ON LOG CANONICAL SINGULARITIES

OSAMU FUJINO

Abstract

In this short note, we study log canonical singularities. We consider when an isolated log canonical singularity with the index one is Cohen-Macaulay or not.

Contents

1. Introduction 1
2. Preliminaries 2
2.1. A criterion of Cohen-Macaulayness 2
2.2. Basic properties of dlt pairs 3
3. Dlt pairs with trivial log canonical divisors 4
4. Log canonical singularities 5
References 8

1. Introduction

In this paper, we will work over \mathbb{C}, the complex number field. Let us recall the following vanishing theorem obtained in [F3].

Theorem 1.1. Let X be a projective variety with only log canonical singularities and L an ample line bundle. Then $H^{i}\left(X, \mathcal{O}_{X}\left(K_{X}\right) \otimes L\right)=$ 0 for any $i>0$.

In Theorem 1.1, if X is log terminal, then X has only rational singularities. In particular, X is Cohen-Macaulay. Therefore, $H^{j}\left(X, L^{-1}\right)=$ 0 for any $j<\operatorname{dim} X$ by the Serre duality. However, in general, $H^{j}\left(X, L^{-1}\right) \neq 0$ for some $j<\operatorname{dim} X$. It is because X is not necessarily Cohen-Macaulay. So, it is an interesting problem to consider when a \log canonical singularity $P \in X$ becomes Cohen-Macaulay. In this short paper, we treat the case when $P \in X$ is an isolated \log

[^0]canonical singularity with the index one. This paper is a continuation of my paper: [F2].

Acknowledgments. I was partially supported by the Grant-in-Aid for Young Scientists (A) $\sharp 17684001$ from JSPS. I was also supported by the Inamori Foundation.

We will make use of the standard notation and definition as in $[\mathrm{KM}]$.

2. Preliminaries

In this section, we prove some preliminary results.
2.1. A criterion of Cohen-Macaulayness. We prepare two lemmas on Cohen-Macaulayness.

Lemma 2.1. Let X be a normal variety with an isolated singularity $P \in X$. Let $f: Y \rightarrow X$ be any resolution. If X is Cohen-Macaulay, then $R^{i} f_{*} \mathcal{O}_{Y}=0$ for $0<i<n-1$, where $n=\operatorname{dim} X$.
Proof. Without loss of generality, we can assume that X is projective. We consider the following spectral sequence

$$
E_{2}^{p, q}=H^{p}\left(X, R^{q} f_{*} \mathcal{O}_{Y} \otimes L^{-1}\right) \Rightarrow H^{p+q}\left(Y, f^{*} L^{-1}\right)
$$

for an ample line bundle L on X. By the Kawamata-Viehweg vanishing theorem, $H^{p+q}\left(Y, f^{*} L^{-1}\right)=0$ for $p+q<n$. On the other hand, $E_{2}^{p, 0}=H^{p}\left(X, L^{-1}\right)=0$ for $p<n$ since X is Cohen-Macaulay. By using the exact sequence $0 \rightarrow E_{2}^{1,0} \rightarrow E^{1} \rightarrow E_{2}^{0,1} \rightarrow E_{2}^{2,0} \rightarrow E^{2} \rightarrow \cdots$, we obtain $E_{2}^{0,1} \simeq E_{2}^{2,0}=0$ when $n \geq 3$. This implies $R^{1} f_{*} \mathcal{O}_{Y}=0$. We note that $\operatorname{Supp} R^{i} f_{*} \mathcal{O}_{Y} \subset\{P\}$ for any $i>0$. Inductively, we obtain $R^{i} f_{*} \mathcal{O}_{Y} \simeq H^{0}\left(X, R^{i} f_{*} \mathcal{O}_{Y} \otimes L^{-1}\right)=E_{2}^{0, i} \simeq E_{\infty}^{0, i}=0$ for $0<i<$ $n-1$.

Lemma 2.2. Let X be a normal projective n-fold and let $f: Y \rightarrow X$ be a resolution. Assume that $R^{i} f_{*} \mathcal{O}_{Y}=0$ for $0<i<n-1$. Then X is Cohen-Macaulay.

