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1.1. Lengths of extremal rays. In this subsection, we discuss esti-
mates of lengths of extremal rays. It is indispensable for the log min-
imal model program with scaling (see, for example,

bchm
[BCHM]) and the

geography of log models (see, for example,
shokurov-models
[Shokurov] and

shokurov-choi
[SC]). See

also the subsection
sub-a1
1.2 below. The results in this subsection were ob-

tained in
kollar2
[Kollar2],

kollar3
[Kollar3], and

kawamata
[Ka2],

shokurov-models
[Shokurov],

sho-7
[Sh2], and

birkar
[Birkar]

with some extra assumptions.
Let us recall the following easy lemma.

lem145 Lemma 1.1 (cf.
sho-7
[Sh2, Lemma 1]). Let (X, B) be a log canonical pair,

where B is an R-divisor. Then there are positive real numbers ri, ef-
fective Q-divisors Bi for 1 ≤ i ≤ l, and a positive integer m such that∑l

i=1 ri = 1, KX + B =
∑l

i=1 ri(KX + Bi), (X,Bi) is log canonical for
every i, and m(KX + Bi) is Cartier for every i.

Proof. Let
∑

k Dk be the irreducible decomposition of SuppB. We
consider the finite dimensional real vector space V =

⊕
k

RDk. We put

Q = {D ∈ V | KX + D is R-Cartier} .
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Then, it is easy to see that Q is an affine subspace of V defined over
Q. We put

L = {D ∈ Q | KX + D is log canonical} .

Thus, by the definition of log canonicity, it is also easy to check that L
is a closed convex rational polytope in V . We note that L is compact
in the classical topology of V . By the assumption, B ∈ L. Therefore,
we can find the desired Q-divisors Bi ∈ L and positive real numbers
ri. �

The next result is essentially due to
kawamata
[Ka2] and

sho-7
[Sh2, Proposition

1]. We will prove a more general result in Theorem
thm-la
1.7 whose proof

depends on Theorem
prop146
1.2.

prop146 Theorem 1.2. Let X be a normal variety such that (X, B) is lc and
let π : X → S be a projective morphism onto a variety S. Let R be a
(KX + B)-negative extremal ray. Then we can find a rational curve C
on X such that [C] ∈ R and

0 < −(KX + B) · C ≤ 2 dim X.

Proof. By shrinking S, we can assume that S is quasi–projective. By
replacing π : X → S with the extremal contraction ϕR : X → Y over
S, we can assume that the relative Picard number ρ(X/S) = 1. In

particular, −(KX + B) is π-ample. Let KX + B =
∑l

i=1 ri(KX + Bi)
be as in Lemma

lem145
1.1. We assume that −(KX + B1) is π-ample and

−(KX + Bi) = −si(KX + B1) in N1(X/S) with si ≤ 1 for every i ≥ 2.
Thus, it is sufficient to find a rational curve C such that π(C) is a point
and that −(KX +B1) ·C ≤ 2 dim X. So, we can assume that KX +B is
Q-Cartier and lc. By Theorem

thm91??
??,1 there is a birational morphism f :

(V, BV ) → (X,B) such that KV + BV = f ∗(KX + B), V is Q-factorial,
and (V, BV ) is dlt. By

kawamata
[Ka2, Theorem 1] and

matsuki
[Matsuki, Theorem 10-2-

1], we can find a rational curve C ′ on V such that −(KV + BV ) · C ′ ≤
2 dim V = 2 dim X and that C ′ spans a (KV + BV )-negative extremal
ray. By the projection formula, the f -image of C ′ is a desired rational
curve. So, we finish the proof. �

Remark 1.3. It is conjectured that the estimate ≤ 2 dim X in The-
orem

prop146
1.2 should be replaced by ≤ dim X + 1. When X is smooth

projective, it is true by Mori’s famous result (cf.
mori-th
[Mori]). See, for ex-

ample,
km
[KM, Theorem 1.13]. When X is a toric variety, it is also true

by
fuji-tor
[F3] and

fuji-to2
[F5].

