LENGTHS OF EXTREMAL RAYS

OSAMU FUJINO

Contents

1. 1
1.1. Lengths of extremal rays 1
1.2. Shokurov's polytopes 5
References 11
1.1. Lengths of extremal rays. In this subsection, we discuss estimates of lengths of extremal rays. It is indispensable for the log minimal model program with scaling (see, for example ${ }^{\text {BhCHMD }}$, and the geography of \log models (see, for example, [Shokurov and [SC]). See also the subsection 1.2 below. The results in this subsection vere ob-
 with some extra assumptions.

Let us recall the following easy lemma.
lem145 Lemma 1.1 (cf. $\begin{aligned} & \text { sho-7 } \\ & \text { Sh2, Lemma 1]). Let }(X, B) \text { be a log canonical pair, }\end{aligned}$ where B is an \mathbb{R}-divisor. Then there are positive real numbers r_{i}, effective \mathbb{Q}-divisors B_{i} for $1 \leq i \leq l$, and a positive integer m such that $\sum_{i=1}^{l} r_{i}=1, K_{X}+B=\sum_{i=1}^{l} r_{i}\left(K_{X}+B_{i}\right),\left(X, B_{i}\right)$ is log canonical for every i, and $m\left(K_{X}+B_{i}\right)$ is Cartier for every i.

Proof. Let $\sum_{k} D_{k}$ be the irreducible decomposition of $\operatorname{Supp} B$. We consider the finite dimensional real vector space $V=\bigoplus_{k} \mathbb{R} D_{k}$. We put

$$
\mathcal{Q}=\left\{D \in V \mid K_{X}+D \text { is } \mathbb{R} \text {-Cartier }\right\} .
$$

Date: 2010/5/26, Version 1.09.
This note is a revised and expanded version of the subsection 3.1.3 of my book. I thank Yoshinori Gongyo for useful discussions.

Then, it is easy to see that \mathcal{Q} is an affine subspace of V defined over \mathbb{Q}. We put

$$
\mathcal{L}=\left\{D \in \mathcal{Q} \mid K_{X}+D \text { is } \log \text { canonical }\right\} .
$$

Thus, by the definition of \log canonicity, it is also easy to check that \mathcal{L} is a closed convex rational polytope in V. We note that \mathcal{L} is compact in the classical topology of V. By the assumption, $B \in \mathcal{L}$. Therefore, we can find the desired \mathbb{Q}-divisors $B_{i} \in \mathcal{L}$ and positive real numbers r_{i}.
 1]. We will prove a more, ${ }^{\text {enneral }}$ result in Theorem 1.7 whose proof depends on Theorem 1.2 .
prop146 Theorem 1.2. Let X be a normal variety such that (X, B) is lc and let $\pi: X \rightarrow S$ be a projective morphism onto a variety S. Let R be a $\left(K_{X}+B\right)$-negative extremal ray. Then we can find a rational curve C on X such that $[C] \in R$ and

$$
0<-\left(K_{X}+B\right) \cdot C \leq 2 \operatorname{dim} X
$$

Proof. By shrinking S, we can assume that S is quasi-projective. By replacing $\pi: X \rightarrow S$ with the extremal contraction $\varphi_{R}: X \rightarrow Y$ over S, we can assume that the relative Picard number $\rho(X / S)=1$. In particular, $-\left(K_{X}+B\right)_{145}$ is π-ample. Let $K_{X}+B=\sum_{i=1}^{l} r_{i}\left(K_{X}+B_{i}\right)$ be as in Lemma 1.1. We assume that $-\left(K_{X}+B_{1}\right)$ is π-ample and $-\left(K_{X}+B_{i}\right)=-s_{i}\left(K_{X}+B_{1}\right)$ in $N^{1}(X / S)$ with $s_{i} \leq 1$ for every $i \geq 2$. Thus, it is sufficient to find a rational curve C such that $\pi(C)$ is a point and that $-\left(K_{X}+B_{1}\right) \cdot C \leq 2 \operatorname{dim}_{t h 91} X_{9}$?, we can assume that $K_{X}+B$ is \mathbb{Q}-Cartier and lc. By Theorem ??, ${ }^{\text {there }}$ is a birational morphism f : $\left(V, B_{V}\right) \rightarrow(X, B)$ such that K and $\left(V, B_{V}\right)$ is dlt. By Ka2, Theorem 1] and Matsuki, Theorem 10-21], we can find a rational curve C^{\prime} on V such that $-\left(K_{V}+B_{V}\right) \cdot C^{\prime} \leq$ $2 \operatorname{dim} V=2 \operatorname{dim} X$ and that C^{\prime} spans a $\left(K_{V}+B_{V}\right)$-negative extremal ray. By the projection formula, the f-image of C^{\prime} is a desired rational curve. So, we finish the proof.

