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Abstract. We give a method to investigate isolated log canoni-
cal singularities with index one which are not log terminal. Our
method depends on the minimal model program. One of the main
purposes is to show that our invariant coincides with Ishii’s Hodge
theoretic invariant.
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1. Introduction

Let P ∈ X be an n-dimensional isolated log canonical singularity
with index one which is not log terminal. Let f : Y → X be a pro-
jective resolution such that f is an isomorphism outside P and that
Suppf−1(P ) is a simple normal crossing divisor on Y . Then we can
write

KY = f∗KX + F − E
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where E and F are effective Cartier divisors and have no common
irreducible components. The divisor E is sometimes called the essential
divisor for f (see [I2, Definition 7.4.3] and [I4, Definition 2.5]).

In [I1, Propositions 1.4 and 3.7], Shihoko Ishii proves

Rn−1f∗OY ' Hn−1(E,OE) ' C.

For details, see [I2, Propositions 5.3.11, 5.3.12, 7.1.13, 7.4.4, and The-
orem 7.1.17]. In this paper, we prove that

Rif∗OY ' H i(E,OE)

for every i > 0 (cf. Proposition 4.7) and that

Rn−1f∗OY ' C(P )

(cf. Remark 4.8). Our proof depends on the minimal model theory and
is different from Ishii’s.

By Shihoko Ishii, the singularity P ∈ X is said to be of type (0, i) if

GrW
k Hn−1(E,OE) =

{
C if k = i

0 otherwise

where W is the weight filtration of the mixed Hodge structure on
Hn−1(E, C). Note that E is a projective connected simple normal
crossing variety. Therefore, we have

GrW
k Hn−1(E,OE)

' GrW
k Gr0

F Hn−1(E, C)

' Gr0
F GrW

k Hn−1(E, C)

where F is the Hodge filtration. We also note that the type of P ∈ X is
independent of the choice of a resolution f : Y → X by [I1, Proposition
4.2] (see also [I2, Proposition 7.4.6]).

On the other hand, we define µ(P ∈ X) by

µ = µ(P ∈ X) = min{dim W |W is a stratum of E}
(see [F2, Definition 4.12]). We prove that P ∈ X is of type (0, µ),
that is, Ishii’s Hodge theoretic invariant coincides with our invariant µ
(cf. Theorem 5.5). It was first obtained by Shihoko Ishii in [I3].

By our method based on the minimal model program, we can prove
the following properties of E. Let E =

∑
i Ei be the irreducible decom-

position. Then
∑

i6=i0
Ei|Ei0

has at most two connected components for

every irreducible component Ei0 of E (cf. Remark 4.10). Let W1 and
W2 be any two minimal strata of E. Then W1 is birationally equivalent
to W2 (cf. 4.11 and Remark 4.10). These results seem to be out of reach
by the Hodge theoretic method.
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Let Γ be the dual complex of E and let |Γ| be the topological real-
ization of Γ. Then the dimension of |Γ| is n − 1 − µ by the definition
of µ.

From now on, we assume that µ(P ∈ X) = 0. In this case, we can
prove that

H i(E,OE) ' H i(|Γ|, C)

for every i. Therefore, P ∈ X is Cohen–Macaulay, equivalently, Goren-
stein, if and only if

H i(|Γ|, C) =

{
C if i = 0, n − 1,

0 otherwise.

It is Theorem 4.12.
Anyway, by this paper, our approach based on the minimal model

program (cf. [F2]) becomes compatible with Ishii’s Hodge theoretic
method in [I1], [I2], and [I4]. Our approach is more geometric than
Ishii’s. From our point of view, the main result of [IW] becomes almost
obvious. We note that we do not use the notion of Du Bois singularities,
which is one of the main ingredients of Ishii’s Hodge theoretic approach.

We summarize the contents of this paper. Section 2 is a preliminary
section. In Section 2.1, we give a criterion of Cohen–Macaulayness.
In Section 2.2, we investigate basic properties of dlt pairs. In Section
2.3, we explain the notion of dlt blow-ups, which is very useful in the
subsequent sections. Section 3 is devoted to the study of dlt pairs with
torsion log canonical divisor. In Section 4, we investigate isolated lc
singularities with index one which are not log terminal. In Section
5, we prove that our invariant µ coincides with Ishii’s Hodge theoretic
invariant. The main result (cf. Theorem 5.2) in Section 5 can be applied
to special fibers of semi-stable minimal models for varieties with trivial
canonical divisor (cf. [F6]).

Notation. Let X be a normal variety and let B be an effective Q-
divisor such that KX +B is Q-Cartier. Then we can define the discrep-
ancy a(E,X, B) ∈ Q for every prime divisor E over X. If a(E, X, B) ≥
−1 (resp. > −1) for every E, then (X,B) is called log canonical
(resp. kawamata log terminal). We sometimes abbreviate log canon-
ical (resp. kawamata log terminal) to lc (resp. klt). When (X, 0) is klt,
we simply say that X is log terminal (lt, for short).

Assume that (X,B) is log canonical. If E is a prime divisor over X
such that a(E,X,B) = −1, then cX(E) is called a log canonical center
(lc center, for short) of (X,B), where cX(E) is the closure of the image
of E on X.
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Let T be a simple normal crossing variety (cf. Definition 2.6) and let
T =

∑
i∈I Ti be the irreducible decomposition. Then a stratum of T is

an irreducible component of Ti1 ∩ · · · ∩ Tik for some {i1, · · · , ik} ⊂ I.
Let r be a rational number. The integral part xry is the largest

integer ≤ r and the fractional part {r} is defined by r − xry. We put
prq = −x−ry and call it the round-up of r. Let D =

∑r
i=1 diDi be

a Q-divisor where Di is a prime divisor for every i and Di 6= Dj for
i 6= j. We put xDy =

∑
xdiyDi, pDq =

∑
pdiqDi, {D} =

∑
{di}Di,

and D=1 =
∑

di=1 Di.
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In this paper, we will work over C, the complex number field. We
will freely make use of the standard notation and definition in [KM].

