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Abstract. This paper is a gentle introduction to the theory of quasi-log varieties by
Ambro. We explain the fundamental theorems for the log minimal model program for
log canonical pairs. More precisely, we give a proof of the base point free theorem for log
canonical pairs in the framework of the theory of quasi-log varieties.
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1. Introduction

The aim of this article is to explain the fundamental theorems for the log minimal
model program for log canonical pairs. More explicitly, we describe the base point
free theorem for log canonical pairs in the framework of the theory of quasi-log
varieties (see Corollary 4.2). We also treat the cone theorem for log canonical
pairs (see Theorem 5.3). This paper is a gentle introduction to Ambro’s theory
of quasi-log varieties (cf. [A]). It contains no new statements. However, it must
be valuable because there are no introductory articles for the theory of quasi-
log varieties. The original article [A] seems to be inaccessible even for experts.
We basically follow Ambro’s arguments (see [A, Section 5]) but we change them
slightly to clarify the basic ideas and to remove some ambiguities and mistakes.
The book [F7] contains a comprehensive survey of the fundamental theorems of the
log minimal model program from the viewpoint of the theory of quasi-log varieties.
A new approach to the log minimal model program for log canonical pairs without
using quasi-log varieties was found in [F8]. It seems to be more natural and much
easier than the theory of quasi-log varieties. The paper [F9] contains all the details
of this new approach and is almost self-contained.

Note that we only use Q-divisors for simplicity. Some of the results can be
generalized for R-divisors with a little care. We do not treat the relative versions
of the fundamental theorems in order to make our arguments transparent. There
are no difficulties for the reader to obtain the relative versions once he understands
this paper. We hope that this article will make the theory of quasi-log varieties
more accessible. Note that the reader does not have to refer to [A] in order to read
this article. Our formulation is slightly different from the one in [A]. So, if the
reader wants to taste the original flavor of the theory of quasi-log varieties, then
he has to see [A].

∗The author was partially supported by the Grant-in-Aid for Young Scientists (A) 320684001
from JSPS and by the Inamori Foundation.
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We summarize the contents of this paper. In Section 2, we quickly review
the torsion-freeness and the vanishing theorem in [F7, Chapter 2]. In Section 3,
we introduce the notion of qlc pairs, which is a special case of Ambro’s quasi-log
varieties, and prove some important and useful lemmas. Theorem 3.6 is a key
result in the theory of quasi-log varieties. Section 4 is devoted to the proof of the
base point free theorem for qlc pairs. This section is the heart of this paper. In
Section 5, we treat the rationality theorem and the cone theorem for log canonical
pairs. We note that the rationality theorem directly implies the essential part of
the cone theorem and that we do not need the theory of quasi-log varieties for the
proof of the rationality theorem. In the final section, Section 6, we explain some
related topics.

Acknowledgments. I would like to thank Takeshi Abe for his valuable comments.
I would also like to thank Professor Gerard van der Geer and the referee for valuable
suggestions and comments.

1.1. Notation and Conventions. We will work over the complex number field
C throughout this paper. But we note that by using the Lefschetz principle, we
can extend everything to the case where the base field is an algebraically closed
field of characteristic zero. We will use the following notation and the notation in
[KM] freely.

Notation. (i) For a Q-Weil divisor D =
∑r
j=1 djDj such that Dj is a prime divisor

for every j and Di K= Dj for i K= j, we define the round-up !D" =
∑r
j=1!dj"Dj

(resp. the round-down %D& =
∑r
j=1%dj&Dj), where for every rational number x,

!x" (resp. %x&) is the integer defined by x ≤ !x" < x+ 1 (resp. x− 1 < %x& ≤ x).
The fractional part {D} of D denotes D − %D&. We define

D=1 =
∑
dj=1

Dj , and D<1 =
∑
dj<1

djDj .

We call D a boundary (resp. subboundary) Q-divisor if 0 ≤ dj ≤ 1 (resp. dj ≤ 1)
for all j. Note that Q-linear equivalence of two Q-divisors B1 and B2 is denoted
by B1 ∼Q B2.

(ii) For a proper birational morphism f : X → Y , the exceptional locus
Exc(f) ⊂ X is the locus where f is not an isomorphism.