Remark ${ }_{\text {prop }}^{146}$. It is conjectured that the estimate $\leq 2 \operatorname{dim} X$ in Theorem 1.2 should be replaced by $\leq \operatorname{dim} X+1$. When X is smooth projective, it is true by Mori's famous result (cf. Morij). See, for example ${ }^{2} \mid$ ThM by F 3 a and F 5 f .

[^0]Remark 1.4. In the proof of Theorem $1 \begin{aligned} & \text { prop146 } \\ & 1.2 \text {, we } \\ & \text { need Kawamata's esti- }\end{aligned}$ mate on the length of an extremal rational curve (cf. KKa2, Theorem 1] and Matsuki, Theorem 10-2-1]). It depends on Mori's bend and break technique to create rational curves. So, we need the $\bmod p$ reduction technique there.
re-03 Remark 1.5. Let (X, D) be an lc pair such that D is an \mathbb{R}-divisor. Let $\phi: X \rightarrow Y$ be a projective morphism and H a Cartier divisor on X. Assume that $H-\left(K_{X}+D\right)$ is f-ample. By Theorem ${ }^{\text {knnen }} ?$? $?$ $R^{q} \phi_{*} \mathcal{O}_{X}(H)=0$ for every $q>0$ if X and Y are algebraic varieties. If this vanishing theorem holds for analytic spaces X and Y, then Kawamata's original argument in Kawamata K Ka works directly for lc pairs. In that, case, we do not need the results in $[\mathrm{BCHM}]$ in the proof of Theorem prop

We consider the proof of $\frac{\text { matsuki }}{\text { Matsuki, Theorem 10-2-1] when }}(X, D)$ is \mathbb{Q}-factorial dlt. We need $R^{1} \phi_{*} \mathcal{O}_{X}(H)=0$ after shrinking X and Y analytically. In our situation, $(X, D-\varepsilon\llcorner D\lrcorner)$ is klt for $0<\varepsilon \ll 1$. Therefore, $H-\left(K_{X}+D-\varepsilon\llcorner D\lrcorner\right)$ is ϕ-ample and $(X, D-\varepsilon\llcorner D\lrcorner)$ is klt for $0<\varepsilon \ll 1$. Thus, we can apply the analytic version of the relative Kawamata-Viehweg vanishing theorem. So, we do not need the analytic version of Theorem ???.3
Remark 1.6. We give a remark on $\left[\begin{array}{l}\mathrm{bchm} \\ \mathrm{BChCHM}\end{array}\right]$. We use the same notation as in $\left.{ }^{\mathrm{BC}} \mathrm{BCH}, 3.8\right]$. In the prof of assume that $K_{X}+\Delta$ is klt by BCHM , Lemma 3.7.4]. By perturbing the coefficients of B slightly, we can further assume that B is a \mathbb{Q} divisor. By applying the usual cone theorem to the klt pair (X, B), we obtain that there are only finitely many $\left(K_{X}+\Delta\right)$-negative extremal rays of $\overline{N E}\left(X / U_{\mathrm{BCh}}\right)_{\dot{m}}$ We note that $[\mathrm{BCCm} \mathrm{BC}$, Theorem 3.8.1] is only used in the proof of [BCHM, Corollary 3.8.2]. Therefore, we do not need the estimate of lengths of extremal rays in [BCHHM]. In particular, we do not need mod p reduction arguments for the proof of the main results in [BCHM].

The final result in this subsection is an estimate of lengths of extremal rays which are relatively ample at non-lc loci (cf. Kollar2], Kollar3]).
thm-la Theorem 1.7. Let X be a normal variety, B an effective \mathbb{R}-divisor on X such that $K_{X}+B$ is \mathbb{R}-Cartier, and $\pi: X \rightarrow S$ a projective morphism onto a variety S. Let R be a $\left(K_{X}+B\right)$-negative extremal

[^1]ray of $\overline{N E}(X / S)$ which is relatively ample at $\operatorname{Nlc}(X, B)$. Then we can find a rational curve C on X such that $[C] \in R$ and
$$
0<-\left(K_{X}+B\right) \cdot C \leq 2 \operatorname{dim} X
$$

Proof. By shrinking S, we can assume that S is quasi-projective. By replacing $\pi: X \rightarrow{ }_{2} S_{9}$ with the extremal contraction $\varphi_{R}: X \rightarrow Y$ over S (cf. Theorem $? ?^{4}$), we can assume that the relative Picard number $\rho(X / S)=1$ and that π is an isomorphism in a neighborhood of $\mathrm{Nlc}(X, B)$. In particular, $-\left(K_{X}+B\right)$ is π-ample. By Theorem th?, there is a projective birational morphism $f: Y \rightarrow X$ such that
(i) $K_{Y}+B_{Y}=f^{*}\left(K_{X}+B\right)+\sum_{a(E, X, B)<-1}(a(E, X, B)+1) E$, where

$$
B_{Y}=f_{*}^{-1} B+\sum_{E: f \text {-exceptional }} E,
$$

(ii) $\left(Y, B_{Y}\right)$ is a \mathbb{Q}-factorial dlt pair, and
(iii) $D=B_{Y}+F$, where $F=-\sum_{a(E, X, B)<-1}(a(E, X, B)+1) E \geq 0$.

