
ON LOG CANONICAL SINGULARITIES

OSAMU FUJINO

Abstract. In this short note, we study log canonical singularities.
We consider when an isolated log canonical singularity with the
index one is Cohen-Macaulay or not.
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1. Introduction

In this paper, we will work over C, the complex number field. Let
us recall the following vanishing theorem obtained in [F3].

Theorem 1.1. Let X be a projective variety with only log canonical

singularities and L an ample line bundle. Then H i(X,OX(KX)⊗L) =
0 for any i > 0.

In Theorem 1.1, if X is log terminal, then X has only rational singu-
larities. In particular, X is Cohen-Macaulay. Therefore, H j(X, L−1) =
0 for any j < dim X by the Serre duality. However, in general,
Hj(X, L−1) 6= 0 for some j < dim X. It is because X is not neces-
sarily Cohen-Macaulay. So, it is an interesting problem to consider
when a log canonical singularity P ∈ X becomes Cohen-Macaulay. In
this short paper, we treat the case when P ∈ X is an isolated log
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canonical singularity with the index one. This paper is a continuation
of my paper: [F2].
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by the Inamori Foundation.

We will make use of the standard notation and definition as in [KM].

2. Preliminaries

In this section, we prove some preliminary results.

2.1. A criterion of Cohen-Macaulayness. We prepare two lemmas
on Cohen-Macaulayness.

Lemma 2.1. Let X be a normal variety with an isolated singularity

P ∈ X. Let f : Y → X be any resolution. If X is Cohen-Macaulay,

then Rif∗OY = 0 for 0 < i < n − 1, where n = dim X.

Proof. Without loss of generality, we can assume that X is projective.
We consider the following spectral sequence

E
p,q
2 = Hp(X, Rqf∗OY ⊗ L−1) ⇒ Hp+q(Y, f ∗L−1)

for an ample line bundle L on X. By the Kawamata-Viehweg vanishing
theorem, Hp+q(Y, f ∗L−1) = 0 for p + q < n. On the other hand,
E

p,0
2 = Hp(X, L−1) = 0 for p < n since X is Cohen-Macaulay. By

using the exact sequence 0 → E
1,0
2 → E1 → E

0,1
2 → E

2,0
2 → E2 → · · · ,

we obtain E
0,1
2 ' E

2,0
2 = 0 when n ≥ 3. This implies R1f∗OY = 0. We

note that SuppRif∗OY ⊂ {P} for any i > 0. Inductively, we obtain
Rif∗OY ' H0(X, Rif∗OY ⊗ L−1) = E

0,i
2 ' E0,i

∞
= 0 for 0 < i <

n − 1. �

Lemma 2.2. Let X be a normal projective n-fold and let f : Y → X

be a resolution. Assume that Rif∗OY = 0 for 0 < i < n − 1. Then X

is Cohen-Macaulay.

Proof. It is sufficient to prove H i(X, L−1) = 0 for any ample line bundle
L on X for all i < n (see [KM, Corollary 5.72]). We consider the
spectral sequence

E
p,q
2 = Hp(X, Rqf∗OY ⊗ L−1) ⇒ Hp+q(Y, f ∗L−1).

As before, Hp+q(Y, f ∗L−1) = 0 for p+q < n by the Kawamata-Viehweg
vanishing theorem. By the exact sequence 0 → E

1,0
2 → E1 → E

0,1
2 →

E
2,0
2 → E2 → · · · , we obtain H1(X, L−1) = H2(X, L−1) = 0 if n ≥ 3.

Inductively, we can check that H i(X, L−1) = E
i,0
2 ' Ei,0

∞
= 0 for i < n.

We finish the proof. �
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Combining the above two lemmas, we obtain the next corollary.

Corollary 2.3. Let P ∈ X be a normal isolated singularity and f :
Y → X a resolution. Then X is Cohen-Macaulay if and only if

Rif∗OY = 0 for 0 < i < n − 1, where n = dim X.

Proof. We shrink X and assume that X is affine. Then we compactify
X and can assume that X is projective. Therefore, we can apply
Lemmas 2.1 and 2.2. �

2.2. Basic properties of dlt pairs. In this subsection, we prove sup-
plementary results on dlt pairs. The following proposition generalizes
[FA, 17.5 Corollary], where it was only proved that S is semi-normal
and S2.

Proposition 2.4. Let X be a normal variety and S + B a boundary

R-divisor such that (X, S + B) is dlt, S is reduced, and xBy = 0. Let

S = S1 + · · ·+Sk be the irreducible decomposition and T = S1 + · · ·+Sl

for 1 ≤ l ≤ k. Then T is semi-normal, Cohen-Macaulay, and has only

Du Bois singularities.

