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1. Introduction The main purpose of this
short paper is to establish:

Theorem 1.1 (Kodaira vanishing theorem for
semi-log-canonical pairs). Let (X,A) be a projec-
tive semi-log-canonical pair and let L be an ample
Cartier divisor on X. Then H'(X,Ox(Kx + L)) =
0 for every i > 0.

Theorem 1.1 is a naive generalization of the Ko-
daira vanishing theorem for semi-log-canonical pairs.
As a special case of Theorem 1.1, we have:

Theorem 1.2 (Kodaira vanishing theorem for
log-canonical pairs). Let (X, A) be a projective log-
canonical pair and let L be an ample Cartier divisor
on X. Then H(X,Ox(Kx + L)) =0 for every i >
0.

Precisely speaking, we prove the following theo-
rem in this paper. Theorem 1.3 is a relative version
of Theorem 1.1 and obviously contains Theorem 1.1
as a special case.

Theorem 1.3 (Main theorem). Let (X, A) be
a semi-log-canonical pair and let f : X —'Y be a pro-
jective morphism between quasi-projective varieties.
Let L be an f-ample Cartier divisor on X. Then
Rif.Ox(Kx + L) =0 for every i > 0.

Although Theorem 1.3 has not been stated ex-
plicitly in the literature, it easily follows from [7], [§],
[12], and so on. In our framework, Theorem 1.1 can
be seen as a generalization of Kollar’s vanishing the-
orem by the theory of mixed Hodge structures. The
statement of Theorem 1.1 is a naive generalization of
the Kodaira vanishing theorem. However, Theorem
1.1 is not a simple generalization of the Kodaira van-
ishing theorem from the Hodge-theoretic viewpoint.
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We note the dual form of the Kodaira vanish-
ing theorem for Cohen—Macaulay projective semi-
log-canonical pairs.

Corollary 1.4 (cf. [17, Corollary 6.6]). Let
(X, A) be a projective semi-log-canonical pair and let
L be an ample Cartier divisor on X. Assume that X
is Cohen—Macaulay. Then H'(X,Ox(—L)) = 0 for
every ¢ < dim X.

Remark 1.5. The dual form of the Kodaira
vanishing theorem, that is, H(X,Ox(—L)) = 0 for
every ample Cartier divisor L and every ¢ < dim X,
implies that X is Cohen—-Macaulay (see, for exam-
ple, [16, Corollary 5.72]). Therefore, the assumption
that X is Cohen—Macaulay in Corollary 1.4 is indis-
pensable.

Remark 1.6. In [17, Corollary 6.6], Corollary
1.4 was obtained for weakly semi-log-canonical pairs
(see [17, Definition 4.6]). Therefore, [17, Corollary
6.6] is stronger than Corollary 1.4. The arguments
in [17] depend on the theory of Du Bois singularities.
Our approach (see [3], [5], [7], [8], [9], [11], [12], and
so on) to various vanishing theorems for reducible va-
rieties uses the theory of mixed Hodge structures for
cohomology with compact support and is different
from [17].

Finally, we note that we can easily generalize
Theorem 1.3 as follows.

Theorem 1.7 (Main theorem II). Let (X, A)
be a semi-log-canonical pair and let f : X — Y be
a projective morphism between quasi-projective vari-
eties. Let L be a Cartier divisor on X such that L is
nef and log big over Y with respect to (X, A). Then
Rif.Ox(Kx + L) =0 for every i > 0.

For the definition of nef and log big divisors on
semi-log-canonical pairs, see Definition 2.3. Theorem
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1.7 is a relative vanishing theorem of Reid—Fukuda
type for semi-log-canonical pairs. It is obvious that
Theorem 1.1, Theorem 1.2, and Corollary 1.4 hold
true under the weaker assumption that L is nef and
log big with respect to (X, A) by Theorem 1.7.

Throughout this paper, we will work over C, the
field of complex numbers. We will use the basic def-
initions and the standard notation of the minimal
model program and semi-log-canonical pairs in [6],
[7], [12], and so on.

2. Preliminaries In this section, we quickly
recall some basic definitions and results for semi-
log-canonical pairs for the reader’s convenience.
Throughout this paper, a variety means a reduced
separated scheme of finite type over C.