2. Preliminaries

In this section, we prove some preliminary results.

2.1. A criterion of Cohen–Macaulayness. The main purpose of
this subsection is to prove Corollary 2.3, which seems to be well known
to experts. Here, we give a global proof based on the Kawamata–
Viehweg vanishing theorem for the reader’s convenience. See also the
arguments in [F5, 4.3.1].

Lemma 2.1. Let X be a normal variety with an isolated singularity
P ∈ X. Let f : Y → X be any resolution. If X is Cohen–Macaulay,
then Rif∗OY = 0 for 0 < i < n − 1, where n = dim X.

Proof. Without loss of generality, we may assume that X is projective.
We consider the following spectral sequence

Ep,q
2 = Hp(X, Rqf∗OY ⊗ L−1) ⇒ Hp+q(Y, f ∗L−1)

for a sufficiently ample line bundle L on X. By the Kawamata–Viehweg
vanishing theorem, Hp+q(Y, f ∗L−1) = 0 for p + q < n. On the other
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hand, Ep,0
2 = Hp(X, L−1) = 0 for p < n since X is Cohen–Macaulay.

By using the exact sequence

0 → E1,0
2 → E1 → E0,1

2 → E2,0
2 → E2 → · · · ,

we obtain E0,1
2 ' E2,0

2 = 0 when n ≥ 3. This implies R1f∗OY = 0.
We note that SuppRif∗OY ⊂ {P} for every i > 0. Inductively, we
obtain Rif∗OY ' H0(X,Rif∗OY ⊗ L−1) = E0,i

2 ' E0,i
∞ = 0 for 0 < i <

n − 1. �

Lemma 2.2. Let X be a normal projective n-fold and let f : Y → X
be a resolution. Assume that Rif∗OY = 0 for 0 < i < n − 1. Then X
is Cohen–Macaulay.

Proof. It is sufficient to prove H i(X, L−1) = 0 for any ample line bundle
L on X for all i < n (see [KM, Corollary 5.72]). We consider the
spectral sequence

Ep,q
2 = Hp(X, Rqf∗OY ⊗ L−1) ⇒ Hp+q(Y, f ∗L−1).

As before, Hp+q(Y, f ∗L−1) = 0 for p+q < n by the Kawamata–Viehweg
vanishing theorem. By the exact sequence

0 → E1,0
2 → E1 → E0,1

2 → E2,0
2 → E2 → · · · ,

we obtain H1(X, L−1) = 0 and H2(X,L−1) = 0 if n ≥ 3. Inductively,
we can check that H i(X, L−1) = Ei,0

2 ' Ei,0
∞ = 0 for i < n. We finish

the proof. �

Combining the above two lemmas, we obtain the next corollary.

Corollary 2.3. Let P ∈ X be a normal isolated singularity and let
f : Y → X be a resolution. Then X is Cohen–Macaulay if and only if
Rif∗OY = 0 for 0 < i < n − 1, where n = dim X.

Proof. We shrink X and assume that X is affine. Then we compactify
X and may assume that X is projective. Therefore, we can apply
Lemmas 2.1 and 2.2. �

2.2. Basic properties of dlt pairs. In this subsection, we prove sup-
plementary results on dlt pairs. For the definition of dlt pairs, see [KM,
Definition 2.37, Theorem 2.44]. See also [F4] for details of singularities
of pairs.

The following proposition generalizes [FA, 17.5 Corollary], where it
was only proved that S is semi-normal and S2. In the subsequent
sections, we will use the arguments in the proof of Proposition 2.4.
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Proposition 2.4 (cf. [F5, Theorem 4.4]). Let (X, ∆) be a dlt pair and
let x∆y =: S = S1 + · · · + Sk be the irreducible decomposition. We put
T = S1 + · · · + Sl for 1 ≤ l ≤ k. Then T is semi-normal, Cohen–
Macaulay, and has only Du Bois singularities.

Proof. We put B = {∆}. Let f : Y → X be a resolution such that
KY + S ′ + B′ = f∗(KX + S + B) + E with the following properties: (i)
S ′ (resp. B′) is the strict transform of S (resp. B), (ii) Supp(S ′ +B′)∪
Exc(f) and Exc(f) are simple normal crossing divisors on Y , (iii) f is
an isomorphism over the generic point of every lc center of (X, S +B),
and (iv) pEq ≥ 0. We write S = T + U . Let T ′ (resp. U ′) be the strict
transform of T (resp. U) on Y . We consider the following short exact
sequence

0 → OY (−T ′ + pEq) → OY (pEq) → OT ′(pE|T ′q) → 0.

Since −T ′ + E ∼Q,f KY + U ′ + B′ and E ∼Q,f KY + S ′ + B′, we have
−T ′+pEq ∼Q,f KY +U ′+B′+{−E} and pEq ∼Q,f KY +S ′+B′+{−E}.
By the vanishing theorem of Reid–Fukuda type (see, for example, [F5,
Lemma 4.10]),

Rif∗OY (−T ′ + pEq) = Rif∗OY (pEq) = 0

for every i > 0. Note that we used the assumption that f is an isomor-
phism over the generic point of every lc center of (X,S+B). Therefore,
we have

0 → f∗OY (−T ′ + pEq) → OX → f∗OT ′(pE|T ′q) → 0

and Rif∗OT ′(pE|T ′q) = 0 for all i > 0. Note that pEq is effective
and f -exceptional. Thus, OT ' f∗OT ′ ' f∗OT ′(pE ′|T ′q). Since T ′ is a
simple normal crossing divisor, T is semi-normal. By the above van-
ishing result, we obtain Rf∗OT ′(pE|T ′q) ' OT in the derived category.
Therefore, the composition OT → Rf∗OT ′ → Rf∗OT ′(pE|T ′q) ' OT is
a quasi-isomorphism. Apply RHomT ( , ω•

T ) to the quasi-isomorphism
OT → Rf∗OT ′ → OT . Then the composition ω•

T → Rf∗ω
•
T ′ → ω•

T is
a quasi-isomorphism by the Grothendieck duality. By the vanishing
theorem (see, for example, [F5, Lemma 2.33]), Rif∗ωT ′ = 0 for i > 0.
Hence, hi(ω•

T ) ⊆ Rif∗ω
•
T ′ ' Ri+df∗ωT ′ , where d = dim T = dim T ′.

