s(K_X + \Delta')$$

theorem-a01

with

$$0 \le s \le \frac{\alpha}{\alpha + 2\dim X}$$

Since Γ is extremal, we have $(K_X + \Delta') \cdot \Gamma \geq -2 \dim X$ for every $\Delta' \in \mathcal{L}$. We assume that $(K_X + B) \cdot \Gamma > 0$ Then $(K_X + B) \cdot \Gamma > \alpha$ by (1). Therefore,

$$(K_X + \Delta) \cdot \Gamma = (1 - s)(K_X + B) \cdot \Gamma + s(K_X + \Delta') \cdot \Gamma$$

> $(1 - s)\alpha + s(-2 \dim X) \ge 0.$

It is a contradiction. Therefore, we obtain $(K_X + B) \cdot \Gamma \leq 0$. We complete the proof of (2).

(3) For every $t \in T$, we can assume that there is some $\Delta_t \in \mathcal{L}$ such that $(K_X + \Delta) \cdot R_t < 0$. We note that $(K_X + \Delta) \cdot R_t < 0$ for some $\Delta \in \mathcal{L}$ implies $(K_X + B_j) \cdot R_t < 0$ for some j. Therefore, we can assume that T is contained in N. It is because there are only countably many $(K_X + B_j)$ -negative extremal rays for every j by the cone theorem (cf. Theorem ??**). We note that \mathcal{N}_T is a closed convex subset of \mathcal{L} by definition. If T is a finite set, then the claim is obvious. Thus, we can assume that $T = \mathbb{N}$. By (2) and by the compactness of \mathcal{N}_T , we can take $\Delta_1, \dots, \Delta_n \in \mathcal{N}_T$ and $\delta_1, \dots, \delta_n > 0$ such that \mathcal{N}_T is covered by

$$\mathcal{B}_i = \{ \Delta \in \mathcal{L} \mid \|\Delta - \Delta_i\| < \delta_i \}$$

and that if $\Delta \in \mathcal{B}_i$ with $(K_X + \Delta) \cdot R_t < 0$ for some t, then $(K_X + \Delta_i) \cdot R_t = 0$. If we put

$$T_i = \{ t \in T \mid (K_X + \Delta) \cdot R_t < 0 \text{ for some } \Delta \in \mathcal{B}_i \},\$$

then $(K_X + \Delta_i) \cdot R_t = 0$ for every $t \in T_i$ by the above construction. Since $\{\mathcal{B}_i\}_{i=1}^n$ gives an open covering of \mathcal{N}_T , we have $\mathcal{N}_T = \bigcap_{1 \le i \le n} \mathcal{N}_{T_i}$.

claim-a0 Claim. $\mathcal{N}_T = igcap_{1 \leq i \leq n} \mathcal{N}_{T_i}.$

Proof of Claim. We note that $\mathcal{N}_T \subset \bigcap_{1 \leq i \leq n} \mathcal{N}_{T_i}$ is obvious. We assume that $\mathcal{N}_T \subsetneq \bigcap_{1 \leq i \leq n} \mathcal{N}_{T_i}$. We take $\Delta \in \bigcap_{1 \leq i \leq n} \mathcal{N}_{T_i} \setminus \mathcal{N}_T$ which is very close to \mathcal{N}_T . Since \mathcal{N}_T is covered by $\{\mathcal{B}_i\}_{i=1}^n$, there is some i_0 such that $\Delta \in \mathcal{B}_{i_0}$. Since $\Delta \notin \mathcal{N}_T$, there is some $t_0 \in T$ such that $(K_X + \Delta) \cdot R_{t_0} <$ 0. Thus, $t_0 \in T_{i_0}$. It is a contradiction because $\Delta \in \mathcal{N}_{T_{i_0}}$. Therefore, $\mathcal{N}_T = \bigcap_{1 \leq i < n} \mathcal{N}_{T_i}$.

So, it is sufficient to see that each \mathcal{N}_{T_i} is a rational polytope in V. By replacing T with T_i , we can assume that there is some $\Delta \in \mathcal{N}_T$ such that $(K_X + \Delta) \cdot R_t = 0$ for every $t \in T$.