1dlt blow-ups
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Remark 1.4. In the proof of Theorem
prop146
1.2, we need Kawamata’s esti-

mate on the length of an extremal rational curve (cf.
kawamata
[Ka2, Theorem 1]

and
matsuki
[Matsuki, Theorem 10-2-1]). It depends on Mori’s bend and break

technique to create rational curves. So, we need the mod p reduction
technique there.

re-03 Remark 1.5. Let (X,D) be an lc pair such that D is an R-divisor.
Let φ : X → Y be a projective morphism and H a Cartier divisor
on X. Assume that H − (KX + D) is f -ample. By Theorem

kvn??
??,2

Rqφ∗OX(H) = 0 for every q > 0 if X and Y are algebraic varieties.
If this vanishing theorem holds for analytic spaces X and Y , then
Kawamata’s original argument in

kawamata
[Ka2] works directly for lc pairs. In

that case, we do not need the results in
bchm
[BCHM] in the proof of Theorem

prop146
1.2.

We consider the proof of
matsuki
[Matsuki, Theorem 10-2-1] when (X, D) is

Q-factorial dlt. We need R1φ∗OX(H) = 0 after shrinking X and Y
analytically. In our situation, (X, D − εxDy) is klt for 0 < ε � 1.
Therefore, H − (KX + D − εxDy) is φ-ample and (X, D − εxDy) is
klt for 0 < ε � 1. Thus, we can apply the analytic version of the
relative Kawamata–Viehweg vanishing theorem. So, we do not need
the analytic version of Theorem

kvn??
??.3

Remark 1.6. We give a remark on
bchm
[BCHM]. We use the same notation

as in
bchm
[BCHM, 3.8]. In the proof of

bchm
[BCHM, Corollary 3.8.2], we can

assume that KX + ∆ is klt by
bchm
[BCHM, Lemma 3.7.4]. By perturbing

the coefficients of B slightly, we can further assume that B is a Q-
divisor. By applying the usual cone theorem to the klt pair (X, B), we
obtain that there are only finitely many (KX + ∆)-negative extremal
rays of NE(X/U). We note that

bchm
[BCHM, Theorem 3.8.1] is only used

in the proof of
bchm
[BCHM, Corollary 3.8.2]. Therefore, we do not need the

estimate of lengths of extremal rays in
bchm
[BCHM]. In particular, we do

not need mod p reduction arguments for the proof of the main results
in

bchm
[BCHM].

The final result in this subsection is an estimate of lengths of ex-
tremal rays which are relatively ample at non-lc loci (cf.

kollar2
[Kollar2],

kollar3
[Kollar3]).

thm-la Theorem 1.7. Let X be a normal variety, B an effective R-divisor
on X such that KX + B is R-Cartier, and π : X → S a projective
morphism onto a variety S. Let R be a (KX + B)-negative extremal

2Kawamata–Viehweg for lc pairs
3Kawamata–Viehweg for lc pairs
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ray of NE(X/S) which is relatively ample at Nlc(X,B). Then we can
find a rational curve C on X such that [C] ∈ R and

0 < −(KX + B) · C ≤ 2 dim X.

Proof. By shrinking S, we can assume that S is quasi-projective. By
replacing π : X → S with the extremal contraction ϕR : X → Y
over S (cf. Theorem

??
??4), we can assume that the relative Picard num-

ber ρ(X/S) = 1 and that π is an isomorphism in a neighborhood of
Nlc(X, B). In particular, −(KX + B) is π-ample. By Theorem

thm91??
??,5

there is a projective birational morphism f : Y → X such that

(i) KY + BY = f ∗(KX + B) +
∑

a(E,X,B)<−1

(a(E, X, B) + 1)E, where

BY = f−1
∗ B +

∑
E:f -exceptional

E,

(ii) (Y, BY ) is a Q-factorial dlt pair, and
(iii) D = BY + F , where F = −

∑
a(E,X,B)<−1

(a(E, X,B) + 1)E ≥ 0.