Therefore, hi(ω•
T ) = 0 for i > −d. Thus, T is Cohen–Macaulay. This

argument is the same as the proof of Theorem 1 in [K2]. Since T ′ is a
simple normal crossing divisor, T ′ has only Du Bois singularities. The
quasi-isomorphism OT → Rf∗OT ′ → OT implies that T has only Du
Bois singularities (cf. [K1, Corollary 2.4]). Since T ′ is a simple normal
crossing divisor on Y and ωT ′ is an invertible sheaf on T ′, every asso-
ciated prime of ωT ′ is the generic point of some irreducible component
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of T ′. By f , every irreducible component of T ′ is mapped birationally
onto an irreducible component of T . Therefore, f∗ωT ′ is torsion-free
on T . Since the composition ωT → f∗ωT ′ → ωT is an isomorphism,
we obtain f∗ωT ′ ' ωT . It is because f∗ωT ′ is torsion-free and f∗ωT ′ is
generically isomorphic to ωT . By the Grothendieck duality,

Rf∗OT ′ ' RHomT (Rf∗ω
•
T ′ , ω•

T ) ' RHomT (ω•
T , ω•

T ) ' OT .

So, Rif∗OT ′ = 0 for all i > 0. �
We obtain the following vanishing theorem in the proof of Proposi-

tion 2.4.

Corollary 2.5. Under the notation in the proof of Proposition 2.4,
Rif∗OT ′ = 0 for every i > 0 and f∗OT ′ ' OT .

We close this subsection with a useful lemma for simple normal cross-
ing varieties.

Definition 2.6 (Normal crossing and simple normal crossing varieties).
A variety X has normal crossing singularities if, for every closed point
x ∈ X,

ÔX,x ' C[[x0, · · · , xN ]]

(x0 · · ·xk)
for some 0 ≤ k ≤ N , where N = dim X. Furthermore, if each irre-
ducible component of X is smooth, X is called a simple normal crossing
variety.

Lemma 2.7. Let f : V1 → V2 be a birational morphism between pro-
jective simple normal crossing varieties. Assume that there is a Zariski
open subset U1 (resp. U2) of V1 (resp. V2) such that U1 (resp. U2) con-
tains the generic point of any stratum of V1 (resp. V2) and that f in-
duces an isomorphism between U1 and U2. Then Rif∗OV1 = 0 for every
i > 0 and f∗OV1 ' OV2.

Proof. We can write
KV1 = f ∗KV2 + E

such that E is f -exceptional. We consider the following commutative
diagram

V ν
1

fν

−−−→ V ν
2

ν1

y yν2

V1 −−−→
f

V2

where ν1 : V ν
1 → V1 and ν2 : V ν

2 → V2 are the normalizations. We can
write KV ν

1
+Θ1 = ν∗

1KV1 and KV ν
2

+Θ2 = ν∗
2KV2 , where Θ1 and Θ2 are
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the conductor divisors. By pulling back KV1 = f ∗KV2 + E to V ν
1 by ν1,

we have

KV ν
1

+ Θ1 = (f ν)∗(KV ν
2

+ Θ2) + ν∗
1E.

Note that V ν
2 is smooth and Θ2 is a reduced simple normal crossing

divisor on V ν
2 . By the assumption, f ν is an isomorphism over the

generic point of any lc center of the pair (V ν
2 , Θ2). Therefore, ν∗

1E is
effective since KV ν

2
+ Θ2 is Cartier. Thus, we obtain that E is effec-

tive. We can easily check that f has connected fibers by the assump-
tions. Since V2 is semi-normal and satisfies Serre’s S2 condition, we
have OV2 ' f∗OV1 and f∗OV1(KV1) ' OV2(KV2). On the other hand,
we obtain Rif∗OV1(KV1) = 0 for every i > 0 by [F5, Lemma 2.33].
Therefore, Rf∗OV1(KV1) ' OV2(KV2) in the derived category. Since V1

and V2 are Gorenstein, we have Rf∗OV1 ' OV2 in the derived category
by the Grothendieck duality (cf. the proof of Proposition 2.4). �

2.3. Dlt blow-ups. Let us recall the notion of dlt blow-ups. Theorem
2.8 was first obtained by Christopher Hacon (cf. [F7, Section 10]). For
a simplified proof, see [F6, Section 4].

Theorem 2.8 (Dlt blow-up). Let (X, ∆) be a quasi-projective lc pair.
Then we can construct a projective birational morphism f : Y → X
such that KY + ∆Y = f∗(KX + ∆) with the following properties.

(a) (Y, ∆Y ) is a Q-factorial dlt pair.
(b) a(E, X, ∆) = −1 for every f -exceptional divisor E.

When (X, ∆) is dlt, we can make f small and an isomorphism over
the generic point of every lc center of (X, ∆).

Note that Theorem 2.8 was proved by the minimal model program
with scaling (cf. [BCHM]).

As a corollary of Theorem 2.8, we obtain the following useful lemma.

Lemma 2.9. Let P ∈ X be an isolated lc singularity with index one,
where X is quasi-projective. Then there exists a projective birational
morphism g : Z → X such that KZ + D = g∗KX , (Z,D) is a Q-
factorial dlt pair, g is an isomorphism outside P , and D is a reduced
divisor on Z.

Remark 2.10. If P ∈ X is Q-factorial, then f−1(P ) is a divisor. So,
we have SuppD = f−1(P ). In general, we have only SuppD ⊂ f−1(P ).