(iii) Let X be a normal variety and B an effective Q-divisor on X such that
KX +B is Q-Cartier. Let f : Y → X be a resolution such that Exc(f)∪f−1

∗ B has
a simple normal crossing support, where f−1

∗ B is the strict transform of B on Y .
We write KY = f∗(KX +B) +

∑
i aiEi and a(Ei, X,B) = ai. We say that (X,B)

is lc if and only if ai ≥ −1 for all i. Here, lc is an abbreviation of log canonical.
Note that the discrepancy a(E,X,B) ∈ Q can be defined for every prime divisor
E over X. Let (X,B) be an lc pair. If E is a prime divisor over X such that
a(E,X,B) = −1, then the center cX(E) is called an lc center of (X,B).
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2. Vanishing and torsion-free theorems

In this section, we quickly review Ambro’s formulation of torsion-free and vanishing
theorems in a simplified form (see [F7, Chapter 2]). First, we fix the notation and
the conventions to state theorems.

2.1 (Global embedded simple normal crossing pairs). Let Y be a simple normal
crossing divisor on a smooth variety M and D a Q-divisor on M . Assume that
Supp (D + Y ) is simple normal crossing and that D and Y have no common irre-
ducible components. We put BY = D|Y and consider the pair (Y,BY ). We call
(Y,BY ) a global embedded simple normal crossing pair. Let ν : Y ν → Y be the
normalization. We put KY ν + Θ = ν∗(KY + BY ). A stratum of (Y,BY ) is an
irreducible component of Y or the image of some lc center of (Y ν ,Θ=1). When Y
is smooth and BY is a Q-divisor on Y such that SuppBY is simple normal crossing,
we put M = Y ×A1 and D = BY ×A1. Then (Y,BY ) @ (Y ×{0}, BY ×{0}) satis-
fies the above conditions, that is, we can consider (Y,BY ) to be a global embedded
simple normal crossing pair.

Theorem 2.2 is a special case of the main result in [F7, Chapter 2]. It will play
crucial roles in the following sections.

Theorem 2.2 (Torsion-freeness and vanishing theorem). Let (Y,BY ) be as above.
Assume that BY is a boundary Q-divisor. Let f : Y → X be a proper morphism
and L a Cartier divisor on Y .

(1) Assume that L−(KY +BY ) is f-semi-ample. Then, for every integer q, every
non-zero local section of Rqf∗OY (L) contains in its support the f-image of
some stratum of (Y,BY ).

(2) Assume that X is projective and L − (KY + BY ) ∼Q f∗H for some ample
Q-Cartier Q-divisor H on X. Then Hp(X,Rqf∗OY (L)) = 0 for every p > 0
and q ≥ 0.

Remark 2.3. It is obvious that the statement of Theorem 2.2 (1) is equivalent to
the following one.

(1′) Assume that L − (KY + BY ) is f -semi-ample. Then, for every integer q,
every associated prime of Rqf∗OY (L) is the generic point of the f -image of
some stratum of (Y,BY ).

The above theorem follows from the next theorem.

Theorem 2.4 (Injectivity theorem). Let (Y,BY ) be as above. Assume that Y
is proper and BY is a boundary Q-divisor. Let D be an effective Cartier divisor
whose support is contained in Supp {BY }. Assume that L ∼Q KY +BY . Then the
homomorphism

Hq(Y,OY (L)) → Hq(Y,OY (L+D)),

which is induced by the natural inclusion OY → OY (D), is injective for every q.

For the proof, which depends on the theory of mixed Hodge structures, we
recommend the reader to see [F7, Chapter 2]. It is because [A, Section 3] seems
to be inaccessible.
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2.1. Idea of the proof. We prove a very special case of Theorem 2.4. This sub-
section is independent of the other sections. So, the reader can skip it. We adopt
Kollár’s principle (cf. [KM, Principle 2.46]) here instead of using the arguments by
Esnault–Viehweg. We closely follow [KM, 2.4 The Kodaira Vanishing Theorem].
We note that [F6] may help the reader to understand Theorem 2.2. In [F6], we
give a short and almost self-contained proof of Theorem 2.2 for the case when Y
is smooth.

First, we recall the following Hodge theoretic results. Note that we compute
the cohomology groups in the complex analytic setting throughout this subsection.

Theorem 2.5. Let V be a smooth projective variety and Σ a simple normal cross-
ing divisor on V . Let ι : V \ Σ → V be the natural open immersion. Then the
inclusion ι!CV \Σ ⊂ OV (−Σ) induces surjections

Hi
c(V \ Σ,C) = Hi(V, ι!CV \Σ) → Hi(V,OV (−Σ))

for all i.

We note that ι!CV \Σ is quasi-isomorphic to the complex Ω•
V (log Σ)⊗OV (−Σ)

and the Hodge to de Rham spectral sequence

Ep,q1 = Hq(V,ΩpV (log Σ) ⊗OV (−Σ)) =⇒ Hp+q
c (V \ Σ,C)

degenerates at the E1-term. See, for example, [E, I.3.], [F7, Section 2.4], or Remark
2.6 below. Theorem 2.5 is a direct consequence of this E1-degeneration.