Proof. It is sufficient to prove $H^{i}\left(X, L^{-1}\right)=0$ for any ample line bundle L on X for all $i<n$ (see [KM, Corollary 5.72]). We consider the spectral sequence

$$
E_{2}^{p, q}=H^{p}\left(X, R^{q} f_{*} \mathcal{O}_{Y} \otimes L^{-1}\right) \Rightarrow H^{p+q}\left(Y, f^{*} L^{-1}\right)
$$

As before, $H^{p+q}\left(Y, f^{*} L^{-1}\right)=0$ for $p+q<n$ by the Kawamata-Viehweg vanishing theorem. By the exact sequence $0 \rightarrow E_{2}^{1,0} \rightarrow E^{1} \rightarrow E_{2}^{0,1} \rightarrow$ $E_{2}^{2,0} \rightarrow E^{2} \rightarrow \cdots$, we obtain $H^{1}\left(X, L^{-1}\right)=H^{2}\left(X, L^{-1}\right)=0$ if $n \geq 3$. Inductively, we can check that $H^{i}\left(X, L^{-1}\right)=E_{2}^{i, 0} \simeq E_{\infty}^{i, 0}=0$ for $i<n$. We finish the proof.

Combining the above two lemmas, we obtain the next corollary.
Corollary 2.3. Let $P \in X$ be a normal isolated singularity and f : $Y \rightarrow X$ a resolution. Then X is Cohen-Macaulay if and only if $R^{i} f_{*} \mathcal{O}_{Y}=0$ for $0<i<n-1$, where $n=\operatorname{dim} X$.

Proof. We shrink X and assume that X is affine. Then we compactify X and can assume that X is projective. Therefore, we can apply Lemmas 2.1 and 2.2.
2.2. Basic properties of dlt pairs. In this subsection, we prove supplementary results on dlt pairs. The following proposition generalizes [FA, 17.5 Corollary], where it was only proved that S is semi-normal and S_{2}.

Proposition 2.4. Let X be a normal variety and $S+B$ a boundary \mathbb{R}-divisor such that $(X, S+B)$ is dlt, S is reduced, and $\llcorner B\lrcorner=0$. Let $S=S_{1}+\cdots+S_{k}$ be the irreducible decomposition and $T=S_{1}+\cdots+S_{l}$ for $1 \leq l \leq k$. Then T is semi-normal, Cohen-Macaulay, and has only Du Bois singularities.