For non-degenerate isolated hypersurface log canonical singularities,
we can use the toric geometry to construct dlt blow-ups as in Lemma
2.9 (see [FS, Section 6]).
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3. Dlt pairs with torsion log canonical divisor

This section is a supplement to [F1, Section 2] and [F2, Section 2].
We introduce a new invariant for dlt pairs with torsion log canonical
divisor.

Definition 3.1. Let (X, D) be a projective dlt pair such that KX +
D ∼Q 0. We put

µ̃ = µ̃(X, D) = min{ dim W |W is an lc center of (X, D)}.

It is related to the invariant µ, which is defined in [F2] and will play
important roles in the subsequent sections. See 4.11 below.

Remark 3.2. By [CKP, Theorem 1] or [G, Theorem 1.2], KX +D ≡ 0
if and only if KX + D ∼Q 0.

As we pointed out in [FG], [F1, Section 2] works in any dimension by
using the minimal model program with scaling (cf. [BCHM]). There-
fore, we obtain the following proposition (cf. [F2, Proposition 2.4]).

Proposition 3.3. Let (X,D) be a projective dlt pair such that KX +
D ∼Q 0. Let W be any minimal lc center of (X, D). Then dim W =
µ̃(X,D). Moreover, all the minimal lc centers of (X, D) are birational
each other and xDy has at most two connected components.

Sketch of the proof. By Theorem 2.8, we may assume that X is Q-
factorial. The induction on dimension and [F1, Proposition 2.1] implies
the desired properties. More precisely, all the minimal lc centers are
B-birational each other (cf. [F1, Definition 1.5]). Note that Proof of
Claims in the proof of [F1, Lemma 4.9] may help us understand this
proposition. �

The next lemma is new. We will use it in Section 4.

Lemma 3.4. Let (X,D) be an n-dimensional projective dlt pair such
that KX + D ∼Q 0. Assume that xDy 6= 0. Then there exists an
irreducible component D0 of xDy such that hi(X,OX) ≤ hi(D0,OD0)
for every i.

Proof. By using the dlt blow-up (cf. Theorem 2.8), we can construct
a small projective Q-factorialization of X. So, by replacing X with
its Q-factorialization, we may assume that X is Q-factorial. By the
assumption, KX +D− εxDy is not pseudo-effective for 0 < ε � 1. Let
H be an effective ample Q-divisor on X such that KX +D−εxDy+H
is nef and klt. Apply the minimal model program on KX + D − εxDy
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with scaling of H. Then we obtain a sequence of divisorial contractions
and flips:

X = X0 99K X1 99K · · · 99K Xk,

and an extremal Fano contraction ϕ : Xk → Z (cf. [F6, Section 2]). By
the construction, there is an irreducible component D0 of xDy such that
the strict transform D′

0 of D0 on Xk dominates Z. Since X and Xk have
only rational singularities, we have hi(X,OX) = hi(Xk,OXk

) for every
i. Since Riϕ∗OXk

= 0 for every i > 0, we have hi(Xk,OXk
) = hi(Z,OZ)

for every i. Since D0 and Z have only rational singularities (cf. [F3,
Corollary 1.5]), hi(Z,OZ) ≤ hi(D0,OD0) for every i (see, for exam-
ple, [PS, Theorem 2.29]). Therefore, we have the desired inequality
hi(X,OX) ≤ hi(D0,OD0) for every i. �

Example 3.5. Let X = P2 and let D be an elliptic curve on X = P2.
Then (X, D) is a projective dlt pair such that KX + D ∼ 0. In this
case, h1(X,OX) = 0 < h1(D,OD) = 1.

By combining the above results, we obtain the next proposition.

Proposition 3.6. Let (X,D) be a projective dlt pair such that KX +
D ∼Q 0. We assume that µ̃(X, D) = 0. Then hi(X,OX) = 0 for every
i > 0. Moreover, X is rationally connected.

Proof. If dim X = 1, then the statement is trivial since X ' P1. From
now on, we assume that dim X ≥ 2. Since µ̃(X, D) = 0, we obtain that
(X, D) is not klt. Thus we know xDy 6= 0. Let D0 be any irreducible
component of xDy. By adjunction, we obtain (KX +D)|D0 = KD0 +B
such that (D0, B) is dlt, KD0 + B ∼Q 0, and µ̃(D0, B) = 0 by Proposi-
tion 3.3. By the induction on dimension, we know that every irreducible
component D0 of xDy is rationally connected and hi(D0,OD0) = 0 for
every i > 0. Thus, by Lemma 3.4, we have that hi(X,OX) = 0 for every
i > 0. In the proof of Lemma 3.4, Z has only log terminal singularities
by [F3, Corollary 4.5]. Since D0 is rationally connected, so is Z by [HM,
Corollary 1.5]. On the other hand, the general fiber of ϕ : Xk → Z is
rationally connected (cf. [Z, Theorem 1] and [HM, Corollaries 1.3 and
1.5]). By [GHS, Corollary 1.3], Xk is rationally connected. Thus, X is
rationally connected by [HM, Corollary 1.5]. �

By Proposition 3.6, we obtain a corollary: Corollary 3.7.

Corollary 3.7. Let (X,D) be a projective dlt pair such that KX+D ∼Q
0. Let f : Y → X be any resolution such that KY +DY = f ∗(KX +D)
and that SuppDY is a simple normal crossing divisor on Y . Assume
that µ̃(X, D) = 0. Then every stratum of D=1

Y is rationally connected.
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Moreover, hi(W,OW ) = 0 for every i > 0 where W is a stratum of
D=1

Y .