We note that KY + D = f ∗(KX + B). Therefore, we have

f∗(NE(Y/S)KY +D≥0) ⊆ NE(X/S)KX+B≥0 = {0}.
We also note that

f∗(NE(Y/S)Nlc(Y,D)) = {0}.
Thus, there is a (KY +D)-negative extremal ray R′ of NE(Y/S) which
is relatively ample at Nlc(Y,D). By Theorem

thm144??
??,6 R′ is spanned by a

curve C†. Since −(KY + D) · C† > 0, we see that f(C†) is a curve. If
C† ⊂ SuppF , then f(C†) ⊂ Nlc(X, B). It is a contradiction because
π ◦ f(C†) is a point. Thus, C† 6⊂ SuppF . Since −(KY + BY ) =
−(KY + D) + F , we can see that R′ is a (KY + BY )-negative extremal
ray of NE(Y/S). Therefore, we can find a rational curve C ′ on Y such
that C ′ spans R′ and that

0 < −(KY + BY ) · C ′ ≤ 2 dim X

by Theorem
prop146
1.2. By the above argument, we can easily see that C ′ 6⊂

SuppF . Therefore, we obtain

0 < −(KY + D) · C ′ = −(KY + BY ) · C ′ − F · C ′

≤ −(KY + BY ) · C ′ ≤ 2 dim X.

Since KY +D = f ∗(KX +B), C = f(C ′) is a rational curve on X such
that π(C) is a point and 0 < −(KX + B) · C ≤ 2 dim X. �

4cone and contraction theorem
5dlt blow-ups
6cone theorem
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Remark 1.8. In Theorem
thm-la
1.7, we can prove 0 < −(KX + B) · C ≤

dim X + 1 when dim X ≤ 2. For details, see
fujino16
[F16, Proposition 3.7].

sub-a1
1.2. Shokurov’s polytopes. In this subsection, we discuss a very
important result obtained by Shokurov (cf.

shokurov-models
[Shokurov, 6.2. First Main

Theorem]), which is an application of Theorem
prop146
1.2. We closely follow

Birkar’s treatment in
birkar2
[Birkar2, Section 3].

say-a01 1.9. Let π : X → S be a projective morphism from a normal variety X
to a variety S. A curve Γ on X is called extremal over S if the following
properties hold.

(1) Γ generates an extremal ray R of NE(X/S).
(2) There is a π-ample Cartier divisor H on X such that

H · Γ = min{H · C},
where C ranges over curves generating R.

We note that every (KX + ∆)-negative extremal ray R of NE(X/S)
is spanned by a curve if ∆ is an effective R-divisor on X such that
(X, ∆) is log canonical. It is a consequence of the cone and contraction
theorem (cf. Theorem

???
??7).

Let B be an effective R-divisor on X such that (X, B) is log canonical
and let R be a (KX + B)-negative extremal ray of NE(X/S). Then
we can take a rational curve C such that C spans R and that 0 <
−(KX +B) ·C ≤ 2 dim X by Theorem

prop146
1.2. Let Γ be an extremal curve

generating R. Then we have

−(KX + B) · Γ
H · Γ

=
−(KX + B) · C

H · C
.

Therefore,

−(KX + B) · Γ = (−(KX + B) · C) · H · Γ
H · C

≤ 2 dim X.

Let F be a reduced divisor on X. We consider the finite dimensional
real vector space V =

⊕
k RFk where F =

∑
k Fk is the irreducible

decomposition. We have already seen that

L = {∆ ∈ V | (X, ∆) is log canonical}
is a rational polytope in V , that is, it is the convex hull of finitely many
rational points in V (see Lemma

lem145
1.1).

Let B1, · · · , Br be the vertices of L and let m be a positive integer
such that m(KX + Bj) is Cartier for every j. We take an R-divisor
B ∈ L. Then we can find non-negative real numbers a1, · · · , ar such
that B =

∑
j ajBj,

∑
j aj = 1, and (X, Bj) is log canonical for every

7cone theorem
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j (see Lemma
lem145
1.1). For every curve C on X, the intersection number

−(KX + B) · C can be written as∑
j

aj
nj

m

such that nj ∈ Z for every j. If C is an extremal curve, then we can
see that nj ≤ 2m dim X for every j by the above arguments.

On the real vector space V , we consider the following norm

||B|| = max
j

{|bj|},

where B =
∑

j bjFj.

We explain Shokurov’s important results (cf.
shokurov-models
[Shokurov]) following

birkar2
[Birkar2, Proposition 3.2].

theorem-a01 Theorem 1.10. We use the same notation as in
say-a01
1.9. We fix an R-

divisor B ∈ L. Then we can find positive real numbers α and δ, which
depend on (X, B) and F , with the following properties.

(1) If Γ is any extremal curve over S and (KX + B) · Γ > 0, then
(KX + B) · Γ > α.