Remark 2.6. We put n = dimV . By Poincaré duality, we have

H2n−(p+q)(V \ Σ,C) @ Hp+q
c (V \ Σ,C)∗.

On the other hand, by Serre duality, we see that

Hn−q(V,Ωn−pV (log Σ)) @ Hq(V,ΩpV (log Σ) ⊗OV (−Σ))∗.

Therefore, the above E1-degeneration easily follows from the well-known E1-de-
generation of

′En−p,n−q1 = Hn−q(V,Ωn−pV (log Σ)) =⇒ H2n−(p+q)(V \ Σ,C).

The next theorem is a special case of Theorem 2.4 if we put Y = X, L =
KX + S +M , and BY = S + d

mD.

Theorem 2.7. Let X be a smooth projective variety and S a simple normal cross-
ing divisor on X. Let M be a Cartier divisor on X. Assume that there exists a
smooth divisor D on X such that dD ∼ mM for some relatively prime positive
integers d and m with d < m, D and S have no common irreducible components,
and D + S is a simple normal crossing divisor on X. Then the homomorphism

Hi(X,OX(KX + S +M)) → Hi(X,OX(KX + S +M + bD))

induced by the natural inclusion OX → OX(bD) is injective for every positive
integer b and every i ≥ 0.
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Proof. We take the usual normalization of the m-fold cyclic cover π : Y → X
ramified along the divisor D and defined by dD ∼ mM . We put T = π∗S. Then
Y is smooth and T is simple normal crossing on Y . Let ι : Y \ T → Y be
the natural open immersion. Then the inclusion ι!CY \T ⊂ OY (−T ) induces the
following surjections

Hi(Y, ι!CY \T ) → Hi(Y,OY (−T ))

for all i by Theorem 2.5. Since the fibers of π are zero-dimensional, there are no
higher direct image sheaves, and

Hi(X,π∗ι!CY \T ) → Hi(X,π∗OY (−T ))

is surjective for every i ≥ 0. The Z/mZ-action gives eigensheaf decompositions

π∗ι!CY \T =

m−1⊕
k=0

Gk

and

π∗OY (−T ) =

m−1⊕
k=0

OX(−S − kM + \kdm LD)

such that
Gk ⊂ OX(−S − kM + \kdm LD)

for 0 ≤ k ≤ m− 1. By taking the k = 1 summand, we have the surjections

Hi(X,G1) → Hi(X,OX(−S −M))

for all i. It is easy to see that G1 is a subsheaf of OX(−S −M − bD) for every
b ≥ 0. See, for example, [KM, Corollary 2.54, Lemma 2.55]. Therefore,

Hi(X,OX(−S −M − bD)) → Hi(X,OX(−S −M))

is surjective for every i (cf. [KM, Corollary 2.56]). By Serre duality, we have the
desired injections.

By Theorem 2.7, we can easily obtain a very special case of Theorem 2.2 (2).
We omit the proof because it is routine work. See, for example, [F1, Section 2.2].

Theorem 2.8. Let f : X → Y be a morphism from a smooth projective variety X
onto a projective variety Y . Let S be a simple normal crossing divisor on X and
L an ample Cartier divisor on Y . Then

Hi(Y,Rjf∗OX(KX + S) ⊗OY (L)) = 0

for i > 0 and j ≥ 0.

As a corollary, we obtain a generalization of the Kodaira vanishing theorem
(cf. [F6, Theorem 4.4]).
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Corollary 2.9 (Kodaira vanishing theorem for log canonical varieties). Let Y be
a projective variety with only log canonical singularities and L an ample Cartier
divisor on Y . Then

Hi(Y,OY (KY + L)) = 0

for i > 0.

Proof. Let f : X → Y be a resolution such that S = Exc(f) is a simple normal
crossing divisor. Then f∗OX(KX +S) @ OY (KY ). Therefore, we have the desired
vanishing theorem by Theorem 2.8.

We close this subsection with Sommese’s example. For the details and other
examples, see [F7, Section 2.8].

Example 2.10. We consider π : Y = PP1(OP1 ⊕OP1(1)⊕3) → P1. Let M denote
the tautological line bundle of π : Y → P1. We take a general member X of
|(M⊗ π∗OP1(−1))⊗4|. Then X is a normal Gorenstein projective threefold. Note
that X is not lc. We put OY (L) = M ⊗ π∗OP1(1). Then L is an ample Cartier
divisor on Y . We can check that H1(X,OX(KX + L)) = C. Thus, the Kodaira
vanishing theorem does not necessarily hold for non-lc varieties.