Proof. Let $f: Y \rightarrow X$ be a resolution such that $K_{Y}+S^{\prime}+B^{\prime}=f^{*}\left(K_{X}+\right.$ $S+B)+E$ with the following properties: (i) S^{\prime} (resp. B^{\prime}) is the strict transform of S (resp. B), (ii) $\operatorname{Supp}\left(S^{\prime}+B^{\prime}\right) \cup \operatorname{Exc}(f)$ and $\operatorname{Exc}(f)$ are simple normal crossing divisors on Y, (iii) f is an isomorphism over any generic point of any lc center of ($X, S+B$), and (iv) $\ulcorner E\urcorner \geq 0$. We write $S=T+U$. Let $T^{\prime}\left(\right.$ resp. $\left.U^{\prime}\right)$ be the strict transform of T (resp. U) on Y. We consider the following short exact sequence $0 \rightarrow \mathcal{O}_{Y}\left(-T^{\prime}+\ulcorner E\urcorner\right) \rightarrow$ $\mathcal{O}_{Y}(\ulcorner E\urcorner) \rightarrow \mathcal{O}_{T^{\prime}}\left(\left\ulcorner\left. E\right|_{T^{\prime}}\right\urcorner\right) \rightarrow 0$. Since $-T^{\prime}+E \sim_{\mathbb{R}, f} K_{Y}+U^{\prime}+B^{\prime}$ and $E \sim_{\mathbb{R}, f} K_{Y}+S^{\prime}+B^{\prime}$, we have $-T^{\prime}+\ulcorner E\urcorner \sim_{\mathbb{R}, f} K_{Y}+U^{\prime}+B^{\prime}+\{-E\}$ and $\ulcorner E\urcorner \sim_{\mathbb{R}, f} K_{Y}+S^{\prime}+B^{\prime}+\{-E\}$. By the vanishing theorem, $R^{i} f_{*} \mathcal{O}_{Y}\left(-T^{\prime}+\ulcorner E\urcorner\right)=R^{i} f_{*} \mathcal{O}_{Y}(\ulcorner E\urcorner)=0$ for any $i>0$. Note that we used the vanishing theorem of Reid-Fukuda type. Therefore, we have $0 \rightarrow f_{*} \mathcal{O}_{Y}\left(-T^{\prime}+\ulcorner E\urcorner\right) \rightarrow \mathcal{O}_{X} \rightarrow f_{*} \mathcal{O}_{T^{\prime}}\left(\left\ulcorner\left. E\right|_{T^{\prime}}\right\urcorner\right) \rightarrow 0$ and $R^{i} f_{*} \mathcal{O}_{T^{\prime}}\left(\left\ulcorner\left. E\right|_{T^{\prime}}\right\urcorner\right)=0$ for all $i>0$. Note that $\ulcorner E\urcorner$ is effective and f-exceptional. Thus, $\mathcal{O}_{T} \simeq f_{*} \mathcal{O}_{T^{\prime}} \simeq f_{*} \mathcal{O}_{T^{\prime}}\left(\left\ulcorner\left. E^{\prime}\right|_{T^{\prime}}\right\urcorner\right)$. Since T^{\prime} is a simple normal crossing divisor, T is semi-normal. By the above vanishing result, we obtain $R f_{*} \mathcal{O}_{T^{\prime}}\left(\left\ulcorner\left. E\right|_{T^{\prime}}\right\urcorner\right) \simeq \mathcal{O}_{T}$ in the derived category. Therefore, the composition $\mathcal{O}_{T} \rightarrow R f_{*} \mathcal{O}_{T^{\prime}} \rightarrow R f_{*} \mathcal{O}_{T^{\prime}}\left(\left\ulcorner\left. E\right|_{T^{\prime}}\right\urcorner\right) \simeq \mathcal{O}_{T}$ is a quasi-isomorphism. Apply $R \mathcal{H}$ om $_{T}\left(\ldots, \omega_{T}^{\bullet}\right)$ to the quasi-isomorphism $\mathcal{O}_{T} \rightarrow R f_{*} \mathcal{O}_{T^{\prime}} \rightarrow \mathcal{O}_{T}$. Then the composition $\omega_{T}^{\bullet} \rightarrow R f_{*} \omega_{T^{\prime}}^{\bullet} \rightarrow \omega_{T}^{\bullet}$ is a quasi-isomorphism by the Grothendieck duality. By the vanishing theorem (see, for example, [F3, Lemma 5.1]), $R^{i} f_{*} \omega_{T^{\prime}}=0$ for $i>0$. Hence, $h^{i}\left(\omega_{T}^{\bullet}\right) \subseteq R^{i} f_{*} \omega_{T^{\prime}}^{\bullet} \simeq R^{i+d} f_{*} \omega_{T^{\prime}}$, where $d=\operatorname{dim} T=\operatorname{dim} T^{\prime}$.

Therefore, $h^{i}\left(\omega_{T}^{\bullet}\right)=0$ for $i>-d$. Thus, X is Cohen-Macaulay. This argument is the same as the proof of Theorem 1 in [K2]. Since T^{\prime} is a simple normal crossing divisor, T^{\prime} has only Du Bois singularities. The quasi-isomorphism $\mathcal{O}_{T} \rightarrow R f_{*} \mathcal{O}_{T^{\prime}} \rightarrow \mathcal{O}_{T}$ implies that T has only Du Bois singularities (cf. [K1, Corollary 2.4]). Since the composition $\omega_{T} \rightarrow f_{*} \omega_{T^{\prime}} \rightarrow \omega_{T}$ is an isomorphism, we obtain $f_{*} \omega_{T^{\prime}} \simeq$ ω_{T}. By the Grothendieck duality, $R f_{*} \mathcal{O}_{T^{\prime}} \simeq R \mathcal{H} m_{T}\left(R f_{*} \omega_{T^{\prime}}^{\bullet}, \omega_{T}^{\bullet}\right) \simeq$ $R \mathcal{H o m}{ }_{T}\left(\omega_{T}^{\bullet}, \omega_{T}^{\bullet}\right) \simeq \mathcal{O}_{T}$. So, $R^{i} f_{*} \mathcal{O}_{T^{\prime}}=0$ for all $i>0$.

We obtained the following vanishing theorem in the proof of Proposition 2.4. It plays a crucial role in Section 4.

Corollary 2.5. Under the notation in the proof of Proposition 2.4, $R^{i} f_{*} \mathcal{O}_{T^{\prime}}=0$ for any $i>0$ and $f_{*} \mathcal{O}_{T^{\prime}} \simeq \mathcal{O}_{T}$.