Proof. Let W be a stratum of D=1
Y . Let π : Y ′ → Y be a blow-up

at W and let EW be the exceptional divisor of π. Then it is suffi-
cient to prove that EW is rationally connected and hi(EW ,OEW

) = 0
for every i > 0. Therefore, by replacing Y with Y ′, we may assume
that W is an irreducible component of D=1

Y . We can construct a dlt
blow-up f ′ : Y ′ → X such that KY ′ + DY ′ = f ′∗(KX + D) and that
f ′−1 ◦ f : Y 99K Y ′ is an isomorphism at the generic point of W
(cf. [F6, Section 6]). Since KY ′ + DY ′ ∼Q 0 and we can easily check
that µ̃(Y ′, DY ′) = 0 (cf. [F1, Claim (An)]), we see that W ′, the strict
transform of W , is rationally connected and hi(W ′,OW ′) = 0 for every
i > 0 by Proposition 3.6. Thus, W is rationally connected (cf. [HM,
Corollary 1.5]) and hi(W,OW ) = 0 for every i > 0. �

4. Isolated log canonical singularities with index one

In this section, we consider when an isolated log canonical singularity
with index one is Cohen–Macaulay or not.

4.1. Let P ∈ X be an n-dimensional isolated lc singularity with index
one. By the algebraization theorem (cf. [HR], [A1, Corollary 1.6], and
[A2, Theorem 3.8]), we always assume that X is an algebraic variety
in this paper (see also [I2, Theorems 3.2.3 and 3.2.4]). Assume that
P ∈ X is not lt. We consider a resolution f : Y → X such that (i) f
is an isomorphism outside P ∈ X, and (ii) f−1(P ) is a simple normal
crossing divisor on Y . In this setting, we can write

KY = f ∗KX + F − E,

where F and E are both effective Cartier divisors without common
irreducible components. In particular, E is a reduced simple normal
crossing divisor on Y .

Lemma 4.2. The cohomology group H i(E,OE) is independent of f
for every i.

Proof. Let f ′ : Y ′ → X be another resolution with KY ′ = f ′∗KX +F ′−
E ′ as in 4.1. By the weak factorization theorem (see [M, Theorem 5-4-
1] or [AKMW, Theorem 0.3.1(6)]), we may assume that ϕ : Y ′ → Y is a
blow-up whose center C ⊂ Suppf−1(P ) is smooth, irreducible, and has
simple normal crossing with Suppf−1(P ). It means that at each point
p ∈ Suppf−1(P ) there exists a regular coordinate system {x1, · · · , xn}
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in a neighborhood p ∈ Up such that

Suppf−1(P ) ∩ Up =

{∏
j∈J

xj = 0

}
and C ∩ Up = {xi = 0 for i ∈ I} for some subsets I, J ⊂ {1, · · · , n}.
Thus, we can directly check that H i(E,OE) ' H i(E ′,OE′) for every
i. �
4.3. Let Γ be the dual complex of E and let |Γ| be the topological real-
ization of Γ. Note that the vertices of Γ correspond to the components
Ei, the edges correspond to Ei ∩ Ej, and so on, where E =

∑
i Ei is

the irreducible decomposition of E. More precisely, E defines a coni-
cal polyhedral complex ∆ (see [KKMS, Chapter II, Definition 5]). By
[KKMS, p.70 Remark], we get a compact polyhedral complex ∆0 from
∆. The dual complex Γ of E is essentially the same as this compact
polyhedral complex ∆0 and |Γ| = |∆0| as topological spaces. See the
construction of the dual complex in [S] and [P, Section 2] for details.
Therefore, we obtain the following lemma.

Lemma 4.4. The dual complex Γ is well defined and |Γ| is independent
of f .

Proof. As we explained above, the well-definedness of Γ is in [KKMS,
Chapter II]. By the weak factorization theorem (see [M, Theorem 5-4-1]
or [AKMW, Theorem 0.3.1(6)]), we can easily check that the topolog-
ical realization |Γ| does not depend on f . �
Remark 4.5. The paper [S] discusses the dual complex of Suppf−1(P )
by the same method. Case 1) in the proof of [S, Lemma] is sufficient for
our purposes. Note that we treat the dual complex Γ of E. In general,
SuppE ( Suppf−1(P ).

4.6. Let g : Z → X be a projective birational morphism as in Lemma
2.9. Then we have 0 → OZ(−D) → OZ → OD → 0. By the vanishing
theorem, we obtain Rig∗OZ(KZ) = 0 for every i > 0. Therefore, we
have

Rig∗OZ ' Rig∗OD ' H i(D,OD)

for every i > 0. We note that D is connected since OX ' g∗OZ → g∗OD

is surjective. By applying Corollary 2.5, we can construct a resolution
h : Y → Z such that

KY + E − F = h∗(KZ + D) = f ∗KX ,

where F and E are both effective Cartier divisors without common
irreducible components, SuppE is a simple normal crossing divisor,
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f = g ◦ h, h is an isomorphism outside g−1(P ), h is an isomorphism
over the generic point of any lc center of (Z, D), Rih∗OE = 0 for
every i > 0, and h∗OE ' OD. Therefore, H i(D,OD) ' H i(E,OE)
for every i. Apply the principalization to the defining ideal sheaf I of
f−1(P ). Then we obtain a sequence of blow-ups whose centers have
simple normal crossing with E (cf. [K1, Theorem 3.35]). In this process,
H i(E,OE) does not change for every i (cf. the proof of Lemma 4.2).
Therefore, we may assume that f−1(P ) is a divisor on Y . We further
take a sequence of blow-ups whose centers have simple normal crossing
with E. Then we can make Suppf−1(P ) a simple normal crossing
divisor on Y (cf. [BEV, Corollary 7.9] or [K2, Proposition 6]). We note
that we may assume that f is an isomorphism outside P ∈ X. We also
note that Rig∗OZ ' Rif∗OY for every i because Z has only rational
singularities. So, we obtain the next proposition.

Proposition 4.7. Let f : Y → X be a resolution as in 4.1. Then
Rif∗OY ' H i(E,OE) for every i > 0. Therefore, P ∈ X is Cohen–
Macaulay, equivalently, P ∈ X is Gorenstein, if and only if H i(E,OE) =
0 for 0 < i < n − 1.