If $\dim_{\mathbb{R}} \mathcal{L} = 1$, then this already implies the claim. We assume $\dim_{\mathbb{R}} \mathcal{L} > 1$. Let $\mathcal{L}^1, \dots, \mathcal{L}^p$ be the proper faces of \mathcal{L} . Then $\mathcal{N}_T^i =$

 $^{^{8}}$ cone theorem

 $\mathcal{N}_T \cap \mathcal{L}^i$ is a rational polytope by induction on dimension. Moreover, for each $\Delta'' \in \mathcal{N}_T$ which is not Δ , there is Δ' on some proper face of \mathcal{L} such that Δ'' is on the line segment determined by Δ and Δ' . Since $(K_X + \Delta) \cdot R_t = 0$ for every $t \in T$, if $\Delta' \in \mathcal{L}^i$, then $\Delta' \in \mathcal{N}_T^i$. Therefore, \mathcal{N}_T is the convex hull of Δ and all the \mathcal{N}_T^i . Thus, there is a finite subset $T' \subset T$ such that

$$\bigcup_i \mathcal{N}_T^i = \mathcal{N}_{T'} \cap (\bigcup_i \mathcal{L}^i).$$

Therefore, the convex hull of Δ and $\bigcup_i \mathcal{N}_T^i$ is just $\mathcal{N}_{T'}$. We complete the proof of (3).

By Theorem 1.10(3), Lemma 2.6 in [Birkar] holds for lc pairs. It may be useful for the log minimal model program with scaling.

Theorem 1.11 (cf. [Birkar, Lemma 2.6]). Let (X, B) be an lc pair, B an \mathbb{R} -divisor, and $\pi : X \to S$ a projective morphism between algebraic varieties. Let H be an effective \mathbb{R} -Cartier \mathbb{R} -divisor on X such that $K_X + B + H$ is π -nef and (X, B + H) is lc. Then, either $K_X + B$ is also π -nef or there is a $(K_X + B)$ -negative extremal ray R such that $(K_X + B + \lambda H) \cdot R = 0$, where

$$\lambda := \inf\{t \ge 0 \mid K_X + B + tH \text{ is } \pi\text{-nef}\}.$$

Of course, $K_X + B + \lambda H$ is π -nef.

Proof. Assume that $K_X + B$ is not π -nef. Let $\{R_j\}$ be the set of $(K_X + B)$ -negative extremal rays over S. Let C_j be an extremal curve spanning R_j for every j. We put $\mu = \sup_i \{\mu_j\}$, where

$$\mu_j = \frac{-(K_X + B) \cdot C_j}{H \cdot C_j}$$

Obviously, $\lambda = \mu$ and $0 < \mu \leq 1$. So, it is sufficient to prove that $\mu = \mu_l$ for some l. There are positive real numbers r_1, \dots, r_l such that $\sum_i r_i = 1$ and a positive integer m, which are independent of j, such that

$$-(K_X + B) \cdot C_j = \sum_{i=1}^l \frac{r_i n_{ij}}{m} > 0$$

(see Lemma 1.1, Theorem 1.2, and 1.9). Since C_j is extremal, n_{ij} is an integer with $n_{ij} \leq 2m \dim X$ for every i and j. If $(K_X + B + H) \cdot R_l = 0$ for some l, then there are nothing to prove since $\lambda = 1$ and $(K_X + B + H) \cdot R_j > 0$ with $R = R_l$. Thus, we assume that $(K_X + B + H) \cdot R_j > 0$

bir-prop

for every j. We put F = Supp(B + H), $F = \sum_k F_k$ is the irreducible decomposition, $V = \bigoplus_k \mathbb{R}F_k$,

$$\mathcal{L} = \{ \Delta \in V \, | \, (X, \Delta) \text{ is log canonical} \},\$$

and

$$\mathcal{N} = \{ \Delta \in \mathcal{L} \, | \, (K_X + \Delta) \cdot R_j \ge 0 \text{ for every } j \}.$$