Proof. Let f : Y → X be a resolution such that KY +S ′+B′ = f ∗(KX+
S + B) + E with the following properties: (i) S ′ (resp. B′) is the strict
transform of S (resp. B), (ii) Supp(S ′ + B′) ∪ Exc(f) and Exc(f) are
simple normal crossing divisors on Y , (iii) f is an isomorphism over any
generic point of any lc center of (X, S+B), and (iv) pEq ≥ 0. We write
S = T+U . Let T ′ (resp. U ′) be the strict transform of T (resp. U) on Y .
We consider the following short exact sequence 0 → OY (−T ′+pEq) →
OY (pEq) → OT ′(pE|T ′q) → 0. Since −T ′ + E ∼R,f KY + U ′ + B′ and
E ∼R,f KY + S ′ + B′, we have −T ′ + pEq ∼R,f KY + U ′ + B′ + {−E}
and pEq ∼R,f KY + S ′ + B′ + {−E}. By the vanishing theorem,
Rif∗OY (−T ′ + pEq) = Rif∗OY (pEq) = 0 for any i > 0. Note that
we used the vanishing theorem of Reid-Fukuda type. Therefore, we
have 0 → f∗OY (−T ′ + pEq) → OX → f∗OT ′(pE|T ′q) → 0 and
Rif∗OT ′(pE|T ′q) = 0 for all i > 0. Note that pEq is effective and
f -exceptional. Thus, OT ' f∗OT ′ ' f∗OT ′(pE ′|T ′q). Since T ′ is a
simple normal crossing divisor, T is semi-normal. By the above van-
ishing result, we obtain Rf∗OT ′(pE|T ′q) ' OT in the derived category.
Therefore, the composition OT → Rf∗OT ′ → Rf∗OT ′(pE|T ′q) ' OT is
a quasi-isomorphism. Apply RHomT ( , ω•

T ) to the quasi-isomorphism
OT → Rf∗OT ′ → OT . Then the composition ω•

T → Rf∗ω
•

T ′ → ω•

T is
a quasi-isomorphism by the Grothendieck duality. By the vanishing
theorem (see, for example, [F3, Lemma 5.1]), Rif∗ωT ′ = 0 for i > 0.
Hence, hi(ω•

T ) ⊆ Rif∗ω
•

T ′ ' Ri+df∗ωT ′, where d = dim T = dim T ′.
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Therefore, hi(ω•

T ) = 0 for i > −d. Thus, X is Cohen-Macaulay. This
argument is the same as the proof of Theorem 1 in [K2]. Since T ′

is a simple normal crossing divisor, T ′ has only Du Bois singulari-
ties. The quasi-isomorphism OT → Rf∗OT ′ → OT implies that T has
only Du Bois singularities (cf. [K1, Corollary 2.4]). Since the com-
position ωT → f∗ωT ′ → ωT is an isomorphism, we obtain f∗ωT ′ '
ωT . By the Grothendieck duality, Rf∗OT ′ ' RHomT (Rf∗ω

•

T ′ , ω•

T ) '
RHomT (ω•

T , ω•

T ) ' OT . So, Rif∗OT ′ = 0 for all i > 0. �

We obtained the following vanishing theorem in the proof of Propo-
sition 2.4. It plays a crucial role in Section 4.

Corollary 2.5. Under the notation in the proof of Proposition 2.4,
Rif∗OT ′ = 0 for any i > 0 and f∗OT ′ ' OT .

Lemma 2.6. Let (X, D) be a dlt pair. Assume that f : Y → X is

a small Q-factorialization. Then (Y, D̃) is dlt, where D̃ is the strict

transform of D on Y .

Proof. By the definition of dlt pair, every generic point of lc center of
(X, D) is contained in the smooth locus of X. Thus, f is an isomor-

phism over every generic point of lc center of (X, D). Therefore, (Y, D̃)
is dlt. �

3. Dlt pairs with trivial log canonical divisors

This section is a supplement to [F2, Section 2]. See also [F1, Section
2]. We introduce a new invariant for dlt pairs with trivial log canonical
divisors.

Definition 3.1. Let (X, D) be a dlt pair such that KX + D ∼ 0. We
put

µ̃ = µ̃(X, D) = min{ dimW |W is an lc center of (X, D)}.

It is related to the invariant µ, which was defined in [F2]. See 4.11
below.

We use the MMP with scaling as in the proof of Lemma 3.4 be-
low. Then we can prove [F2, Proposition 2.4] for Q-factorial dlt pairs.
Therefore, we obtain the following proposition.