Proof. It is a direct consequence of Lemma 4.2 and Corollary 2.3 by
4.6. �
Remark 4.8. In 4.6, (KZ +D)|D = KD ∼ 0. Therefore, Hn−1(D,OD)
is dual to H0(D,OD), where n = dim X. So, Rn−1g∗OZ ' C(P ). Thus,
P ∈ X is not a rational singularity.

Remark 4.9. Shihoko Ishii proves

Rif∗OY ' H i(f−1(P )red,Of−1(P )red)

for every i > 0 by the theory of Du Bois singularities (cf. [I1, Corollary
1.5, Theorem 2.3] and [I2, Proposition 7.1.13, Theorem 7.1.17]). For
details, see [I1] and [I2].

By using the minimal model program with scaling, we can prove
Proposition 4.7 without appealing to Lemma 4.2.

Remark 4.10. Let f : Y → X with KY +E = f ∗KX +F be as in 4.1.
Let H be an effective f -ample Q-divisor on Y such that (Y,E + H) is
dlt and that KY +E +H is nef over X. We can run the minimal model
program on KY + E over X with scaling of H. Then we obtain a dlt
blow-up f ′ : Y ′ → X such that (Y ′, E ′) is a Q-factorial dlt pair and
that KY ′ +E ′ = f ′∗KX where E ′ is the pushforward of E on Y ′ (cf. [F6,
Section 4]). We note that each step of the minimal model program

Y 99K Y1 99K Y2 99K · · · 99K Y ′
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is an isomorphism at the generic point of any lc center of (Y, E). By
4.6, Rif∗OY ' Rif ′

∗OY ′ ' Rif ′
∗OE′ ' H i(E ′,OE′) for every i > 0. By

taking a common resolution

W
α

~~}}
}}

}}
}} β

  B
BB

BB
BB

B

Y //_______ Y ′

such that α (resp. β) is an isomorphism over the generic point of any lc
center of (Y,E) (resp. (Y ′, E ′)) and that Exc(α), Exc(β), and Exc(α)∪
Exc(β)∪ Suppα−1

∗ E are simple normal crossing divisors on W , we can
easily check that

H i(E,OE) ' H i(E ′,OE′)

for every i because Rα∗OT ' OE and Rβ∗OT ' OE′ (cf. Corollary
2.5). Note that KW +∆1 = α∗(KY +E) and KW +∆2 = β∗(KY ′ +E ′)
with ∆=1

1 = T = ∆=1
2 such that T is a reduced simple normal crossing

divisor on W . Therefore,

H i(E,OE) ' H i(E ′,OE′) ' Rif∗OY

for i > 0.
Let E =

∑
i Ei be the irreducible decomposition and let E ′ =

∑
i E

′
i

be the corresponding irreducible decomposition. Let Ei0 be an irre-
ducible component of E and let Ti0 be the strict transform of Ei0 on
W . By applying the connectedness lemma (cf. [KM, Theorem 5.48])
to α : Ti0 → Ei0 and β : Ti0 → E ′

i0
, we know that the number

of the connected components of
∑

i6=i0
Ei|Ei0

coincides with that of∑
i 6=i0

E ′
i|E′

i0
. Therefore,

∑
i6=i0

Ei|Ei0
has at most two connected com-

ponents by applying Proposition 3.3 to (E ′
i0
,
∑

i6=i0
E ′

i|E′
i0

). Note that

(E ′
i0
,
∑

i6=i0
E ′

i|E′
i0

) is dlt and KE′
i0

+
∑

i6=i0
E ′

i|E′
i0
∼ 0.

4.11 (Invariant µ). Let P ∈ X be an isolated lc singularity with index
one which is not lt. Let g : Z → X be a projective birational morphism
such that KZ + D = g∗KX and that (Z,D) is a Q-factorial dlt pair.
We define

µ = µ(P ∈ X) = min{ dim W |W is an lc center of (Z, D)}.

This invariant µ was first introduced in [F2, Definition 4.12]. Let D =∑
i Di be the irreducible decomposition. Then KDi

+ ∆i := (KZ +
D)|Di

∼ 0 and (Di, ∆i) is dlt. By applying Proposition 3.3 to each
(Di, ∆i), every minimal lc center of (Z,D) is µ-dimensional and all the
minimal lc centers are birational each other. Note that D is connected.
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Let g′ : Z ′ → X be another projective birational morphism such that
KZ′ + D′ = g′∗KX and that (Z ′, D′) is a Q-factorial dlt pair. Then it
is easy to see that (Z, D) 99K (Z ′, D′) is B-birational. This means that
there is a common resolution

W
α

~~}}
}}

}}
}} β

  B
BB

BB
BB

B

Z //_______ Z ′

such that α∗(KZ + D) = β∗(KZ′ + D′). Then we can easily check that

min{ dim W |W is an lc center of (Z, D)}
= min{ dim W ′ |W ′ is an lc center of (Z ′, D′)}.

See, for example, the proof of [F1, Lemma 4.9]. Therefore, µ(P ∈ X)
is well-defined. Let f : Y → X with KY = f∗KX + F −E be as in 4.1.
Then it is easy to see that

µ = µ(P ∈ X) = min{ dim W |W is a stratum of E}
by Remark 4.10.

Now, the following theorem is not difficult to prove.

Theorem 4.12. We use the notation in 4.1. We assume µ(P ∈
X) = 0. Then H i(E,OE) ' H i(|Γ|, C). Therefore, P ∈ X is Cohen–
Macaulay, equivalently, P ∈ X is Gorenstein, if and only if

H i(|Γ|, C) =

{
C for i = 0, n − 1,
0 otherwise.