We note that $K_{Y}+D=f^{*}\left(K_{X}+B\right)$. Therefore, we have

$$
f_{*}\left(\overline{N E}(Y / S)_{K_{Y}+D \geq 0}\right) \subseteq \overline{N E}(X / S)_{K_{X}+B \geq 0}=\{0\}
$$

We also note that

$$
f_{*}\left(\overline{N E}(Y / S)_{\operatorname{Nlc}(Y, D)}\right)=\{0\} .
$$

Thus, there is a $\left(K_{Y}+D\right)$-negative extremal ray $R^{R_{1}^{\prime}}{ }_{4 \uparrow f} \overline{N E}(Y / S)$ which is relatively ample at $\operatorname{Nlc}(Y, D)$. By Theorem ??, ${ }^{2}$ is spanned by a curve C^{\dagger}. Since $-\left(K_{Y}+D\right) \cdot C^{\dagger}>0$, we see that $f\left(C^{\dagger}\right)$ is a curve. If $C^{\dagger} \subset \operatorname{Supp} F$, then $f\left(C^{\dagger}\right) \subset \operatorname{Nlc}(X, B)$. It is a contradiction because $\pi \circ f\left(C^{\dagger}\right)$ is a point. Thus, $C^{\dagger} \not \subset \operatorname{Supp} F$. Since $-\left(K_{Y}+B_{Y}\right)=$ $-\left(K_{Y}+D\right)+F$, we can see that R^{\prime} is a $\left(K_{Y}+B_{Y}\right)$-negative extremal ray of $\overline{N E}(Y / S)$. Therefore, we can find a rational curve C^{\prime} on Y such that C^{\prime} spans R^{\prime} and that

$$
0<-\left(K_{Y}+B_{Y}\right) \cdot C^{\prime} \leq 2 \operatorname{dim} X
$$

by Theorem $\frac{\text { prop146 }}{1.2 \text {. By }}$ the above argument, we can easily see that $C^{\prime} \not \subset$ $\operatorname{Supp} F$. Therefore, we obtain

$$
\begin{aligned}
0<-\left(K_{Y}+D\right) \cdot C^{\prime} & =-\left(K_{Y}+B_{Y}\right) \cdot C^{\prime}-F \cdot C^{\prime} \\
& \leq-\left(K_{Y}+B_{Y}\right) \cdot C^{\prime} \leq 2 \operatorname{dim} X .
\end{aligned}
$$

Since $K_{Y}+D=f^{*}\left(K_{X}+B\right), C=f\left(C^{\prime}\right)$ is a rational curve on X such that $\pi(C)$ is a point and $0<-\left(K_{X}+B\right) \cdot C \leq 2 \operatorname{dim} X$.

[^2] sub-a1 $\operatorname{dim} X+1$ when $\operatorname{dim} X \leq 2$. For details, see $[\mathrm{Fl}$, Proposition 3.7].
1.2. Shokurov's polytopes. In this subsection we discuss a very important result obtained by Shokurov (cf. Shokurov 6.2. First Main Theorem]), which is an application of Theorem 1.2 . We closely follow Birkar's treatment in $\left.{ }^{\text {Dirkar2 }} \mathrm{Birkar} 2, ~ S e c t i o n ~ 3\right] . ~$
say-a01 1.9. Let $\pi: X \rightarrow S$ be a projective morphism from a normal variety X to a variety S. A curve Γ on X is called extremal over S if the following properties hold.
(1) Γ generates an extremal ray R of $\overline{N E}(X / S)$.
(2) There is a π-ample Cartier divisor H on X such that
$$
H \cdot \Gamma=\min \{H \cdot C\}
$$
where C ranges over curves generating R.
We note that every $\left(K_{X}+\Delta\right)$-negative extremal ray R of $\overline{N E}(X / S)$ is spanned by a curve if Δ is an effective \mathbb{R}-divisor on X such that (X, Δ) is \log canonical It is a consequence of the cone and contraction theorem (cf. Theorem ?? ? ${ }^{7}$).