Proposition 3.2. Let (X, D) be a Q-factorial dlt pair such that KX +
D ∼ 0. Let W be any minimal lc center of (X, D). Then dim W =
µ̃(X, D). Moreover, all the minimal lc centers of (X, D) are birational

each other.
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Remark 3.3. In Proposition 3.2, let C be an lc center of (X, D). Then
there exists an effective Q-divisor ∆ on C such that (C, ∆) is klt. So, we

can take a small Q-factorialization C̃ → C. By combining Lemma 2.6
with the above fact, non-Q-factoriality of C causes no troubles when
we investigate C.

The next lemma is new. We will use it in Section 4.

Lemma 3.4. Let (X, D) be a Q-factorial dlt n-fold such that KX +D ∼
0. Assume that D 6= 0. Then there exists an irreducible component D0

of D such that hi(X,OX) ≤ hi(D0,OD0) for any i.

Proof. By the assumption, KX + (1 − ε)D is not pseudo-effective for
0 < ε � 1. Let H be an ample divisor such that KX + (1 − ε)D + δH

is not pseudo-effective for 0 < δ � ε and KX + (1 − ε)D + H is nef
and klt. Apply the MMP with scaling. Then we obtain a sequence of
divisorial contraction and log flips:

X = X0 99K X1 99K · · · 99K Xk,

and an extremal Fano contraction ϕ : Xk → Z. By the construction,
there is an irreducible component D0 of D such that the strict transform
D′

0 of D0 on Xk dominates Z. Since X and Xk have only rational singu-
larities, we have hi(X,OX) = hi(Xk,OXk

) for any i. Since Riϕ∗OXk
=

0 for any i > 0, we have hi(Xk,OXk
) = hi(Z,OZ) for any i. Since D0

and Z have only rational singularities, hi(Z,OZ) ≤ hi(D0,OD0) for any
i. Therefore, we have the desired inequalities hi(Z,OZ) ≤ hi(D0,OD0)
for any i. �

Example 3.5. Let X = P2 and D be an elliptic curve on X = P2.
Then (X, D) is dlt and KX + D ∼ 0. In this case, h1(X,OX) = 0 <

h1(D,OX) = 1.

By Proposition 3.2, the proof of Lemma 3.4, and [GHS], we obtain
the next proposition.

Proposition 3.6. Let (X, D) be a Q-factorial dlt pair such that KX +
D ∼ 0. Assume that µ̃(X, D) = 0. Then hi(X,OX) = 0 for any i > 0.
Moreover, X is rationally connected.

4. Log canonical singularities

In this section, we consider when an isolated log canonical singularity
with the index one is Cohen-Macaulay or not.

4.1. Let P ∈ X be an n-dimensional isolated lc singularity with the
index one. We assume that n ≥ 3 since normal surfaces are Cohen-
Macaulay by the definition. By the algebraization theorem, we always
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assume that X is an algebraic variety in this paper. Assume that
P ∈ X is not lt. We consider a resolution f : Y → X such that (i) f

is an isomorphism outside P ∈ X, and (ii) f−1(P ) is a simple normal
crossing divisor on Y . In this setting, we can write KY = f ∗KX+F−E,
where F and E are both effective Cartier divisors without common
irreducible components. In particular, E is a reduced simple normal
crossing divisor on Y .

Lemma 4.2. The cohomology group H i(E,OE) is independent of f

for any i.

Proof. Let f ′ : Y ′ → X be another resolution with KY ′ = f ′∗KX +
F ′−E ′ as in 4.1. By the weak factorization theorem (see [M, Theorem
5-4-1] or [AKMW, Theorem 0.3.1(6)]), we can assume that ϕ : Y ′ → Y

is a blow-up whose center C ⊂ Supp(E + F ) is smooth, irreducible,
and transversal to Supp(E + F ). Thus, we can directly check that
H i(E,OE) ' H i(E ′,OE′) for any i. �

4.3. Let Γ be the dual graph of E and |Γ| the topological realization
of Γ. Note that the vertices of Γ correspond to the components Ei,
the edges correspond to Ei ∩ Ej, and so on, where E =

∑
i Ei is the

irreducible decomposition of E. More precisely, E defines a conical
polyhedral complex ∆ (see [KKMS, Chapter II, Definition 5]). By
[KKMS, p.70 Remark], we get a compact polyhedral complex ∆0 from
∆. The dual graph Γ of E is nothing but this compact polyhedral
complex ∆0. Therefore, we obtain the following lemma.

Lemma 4.4. The dual graph Γ is well defined and |Γ| is independent

of f .

Proof. As we explained above, the well-definedness of Γ is in [KKMS,
Chapter II]. By the weak factorization theorem (see [M, Theorem 5-4-1]
or [AKMW, Theorem 0.3.1(6)]), we can easily check that the topolog-
ical realization |Γ| does not depend on f . �

4.5. The next conjecture follows from the special termination theorem
in dimension n. So, it is a consequence of the LMMP in dimension
< n − 1.