(2) If ∆ ∈ L, ||∆ − B|| < δ, and (KX + ∆) · R ≤ 0 for an extremal
curve Γ, then (KX + B) · Γ ≤ 0.

(3) Let {Rt}t∈T be any set of extremal rays of NE(X/S). Then

NT = {∆ ∈ L | (KX + ∆) · Rt ≥ 0 for every t ∈ T}
is a rational polytope in V .

Proof. (1) If B is a Q-divisor, then the claim is obvious even if Γ is
not extremal. We assume that B is not a Q-divisor. Then we can
write KX + B =

∑
j aj(KX + Bj) as in

say-a01
1.9. Then (KX + B) · Γ =∑

j aj(KX + Bj) · Γ. If (KX + B) · Γ < 1, then

−2 dim X ≤ (KX + Bj0) · Γ <
1

aj0

{−
∑
j 6=j0

aj(KX + Bj) · Γ + 1}

≤ 2 dim X + 1

aj0

for aj0 6= 0. It is because (KX + Bj) · Γ ≥ −2 dim X for every j. Thus
there are only finitely many possibilities of the intersection numbers
(KX + Bj) · Γ for aj 6= 0 when (KX + B) · Γ < 1. Therefore, the
existence of α is obvious.

(2) If we take δ sufficiently small, then, for every ∆ ∈ L with ||∆ −
B|| < δ, we can always find ∆′ ∈ L such that

KX + ∆ = (1 − s)(KX + B) + s(KX + ∆′)
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with
0 ≤ s ≤ α

α + 2 dim X
.

Since Γ is extremal, we have (KX + ∆′) · Γ ≥ −2 dim X for every
∆′ ∈ L. We assume that (KX + B) · Γ > 0 Then (KX + B) · Γ > α by
(1). Therefore,

(KX + ∆) · Γ = (1 − s)(KX + B) · Γ + s(KX + ∆′) · Γ
> (1 − s)α + s(−2 dim X) ≥ 0.

It is a contradiction. Therefore, we obtain (KX + B) · Γ ≤ 0. We
complete the proof of (2).

(3) For every t ∈ T , we can assume that there is some ∆t ∈ L such
that (KX + ∆) · Rt < 0. We note that (KX + ∆) · Rt < 0 for some
∆ ∈ L implies (KX + Bj) · Rt < 0 for some j. Therefore, we can
assume that T is contained in N. It is because there are only countably
many (KX +Bj)-negative extremal rays for every j by the cone theorem
(cf. Theorem

??
??8). We note that NT is a closed convex subset of L by

definition. If T is a finite set, then the claim is obvious. Thus, we can
assume that T = N. By (2) and by the compactness of NT , we can
take ∆1, · · · , ∆n ∈ NT and δ1, · · · , δn > 0 such that NT is covered by

Bi = {∆ ∈ L | ||∆ − ∆i|| < δi}
and that if ∆ ∈ Bi with (KX +∆) ·Rt < 0 for some t, then (KX +∆i) ·
Rt = 0. If we put

Ti = {t ∈ T | (KX + ∆) · Rt < 0 for some ∆ ∈ Bi},
then (KX + ∆i) · Rt = 0 for every t ∈ Ti by the above construction.
Since {Bi}n

i=1 gives an open covering of NT , we have NT =
∩

1≤i≤n NTi
.

claim-a0 Claim. NT =
∩

1≤i≤n NTi
.

Proof of Claim. We note that NT ⊂
∩

1≤i≤n NTi
is obvious. We assume

that NT (
∩

1≤i≤n NTi
. We take ∆ ∈

∩
1≤i≤n NTi

\ NT which is very
close to NT . Since NT is covered by {Bi}n

i=1, there is some i0 such that
∆ ∈ Bi0 . Since ∆ 6∈ NT , there is some t0 ∈ T such that (KX +∆)·Rt0 <
0. Thus, t0 ∈ Ti0 . It is a contradiction because ∆ ∈ NTi0

. Therefore,
NT =

∩
1≤i≤n NTi

. �
So, it is sufficient to see that each NTi

is a rational polytope in V .
By replacing T with Ti, we can assume that there is some ∆ ∈ NT such
that (KX + ∆) · Rt = 0 for every t ∈ T .