Let B be an effective \mathbb{R}-divisor on X such that (X, B) is \log canonical and let R be a $\left(K_{X}+B\right)$-negative extremal ray of $\overline{N E}(X / S)$. Then we can take a rational curve C such that C prop1 46 spans R and that $0<$ $-\left(K_{X}+B\right) \cdot C \leq 2 \operatorname{dim} X$ by Theorem $\frac{\text { proppent }}{1.2}$ Let Γ be an extremal curve generating R. Then we have

$$
\frac{-\left(K_{X}+B\right) \cdot \Gamma}{H \cdot \Gamma}=\frac{-\left(K_{X}+B\right) \cdot C}{H \cdot C} .
$$

Therefore,

$$
-\left(K_{X}+B\right) \cdot \Gamma=\left(-\left(K_{X}+B\right) \cdot C\right) \cdot \frac{H \cdot \Gamma}{H \cdot C} \leq 2 \operatorname{dim} X
$$

Let F be a reduced divisor on X. We consider the finite dimensional real vector space $V=\bigoplus_{k} \mathbb{R} F_{k}$ where $F=\sum_{k} F_{k}$ is the irreducible decomposition. We have already seen that

$$
\mathcal{L}=\{\Delta \in V \mid(X, \Delta) \text { is } \log \text { canonical }\}
$$

is a rational polytope in V, that is it is the convex hull of finitely many rational points in V (see Lemma $\frac{1 \text { em } 1.1 \text {. }}{}$

Let B_{1}, \cdots, B_{r} be the vertices of \mathcal{L} and let m be a positive integer such that $m\left(K_{X}+B_{j}\right)$ is Cartier for every j. We take an \mathbb{R}-divisor $B \in \mathcal{L}$. Then we can find non-negative real numbers a_{1}, \cdots, a_{r} such that $B=\sum_{j} a_{j} B_{j}, \sum_{j} a_{j}=1$, and $\left(X, B_{j}\right)$ is \log canonical for every

[^3] $-\left(K_{X}+B\right) \cdot C$ can be written as
$$
\sum_{j} a_{j} \frac{n_{j}}{m}
$$
such that $n_{j} \in \mathbb{Z}$ for every j. If C is an extremal curve, then we can see that $n_{j} \leq 2 m \operatorname{dim} X$ for every j by the above arguments.

On the real vector space V, we consider the following norm

$$
\|B\|=\max _{j}\left\{\left|b_{j}\right|\right\}
$$

where $B=\sum_{j} b_{j} F_{j}$.
We explain Shokurov's important results (cf. |shokurov-models Shokurov]) following birkar2 ${ }^{\text {Birkar2, }}$ Proposition 3.2].
 divisor $B \in \mathcal{L}$. Then we can find positive real numbers α and δ, which depend on (X, B) and F, with the following properties.
(1) If Γ is any extremal curve over S and $\left(K_{X}+B\right) \cdot \Gamma>0$, then $\left(K_{X}+B\right) \cdot \Gamma>\alpha$.
(2) If $\Delta \in \mathcal{L},\|\Delta-B\|<\delta$, and $\left(K_{X}+\Delta\right) \cdot R \leq 0$ for an extremal curve Γ, then $\left(K_{X}+B\right) \cdot \Gamma \leq 0$.
(3) Let $\left\{R_{t}\right\}_{t \in T}$ be any set of extremal rays of $\overline{N E}(X / S)$. Then

$$
\mathcal{N}_{T}=\left\{\Delta \in \mathcal{L} \mid\left(K_{X}+\Delta\right) \cdot R_{t} \geq 0 \text { for every } t \in T\right\}
$$

is a rational polytope in V.
Proof. (1) If B is a \mathbb{Q}-divisor, then the claim is obvious even if Γ is not extremal. We assume that B is not a \mathbb{Q}-divisor. Then we can write $K_{X}+B=\sum_{j} a_{j}\left(K_{X}+B_{j}\right)$ as in 1.9. Then $\left(K_{X}+B\right) \cdot \Gamma=$ $\sum_{j} a_{j}\left(K_{X}+B_{j}\right) \cdot \Gamma$. If $\left(K_{X}+B\right) \cdot \Gamma<1$, then

$$
\begin{aligned}
-2 \operatorname{dim} X \leq\left(K_{X}+B_{j_{0}}\right) \cdot \Gamma & <\frac{1}{a_{j_{0}}}\left\{-\sum_{j \neq j_{0}} a_{j}\left(K_{X}+B_{j}\right) \cdot \Gamma+1\right\} \\
& \leq \frac{2 \operatorname{dim} X+1}{a_{j_{0}}}
\end{aligned}
$$

for $a_{j_{0}} \neq 0$. It is because $\left(K_{X}+B_{j}\right) \cdot \Gamma \geq-2 \operatorname{dim} X$ for every j. Thus there are only finitely many possibilities of the intersection numbers $\left(K_{X}+B_{j}\right) \cdot \Gamma$ for $a_{j} \neq 0$ when $\left(K_{X}+B\right) \cdot \Gamma<1$. Therefore, the existence of α is obvious.
(2) If we take δ sufficiently small, then, for every $\Delta \in \mathcal{L}$ with $\| \Delta$ $B \|<\delta$, we can always find $\Delta^{\prime} \in \mathcal{L}$ such that