2.1 (R-divisors).
equidimensional variety X, that is, D is a finite for-
mal R-linear combination

D= ZdiDi

of irreducible reduced subschemes D; of codimen-
sion one. Note that D; # D; for ¢ # j and that
d; € R for every i. For every real number z, [z]
is the integer defined by = < [z] < z + 1. We put
(D—I = Zv[dﬂD“ D<1 = Zd1<1 diDl, and D:1 =
>q,—1 Di. We call D a boundary (resp. subbound-
ary) R-divisor if 0 < d; < 1 (resp. d; < 1) for every
i.

Let D be an R-divisor on an

Let us recall the definition of semi-log-canonical
pairs.

Definition 2.2 (Semi-log-canonical pairs).
Let X be an equidimensional variety that satisfies
Serre’s Sy condition and is normal crossing in codi-
mension one. Let A be an effective R-divisor such
that no irreducible components of A are contained
in the singular locus of X. The pair (X, A) is called
a semi-log-canonical pair if
(1) Kx + A is R-Cartier, and
(2) (X", 0) is log-canonical, where v : XV — X is

the normalization and Kx» +0 = v*(Kx + A).
A subvariety W of X is called an slc stratum with
respect to (X, A) if there exist a resolution of singu-
larities p : Z — X" and a prime divisor E on Z such
that a(F,X",0)=—1land vop(E)=W orif W is
an irreducible component of X.

For the basic definitions and properties of log-
canonical pairs, see [6]. For the details of semi-log-
canonical pairs, see [7]. We need the notion of nef
and log big divisors on semi-log-canonical pairs for
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Theorem 1.7

Definition 2.3 (Nef and log big divisors on
semi-log-canonical pairs). Let (X, A) be a semi-log-
canonical pair and let f : X — Y be a projective
morphism between quasi-projective varieties. Let L
be a Cartier divisor on X. Then L is nef and log
big over Y with respect to (X,A) if L is f-nef and
Ox(L)|w is big over Y for every slc stratum W of
(X,A). We simply say that L is nef and log big with
respect to (X, A) when Y = SpecC.

Roughly speaking, in [7], we proved the follow-
ing theorem.

Theorem 2.4 (see [7, Theorem 1.2 and Re-
mark 1.5]). Let (X,A) be a quasi-projective semi-
log-canonical pair. Then we can construct a smooth
quasi-projective variety M with dim M = dim X +
1, a simple normal crossing divisor Z on M, a sub-
boundary R-divisor B on M, and a projective surjec-
tive morphism h : Z — X with the following proper-
ties.

(1) B and Z have no common irreducible compo-
nents.
(2) Supp(Z+ B) is a simple normal crossing divisor

on M.

(3) Kz+ Az ~g h*(Kx +A) such that Ay = B|z.
(4) h.Oz([-A5") = Ox.

By the properties (1), (2), (3), and (4), [X, Kx + A
has a quasi-log structure with only qlc singularities.
Furthermore, if the irreducible components of X have
no self-intersection in codimension one, then we can
make h : Z — X birational.

For the details of Theorem 2.4, see [7]. In this
paper, we do not discuss quasi-log schemes. For the
theory of quasi-log schemes, see [5], [10], [12], and so
on.

Remark 2.5. The morphism h : (Z,Az) —
X in Theorem 2.4 is called a quasi-log resolution.
Note that the quasi-log structure of [ X, Kx + A] ob-
tained in Theorem 2.4 is compatible with the original
semi-log-canonical structure of (X, A). For the de-
tails, see [7]. We also note that we have to know how
to construct h : Z — X in [7, Section 4] for the proof
of Theorem 1.3.

We note the notion of simple normal crossing
pairs. It is useful for our purposes in this paper.

Definition 2.6 (Simple normal crossing pairs).
Let Z be a simple normal crossing divisor on a
smooth variety M and let B be an R-divisor on M
such that Supp(B+7) is a simple normal crossing di-
visor and that B and Z have no common irreducible
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components. We put Az = B|z and consider the
pair (Z,Az). We call (Z,Az) a globally embedded
simple normal crossing pair. A pair (Y, Ay ) is called
a simple normal crossing pair if it is Zariski locally
isomorphic to a globally embedded simple normal
crossing pair.

If (X,0) is a simple normal crossing pair, then
X is called a simple normal crossing variety. Let X
be a simple normal crossing variety and let D be a
Cartier divisor on X. If (X, D) is a simple normal
crossing pair and D is reduced, then D is called a
simple normal crossing divisor on X.