Lemma 2.6. Let (X, D) be a dlt pair. Assume that $f: Y \rightarrow X$ is a small \mathbb{Q}-factorialization. Then (Y, \widetilde{D}) is dlt, where \widetilde{D} is the strict transform of D on Y.

Proof. By the definition of dlt pair, every generic point of lc center of (X, D) is contained in the smooth locus of X. Thus, f is an isomorphism over every generic point of lc center of (X, D). Therefore, (Y, \widetilde{D}) is dlt.

3. Dlt pairs with trivial log canonical divisors

This section is a supplement to [F2, Section 2]. See also [F1, Section 2]. We introduce a new invariant for dlt pairs with trivial log canonical divisors.

Definition 3.1. Let (X, D) be a dlt pair such that $K_{X}+D \sim 0$. We put

$$
\widetilde{\mu}=\widetilde{\mu}(X, D)=\min \{\operatorname{dim} W \mid W \text { is an lc center of }(X, D)\} .
$$

It is related to the invariant μ, which was defined in [F2]. See 4.11 below.

We use the MMP with scaling as in the proof of Lemma 3.4 below. Then we can prove [F2, Proposition 2.4] for \mathbb{Q}-factorial dlt pairs. Therefore, we obtain the following proposition.

Proposition 3.2. Let (X, D) be a \mathbb{Q}-factorial dlt pair such that $K_{X}+$ $D \sim 0$. Let W be any minimal lc center of (X, D). Then $\operatorname{dim} W=$ $\widetilde{\mu}(X, D)$. Moreover, all the minimal lc centers of (X, D) are birational each other.

Remark 3.3. In Proposition 3.2, let C be an lc center of (X, D). Then there exists an effective \mathbb{Q}-divisor Δ on C such that (C, Δ) is klt. So, we can take a small \mathbb{Q}-factorialization $\widetilde{C} \rightarrow C$. By combining Lemma 2.6 with the above fact, non- \mathbb{Q}-factoriality of C causes no troubles when we investigate C.

The next lemma is new. We will use it in Section 4.
Lemma 3.4. Let (X, D) be a \mathbb{Q}-factorial dlt n-fold such that $K_{X}+D \sim$ 0 . Assume that $D \neq 0$. Then there exists an irreducible component D_{0} of D such that $h^{i}\left(X, \mathcal{O}_{X}\right) \leq h^{i}\left(D_{0}, \mathcal{O}_{D_{0}}\right)$ for any i.
Proof. By the assumption, $K_{X}+(1-\varepsilon) D$ is not pseudo-effective for $0<\varepsilon \ll 1$. Let H be an ample divisor such that $K_{X}+(1-\varepsilon) D+\delta H$ is not pseudo-effective for $0<\delta \ll \varepsilon$ and $K_{X}+(1-\varepsilon) D+H$ is nef and klt. Apply the MMP with scaling. Then we obtain a sequence of divisorial contraction and log flips:

$$
X=X_{0} \rightarrow X_{1} \rightarrow \cdots \cdots X_{k},
$$

and an extremal Fano contraction $\varphi: X_{k} \rightarrow Z$. By the construction, there is an irreducible component D_{0} of D such that the strict transform D_{0}^{\prime} of D_{0} on X_{k} dominates Z. Since X and X_{k} have only rational singularities, we have $h^{i}\left(X, \mathcal{O}_{X}\right)=h^{i}\left(X_{k}, \mathcal{O}_{X_{k}}\right)$ for any i. Since $R^{i} \varphi_{*} \mathcal{O}_{X_{k}}=$ 0 for any $i>0$, we have $h^{i}\left(X_{k}, \mathcal{O}_{X_{k}}\right)=h^{i}\left(Z, \mathcal{O}_{Z}\right)$ for any i. Since D_{0} and Z have only rational singularities, $h^{i}\left(Z, \mathcal{O}_{Z}\right) \leq h^{i}\left(D_{0}, \mathcal{O}_{D_{0}}\right)$ for any i. Therefore, we have the desired inequalities $h^{i}\left(\bar{Z}, \mathcal{O}_{Z}\right) \leq h^{i}\left(D_{0}, \mathcal{O}_{D_{0}}\right)$ for any i.
Example 3.5. Let $X=\mathbb{P}^{2}$ and D be an elliptic curve on $X=\mathbb{P}^{2}$. Then (X, D) is dlt and $K_{X}+D \sim 0$. In this case, $h^{1}\left(X, \mathcal{O}_{X}\right)=0<$ $h^{1}\left(D, \mathcal{O}_{X}\right)=1$.