If dimR L = 1, then this already implies the claim. We assume
dimR L > 1. Let L1, · · · ,Lp be the proper faces of L. Then N i

T =

8cone theorem
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NT ∩ Li is a rational polytope by induction on dimension. Moreover,
for each ∆′′ ∈ NT which is not ∆, there is ∆′ on some proper face of
L such that ∆′′ is on the line segment determined by ∆ and ∆′. Since
(KX +∆) ·Rt = 0 for every t ∈ T , if ∆′ ∈ Li, then ∆′ ∈ N i

T . Therefore,
NT is the convex hull of ∆ and all the N i

T . Thus, there is a finite subset
T ′ ⊂ T such that ∪

i

N i
T = NT ′ ∩ (

∪
i

Li).

Therefore, the convex hull of ∆ and
∪

i N i
T is just NT ′ . We complete

the proof of (3). �

By Theorem
theorem-a01
1.10 (3), Lemma 2.6 in

birkar
[Birkar] holds for lc pairs. It

may be useful for the log minimal model program with scaling.

bir-prop Theorem 1.11 (cf.
birkar
[Birkar, Lemma 2.6]). Let (X,B) be an lc pair, B

an R-divisor, and π : X → S a projective morphism between algebraic
varieties. Let H be an effective R-Cartier R-divisor on X such that
KX + B + H is π-nef and (X,B + H) is lc. Then, either KX + B is
also π-nef or there is a (KX + B)-negative extremal ray R such that
(KX + B + λH) · R = 0, where

λ := inf{t ≥ 0 |KX + B + tH is π-nef }.

Of course, KX + B + λH is π-nef.

Proof. Assume that KX + B is not π-nef. Let {Rj} be the set of
(KX + B)-negative extremal rays over S. Let Cj be an extremal curve
spanning Rj for every j. We put µ = sup

j
{µj}, where

µj =
−(KX + B) · Cj

H · Cj

.

Obviously, λ = µ and 0 < µ ≤ 1. So, it is sufficient to prove that
µ = µl for some l. There are positive real numbers r1, · · · , rl such that∑

i ri = 1 and a positive integer m, which are independent of j, such
that

−(KX + B) · Cj =
l∑

i=1

rinij

m
> 0

(see Lemma
lem145
1.1, Theorem

prop146
1.2, and

say-a01
1.9). Since Cj is extremal, nij is an

integer with nij ≤ 2m dim X for every i and j. If (KX +B+H) ·Rl = 0
for some l, then there are nothing to prove since λ = 1 and (KX +B +
H) ·R = 0 with R = Rl. Thus, we assume that (KX + B + H) ·Rj > 0
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for every j. We put F = Supp(B + H), F =
∑

k Fk is the irreducible
decomposition, V =

⊕
k RFk,

L = {∆ ∈ V | (X, ∆) is log canonical},

and

N = {∆ ∈ L | (KX + ∆) · Rj ≥ 0 for every j}.

Then N is a rational polytope in V by Theorem
theorem-a01
1.10 (3) and B +H is

in the relative interior of N by the above assumption. Therefore, we
can write

KX + B + H =

q∑
p=1

r′p(KX + ∆p),

where r′1, · · · , r′q are positive real numbers such that
∑

p r′p = 1, (X, ∆p)

is lc for every p, m′(KX + ∆p) is Cartier for some positive integer m′

and every p, and (KX + ∆p) · Cj > 0 for every p and j. So, we obtain

(KX + B + H) · Cj =

q∑
p=1

r′pn
′
pj

m′

with 0 < n′
pj = m′(KX + ∆p) · Cj ∈ Z. Note that m′ and r′p are

independent of j for every p. We also note that

1

µj

=
H · Cj

−(KX + B) · Cj

=
(KX + B + H) · Cj

−(KX + B) · Cj

+ 1

=
m

∑q
p=1 r′pn

′
pj

m′
∑l

i=1 rjnij

+ 1.

Since
l∑

i=1

rinij

m
> 0

for every j and nij ≤ 2m dim X with nij ∈ Z for every i and j, the
number of the set {nij}i,j is finite. Thus,

inf
j

{
1

µj

}
=

1

µl

for some l. Therefore, we obtain µ = µl. We finish the proof. �

The following picture helps the reader to understand Theorem
bir-prop
1.11.
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NE(X/S)

R

KX + B + H = 0

KX + B + λH = 0

KX + B < 0

KX + B = 0
KX + B > 0

1.12 (Abundance conjectures). We close this subsection with appli-
cations of Theorem

theorem-a01
1.10 (3) to abundance conjectures for R-divisors

(cf.
shokurov-models
[Shokurov, 2.7. Theorem on log semi-ampleness for 3-folds]).