Remark 2.7. Let X be a simple normal cross-
ing variety and let D be a simple normal crossing di-
visor on X. Let D’ be a Weil divisor on X such that
0 < D' < D. Then D’ is not necessarily a simple
normal crossing divisor on X. However, if we fur-
ther assume that D’ is the support of some Cartier
divisor, then D’ is a simple normal crossing divisor
on X.

For the details of simple normal crossing pairs,
see [7, Definition 2.8], [8, Definition 2.6], [9, Defini-
tion 2.6, [10, Definition 2.4], [12, 5.2. Simple normal
crossing pairs|, and so on. We note that a simple nor-
mal crossing pair is called semi-snc in [15, Definition
1.10] (see also [1, Definition 1.1]) and that a globally
embedded simple normal crossing pair is called an
embedded semi-snc pair in [15, Definition 1.10].

3. Proof of Theorem 1.3 In this section,
we prove Theorem 1.3 and discuss some related re-
sults.

Let us start with an easy lemma. The following
lemma is more or less well-known to the experts.

Lemma 3.1 ([17, Lemma 3.15]). Let X be a
normal irreducible variety and let A be an effective
R-divisor on X such that (X, A) is log-canonical. Let
p: Z — X be a proper birational morphism from a
smooth variety Z such that E = Exc(p) and Exc(p)U
Suppf: A are simple normal crossing divisors on Z.
Let S be an integral divisor on X such that 0 < .S <
A and let T be the strict transform of S. Then we
have p,Oz(Kz +T + E) ~ Ox(Kx + 95).

We give a proof of Lemma 3.1 here for the
reader’s convenience. The following proof is in [17].

Proof. We choose Ky and Kx satisfying
p« K7z = Kx. Tt is obvious that p,Oz(Kz+T+FE) C
Ox(Kx +8) since FE is p-exceptional and Ox (Kx +
S) satisfies Serre’s Sy condition. Therefore, it is suf-
ficient to prove that Ox(Kx + S) C p.Oz(Kz +
T + E). Note that we may assume that A is an
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effective QQ-divisor by perturbing the coeflicients of
A slightly. Let U be any nonempty Zariski open
set of X. We will see that I'U,Ox(Kx + 5)) C
U, psOz(Kz+ T + E)). We take a nonzero ratio-
nal function g of U such that ((¢) + Kx +S) |y >
0, that is, g € T(U,Ox (Kx + S)), where (g) is the
principal divisor associated to g. We assume that
U = X by shrinking X for simplicity. Let a be a
positive integer such that a(Kx + A) is Cartier. We
have p*(a(Kx + A)) = aKz + aA’ + =, where A’
is the strict transform of A and = is a p-exceptional
integral divisor on Z. By assumption, we have 0 <
(9)+ Kx+ S < (g9)+ Kx +A. Then we obtain that
0< (p*g") + p*(aKx + al)
<a((p*9)+ Kz +A" +E)
since 2 < aF. Thus we obtain (p*g) + Kz + A’ +
E >0.
Claim. (p*g)+Kz;+T+E >0.
Proof of Claim. By construction,

(0'9) + Kz +T+E=p." ((9) + Kx +8)+ F + E,

where every irreducible component of F + E is p-
exceptional. We also have

(p*9)+Kz+T+E = (p*9)+Kz+ A +E— (A -T),

where A’ — T is effective and no irreducible com-
ponents of A’ — T are p-exceptional. Note that
pit ((9) +Kx +8S)>0and (p*g) + Kz + A"+ E >
0. Therefore, we have (p*g) + Kz +T+ E >0. [

This means that T'(U,Ox(Kx + S)) C
U, p«Oz(Kz + T + E)) for any nonempty Zariski

open set U. Thus, we have Ox(Kx + S) =
pOz(Kz + T+ E). ]
We need the following remark for the proof of

Theorem 1.7 in Section 4.

Remark 3.2. In Lemma 3.1, we put £/ =
> E; where E;’s are the p-exceptional divisors with
a(E;, X,A) = —1. Then we see that p,Oz(Kz+T+
E') ~ Ox(Kx + S) by the proof of Lemma 3.1.