By Proposition 3.2, the proof of Lemma 3.4, and [GHS], we obtain the next proposition.

Proposition 3.6. Let (X, D) be a \mathbb{Q}-factorial dlt pair such that $K_{X}+$ $D \sim 0$. Assume that $\widetilde{\mu}(X, D)=0$. Then $h^{i}\left(X, \mathcal{O}_{X}\right)=0$ for any $i>0$. Moreover, X is rationally connected.

4. Log canonical singularities

In this section, we consider when an isolated \log canonical singularity with the index one is Cohen-Macaulay or not.
4.1. Let $P \in X$ be an n-dimensional isolated lc singularity with the index one. We assume that $n \geq 3$ since normal surfaces are CohenMacaulay by the definition. By the algebraization theorem, we always
assume that X is an algebraic variety in this paper. Assume that $P \in X$ is not lt. We consider a resolution $f: Y \rightarrow X$ such that (i) f is an isomorphism outside $P \in X$, and (ii) $f^{-1}(P)$ is a simple normal crossing divisor on Y. In this setting, we can write $K_{Y}=f^{*} K_{X}+F-E$, where F and E are both effective Cartier divisors without common irreducible components. In particular, E is a reduced simple normal crossing divisor on Y.
Lemma 4.2. The cohomology group $H^{i}\left(E, \mathcal{O}_{E}\right)$ is independent of f for any i.
Proof. Let $f^{\prime}: Y^{\prime} \rightarrow X$ be another resolution with $K_{Y^{\prime}}=f^{\prime *} K_{X}+$ $F^{\prime}-E^{\prime}$ as in 4.1. By the weak factorization theorem (see [M, Theorem 5-4-1] or [AKMW, Theorem 0.3.1(6)]), we can assume that $\varphi: Y^{\prime} \rightarrow Y$ is a blow-up whose center $C \subset \operatorname{Supp}(E+F)$ is smooth, irreducible, and transversal to $\operatorname{Supp}(E+F)$. Thus, we can directly check that $H^{i}\left(E, \mathcal{O}_{E}\right) \simeq H^{i}\left(E^{\prime}, \mathcal{O}_{E^{\prime}}\right)$ for any i.
4.3. Let Γ be the dual graph of E and $|\Gamma|$ the topological realization of Γ. Note that the vertices of Γ correspond to the components E_{i}, the edges correspond to $E_{i} \cap E_{j}$, and so on, where $E=\sum_{i} E_{i}$ is the irreducible decomposition of E. More precisely, E defines a conical polyhedral complex Δ (see [KKMS, Chapter II, Definition 5]). By [KKMS, p. 70 Remark], we get a compact polyhedral complex Δ_{0} from Δ. The dual graph Γ of E is nothing but this compact polyhedral complex Δ_{0}. Therefore, we obtain the following lemma.

Lemma 4.4. The dual graph Γ is well defined and $|\Gamma|$ is independent of f.

Proof. As we explained above, the well-definedness of Γ is in $[\mathrm{KKMS}$, Chapter II]. By the weak factorization theorem (see [M, Theorem 5-4-1] or [AKMW, Theorem 0.3.1(6)]), we can easily check that the topological realization $|\Gamma|$ does not depend on f.
4.5. The next conjecture follows from the special termination theorem in dimension n. So, it is a consequence of the LMMP in dimension $<n-1$.