Conjecture 4.6 (Q-factorial dlt modification). Let P ∈ X be an iso-

lated n-dimensional lc singularity with the index one. Then there exists

a proper birational morphism f : Y → X such that KY + D = f ∗KX

and (Y, D) is a Q-factorial dlt pair.

4.7. From now on, we assume that Conjecture 4.6 holds true. Let
f : Y → X be a proper birational morphism as in Conjecture 4.6. Then
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we have 0 → OY (−D) → OY → OD → 0. By the vanishing theorem,
we obtain Rif∗OY (KY ) = 0 for any i > 0. Therefore, Rif∗OY '
Rif∗OD ' H i(D,OD) for any i > 0. By applying Corollary 2.5, we
can construct a resolution g : V → Y such that KV + E − F =
g∗(KY +D) = h∗KX , where F and E are both effective Cartier divisors
without common irreducible components, h = f◦g, g is an isomorphism
outside D, Rig∗OE = 0 for any i > 0, and g∗OE ' OD. Therefore,
H i(D,OD) ' H i(E,OE) for any i. So, we obtain the next proposition.

Proposition 4.8. Assume that Conjecture 4.6 holds. Let f : Y → X

be a resolution as in 4.1. Then Rif∗OY ' H i(E,OE) for any i >

0. Therefore, P ∈ X is Cohen-Macaulay, equivalently, P ∈ X is

Gorenstein, if and only if H i(E,OE) = 0 for 0 < i < n − 1.

Proof. It is a direct consequence of Lemma 4.2 and Corollary 2.3. �

Remark 4.9. In 4.7, (KY +D)|D = KD ∼ 0. Therefore, Hn−1(D,OD)
is dual to H0(D,OD), where n = dim X. So, Rn−1f∗OY ' C(P ).
Thus, P ∈ X is not a rational singularities.

Remark 4.10. The isomorphisms Rif∗OY ' H i(E,OE) for any i > 0
and Rn−1f∗OY ' C(P ), where f : Y → X is a resolution as in 4.1,
should be proved without assuming Conjecture 4.6.

4.11. Let P ∈ X be an isolated lc singularity that is not lt. Assume
that there is a proper birational morphism f : Y → X such that
KY + E = f ∗KX and (Y, E) is Q-factorial dlt. We define

µ = µ(P ∈ X) = min{ dim W |W is an lc center of (Y, E)}.

This invariant µ was first introduced in [F2]. By Proposition 3.2, any
minimal lc center of (Y, E) is µ-dimensional and all the minimal centers
are birational each other.

Now, the following theorem is not difficult to prove.

Theorem 4.12. Assume that Conjecture 4.6 holds. We assume µ(P ∈
X) = 0. Then H i(E,OE) ' H i(|Γ|, C). Therefore, P ∈ X is Cohen-

Macaulay, equivalently, P ∈ X is Gorenstein, if and only if

H i(|Γ|, C) =

{
C for i = 0, n − 1,
0 otherwise.

Note that |Γ| is oriented and |Γ| has no boundaries.

Proof. We use the spectral sequence in 4.13 to calculate H i(E,OE).
By Lemma 3.4 and Proposition 3.6, Hq(E [p],OE[p]) = 0 for any q > 0.
Therefore, we obtain H i(E,OE) ' H i(|Γ|, C) for any i. �
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4.13. Let E be a simple normal crossing variety and E =
∑

i Ei the
irreducible decomposition. We put E [0] =

∐
i Ei, E [1] =

∐
i,j(Ei ∩ Ej),

· · · , E [p] =
∐

i0,··· ,ip
(Ei0 ∩ · · ·∩Eip), · · · . Let ap : E [p] → E be the obvi-

ous map. Then it is well known that (a0)∗OE[0] → (a1)∗OE[1] → · · · →
(ap)∗OE[p] → · · · is a resolution of OE. By taking the associated hy-
percohomology, we obtain a spectral sequence E

p,q
1 = Hq(E [p],OE[p]) ⇒

Hp+q(E,OE).

We close this section with the following obvious two propositions.

Proposition 4.14. By the above spectral sequence, P ∈ X is Cohen-

Macaulay implies that H1(|Γ|, C) = 0.

Proof. By the spectral sequence in 4.13, it is easy to see that H1(|Γ|, C) 6=
0 implies H1(E,OE) 6= 0. �

Proposition 4.15. Let P ∈ X be an n-dimensional isolated lc singu-

larity with the index one. If P ∈ X is Cohen-Macaulay, then χ(OE) :=∑
i(−1)ihi(E,OE) = 1 + (−1)n−1 =

∑
p,q(−1)p+q dim E

p,q
1 .

Remark 4.16. Tsuchihashi’s cusp singularities give us many examples
of three dimensional index one isolated lc singularities with µ = 0 that
are not Cohen-Macaulay.
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