Although Theorem 1.2 is a special case of The-
orem 1.1 and Theorem 1.3, we give a simple proof
of Theorem 1.2 for the reader’s convenience. For
this purpose, let us recall an easy generalization of
Kollar’s vanishing theorem.

Theorem 3.3 ([2, Theorem 2.6]). Let f
V. — W be a morphism from a smooth projective
variety V' onto a projective variety W. Let D be a
simple normal crossing divisor on V. Let H be an
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ample Cartier divisor on W. Then H'(W, Ow (H) ®
ij*OV(KV +D))=0 fori>0andj>0.

For the proof, see [2, Theorem 2.6] (see also [4],
[6, Sections 5 and 6], and so on). If D = 0 in The-
orem 3.3, then Theorem 3.3 is nothing but Kollar’s
vanishing theorem. For more general results, see [4],
[6], and so on (see also Theorem 3.7 below, [8], [12,
Chapter 5], and so on, for vanishing theorems for
reducible varieties).

Let us start the proof of Theorem 1.2 (see [5,
Corollary 2.9] when A = 0).

Proof of Theorem 1.2. We take a projective bi-
rational morphism p : Z — X from a smooth pro-
jective variety Z such that E = Exc(p) and Exc(p)U
Suppp; 'A are simple normal crossing divisors on
Z. By Theorem 3.3, we obtain that H*(X,Ox (L) ®
p+0z(Kz + E)) = 0 for every ¢ > 0. By Lemma
3.1, p.Oz(Kz + E) ~ Ox(Kx). Therefore, we have
HY(X,0x(Kx + L)) =0 for every i > 0. O]

The following key proposition for the proof of
Theorem 1.3 is a generalization of Lemma 3.1.

Proposition 3.4. Let (X,A) be
projective semi-log-canonical pair such that the ir-
reducible components of X have no self-intersection
in codimension one. Then there exist a birational
quasi-log resolution h : (Z,Az) — X from a globally
embedded simple normal crossing pair (Z,Az) and
a simple normal crossing divisor E on Z such that
h*OZ(KZ + E) >~ OX(K)()

Proof. Since X is quasi-projective and the irre-
ducible components of X have no self-intersection in
codimension one, we can construct a birational quasi-
log resolution h : (Z,Az) — X by [7, Theorem 1.2
and Remark 1.5] (see Theorem 2.4), where (Z,Ay)
is a globally embedded simple normal crossing pair
and the ambient space M of (Z,Az) is a smooth
quasi-projective variety. By the construction of A :
Z — X in [7, Section 4], SingZ, the singular locus of
Z, maps birationally onto the closure of SingX®"°2,
where X2 is the open subset of X which has only
smooth points and simple normal crossing points of
multiplicity < 2. We put F = Exc(h). Note that
E contains no irreducible components of SingZ by
construction. If necessary, by taking a blow-up of Z
along E and a suitable birational modification (see
[1, Theorem 1.4]), we may assume that F is the sup-
port of some Cartier divisor, which is pure codimen-
sion one in Z. By taking a suitable birational modi-
fication again (see [1, Theorem 1.4]), we finally may

a quasi-
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assume that FUSupph,'A and E are simple normal
crossing divisors on Z (see Remark 2.7). In particu-
lar, (Z, E) is a simple normal crossing pair (see Defi-
nition 2.6). Note that [10, Section 8] may help us un-
derstand how to make (Z, Az) a globally embedded
simple normal crossing pair. We may assume that
the support of Kz does not contain any irreducible
components of SingZ since Z is quasi-projective. We
may also assume that h,Kz = Kx. Then we have
hOz(Kz + E) C Ox(Kx) since Ox (Kx) satisfies
Serre’s Sy condition and FE is h-exceptional. We fix
an embedding Oz (Kz + E) C Kz, where Ky is the
sheaf of total quotient rings of Oz. Note that h :
Z\E — X \ h(E) is an isomorphism. We put
U = X \ h(E) and consider the natural open im-
mersion ¢ : U — X. Then we have an embedding
Ox(Kx) C Kx, where Kx is the sheaf of total quo-
tient rings of Ox, by Ox(Kx) = L*(h*OZ(KZ +
B)lv) € wKy = Kx(= hKz). Let vx : XV —
X be the normalization and let Cx+ be the divisor
on X" defined by the conductor ideal condy of X
(see, for example, [7, Definition 2.1]). Then we have
Ox(KX) C (Vx)*OXu(KXu —I—CXu). ‘We put Kxv +
O =vy(Kx+A). Then0 < Cxv» < O and (X”,0) is
log-canonical by definition. Let vz : Z¥ — Z be the
normalization. Thus we have Kz» 4+ Czv = vy Kz,
where Czv is the simple normal crossing divisor on
Z" defined by the conductor ideal condy of Z. Now
we have the following commutative diagram.