The following proposition is a useful application of Theorem
theorem-a01
1.10

(cf.
shokurov-models
[Shokurov, 2.7]).

proposition-a02 Proposition 1.13. Let f : X → Y be a projective morphism between
algebraic varieties. Let B be an effective R-divisor on X such that
(X, B) is log canonical and that KX + B is f -nef. Assume that the
abundance conjecture holds for Q-divisors. More precisely, we assume
that KX + ∆ is f -semi-ample if ∆ ∈ L, ∆ is a Q-divisor, and KX + ∆
is f -nef, where

L = {∆ ∈ V | (X, ∆) is log canonical},
V =

⊕
k RFk, and

∑
k Fk is the irreducible decomposition of SuppB.

Then KX + B is f -semi-ample.

Proof. Let {Rt}t∈T be the set of all extremal rays of NE(X/Y ). We
consider NT as in

say-a01
1.9. Then NT is a rational polytope in L by Theorem

theorem-a01
1.10 (3). We can easily see that

NT = {∆ ∈ L |KX + ∆ is f -nef}.
By assumption, B ∈ NT . Let F be the minimal face of NT containing
B. Then we can find Q-divisors D1, · · · , Dl on X such that Di is in the
relative interior of F , KX +B =

∑
i di(KX +Di), where di is a positive

real number for every i and
∑

i di = 1. By assumption, KX + Di is
f -semi-ample for every i. Therefore, KX + B is f -semi-ample. �
Remark 1.14 (Stability of Iitaka fibrations). In the proof of Proposi-
tion

proposition-a02
1.13, we note the following property. If C is a curve on X such that
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f(C) is a point and (KX+Di0)·C = 0 for some i0, then (KX+Di)·C = 0
for every i. It is because we can find ∆′ ∈ F such that (KX +∆′)·C < 0
if (KX + Di) · C > 0 for some i 6= i0. It is a contradiction. Therefore,
there exists a contraction morphism g : X → Z over Y and h-ample
Q-Cartier Q-divisors A1, · · · , Al on Z, where h : Z → Y , such that
KX + Di ∼Q g∗Ai for every i. In particular,

KX + B ∼R g∗(
∑

i

diAi).

Note that
∑

i diAi is h-ample. Roughly speaking, the Iitaka fibration
of KX + B is the same as that of KX + Di for every i.

corollary-a04 Corollary 1.15. Let f : X → Y be a projective morphism between
algebraic varieties. Assume that (X,B) is lc and that KX +B is f -nef.
We further assume one of the following conditions.

(i) dim X ≤ 3.
(ii) dim X = 4 and dim Y ≥ 1.

Then KX + B is f -semi-ample.

Proof. It is obvious by Proposition
proposition-a02
1.13 and the log abundance theo-

rems for threefolds and fourfolds (see, for example,
kemm
[KeMM, 1.1. The-

orem] and
fuji-finite
[F18, Theorem 3.10]). �

Corollary 1.16. Let f : X → Y be a projective morphism between
algebraic varieties. Assume that (X,B) is klt and KX + B is f -nef.
We further assume that dim X − dim Y ≤ 3. Then KX + B is f -semi-
ample.

Proof. If B is a Q-divisor, then it is well known that KXη +Bη is semi-
ample, where Xη is the generic fiber of f and Bη = B|Xη (see, for
example,

kemm
[KeMM, 1.1. Theorem]). Therefore, KX + B is f -semi-ample

by
fuji-ka
[F17, Theorem 1.1]. When B is an R-divisor, we can take Q-divisors

D1, · · · , Dl ∈ F as in the proof of Proposition
proposition-a02
1.13 such that (X, Di) is

klt for every i. Since KX +Di is f -semi-ample by the above argument,
we obtain that KX + B is f -semi-ample. �
Remark 1.17 (Log surfaces). In

fujino16
[F16, Sections 6, 7, and 8], we discuss

the log abundance theorem for log surfaces. The results in
fujino16
[F16] are

much stronger than everybody expected.
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