$$
K_{X}+\Delta=(1-s)\left(K_{X}+B\right)+s\left(K_{X}+\Delta^{\prime}\right)
$$

with

$$
0 \leq s \leq \frac{\alpha}{\alpha+2 \operatorname{dim} X}
$$

Since Γ is extremal, we have $\left(K_{X}+\Delta^{\prime}\right) \cdot \Gamma \geq-2 \operatorname{dim} X$ for every $\Delta^{\prime} \in \mathcal{L}$. We assume that $\left(K_{X}+B\right) \cdot \Gamma>0$ Then $\left(K_{X}+B\right) \cdot \Gamma>\alpha$ by (1). Therefore,

$$
\begin{aligned}
\left(K_{X}+\Delta\right) \cdot \Gamma & =(1-s)\left(K_{X}+B\right) \cdot \Gamma+s\left(K_{X}+\Delta^{\prime}\right) \cdot \Gamma \\
& >(1-s) \alpha+s(-2 \operatorname{dim} X) \geq 0
\end{aligned}
$$

It is a contradiction. Therefore, we obtain $\left(K_{X}+B\right) \cdot \Gamma \leq 0$. We complete the proof of (2).
(3) For every $t \in T$, we can assume that there is some $\Delta_{t} \in \mathcal{L}$ such that $\left(K_{X}+\Delta\right) \cdot R_{t}<0$. We note that $\left(K_{X}+\Delta\right) \cdot R_{t}<0$ for some $\Delta \in \mathcal{L}$ implies $\left(K_{X}+B_{j}\right) \cdot R_{t}<0$ for some j. Therefore, we can assume that T is contained in \mathbb{N}. It is because there are only countably many $\left(K_{X}+B_{\gamma j}\right)$-negative extremal rays for every j by the cone theorem (cf. Theorem $\boldsymbol{?}^{?}{ }^{8}$). We note that \mathcal{N}_{T} is a closed convex subset of \mathcal{L} by definition. If T is a finite set, then the claim is obvious. Thus, we can assume that $T=\mathbb{N}$. By (2) and by the compactness of \mathcal{N}_{T}, we can take $\Delta_{1}, \cdots, \Delta_{n} \in \mathcal{N}_{T}$ and $\delta_{1}, \cdots, \delta_{n}>0$ such that \mathcal{N}_{T} is covered by

$$
\mathcal{B}_{i}=\left\{\Delta \in \mathcal{L} \mid\left\|\Delta-\Delta_{i}\right\|<\delta_{i}\right\}
$$

and that if $\Delta \in \mathcal{B}_{i}$ with $\left(K_{X}+\Delta\right) \cdot R_{t}<0$ for some t, then $\left(K_{X}+\Delta_{i}\right) \cdot$ $R_{t}=0$. If we put

$$
T_{i}=\left\{t \in T \mid\left(K_{X}+\Delta\right) \cdot R_{t}<0 \text { for some } \Delta \in \mathcal{B}_{i}\right\}
$$

then $\left(K_{X}+\Delta_{i}\right) \cdot R_{t}=0$ for every $t \in T_{i}$ by the above construction. Since $\left\{\mathcal{B}_{i}\right\}_{i=1}^{n}$ gives an open covering of \mathcal{N}_{T}, we have $\mathcal{N}_{T}=\bigcap_{1 \leq i \leq n} \mathcal{N}_{T_{i}}$.
claim-a0 Claim. $\mathcal{N}_{T}=\bigcap_{1 \leq i \leq n} \mathcal{N}_{T_{i}}$.
Proof of Claim. We note that $\mathcal{N}_{T} \subset \bigcap_{1 \leq i \leq n} \mathcal{N}_{T_{i}}$ is obvious. We assume that $\mathcal{N}_{T} \subsetneq \bigcap_{1 \leq i \leq n} \mathcal{N}_{T_{i}}$. We take $\Delta \in \bigcap_{1 \leq i \leq n} \mathcal{N}_{T_{i}} \backslash \mathcal{N}_{T}$ which is very close to \mathcal{N}_{T}. Since \mathcal{N}_{T} is covered by $\left\{\mathcal{B}_{i}\right\}_{i=1}^{n}$, there is some i_{0} such that $\Delta \in \mathcal{B}_{i_{0}}$. Since $\Delta \notin \mathcal{N}_{T}$, there is some $t_{0} \in T$ such that $\left(K_{X}+\Delta\right) \cdot R_{t_{0}}<$ 0 . Thus, $t_{0} \in T_{i_{0}}$. It is a contradiction because $\Delta \in \mathcal{N}_{T_{i_{0}}}$. Therefore, $\mathcal{N}_{T}=\bigcap_{1 \leq i \leq n} \mathcal{N}_{T_{i}}$.

So, it is sufficient to see that each $\mathcal{N}_{T_{i}}$ is a rational polytope in V. By replacing T with T_{i}, we can assume that there is some $\Delta \in \mathcal{N}_{T}$ such that $\left(K_{X}+\Delta\right) \cdot R_{t}=0$ for every $t \in T$.

