A LEMMA ON FLIPS (PRIVATE NOTE)

OSAMU FUJINO

The following lemma is missing in the literature.

Lemma. When we consider 4-fold flipping contraction $f : (X, D) \rightarrow Z$, we can assume that there exists a closed point $P \in Z$ such that a flip of f exists outside P after shrinking Z suitably.

Proof. Let $f: (X, D) \to Z$ be a flipping contraction with dim X = 4. This means that f is small, $-(K_X + D)$ is f-ample, Z is normal, and (X, D) is dlt. We assume that D is a \mathbb{Q} -divisor. For our purpose, we can assume that Z is affine without loss of generality. Let r be a positive integer such that $r(K_X + D)$ is Cartier. Let H be a sufficiently general hypersurface on Z such that H does not contain any associated primes of $R^1f_*\mathcal{O}_X(mr(K_X + D))$ for all m > 0. We put $S = f^*H = f_*^{-1}H$. Then (X, S + D) is dlt and $K_S + B = (K_X + S + D)|_S$ is also dlt. Note that $f: (S, B) \to H$ is a flipping contraction. By the choice of H,

$$f_*\mathcal{O}_X(mr(K_X+S+D)) \to f_*\mathcal{O}_S(mr(K_S+B)) \to 0$$

for all $m \geq 0$ since $R^1 f_* \mathcal{O}_X = 0$. Note that $\bigoplus_{m\geq 0} f_* \mathcal{O}_S(mr(K_S+B))$ is finitely generated since dim S = 3. By taking truncation and assuming that r is sufficiently large, we can assume that $\bigoplus_{m\geq 0} f_* \mathcal{O}_S(mr(K_S + B))$ is generated by $f_* \mathcal{O}_S(r(K_S + B))$. We consider the \mathcal{O}_Z -subalgebra \mathcal{R} of $\bigoplus_{m\geq 0} f_* \mathcal{O}_X(mr(K_X + S + D))$ generated by $f_* \mathcal{O}_X(r(K_X + S + D))$. We define $g : \operatorname{Proj}_Z \mathcal{R} \to Z$. If we restrict g to H, then we obtain the flip of $f : (S, B) \to H$. Therefore, g is small in a neighborhood of H. Thus, we can assume that g is small by shrinking Z around H. Let X^+ be the normalization of $\operatorname{Proj}_Z \mathcal{R}$. It is not difficult to see that $X^+ \to Z$ is a flip of $f : (X, D) \to Z$. It immediately implies the lemma. \Box

Graduate School of Mathematics, Nagoya University, Chikusa-ku Nagoya 464-8602 Japan

E-mail address: fujino@math.nagoya-u.ac.jp

Date: 2005/7/22.

²⁰⁰⁰ Mathematics Subject Classification. 14E30.

A supplement to 4-fold flips after Shokurov, v1.4, January 2005, by Alessio Corti and Hiromichi Takagi.