Conjecture 4.6 (\mathbb{Q}-factorial dlt modification). Let $P \in X$ be an isolated n-dimensional lc singularity with the index one. Then there exists a proper birational morphism $f: Y \rightarrow X$ such that $K_{Y}+D=f^{*} K_{X}$ and (Y, D) is a \mathbb{Q}-factorial dlt pair.
4.7. From now on, we assume that Conjecture 4.6 holds true. Let $f: Y \rightarrow X$ be a proper birational morphism as in Conjecture 4.6. Then
we have $0 \rightarrow \mathcal{O}_{Y}(-D) \rightarrow \mathcal{O}_{Y} \rightarrow \mathcal{O}_{D} \rightarrow 0$. By the vanishing theorem, we obtain $R^{i} f_{*} \mathcal{O}_{Y}\left(K_{Y}\right)=0$ for any $i>0$. Therefore, $R^{i} f_{*} \mathcal{O}_{Y} \simeq$ $R^{i} f_{*} \mathcal{O}_{D} \simeq H^{i}\left(D, \mathcal{O}_{D}\right)$ for any $i>0$. By applying Corollary 2.5, we can construct a resolution $g: V \rightarrow Y$ such that $K_{V}+E-F=$ $g^{*}\left(K_{Y}+D\right)=h^{*} K_{X}$, where F and E are both effective Cartier divisors without common irreducible components, $h=f \circ g, g$ is an isomorphism outside $D, R^{i} g_{*} \mathcal{O}_{E}=0$ for any $i>0$, and $g_{*} \mathcal{O}_{E} \simeq \mathcal{O}_{D}$. Therefore, $H^{i}\left(D, \mathcal{O}_{D}\right) \simeq H^{i}\left(E, \mathcal{O}_{E}\right)$ for any i. So, we obtain the next proposition.
Proposition 4.8. Assume that Conjecture 4.6 holds. Let $f: Y \rightarrow X$ be a resolution as in 4.1. Then $R^{i} f_{*} \mathcal{O}_{Y} \simeq H^{i}\left(E, \mathcal{O}_{E}\right)$ for any $i>$ 0. Therefore, $P \in X$ is Cohen-Macaulay, equivalently, $P \in X$ is Gorenstein, if and only if $H^{i}\left(E, \mathcal{O}_{E}\right)=0$ for $0<i<n-1$.
Proof. It is a direct consequence of Lemma 4.2 and Corollary 2.3.
Remark 4.9. In 4.7, $\left.\left(K_{Y}+D\right)\right|_{D}=K_{D} \sim 0$. Therefore, $H^{n-1}\left(D, \mathcal{O}_{D}\right)$ is dual to $H^{0}\left(D, \mathcal{O}_{D}\right)$, where $n=\operatorname{dim} X$. So, $R^{n-1} f_{*} \mathcal{O}_{Y} \simeq \mathbb{C}(P)$. Thus, $P \in X$ is not a rational singularities.

Remark 4.10. The isomorphisms $R^{i} f_{*} \mathcal{O}_{Y} \simeq H^{i}\left(E, \mathcal{O}_{E}\right)$ for any $i>0$ and $R^{n-1} f_{*} \mathcal{O}_{Y} \simeq \mathbb{C}(P)$, where $f: Y \rightarrow X$ is a resolution as in 4.1, should be proved without assuming Conjecture 4.6.
4.11. Let $P \in X$ be an isolated lc singularity that is not lt. Assume that there is a proper birational morphism $f: Y \rightarrow X$ such that $K_{Y}+E=f^{*} K_{X}$ and (Y, E) is \mathbb{Q}-factorial dlt. We define

$$
\mu=\mu(P \in X)=\min \{\operatorname{dim} W \mid W \text { is an lc center of }(Y, E)\}
$$

This invariant μ was first introduced in [F2]. By Proposition 3.2, any minimal lc center of (Y, E) is μ-dimensional and all the minimal centers are birational each other.

Now, the following theorem is not difficult to prove.
Theorem 4.12. Assume that Conjecture 4.6 holds. We assume $\mu(P \in$ $X)=0$. Then $H^{i}\left(E, \mathcal{O}_{E}\right) \simeq H^{i}(|\Gamma|, \mathbb{C})$. Therefore, $P \in X$ is CohenMacaulay, equivalently, $P \in X$ is Gorenstein, if and only if

$$
H^{i}(|\Gamma|, \mathbb{C})= \begin{cases}\mathbb{C} & \text { for } i=0, n-1 \\ 0 & \text { otherwise }\end{cases}
$$