Proof. We use the spectral sequence in 4.13 to calculate H i(E,OE). By
Corollary 3.7, Hq(E[p],OE[p]) = 0 for every q > 0. Therefore, we obtain
Ei,0

2 ' H i(|Γ|, C) for every i and the spectral sequence degenerates at
E2. Thus we have H i(E,OE) ' H i(|Γ|, C) for every i. �
4.13. Let E be a simple normal crossing variety and let E =

∑
i Ei be

the irreducible decomposition. We put E[0] =
∐

i Ei, E[1] =
∐

i,j(Ei ∩
Ej), · · · , E[p] =

∐
i0,··· ,ip(Ei0 ∩ · · · ∩Eip), · · · . Let ap : E[p] → E be the

obvious map. Then it is well known that

(a0)∗OE[0] → (a1)∗OE[1] → · · · → (ap)∗OE[p] → · · ·
is a resolution of OE. By taking the associated hypercohomology, we
obtain a spectral sequence

Ep,q
1 = Hq(E[p],OE[p]) ⇒ Hp+q(E,OE).

We close this section with the following obvious two propositions.
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Proposition 4.14. We assume that the dimension of X is ≥ 3. By the
above spectral sequence, if P ∈ X is Cohen–Macaulay, then H1(|Γ|, C) =
0.

Proof. By the spectral sequence in 4.13, it is easy to see that H1(|Γ|, C) 6=
0 implies H1(E,OE) 6= 0. �
Proposition 4.15. Let P ∈ X be an n-dimensional isolated lc singu-
larity with index one which is not lt. If P ∈ X is Cohen–Macaulay,
then

χ(OE) :=
∑

i

(−1)ihi(E,OE) = 1 + (−1)n−1

=
∑
p,q

(−1)p+q dim Hq(E[p],OE[p]).

Remark 4.16. Tsuchihashi’s cusp singularities (cf. [T1] and [T2]) give
us many examples of three dimensional index one isolated lc singular-
ities with µ = 0 which are not Cohen–Macaulay.

5. Ishii’s Hodge theoretic invariant

In this section, we give a Hodge theoretic characterization of our
invariant µ. It shows that our invariant µ coincides with Ishii’s Hodge
theoretic invariant.

Let us quickly recall Ishii’s definition of singularities of type (0, i).
For the details, see [I2, Section 7] and [I4, 2.6 and Definition 2.7].

5.1 (Type (0, i) singularities due to Shihoko Ishii). Let P ∈ X be an
n-dimensional isolated lc singularity with index one which is not lt. Let
f : Y → X be a resolution such that

KY = f∗KX + F − E

as in 4.1. Shihoko Ishii proves that Hn−1(E,OE) = C (cf. Proposition
4.7 and Remark 4.8). In [I2, Definition 7.4.5] and [I4, Definition 2.7],
she defines that the singularity P ∈ X is of type (0, i) if

GrW
i Hn−1(E,OE) 6= 0.

Note that E is a projective simple normal crossing variety, W is the
weight filtration of the natural mixed Hodge structure on Hn−1(E, C),
and that Hn−1(E,OE) ' Gr0

F Hn−1(E, C) where F is the natural Hodge
filtration. Therefore, we have

GrW
k Hn−1(E,OE)

' GrW
k Gr0

F Hn−1(E, C)

' Gr0
F GrW

k Hn−1(E, C)
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By Deligne’s theory of mixed Hodge structures, we know that 0 ≤ i ≤
n − 1.

The main purpose of this section is to show that µ(P ∈ X) = i
where P ∈ X is of type (0, i).

The following theorem corresponds to [I1, Theorem 4.3] in our frame-
work. For the definition of sdlt pairs, see [F1, Definition 1.1]. Let
(X, ∆) be an sdlt pair. Then X is S2, normal crossing in codimension
one, and every irreducible component of X is normal. Let V be sdlt.
Then there is the smallest Zariski closed subset Z of V such that V \Z
is a simple normal crossing variety and the codimension of Z in V is
≥ 2. We define a stratum of V as the closure of a stratum of V \ Z.

Theorem 5.2. Let V be an m-dimensional connected projective sdlt
variety such that KV ∼ 0. Let f : V ′ → V be a projective birational
morphism from a simple normal crossing variety V ′. Assume that there
is a Zariski open subset U ′ (resp. U) of V ′ (resp. V ) such that U ′

(resp. U) contains the generic point of any stratum of V ′ (resp. V ) and
that f induces an isomorphism between U ′ and U . We further assume
that the exceptional locus Exc(f) is a simple normal crossing divisor
on V ′ (cf. [F5, Definition 2.11]) and that

KV ′ = f ∗KV + E

where E is effective. Then Hm(V ′,OV ′) = C. Moreover, we obtain
that

Gr0
F GrW

k Hm(V ′, C)

' GrW
k Gr0

F Hm(V ′, C)

' GrW
k Hm(V ′,OV ′)

=

{
C if k = µ

0 otherwise

where µ is the dimension of the minimal stratum of V ′. Note that F is
the Hodge filtration and W is the weight filtration of the natural mixed
Hodge structure on Hm(V ′, C).

Proof. First we prove that Hm(V ′,OV ′) = C.

Step 1. Since V is simple normal crossing in codimension one and S2,
V is semi-normal. We can easily check that f has connected fibers by
the assumptions. Therefore, we obtain f∗OV ′ ' OV . We note that E is
f -exceptional by the assumptions. Since E is effective, f -exceptional,
and V satisfies Serre’s S2 condition, we see that f∗OV ′(E) ' OV . On
the other hand, we obtain Rif∗OV ′(E) ' Rif∗OV ′(KV ′) = 0 for every
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i > 0 (cf. [F5, Lemma 2.33]). Therefore, we have Rf∗OV ′(E) ' OV in
the derived category. By the same arguments as in the proof of Proposi-
tion 2.4, we obtain that V is Cohen–Macaulay. Moreover, Rif∗OV ′ = 0
for every i > 0 (see the proof of Proposition 2.4) and f∗OV ′ ' OV .
Thus, Hm(V ′,OV ′) ' Hm(V,OV ) = C. We note that KV ∼ 0 and V
is Cohen–Macaulay.