If $\operatorname{dim}_{\mathbb{R}} \mathcal{L}=1$, then this already implies the claim. We assume $\operatorname{dim}_{\mathbb{R}} \mathcal{L}>1$. Let $\mathcal{L}^{1}, \cdots, \mathcal{L}^{p}$ be the proper faces of \mathcal{L}. Then $\mathcal{N}_{T}^{i}=$

[^4]$\mathcal{N}_{T} \cap \mathcal{L}^{i}$ is a rational polytope by induction on dimension. Moreover, for each $\Delta^{\prime \prime} \in \mathcal{N}_{T}$ which is not Δ, there is Δ^{\prime} on some proper face of \mathcal{L} such that $\Delta^{\prime \prime}$ is on the line segment determined by Δ and Δ^{\prime}. Since $\left(K_{X}+\Delta\right) \cdot R_{t}=0$ for every $t \in T$, if $\Delta^{\prime} \in \mathcal{L}^{i}$, then $\Delta^{\prime} \in \mathcal{N}_{T}^{i}$. Therefore, \mathcal{N}_{T} is the convex hull of Δ and all the \mathcal{N}_{T}^{i}. Thus, there is a finite subset $T^{\prime} \subset T$ such that
$$
\bigcup_{i} \mathcal{N}_{T}^{i}=\mathcal{N}_{T^{\prime}} \cap\left(\bigcup_{i} \mathcal{L}^{i}\right) .
$$

Therefore, the convex hull of Δ and $\bigcup_{i} \mathcal{N}_{T}^{i}$ is just $\mathcal{N}_{T^{\prime}}$. We complete the proof of (3).
 may be useful for the log minimal model program with scaling.
 an \mathbb{R}-divisor, and $\pi: X \rightarrow S$ a projective morphism between algebraic varieties. Let H be an effective \mathbb{R}-Cartier \mathbb{R}-divisor on X such that $K_{X}+B+H$ is π-nef and $(X, B+H)$ is lc. Then, either $K_{X}+B$ is also π-nef or there is a $\left(K_{X}+B\right)$-negative extremal ray R such that $\left(K_{X}+B+\lambda H\right) \cdot R=0$, where

$$
\lambda:=\inf \left\{t \geq 0 \mid K_{X}+B+t H \text { is } \pi-n e f\right\}
$$

Of course, $K_{X}+B+\lambda H$ is π-nef.
Proof. Assume that $K_{X}+B$ is not π-nef. Let $\left\{R_{j}\right\}$ be the set of $\left(K_{X}+B\right)$-negative extremal rays over S. Let C_{j} be an extremal curve spanning R_{j} for every j. We put $\mu=\sup _{j}\left\{\mu_{j}\right\}$, where

$$
\mu_{j}=\frac{-\left(K_{X}+B\right) \cdot C_{j}}{H \cdot C_{j}}
$$

Obviously, $\lambda=\mu$ and $0<\mu \leq 1$. So, it is sufficient to prove that $\mu=\mu_{l}$ for some l. There are positive real numbers r_{1}, \cdots, r_{l} such that $\sum_{i} r_{i}=1$ and a positive integer m, which are independent of j, such that

$$
-\left(K_{X}+B\right) \cdot C_{j}=\sum_{i=1}^{l} \frac{r_{i} n_{i j}}{m}>0
$$

(see Lemma $\frac{1.145}{1.1, \text { Theorem }} \frac{\text { prop146 }}{1.2 \text {, and }} \frac{\text { say-a01 }}{1.9) \text {. Since }} C_{j}$ is extremal, $n_{i j}$ is an integer with $n_{i j} \leq 2 m \operatorname{dim} X$ for every i and j. If $\left(K_{X}+B+H\right) \cdot R_{l}=0$ for some l, then there are nothing to prove since $\lambda=1$ and $\left(K_{X}+B+\right.$ $H) \cdot R=0$ with $R=R_{l}$. Thus, we assume that $\left(K_{X}+B+H\right) \cdot R_{j}>0$
for every j. We put $F=\operatorname{Supp}(B+H), F=\sum_{k} F_{k}$ is the irreducible decomposition, $V=\bigoplus_{k} \mathbb{R} F_{k}$,

$$
\mathcal{L}=\{\Delta \in V \mid(X, \Delta) \text { is } \log \text { canonical }\}
$$

and

$$
\mathcal{N}=\left\{\Delta \in \mathcal{L} \mid\left(K_{X}+\Delta\right) \cdot R_{j} \geq 0 \text { for every } j\right\}
$$