Then \mathcal{N} is a rational polytope in V by Theorem $\stackrel{|\text{theorem-a01}}{1.10}(3)$ and B + H is in the relative interior of \mathcal{N} by the above assumption. Therefore, we can write

$$K_X + B + H = \sum_{p=1}^q r'_p (K_X + \Delta_p),$$

where r'_1, \dots, r'_q are positive real numbers such that $\sum_p r'_p = 1$, (X, Δ_p) is lc for every p, $m'(K_X + \Delta_p)$ is Cartier for some positive integer m' and every p, and $(K_X + \Delta_p) \cdot C_j > 0$ for every p and j. So, we obtain

$$(K_X + B + H) \cdot C_j = \sum_{p=1}^{q} \frac{r'_p n'_{pj}}{m'}$$

with $0 < n'_{pj} = m'(K_X + \Delta_p) \cdot C_j \in \mathbb{Z}$. Note that m' and r'_p are independent of j for every p. We also note that

$$\frac{1}{\mu_j} = \frac{H \cdot C_j}{-(K_X + B) \cdot C_j} = \frac{(K_X + B + H) \cdot C_j}{-(K_X + B) \cdot C_j} + 1$$
$$= \frac{m \sum_{p=1}^q r'_p n'_{pj}}{m' \sum_{i=1}^l r_j n_{ij}} + 1.$$

Since

$$\sum_{i=1}^{l} \frac{r_i n_{ij}}{m} > 0$$

for every j and $n_{ij} \leq 2m \dim X$ with $n_{ij} \in \mathbb{Z}$ for every i and j, the number of the set $\{n_{ij}\}_{i,j}$ is finite. Thus,

$$\inf_{j} \left\{ \frac{1}{\mu_j} \right\} = \frac{1}{\mu_l}$$

for some *l*. Therefore, we obtain $\mu = \mu_l$. We finish the proof.

The following picture helps the reader to understand Theorem 1.11.

1.12 (Abundance conjectures). We close this subsection with applications of Theorem 1.10 (3) to abundance conjectures for \mathbb{R} -divisors (cf. [Shokurov, 2.7. Theorem on log semi-ampleness for 3-folds]).

The following proposition is a useful application of Theorem 1.10 (cf. [Shokurov, 2.7]).

proposition-a02

Proposition 1.13. Let $f: X \to Y$ be a projective morphism between algebraic varieties. Let B be an effective \mathbb{R} -divisor on X such that (X, B) is log canonical and that $K_X + B$ is f-nef. Assume that the abundance conjecture holds for \mathbb{Q} -divisors. More precisely, we assume that $K_X + \Delta$ is f-semi-ample if $\Delta \in \mathcal{L}$, Δ is a \mathbb{Q} -divisor, and $K_X + \Delta$ is f-nef, where

$$\mathcal{L} = \{ \Delta \in V \,|\, (X, \Delta) \text{ is log canonical} \},\$$

 $V = \bigoplus_k \mathbb{R}F_k$, and $\sum_k F_k$ is the irreducible decomposition of SuppB. Then $K_X + B$ is f-semi-ample.

Proof. Let $\{R_t\}_{t\in \underline{T} \text{ say-a01}}$ be the set of all extremal rays of $\overline{NE}(X/Y)$. We consider \mathcal{N}_T as in 1.9. Then \mathcal{N}_T is a rational polytope in \mathcal{L} by Theorem 1.10 (3). We can easily see that

$$\mathcal{N}_T = \{ \Delta \in \mathcal{L} \, | \, K_X + \Delta \text{ is } f \text{-nef} \}.$$

By assumption, $B \in \mathcal{N}_T$. Let \mathcal{F} be the minimal face of \mathcal{N}_T containing B. Then we can find \mathbb{Q} -divisors D_1, \dots, D_l on X such that D_i is in the relative interior of \mathcal{F} , $K_X + B = \sum_i d_i (K_X + D_i)$, where d_i is a positive real number for every i and $\sum_i d_i = 1$. By assumption, $K_X + D_i$ is f-semi-ample for every i. Therefore, $K_X + B$ is f-semi-ample. \Box