3. Adjunction for qlc varieties

To prove the base point free theorem for log canonical pairs following Ambro’s
idea, it is better to introduce the notion of qlc varieties. For the details, see [F7,
Section 3.2].

Definition 3.1 (Qlc varieties). A qlc variety is a variety X with a Q-Cartier Q-
divisor ω, and a finite collection {C} of reduced and irreducible subvarieties of X
such that there is a proper morphism f : (Y,BY ) → X from a global embedded
simple normal crossing pair as in 2.1 satisfying the following properties:

(1) f∗ω ∼Q KY +BY such that BY is a subboundary Q-divisor.

(2) There is an isomorphism

OX @ f∗OY (!−(B<1
Y )").

(3) The collection of subvarieties {C} coincides with the image of the (Y,BY )-
strata.

We use the following terminology. The subvarieties C are the qlc centers of X,
and f : (Y,BY ) → X is a quasi-log resolution of X. We sometimes simply say that
[X,ω] is a qlc pair, or the pair [X,ω] is qlc.

Remark 3.2. By condition (2), we have an isomorphism OX @ f∗OY . In partic-
ular, f is a surjective morphism with connected fibers and X is semi-normal.

Proposition 3.3. Let (X,B) be an lc pair. Then [X,KX +B] is a qlc pair.
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Proof. Let f : Y → X be a resolution such that KY + BY = f∗(KX + B) and
SuppBY is a simple normal crossing divisor. Then OX @ f∗OY (!−(B<1

Y )") be-
cause !−(B<1

Y )" is effective and f -exceptional. We note that a qlc center C is X
itself or an lc center of (X,B).

We start with an easy lemma.

Lemma 3.4. Let f : Z → Y be a proper birational morphism between smooth
varieties and BY a subboundary Q-divisor on Y such that SuppBY is simple nor-
mal crossing. Assume that KZ +BZ = f∗(KY +BY ) and that SuppBZ is simple
normal crossing. Then we have

f∗OZ(!−(B<1
Z )") @ OY (!−(B<1

Y )").

Proof. From KZ +BZ = f∗(KY +BY ), we obtain

KZ = f∗(KY +B=1
Y + {BY })

+ f∗(%B<1
Y &) − %B<1

Z & −B=1
Z − {BZ}.

If a(ν, Y,B=1
Y + {BY }) = −1 for a prime divisor ν over Y , then we can check

that a(ν, Y,BY ) = −1 by using [KM, Lemma 2.45]. Since f∗(%B<1
Y &) − %B<1

Z & is
Cartier, we can easily see that f∗(%B<1

Y &) = %B<1
Z & + E, where E is an effective

f -exceptional divisor. Thus, we obtain

f∗OZ(!−(B<1
Z )") @ OY (!−(B<1

Y )").

This completes the proof.

The following lemma is very important in the study of qlc pairs.

Lemma 3.5. We use the same notation and assumptions as in Lemma 3.4. Let
S be a simple normal crossing divisor on Y such that S ⊂ SuppB=1

Y . Let T be the
union of the irreducible components of B=1

Z that are mapped into S by f . Assume
that Supp f−1

∗ BY ∪ Exc(f) is simple normal crossing on Z. Then we have

f∗OT (!−(B<1
T )") @ OS(!−(B<1

S )"),

where (KZ +BZ)|T = KT +BT and (KY +BY )|S = KS +BS.

Proof. We use the same notation as in the proof of Lemma 3.4. We consider the
short exact sequence

0 → OZ(!−(B<1
Z )" − T ) → OZ(!−(B<1

Z )") → OT (!−(B<1
T )") → 0.

Since T = f∗S − F , where F is an effective f -exceptional divisor, we obtain

!−(B<1
Z )" − T = f∗(!−(B<1

Y )" − S) + E + F.
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Here, we used f∗(%B<1
Y &) = %B<1

Z & + E in the proof of Lemma 3.4. Therefore,

f∗OZ(!−(B<1
Z )" − T ) @ OY (!−(B<1

Y )" − S) ⊗ f∗OZ(E + F )

@ OY (!−(B<1
Y )" − S).

It is because E and F are effective and f -exceptional. We note that

(!−(B<1
Z )" − T ) − (KZ + {BZ} + (B=1

Z − T )) = −f∗(KY +BY ).

Therefore, every local section of R1f∗OZ(!−(B<1
Z )" − T ) contains in its support

the f -image of some stratum of (Z, {BZ} +B=1
Z − T ) by Theorem 2.2 (1).

Claim. No strata of (Z, {BZ} +B=1
Z − T ) are mapped into S by f .