xv <" g

AT

Xﬁz

By Lemma 3.1 and its proof, we see that Ox+ (Kx»+

Cxv) = hlOzv(Kzv + Czv + vy E). Therefore, we

obtain

(®) Ox(Kx)C piOzv(Kzv +Cyv +V4E)
=0z (vz(Kz + E)).

We pick s € T'(V,0x(Kx)), where V is a Zariski

open set of X. We can see h*s as an element of
I'(h=Y(V),Kz). It is obvious that

h*slh-1(vn\E € I'(hY(V)\ E,0z(Kz + E)).
Note that h : Z\ E — X \ h(E) is an isomor-
phism. We also note that vz is an isomorphism over

the generic point of any irreducible component of E.
Therefore, by the inclusion (#), we see that h*s is
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contained in I'(h=Y(V),0z(Kz + E)). This implies
that Ox(Kx) C h.Oz(Kz + E). Thus, we obtain
OX(K)() = h*OZ(KZ + E) since h*OZ(KZ + E) -
Ox(Kx). []

Remark 3.5. For the details of Kz and Kx,
we recommend the reader to see the paper-back edi-
tion of [18, Section 7.1] published in 2006 (see also
[14]). Note that the sheaf of total quotient rings is
called the sheaf of stalks of meromorphic functions
in [18].

Remark 3.6. As in Remark 3.2, in Proposi-
tion 3.4, we put E' = 3 F,; where E;’s are the h-
exceptional divisors with the discrepancy coefficient
a(Ei,X,A)(: a(Ei,X",G))) = —1. By the usual
perturbation technique, we may assume that Kx +
A is Q-Cartier. Then Ay is also Q-Cartier. Thus, we
see that AZ! is a simple normal crossing divisor on Z.
If necessary, by taking some blow-ups of Z, we may
assume that h7!A=" is disjoint from SingZ. In this
case, B/ = AZ'—h ' A= is a simple normal crossing
divisor on Z. Moreover, we have h,Oz(Kz + E') ~
Ox(Kx) in Proposition 3.4. This easily follows from
Remark 3.2 and the proof of Proposition 3.4.

For the proof of Theorem 1.3, we use the fol-
lowing vanishing theorem, which is obviously a gen-
eralization of Theorem 3.3. For the proof, see [8,
Theorem 1.1] (see also [12, Chapter 5]).

Theorem 3.7 ([3], [8, Theorem 1.1], [12], and
soon). Let (Z,C) be a simple normal crossing pair
such that C is a boundary R-divisor on Z. Let h :
7 — X be a proper morphism to a variety X and
let f: X —Y be a projective morphism to a variety
Y. Let D be a Cartier divisor on Z such that D —
(Kz + C) ~g h*H for some f-ample R-divisor H
on X. Then we have R f,R'h,Oz(D) =0 for every
i>0 and j > 0.

Let us start the proof of Theorem 1.3.

Proof of Theorem 1.3. We take a natural finite
double cover p : X — X due to Kollar (see [7,
Lemma 5.1]), which is étale in codimension one.
Since K¢ + A = p*(Kx + A) is semi-log-canonical
and Ox(Kx) is a direct summand of p,Oz(Kz),
we may assume that the irreducible components of
X have no self-intersection in codimension one by
replacing (X, A) with ()?73) By Proposition 3.4,
we can take a birational quasi-log resolution h :
(Z,Az) — X from a globally embedded simple nor-
mal crossing pair (Z,Az) such that there exists a
simple normal crossing divisor F on Z satisfying
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h*OZ(KZ + E) ~ Ox(Kx) Note that KZ + FE +
h*L — (Kz + E) = h*L. Therefore, we obtain that

R f,.Ox(Kx + L)
~R'f, (h.Oz(Kz +E)® Ox(L)) =0

for every ¢ > 0 by Theorem 3.7. L]

Remark 3.8. If A = 0 in Theorem 1.3, then
Theorem 1.3 follows from [7, Theorem 1.7]. Note
that the formulation of [7, Theorem 1.7] seems to be
more useful for some applications than the formula-
tion of Theorem 1.3.