Then \mathcal{N} is a rational polytope in V by Theorem $\frac{\text { theorem-a01 }}{1.10(3) \text { and } B+H \text { is }}$ in the relative interior of \mathcal{N} by the above assumption. Therefore, we can write

$$
K_{X}+B+H=\sum_{p=1}^{q} r_{p}^{\prime}\left(K_{X}+\Delta_{p}\right)
$$

where $r_{1}^{\prime}, \cdots, r_{q}^{\prime}$ are positive real numbers such that $\sum_{p} r_{p}^{\prime}=1,\left(X, \Delta_{p}\right)$ is lc for every $p, m^{\prime}\left(K_{X}+\Delta_{p}\right)$ is Cartier for some positive integer m^{\prime} and every p, and $\left(K_{X}+\Delta_{p}\right) \cdot C_{j}>0$ for every p and j. So, we obtain

$$
\left(K_{X}+B+H\right) \cdot C_{j}=\sum_{p=1}^{q} \frac{r_{p}^{\prime} n_{p j}^{\prime}}{m^{\prime}}
$$

with $0<n_{p j}^{\prime}=m^{\prime}\left(K_{X}+\Delta_{p}\right) \cdot C_{j} \in \mathbb{Z}$. Note that m^{\prime} and r_{p}^{\prime} are independent of j for every p. We also note that

$$
\begin{aligned}
\frac{1}{\mu_{j}}=\frac{H \cdot C_{j}}{-\left(K_{X}+B\right) \cdot C_{j}} & =\frac{\left(K_{X}+B+H\right) \cdot C_{j}}{-\left(K_{X}+B\right) \cdot C_{j}}+1 \\
& =\frac{m \sum_{p=1}^{q} r_{p}^{\prime} n_{p j}^{\prime}}{m^{\prime} \sum_{i=1}^{l} r_{j} n_{i j}}+1 .
\end{aligned}
$$

Since

$$
\sum_{i=1}^{l} \frac{r_{i} n_{i j}}{m}>0
$$

for every j and $n_{i j} \leq 2 m \operatorname{dim} X$ with $n_{i j} \in \mathbb{Z}$ for every i and j, the number of the set $\left\{n_{i j}\right\}_{i, j}$ is finite. Thus,

$$
\inf _{j}\left\{\frac{1}{\mu_{j}}\right\}=\frac{1}{\mu_{l}}
$$

for some l. Therefore, we obtain $\mu=\mu_{l}$. We finish the proof.
The following picture helps the reader to understand Theorem $\frac{\text { bir-prop }}{1.11 .}$

1.12 (Abundance conjectures $\begin{gathered}\text { cor } \\ \text { theorem-a } \\ d_{1}\end{gathered}$ We close this subsection with applications of Theorem 1.10 (3) to abundance conjectures for \mathbb{R}-divisors (cf. [Shokurov, 2.7. Theorem on log semi-ampleness for 3 -folds]).

The following proposition is a useful application of Theorem $\frac{\text { theor }}{1.10}$ (cf. Shhokurov, 2.7]).
proposition-a02 Proposition 1.13. Let $f: X \rightarrow Y$ be a projective morphism between algebraic varieties. Let B be an effective \mathbb{R}-divisor on X such that (X, B) is log canonical and that $K_{X}+B$ is f-nef. Assume that the abundance conjecture holds for \mathbb{Q}-divisors. More precisely, we assume that $K_{X}+\Delta$ is f-semi-ample if $\Delta \in \mathcal{L}, \Delta$ is a \mathbb{Q}-divisor, and $K_{X}+\Delta$ is f-nef, where

$$
\mathcal{L}=\{\Delta \in V \mid(X, \Delta) \text { is log canonical }\}
$$

$V=\bigoplus_{k} \mathbb{R} F_{k}$, and $\sum_{k} F_{k}$ is the irreducible decomposition of $\operatorname{Supp} B$. Then $K_{X}+B$ is f-semi-ample.

Proof. Let $\left\{R_{t}\right\}_{t \in \text { Say }}$ be the set of all extremal rays of $\overline{N E}(X / Y)$. We consider \mathcal{N}_{T} as in 1.9. Then \mathcal{N}_{T} is a rational polytope in \mathcal{L} by Theorem 1.10 (3). We can easily see that

$$
\mathcal{N}_{T}=\left\{\Delta \in \mathcal{L} \mid K_{X}+\Delta \text { is } f \text {-nef }\right\}
$$

By assumption, $B \in \mathcal{N}_{T}$. Let \mathcal{F} be the minimal face of \mathcal{N}_{T} containing B. Then we can find \mathbb{Q}-divisors D_{1}, \cdots, D_{l} on X such that D_{i} is in the relative interior of $\mathcal{F}, K_{X}+B=\sum_{i} d_{i}\left(K_{X}+D_{i}\right)$, where d_{i} is a positive real number for every i and $\sum_{i} d_{i}=1$. By assumption, $K_{X}+D_{i}$ is f-semi-ample for every i. Therefore, $K_{X}+B$ is f-semi-ample.