Proof of Claim. Assume that there is a stratum C of (Z, {BZ} + B=1
Z − T ) such

that f(C) ⊂ S. Note that Supp f∗S ⊂ Supp f−1
∗ BY ∪ Exc(f) and SuppB=1

Z ⊂
Supp f−1

∗ BY ∪ Exc(f). Since C is also a stratum of (Z,B=1
Z ) and C ⊂ Supp f∗S,

there exists an irreducible component G of B=1
Z such that C ⊂ G ⊂ Supp f∗S.

Therefore, by the definition of T , G is an irreducible component of T because
f(G) ⊂ S and G is an irreducible component of B=1

Z . So, C is not a stratum of
(Z, {BZ} +B=1

Z − T ). This is a contradiction.

On the other hand, f(T ) ⊂ S. Therefore,

f∗OT (!−(B<1
T )") → R1f∗OZ(!−(B<1

Z )" − T )

is the zero map by the above claim. Thus, we obtain

f∗OT (!−(B<1
T )") @ OS(!−(B<1

S )")

by the following commutative diagram.

0 ! ! OY (!−(B<1
Y )" − S)

<

##

!! OY (!−(B<1
Y )")

<

##

!! OS(!−(B<1
S )")

##

!! 0

0 ! ! f∗OZ(!−(B<1
Z )" − T ) !! f∗OZ(!−(B<1

Z )") !! f∗OT (!−(B<1
T )") !! 0

This completes the proof.

The following theorem (cf. [A, Theorem 4.4]) is one of the key results for the
theory of qlc varieties. It is a consequence of Theorem 2.2. See also Theorem 5.2
below.

Theorem 3.6 (Adjunction and vanishing theorem). Let [X,ω] be a qlc pair and
X ′ a union of some qlc centers of [X,ω].

(i) Then [X ′, ω′] is a qlc pair, where ω′ = ω|X′ . Moreover, the qlc centers of
[X ′, ω′] are exactly the qlc centers of [X,ω] that are included in X ′.
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(ii) Assume that X is projective. Let L be a Cartier divisor on X such that
L − ω is ample. Then Hq(X,OX(L)) = 0 and Hq(X, IX′ ⊗ OX(L)) = 0
for q > 0, where IX′ is the defining ideal sheaf of X ′ on X. Note that
Hq(X ′,OX′(L)) = 0 for every q > 0 because [X ′, ω′] is a qlc pair by (i) and
L|X′ − ω′ is ample.

Proof. (i) Let f : (Y,BY ) → X be a quasi-log resolution. Let M be the ambient
space of Y and D a subboundary Q-divisor on M such that BY = D|Y . By taking
blow-ups of M , we can assume that the union of all strata of (Y,BY ) mapped into
X ′, which is denoted by Y ′, is a union of irreducible components of Y (cf. Lemma
3.5). We put Y ′′ = Y − Y ′. We define (KY + BY )|Y ′ = KY ′ + BY ′ and consider
f : (Y ′, BY ′) → X ′. We claim that [X ′, ω′] is a qlc pair, where ω′ = ω|X′ ,
and f : (Y ′, BY ′) → X ′ is a quasi-log resolution. From the definition, BY ′ is a
subboundary and f∗ω′ ∼Q KY ′ +BY ′ on Y ′. We consider the following short exact
sequence

0 → OY ′′(−Y ′) → OY → OY ′ → 0.

We put A = !−(B<1
Y )". Then we have

0 → OY ′′(A− Y ′) → OY (A) → OY ′(A) → 0.

Applying f∗, we obtain

0 → f∗OY ′′(A− Y ′) → OX → f∗OY ′(A) → R1f∗OY ′′(A− Y ′) → · · · .

The support of every non-zero local section of R1f∗OY ′′(A− Y ′) can not be con-
tained in f(Y ′) = X ′ by Theorem 2.2 (1). We note that

−f∗ω ∼Q (A− Y ′)|Y ′′ − (KY ′′ + {BY ′′} +B=1
Y ′′ − Y ′|Y ′′)

on Y ′′, where (KY +BY )|Y ′′ = KY ′′ +BY ′′ , and that Y ′|Y ′′ is contained in B=1
Y ′′ .

Therefore, f∗OY ′(A) → R1f∗OY ′′(A − Y ′) is the zero map. We note that the
surjection OX → f∗OY ′(A) decomposes as

OX → OX′ → f∗OY ′ → f∗OY ′(A)

since f(Y ′) = X ′. Therefore, we obtain

OX′ @ f∗OY ′(A) = f∗OY ′(!−(B<1
Y ′ )").

Thus, we see that f∗OY ′′(A−Y ′) @ IX′ , the defining ideal sheaf of X ′ on X. The
statement for qlc centers is obvious by the construction of the quasi-log resolution.
So, we obtain (i).