Remark 1.14 (Stability of Iitaka fibrations). In the proof of Proposition 1.13, we note the following property. If C is a curve on X such that

f(C) is a point and $(K_X+D_{i_0})\cdot C=0$ for some i_0 , then $(K_X+D_i)\cdot C=0$ for every *i*. It is because we can find $\Delta' \in \mathcal{F}$ such that $(K_X+\Delta')\cdot C<0$ if $(K_X+D_i)\cdot C>0$ for some $i\neq i_0$. It is a contradiction. Therefore, there exists a contraction morphism $g: X \to Z$ over Y and h-ample \mathbb{Q} -Cartier \mathbb{Q} -divisors A_1, \cdots, A_l on Z, where $h: Z \to Y$, such that $K_X + D_i \sim_{\mathbb{Q}} g^*A_i$ for every *i*. In particular,

$$K_X + B \sim_{\mathbb{R}} g^*(\sum_i d_i A_i).$$

Note that $\sum_i d_i A_i$ is *h*-ample. Roughly speaking, the Iitaka fibration of $K_X + B$ is the same as that of $K_X + D_i$ for every *i*.

Corollary 1.15. Let $f : X \to Y$ be a projective morphism between algebraic varieties. Assume that (X, B) is lc and that $K_X + B$ is f-nef. We further assume one of the following conditions.

(i) dim $X \leq 3$.

(ii) dim
$$X = 4$$
 and dim $Y \ge 1$.

Then $K_X + B$ is f-semi-ample.

Proof. It is obvious by Proposition 1.13 and the log abundance theorems for threefolds and fourfolds (see, for example, [KeMM, 1.1. Theorem] and [F18, Theorem 3.10]).

Corollary 1.16. Let $f : X \to Y$ be a projective morphism between algebraic varieties. Assume that (X, B) is klt and $K_X + B$ is f-nef. We further assume that dim $X - \dim Y \leq 3$. Then $K_X + B$ is f-semi-ample.

Proof. If B is a Q-divisor, then it is well known that $K_{X_{\eta}} + B_{\eta}$ is semiample, where X_{η} is the generic fiber of f and $B_{\eta} = B|_{X_{\eta}}$ (see, for example, [KeMM, 1.1. Theorem]). Therefore, $K_X + B$ is f-semi-ample by [F17, Theorem 1.1]. When B is an \mathbb{R} -divisor, we can take Q-divisors $D_1, \dots, D_l \in \mathcal{F}$ as in the proof of Proposition 1.13 such that (X, D_i) is klt for every i. Since $K_X + D_i$ is f-semi-ample by the above argument, we obtain that $K_X + B$ is f-semi-ample.

Remark 1.17 (Log surfaces). In [F16], Sections 6, 7, and 8], we discuss the log abundance theorem for log surfaces. The results in [F16] are much stronger than everybody expected.

References

birkar[Birkar]Existencebirkar2[Birkar2]Existence II.bchm[BCHM]fuji-tor[F3]Notes on toric

corollary-a04

OSAMU FUJINO

fuji-to2	[F5] Equivariant
fujino16	[F16] Log surfaces
fuji-ka	[F17] On Kawamat
fuji-finite	[F18] Finite
kawamata	[Ka2] On
kemm	[KeMM] Log abundan
kollar2	[Kollar2]
kollar3	[Kollar3]
km	[KM] Kollár–Mori
matsuki	[Matsuki]
mori-th	[Mori] Threefolds
shokurov-models	[Shokurov] 3-flod log 1
sho-7	[Sh2]
shokurov-choi	[SC] Shokurov, Cl

F16] Log surfaces
F17] On Kawamata
F18] Finite
Ka2] On
KeMM] Log abundance
Kollar2]
Kollar3]
KM] Kollár–Mori
Matsuki]
Mori] Threefolds
Shokurov] 3-flod log models
Sh2]
SC] Shokurov, Choi

Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606-8502, Japan

E-mail address: fujino@math.kyoto-u.ac.jp

12