Remark 1.14 (Stability of Iitaka fibrations). In the proof of Proposition 1.13, we note the following property. If C is a curve on X such that
$f(C)$ is a point and $\left(K_{X}+D_{i_{0}}\right) \cdot C=0$ for some i_{0}, then $\left(K_{X}+D_{i}\right) \cdot C=0$ for every i. It is because we can find $\Delta^{\prime} \in \mathcal{F}$ such that $\left(K_{X}+\Delta^{\prime}\right) \cdot C<0$ if $\left(K_{X}+D_{i}\right) \cdot C>0$ for some $i \neq i_{0}$. It is a contradiction. Therefore, there exists a contraction morphism $g: X \rightarrow Z$ over Y and h-ample \mathbb{Q}-Cartier \mathbb{Q}-divisors A_{1}, \cdots, A_{l} on Z, where $h: Z \rightarrow Y$, such that $K_{X}+D_{i} \sim_{\mathbb{Q}} g^{*} A_{i}$ for every i. In particular,

$$
K_{X}+B \sim_{\mathbb{R}} g^{*}\left(\sum_{i} d_{i} A_{i}\right)
$$

Note that $\sum_{i} d_{i} A_{i}$ is h-ample. Roughly speaking, the Iitaka fibration of $K_{X}+B$ is the same as that of $K_{X}+D_{i}$ for every i.
Corollary 1.15. Let $f: X \rightarrow Y$ be a projective morphism between algebraic varieties. Assume that (X, B) is lc and that $K_{X}+B$ is f-nef. We further assume one of the following conditions.
(i) $\operatorname{dim} X \leq 3$.
(ii) $\operatorname{dim} X=4$ and $\operatorname{dim} Y \geq 1$.

Then $K_{X}+B$ is f-semi-ample.
Proof. It is obvious by Proposition 1.13 and the loposition-a02 abundance theorems for threefolds and fourfolds (see, for example, KKMM, 1.1. Theorem] and $\left[\begin{array}{ll}\text { F1 } \\ \hline 1 \text {, Theorem 3.10] }\end{array}\right.$).

Corollary 1.16. Let $f: X \rightarrow Y$ be a projective morphism between algebraic varieties. Assume that (X, B) is klt and $K_{X}+B$ is f-nef. We further assume that $\operatorname{dim} X-\operatorname{dim} Y \leq 3$. Then $K_{X}+B$ is f-semiample.
Proof. If B is a \mathbb{Q}-divisor, then it is well known that $K_{X_{\eta}}+B_{\eta}$ is semiample, where X_{η} is the generic fiber of f and $B_{\eta}=\left.B\right|_{X_{\eta}}$ (see, for example ${ }_{\text {ka }}$ KeMM, 1.1. Theorem]). Therefore, $K_{X}+B$ is f-semi-ample by $[\mathrm{F} 17$, Theorem 1.1]. When B is an \mathbb{R}-diviso fop wan take \mathbb{Q}-divisors $D_{1}, \cdots, D_{l} \in \mathcal{F}$ as in the proof of Proposition proposition-a02 1.13 such that $\left(X, D_{i}\right)$ is klt for every i. Since $K_{X}+D_{i}$ is f-semi-ample by the above argument, we obtain that $K_{X}+B$ is f-semi-ample.
Remark 1.17 (Log surfaces). In $\left\{\frac{\text { fujino16 }}{\mathrm{F} 16, \text { Sections 6, 7, and 8], we discuss }}\right.$ the \log abundance theorem for \log surfaces. The results in $[\mathrm{F} 16]$ are much stronger than everybody expected.

References

birkar
birkar2
fuji-tor

$[$ Birkar $]$	Existence
$[$ Birkar2 $]$	Existence II.
$[\mathrm{BCHM}]$	
$[\mathrm{F} 3]$	Notes on toric

fuji-to2
fujino16
fuji-ka
fuji-finite
kawamata
kemm
kollar2
kollar3
matsuki
mori-th
shokurov-models
shokurov-choi
sho-7

[F5] Equivariant
[F16] Log surfaces
[F17] On Kawamata
[F18] Finite
[Ka2] On
[KeMM] Log abundance
[Kollar2]
[Kollar3]
[KM] Kollár-Mori
[Matsuki]
[Mori] Threefolds
[Shokurov] 3-flod log models
[Sh2]
[SC] Shokurov, Choi
Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606-8502, Japan

E-mail address: fujino@math.kyoto-u.ac.jp

[^0]: ${ }^{1}$ dlt blow-ups

[^1]: ${ }^{2}$ Kawamata-Viehweg for lc pairs
 ${ }^{3}$ Kawamata-Viehweg for lc pairs

[^2]: ${ }^{4}$ cone and contraction theorem
 ${ }^{5}$ dlt blow-ups
 ${ }^{6}$ cone theorem

[^3]: ${ }^{7}$ cone theorem

[^4]: ${ }^{8}$ cone theorem