(ii) Let f : (Y,BY ) → X be a quasi-log resolution as in the proof of (i). Apply
Theorem 2.2 (2). Then we obtain Hq(X,OX(L)) = 0 for every q > 0 because

f∗(L− ω) ∼Q f∗L− (KY +BY )

= f∗L+ !−(B<1
Y )" − (KY + {BY } +B=1

Y )
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and f∗OY (f∗L + !−(B<1
Y )") @ OX(L). We consider f : Y ′′ → X. We put

(KY +BY )|Y ′′ = KY ′′ +BY ′′ . Then

f∗(L− ω) ∼Q (f∗L− (KY +BY ))|Y ′′

= (f∗L+A− Y ′)|Y ′′ − (KY ′′ + {BY ′′} +B=1
Y ′′ − Y ′|Y ′′)

on Y ′′. Note that Y ′|Y ′′ is contained in B=1
Y ′′ . Therefore, we obtain

Hq(X, f∗OY ′′(A− Y ′) ⊗OX(L)) = 0

for every q > 0 by Theorem 2.2 (2). Thus this completes the proof by the isomor-
phism f∗OY ′′(A− Y ′) @ IX′ obtained in the proof of (i).

Corollary 3.7. Let [X,ω] be a qlc pair and X ′ an irreducible component of X.
Then [X ′, ω′], where ω′ = ω|X′ , is a qlc pair.

Proof. By Definition 3.1 and Remark 3.2, X ′ is a qlc center of [X,ω]. Therefore,
by Theorem 3.6 (i), [X ′, ω′] is a qlc pair.

We use the next definition in Section 4.

Definition 3.8. Let [X,ω] be a qlc pair. Let X ′ be the union of qlc centers of X
that are not any irreducible components of X. Then X ′ with ω′ = ω|X′ is a qlc
variety by Theorem 3.6 (i). We denote it by Nqklt(X,ω).

We close this section with the following very useful lemma, which seems to be
indispensable for the proof of the base point free theorem in Section 4.

Lemma 3.9. Let f : (Y,BY ) → X be a quasi-log resolution of a qlc pair [X,ω].
Let E be a Cartier divisor on X such that SuppE contains no qlc centers of [X,ω].
By blowing up M , the ambient space of Y , inside Supp f∗E, we can assume that
(Y,BY + f∗E) is a global embedded simple normal crossing pair.

Proof. First, we take a blow-up of M along f∗E and apply Hironaka’s resolution
theorem to M . Then we can assume that there exists a Cartier divisor F on M
such that Supp (F ∩ Y ) = Supp f∗E. Next, we apply Szabó’s resolution lemma
to Supp (D + Y + F ) on M . Thus, we obtain the desired properties by Lemma
3.5.

4. Base point free theorem

The next theorem is the main theorem of this section. It is a special case of [A,
Theorem 5.1]. This formulation is indispensable for the inductive treatment of
log canonical pairs in the framework of the theory of quasi-log varieties. For the
details, see [F7, Section 3.2.2].

Theorem 4.1. Let [X,ω] be a projective qlc pair and L a nef Cartier divisor on
X. Assume that qL− ω is ample for some q > 0. Then OX(mL) is generated by
global sections for every m D 0, that is, there exists a positive number m0 such
that OX(mL) is generated by global sections for every m ≥ m0.
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Proof. First, we note that the statement is obvious when dimX = 0.

Claim 1. We can assume that X is irreducible.

Let X ′ be an irreducible component of X. Then X ′ with ω′ = ω|X′ has a
natural qlc structure induced by [X,ω] by adjunction (see Corollary 3.7). By the
vanishing theorem (see Theorem 3.6 (ii)), we have H1(X, IX′ ⊗OX(mL)) = 0 for
all m ≥ q. We consider the following commutative diagram.

H0(X,OX(mL)) ⊗OX

##

α !! H0(X ′,OX′(mL)) ⊗OX′

##

!! 0

OX(mL) !! OX′(mL) !! 0

Since α is surjective for m ≥ q, we can assume that X is irreducible when we prove
this theorem.

Claim 2. For every m D 0, OX(mL) is generated by global sections on an open
neighborhood of Nqklt(X,ω).

We put X ′ = Nqklt(X,ω). Then [X ′, ω′], where ω′ = ω|X′ , is a qlc pair
by adjunction (see Definition 3.8 and Theorem 3.6 (i)). By induction on the
dimension, OX′(mL) is generated by global sections for every m D 0. By the
following commutative diagram:

H0(X,OX(mL)) ⊗OX

##

α !! H0(X ′,OX′(mL)) ⊗OX′

##

!! 0

OX(mL) !! OX′(mL) !! 0,

we know that, for every m D 0, OX(mL) is generated by global sections on an
open neighborhood of X ′.