Note that $|\Gamma|$ is oriented and $|\Gamma|$ has no boundaries.
Proof. We use the spectral sequence in 4.13 to calculate $H^{i}\left(E, \mathcal{O}_{E}\right)$. By Lemma 3.4 and Proposition 3.6, $H^{q}\left(E^{[p]}, \mathcal{O}_{E^{[p]}}\right)=0$ for any $q>0$. Therefore, we obtain $H^{i}\left(E, \mathcal{O}_{E}\right) \simeq H^{i}(|\Gamma|, \mathbb{C})$ for any i.
4.13. Let E be a simple normal crossing variety and $E=\sum_{i} E_{i}$ the irreducible decomposition. We put $E^{[0]}=\coprod_{i} E_{i}, E^{[1]}=\coprod_{i, j}\left(E_{i} \cap E_{j}\right)$, $\cdots, E^{[p]}=\coprod_{i_{0}, \cdots, i_{p}}\left(E_{i_{0}} \cap \cdots \cap E_{i_{p}}\right), \cdots$. Let $a_{p}: E^{[p]} \rightarrow E$ be the obvious map. Then it is well known that $\left(a_{0}\right)_{*} \mathcal{O}_{E^{[0]}} \rightarrow\left(a_{1}\right)_{*} \mathcal{O}_{E^{[1]}} \rightarrow \cdots \rightarrow$ $\left(a_{p}\right)_{*} \mathcal{O}_{E^{[p]}} \rightarrow \cdots$ is a resolution of \mathcal{O}_{E}. By taking the associated hypercohomology, we obtain a spectral sequence $E_{1}^{p, q}=H^{q}\left(E^{[p]}, \mathcal{O}_{E[p]}\right) \Rightarrow$ $H^{p+q}\left(E, \mathcal{O}_{E}\right)$.

We close this section with the following obvious two propositions.
Proposition 4.14. By the above spectral sequence, $P \in X$ is CohenMacaulay implies that $H^{1}(|\Gamma|, \mathbb{C})=0$.

Proof. By the spectral sequence in 4.13 , it is easy to see that $H^{1}(|\Gamma|, \mathbb{C}) \neq$ 0 implies $H^{1}\left(E, \mathcal{O}_{E}\right) \neq 0$.

Proposition 4.15. Let $P \in X$ be an n-dimensional isolated lc singularity with the index one. If $P \in X$ is Cohen-Macaulay, then $\chi\left(\mathcal{O}_{E}\right):=$ $\sum_{i}(-1)^{i} h^{i}\left(E, \mathcal{O}_{E}\right)=1+(-1)^{n-1}=\sum_{p, q}(-1)^{p+q} \operatorname{dim} E_{1}^{p, q}$.
Remark 4.16. Tsuchihashi's cusp singularities give us many examples of three dimensional index one isolated lc singularities with $\mu=0$ that are not Cohen-Macaulay.

References

[AKMW] D. Abramovich, K. Karu, K. Matsuki, J. Włodarczyk, Torification and factorization of birational maps, J. Amer. Math. Soc. 15 (2002), no. 3, 531-572
[BCHM] C. Birkar, P. Cascini, C. Hacon, and J. McKernan, Existence of minimal models for varieties of log general type, arXiv:math/0610203.
[F1] O. Fujino, Abundance theorem for semi log canonical threefolds, Duke Math. J. 102 (2000), no. 3, 513-532.
[F2] O. Fujino, The indices of log canonical singularities, Amer. J. Math. 123 (2001), no. 2, 229-253.
[F3] O. Fujino, Vanishing and injectivity theorems for LMMP, preprint 2007.
[GHS] T. Graber, J. Harris, J. Starr, Families of rationally connected varieties, J. Amer. Math. Soc. 16 (2003), no. 1, 57-67
[KKMS] G. Kempf, F. Knudsen, D. Mumford, and B. Saint-Donat, Toroidal Embeddings I, Springer Lecture Notes Vol. 339, 1973.
[KM] J. Kollár, S. Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, Vol. 134, 1998.
[FA] J. Kollár et al., Flips and Abundance for algebraic threefolds, Astérisque 211, (1992).
[K1] S. Kovács, Rational, log canonical, Du Bois singularities: on the conjectures of Kollár and Steenbrink, Compositio Math. 118 (1999), no. 2, 123-133.
[K2] S. Kovács, A characterization of rational singularities, Duke Math. J. 102 (2000), no. 2, 187-191.
[M] K. Matsuki, Lectures on Factorization of Birational Maps, RIMS-1281, preprint 2000.

Graduate School of Mathematics, Nagoya University, Chikusa-ku NaGOYA 464-8602 Japan

E-mail address: fujino@math.nagoya-u.ac.jp

[^0]: Date: 2007/9/1.
 2000 Mathematics Subject Classification. Primary 14B05; Secondary 14E30.
 Key words and phrases. log canonical singularities, Cohen-Macaulay, LMMP.