Let (X,A) be a semi-log-canonical Fano vari-
ety, that is, (X, A) is a projective semi-log-canonical
pair such that —(Kx + A) is ample (see [10, Section
6]). Then H'(X,Ox) = 0 for every i > 0 by [7,
Theorem 1.7]. Unfortunately, this vanishing result
for semi-log-canonical Fano varieties does not follow
from Theorem 1.1. See also Remark 3.10 below.

Let us prove Theorem 1.1 and Theorem 1.2.

Proof of Theorem 1.1. Theorem 1.1 is a special
case of Theorem 1.3. By putting Y = SpecC in The-

orem 1.3, we obtain Theorem 1.1. L]
Proof of Theorem 1.2. If  (X,A) is log-
canonical, then (X,A) 1is semi-log-canonical.

Therefore, Theorem 1.2 is contained in Theorem
1.1. L]

As a direct easy application of Theorem 1.1, we
have:

Corollary 3.9. Let X be a stable variety, that
is, X 1is a projective semi-log-canonical variety such
that Kx is ample. Then H(X,Ox((1+ma)Kx)) =
0 for every i > 0 and every positive integer m, where
a is a positive integer such that aKx is Cartier.

Remark 3.10. Let X be a stable variety as in
Corollary 3.9. By [7, Corollary 1.9], we have already
known that H'(X,Ox(mKx)) = 0 for every i > 0
and every positive integer m > 2. This is an easy
consequence of [7, Theorem 1.7].

Finally, we prove Corollary 1.4.

Proof of Corollary 1.4. Since X is Cohen—
Macaulay, we see that the vector space
H{(X,0x(—L)) is dual to H¥™ XX Ox(Kx +
L)) by Serre duality. Therefore, we have
HY(X,0x(=L)) = 0 for every i < dimX by
Theorem 1.1. L]

Remark 3.11. The approach to the Kodaira
vanishing theorem explained in [17, Section 6] can
not be directly applied to non-Cohen—Macaulay va-
rieties. The above proof of Corollary 1.4 is different
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from the strategy in [17, Section 6].

4. Proof of Theorem 1.7 In this final sec-
tion, we just explain how to modify the proof of The-
orem 1.3 in order to obtain Theorem 1.7. We do not
explain a generalization of Theorem 3.7 for nef and
log big divisors (see [12, Theorem 5.7.3]), which is a
main ingredient of the proof of Theorem 1.7 below.

Let us start the proof of Theorem 1.7.

Proof of Theorem 1.7. Let p : X - X bea
natural finite double cover as in the proof of The-
orem 1.3. Note that p*L is nef and log big over Y
with respect to (X, A). Therefore, we may assume
that the irreducible components of X have no self-
intersection in codimension one by replacing (X, A)
with ()Z' , K) We take a birational quasi-log resolu-
tion h : (Z,Az) — X as in Proposition 3.4. Let E’
be the divisor defined in Remark 3.5. In this case, L
is nef and log big over Y with respect to h : (Z, E') —
X (see [12, Definition 5.7.1]). Then we obtain that

R f.Ox(Kx + L)
~R'f, (h.Oz(Kz+ E')®Ox(L)) =0

for every ¢ > 0 by [12, Theorem 5.7.3] (see also [3,
Theorem 2.47 (ii)] and [13, Theorem 6.3 (ii)]). Note
that Kz +E'+h*L — (Kz+ E') = h*L and that the
h-image of any stratum of (Z, E’) is an slc stratum
of (X, A) by construction (see Definition 2.2). [

Remark 4.1. For the details of the vanish-
ing theorem for nef and log big divisors and some
related topics, see [12, 5.7. Vanishing theorems of
Reid-Fukuda type]. Note that [12] is a completely
revised and expanded version of the author’s unpub-
lished manuscript [3].

Remark 4.2. We strongly recommend the
reader to see Theorem 1.10, Theorem 1.11, and The-
orem 1.12 in [7]. They are useful and powerful van-
ishing theorems for semi-log-canonical pairs related
to Theorem 1.7.
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