Claim 3. For every m D 0, OX(mL) is generated by global sections on a non-
empty Zariski open set.

By Claim 2, we can assume that Nqklt(X,ω) is empty. If L is numerically triv-
ial, then H0(X,OX(L)) = H0(X,OX(−L)) = C. It is because h0(X,OX(±L)) =
χ(X,OX(±L)) = χ(X,OX) = 1 by Theorem 3.6 (ii) and [Kl, Chapter II §2 Theo-
rem 1]. Therefore, OX(L) is trivial. So, we can assume that L is not numerically
trivial. Let f : (Y,BY ) → X be a quasi-log resolution. Let x ∈ X be a general
smooth point. Then we can take a Q-divisor D such that multxD > dimX and
D ∼Q (q + r)L − ω for some r > 0 (see [KM, 3.5 Step 2]). By blowing up M ,
we can assume that (Y,BY + f∗D) is a global embedded simple normal cross-
ing pair by Lemma 3.9. We note that every stratum of (Y,BY ) is mapped onto
X by the assumption. By the construction of D, we can find a positive ratio-
nal number c < 1 such that BY + cf∗D is a subboundary and some stratum of
(Y,BY + cf∗D) does not dominate X. Note that f∗OY (!−(B<1

Y )") @ OX . Then
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the pair [X,ω+cD] is qlc and f : (Y,BY +cf∗D) → X is a quasi-log resolution. We
note that q′L− (ω+ cD) is ample since c < 1, where q′ = q+ cr. By construction,
Nqklt(X,ω+ cD) is non-empty. Therefore, by applying Claim 2 to [X,ω+ cD], for
every m D 0, OX(mL) is generated by global sections on an open neighborhood
of Nqklt(X,ω + cD). So, we obtain Claim 3.

Let p be a prime number and l a large integer. Then |plL| K= ∅ by Claim 3 and
|plL| is free on an open neighborhood of Nqklt(X,ω) by Claim 2.

Claim 4. If the base locus Bs|plL| (with reduced scheme structure) is not empty,
then Bs|pl′L| is strictly smaller than Bs|plL| for some l′ > l.

Let f : (Y,BY ) → X be a quasi-log resolution. We take a general member
D ∈ |plL|. We note that |plL| is free on an open neighborhood of Nqklt(X,ω).
Thus, f∗D intersects all strata of (Y,SuppBY ) transversally over X \ Bs|plL| by
Bertini and f∗D contains no strata of (Y,BY ). By taking blow-ups of M suitably,
we can assume that (Y,BY + f∗D) is a global embedded simple normal crossing
pair (cf. Lemmas 3.9 and 3.5). We take the maximal positive rational number
c such that BY + cf∗D is a subboundary. We note that c ≤ 1. Here, we used
OX @ f∗OY (!−(B<1

Y )"). Then f : (Y,BY + cf∗D) → X is a quasi-log resolution
of [X,ω′ = ω+ cD]. Note that [X,ω′] has a qlc center C that intersects Bs|plL| by
the construction. By induction on the dimension, OC(mL) is generated by global
sections for all m D 0. We can lift the sections of OC(mL) to X for m ≥ q + cpl

by Theorem 3.6 (ii). Then we obtain that, for every m D 0, OX(mL) is generated
by global sections on an open neighborhood of C. Therefore, Bs|pl′L| is strictly
smaller than Bs|plL| for some l′ > l.

Claim 5. OX(mL) is generated by global sections for every m D 0.

By Claim 4 and noetherian induction, OX(plL) and OX(p′
l′
L) are generated

by global sections for large l and l′, where p and p′ are prime numbers and p K= p′.
So, there exists a positive number m0 such that OX(mL) is generated by global
sections for every m ≥ m0.

The next corollary is obvious from Theorem 4.1 and Proposition 3.3.

Corollary 4.2 (Base point free theorem for lc pairs). Let (X,B) be a projective
lc pair and L a nef Cartier divisor on X. Assume that qL − (KX + B) is ample
for some q > 0. Then OX(mL) is generated by global sections for every m D 0.

The reader can find another proof of Corollary 4.2 in [F8, Section 4]. It does
not need the notion of qlc pairs.