We use the induction on dimension for the latter statement. The
statement is obvious for a 0-dimensional variety.

Step 2. When V is irreducible, the statement is obvious. It is because
V ′ is a smooth connected projective variety. So, Hm(V ′, C) has the
natural pure Hodge structure of weight m.

Step 3. From now on, we assume that V is reducible. Let V ′
1 be an

irreducible component of V ′ and let V1 be the corresponding irreducible
component of V . We write V ′ = V ′

1 ∪ V ′
2 and V = V1 ∪ V2. Consider

the Mayer-Vietoris exact sequence:

Hm−1(V ′
1 ∩ V ′

2 ,OV ′
1∩V ′

2
)

δ→ Hm(V ′,OV ′)(♠)

→ Hm(V ′
1 ,OV ′

1
) ⊕ Hm(V ′

2 ,OV ′
2
).

By the Serre duality, Hm(V ′
i ,OV ′

i
) is dual to H0(V ′

i ,OV ′
i
(KV ′

i
)). We

put fi = f |V ′
i

for i = 1, 2. We can write

KV ′
i
+ V ′

j |V ′
i

= f ∗
i (KVi

+ Vj|Vi
) + E|V ′

i
∼ E|V ′

i
=: Fi

for {i, j} = {1, 2} where Fi is an effective fi-exceptional divisor. We
note that KVi

+ Vj|Vi
= KV |Vi

∼ 0. Let H be an ample Cartier divisor
on V . Then (f ∗

i H)m−1 · KV ′
i

< 0 because V ′
j |V ′

i
6= 0 for i = 1, 2. Thus

H0(V ′
i ,OV ′

i
(KV ′

i
)) = 0 for i = 1, 2. This means that Hm(V ′

i ,OV ′
i
) = 0

for i = 1, 2. So the last term in (♠) is zero. Therefore, we obtain that

GrW
k Hm−1(V ′

1 ∩ V ′
2 ,OV ′

1∩V ′
2
) → GrW

k Hm(V ′,OV ′)

is surjective for every k. We note that V ′
1∩V ′

2 is an (m−1)-dimensional
projective simple normal crossing variety and that V ′

1 ∩V ′
2 has at most

two connected components by Proposition 3.3 and [KM, Theorem 5.48].
Note that (V1, V2|V1) is dlt and KV1 + V2|V1 ∼ 0. Moreover, each con-
nected component of V ′

1 ∩ V ′
2 satisfies the assumptions of this theorem

and the dimension of the minimal stratum of each connected compo-
nent of V ′

1 ∩V ′
2 is also µ. Therefore, by the induction on dimension, we

obtain that GrW
k Hm(V ′,OV ′) 6= 0 if and only if k = µ.

We obtain all the desired results. �
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Remark 5.3. By Step 3 in the proof of Theorem 5.2, we obtain the
following description. Let C be any minimal stratum of V ′. Then we
obtain an isomorphism

C = Hµ(C,OC) '
δµ

· · · '
δk

· · · '
δm−1

Hm(V ′,OV ′) = C

where each δk is the connecting homomorphism of a suitable Mayer–
Vietoris exact sequence for µ ≤ k ≤ m − 1. Note that C has only
canonical singularities with KC ∼ 0.

Remark 5.4 (Semi-stable minimal models for varieties with trivial
canonical divisor). Let f : X → Y be a projective surjective morphism
from a smooth quasi-projective variety X to a smooth quasi-projective
curve Y . Assume that f is smooth over Y \ P , Kf−1(Q) ∼ 0 for every
Q ∈ Y \ P , and f ∗P is a reduced simple normal crossing divisor on
X. Then we obtain a relative good minimal model f ′ : X ′ → Y of
f : X → Y by [F6, Theorem 1.1]. Then the special fiber S = f ′∗P is
an sdlt variety with KS ∼ 0. So, we can apply Theorem 5.2 to S.

As an application of Theorem 5.2, we obtain the following theorem.

Theorem 5.5. Let P ∈ X be an isolated lc singularity with index one
which is not lt. Then P ∈ X is of type (0, i) if and only if µ(P ∈ X) =
i.

Proof. We use the notations in Remark 4.10. Let f : Y → X be as in
4.1. First, we apply Theorem 5.2 to β : T → E ′. Then we obtain

GrW
µ Hn−1(T,OT ) 6= 0

where µ = µ(P ∈ X). Next, we consider α : T → E. Let C be a
minimal stratum of E and let C ′ be the corresponding stratum of T .
By Step 3 in the proof of Theorem 5.2, Remark 5.3, and Lemma 2.7,
we can construct the following commutative diagram.

C = Hµ(C ′,OC′)
δ1−−−→ Hn−1(T,OT ) = C

α|∗
C′

x xα|∗T

C = Hµ(C,OC)
δ2−−−→ Hn−1(E,OE) = C

Note that δ1 and δ2 are isomorphisms, which are the compositions of the
connecting homomorphisms of suitable Mayer–Vietoris exact sequences
(cf. Remark 5.3), and that α|∗C′ and α|∗T are isomorphisms (cf. Lemma
2.7). By taking GrW , we obtain that

GrW
µ Hn−1(E,OE) 6= 0.
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This means that P ∈ X is of type (0, µ). We note that

GrW
µ Hµ(C,OC) = Hµ(C,OC)

since C is smooth and projective. �

We note that Theorem 5.5 also follows from [I2, Proposition 7.4.8]
and [I3] (see [F2, Remark 4.13]).

Anyway, by Theorem 5.5, our approach in [F2] and this paper is
compatible with Ishii’s theory developed in [I1], [I2], and [I4].
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[K1] S. Kovács, Rational, log canonical, Du Bois singularities: on the con-

jectures of Kollár and Steenbrink, Compositio Math. 118 (1999), no. 2,
123–133.
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