5. Cone theorem

In this section, we will state the cone theorem for lc pairs (cf. Theorem 5.3). The
essential part of the cone theorem follows from the rationality theorem, Theorem
5.1. The rationality theorem is in turn implied by the vanishing theorem for
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lc centers (cf. Theorem 5.2) by the standard argument (for the details, see [F8,
Section 5]). Note that Theorem 5.2 is a special case of Theorem 3.6 (ii), but it can
be proved much more easily (see, for example, [F6, Theorem 4.1] or [F8, Theorem
2.2]). Note that we do not need the theory of quasi-log varieties in this section.
So, we omit the details.

5.1. Rationality theorem. Here, we explain the rationality theorem for log
canonical pairs. It implies the essential part of the cone theorem for log canonical
pairs.

Theorem 5.1 (Rationality theorem). Let (X,B) be a projective lc pair such that
a(KX +B) is Cartier for a positive integer a. Let H be an ample Cartier divisor
on X. Assume that KX +B is not nef. We put

r = max{t ∈ R : H + t(KX +B) is nef }.
Then r is a rational number of the form u/v (u, v ∈ Z) where 0 < v ≤ a(dimX+1).

As we explained above, Theorem 5.1 can be proved easily by using the following
very special case of Theorem 3.6 (ii).

Theorem 5.2 (Vanishing theorem for lc centers). Let X be a projective variety
and B a boundary Q-divisor on X such that (X,B) is log canonical. Let D be a
Cartier divisor on X. Assume that D− (KX +B) is ample. Let C be an lc center
of the pair (X,B) with the reduced scheme structure. Then we have

Hi(X, IC ⊗OX(D)) = 0, Hi(C,OC(D)) = 0

for all i > 0, where IC is the defining ideal sheaf of C on X. In particular, the
restriction map

H0(X,OX(D)) → H0(C,OC(D))

is surjective.

The reader can find the details of the rationality theorem in [F8, Section 5].

5.2. Cone theorem. Let us state the main theorem of this section.

Theorem 5.3 (Cone theorem). Let (X,B) be a projective lc pair. Then we have

(i) There are (countably many) rational curves Cj ⊂ X such that 0 < −(KX +
B) · Cj ≤ 2 dimX, and

NE(X) = NE(X)(KX+B)≥0 +
∑

R≥0[Cj ].

(ii) For any ε > 0 and ample Q-divisor H,

NE(X) = NE(X)(KX+B+εH)≥0 +
∑
finite

R≥0[Cj ].
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(iii) Let F ⊂ NE(X) be a (KX + B)-negative extremal face. Then there is a
unique morphism ϕF : X → Z such that (ϕF )∗OX @ OZ , Z is projective,
and an irreducible curve C ⊂ X is mapped to a point by ϕF if and only if
[C] ∈ F . The map ϕF is called the contraction of F .

(iv) Let F and ϕF be as in (iii). Let L be a line bundle on X such that (L ·C) = 0
for every curve C with [C] ∈ F . Then there is a line bundle LZ on Z such
that L @ ϕ∗

FLZ .

Proof. The upper bound 2 dimX and the fact that Cj is a rational curve in (i)
can be proved by Kawamata’s argument in [Ka] with the aid of [BCHM]. For the
details, see [F7, Section 3.1.3] or [F9, Section 18]. The other statements in (i)
and (ii) are formal consequences of the rationality theorem (cf. Theorem 5.1). For
the proof, see [KM, Theorem 3.15]. The statements (iii) and (iv) are obvious by
Corollary 4.2 and the statements (i) and (ii). See Steps 7 and 9 in [KM, 3.3 The
Cone Theorem].

6. Related topics

In this paper, we did not prove Theorem 2.2, which is a key result for the theory
of quasi-log varieties. For the proof, see [F7, Chapter 2]. The paper [F6] is a
gentle introduction to the vanishing and torsion-free theorems. In [F7, Chapters
3, 4], we give a proof of the existence of fourfold lc flips and prove the base point
free theorem of Reid–Fukuda type for lc pairs. The base point free theorem for
lc pairs is generalized in [F2], where we obtain Kollár’s effective base point free
theorem for lc pairs. In [F3], we prove the effective base point free theorem of
Angehrn–Siu type for lc pairs. We introduce the notion of non-lc ideal sheaves and
prove the restriction theorem in [F4]. It is a generalization of Kawakita’s inversion
of adjunction on log canonicity for normal divisors. See also [FST]. In [F5], we
prove that the log canonical ring is finitely generated in dimension four. In [F8],
we obtain the fundamental theorems of the log minimal model program for log
canonical pairs without using the theory of quasi-log varieties. Our new approach
in [F8] seems to be more natural and simpler than Ambro’s theory of quasi-log
varieties. In [F9], we go ahead with this new approach. We strongly recommend
the reader to see [F8] and [F9]. Finally, in [F10], the minimal model theory for log
surfaces is discussed under much weaker assumptions than everybody expected.
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