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Abstract.

We prove some injectivity theorems. Our proof depends on the
theory of mixed Hodge structures on cohomology with compact sup-
port. Our injectivity theorems would play crucial roles in the minimal
model theory for higher-dimensional algebraic varieties. We also treat
some applications.
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§1. Introduction

The following theorem is the main theorem of this paper, which is a
slight generalization of [Fuj3, Proposition 2.23] (see also [Fuj2] and [Fuj8,
Theorem 3.1]) and is inspired by the main theorem of [Amb2]. We note
that there are many contributors to this kind of injectivity theorem, for
example, Tankeev, Kollár, Esnault–Viehweg, Ambro, Fujino, and others.
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Theorem 1.1 (Main theorem). Let X be a proper simple normal
crossing algebraic variety and let ∆ be an R-Cartier R-divisor on X such
that Supp∆ is a simple normal crossing divisor on X and that ∆ is a
boundary R-divisor on X. Let L be a Cartier divisor on X and let D
be an effective Weil divisor on X whose support is contained in Supp∆.
Assume that L ∼R KX +∆. Then the natural homomorphism

Hq(X,OX(L)) → Hq(X,OX(L+D))

induced by the inclusion OX → OX(D) is injective for every q.

Remark 1.2. In [Fuj3, Proposition 2.23], the support of D is as-
sumed to be contained in Supp{∆}, where {∆} is the fractional part of
∆.

Remark 1.3. We will prove the relative version of Theorem 1.1
in Theorem 6.1. The proof of Theorem 6.1 uses [BiVP]. Therefore,
Theorem 6.1 is a nontrivial generalization of Theorem 1.1.

We note that Theorem 1.1 contains Theorem 1.4, which is equivalent
to the main theorem of [Amb2] (see [Amb2, Theorem 2.3]). Theorem
1.4 shows that the notion of maximal non-lc ideal sheaves introduced in
[FST] is useful and has some nontrivial applications. For the details, see
Section 5.

Theorem 1.4. Let X be a proper smooth algebraic variety and let
∆ be a boundary R-divisor on X such that Supp∆ is a simple normal
crossing divisor on X. Let L be a Cartier divisor on X and let D be
an effective Cartier divisor on X whose support is contained in Supp∆.
Assume that L ∼R KX +∆. Then the natural homomorphism

Hq(X,OX(L)) → Hq(X,OX(L+D))

induced by the inclusion OX → OX(D) is injective for every q.

A special case of Theorem 1.1 implies a very powerful vanishing
and torsion-free theorem for simple normal crossing pairs (see [Fuj8,
Theorem 1.1]). See also [Fuj2] and [Fuj3, Theorem 2.38 and Theorem
2.39]. It plays crucial roles for the study of semi-log canonical pairs and
quasi-log varieties (see, [Fuj3], [Fuj5], [Fuj9], and [FF]).

More precisely, we obtain the following injectivity theorem for simple
normal crossing pairs by using a special case of Theorem 1.1.

Theorem 1.5 (see [Fuj8, Theorem 3.4]). Let (X,∆) be a simple
normal crossing pair such that X is a proper algebraic variety and that
∆ is a boundary R-divisor on X. Let L be a Cartier divisor on X and
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let D be an effective Cartier divisor that is permissible with respect to
(X,∆). Assume the following conditions:

(i) L ∼R KX +∆+H,
(ii) H is a semi-ample R-divisor, and
(iii) tH ∼R D+D′ for some positive real number t, where D′ is an

effective R-Cartier R-divisor that is permissible with respect to
(X,∆).

Then the homomorphism

Hq(X,OX(L)) → Hq(X,OX(L+D)),

which is induced by the natural inclusion OX → OX(D), is injective for
every q.

As an application of Theorem 1.5, we obtain Theorem 1.6, which is
very important for the study of higher-dimensional algebraic varieties.

Theorem 1.6 (see [Fuj8, Theorem 1.1]). Let (Y,∆) be a simple
normal crossing pair such that ∆ is a boundary R-divisor on Y . Let
f : Y → X be a proper morphism between algebraic varieties and let
L be a Cartier divisor on Y such that L − (KY + ∆) is f -semi-ample.
Let q be an arbitrary non-negative integer. Then we have the following
properties.

(i) Every associated prime of Rqf∗OY (L) is the generic point of
the f -image of some stratum of (Y,∆).

(ii) Let π : X → V be a projective morphism to an algebraic variety
V such that

L− (KY +∆) ∼R f
∗H

for some π-ample R-divisor H on X. Then Rqf∗OY (L) is π∗-
acyclic, that is,

Rpπ∗R
qf∗OY (L) = 0

for every p > 0.

In this paper, we do not prove Theorem 1.5 and Theorem 1.6. We
only treat Theorem 1.1 and Theorem 1.4. For the details of Theorem
1.5 and Theorem 1.6, we recommend the reader to see [Fuj8].

Here, we quickly explain the main idea of the proof.

1.7 (Idea of the proof). We give a proof of Theorem 1.4 under the
assumption that ∆ is reduced and that L ∼ KX +∆.
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It is well-known that

Ep,q1 = Hq(X,ΩpX(log∆)⊗OX(−∆)) ⇒ Hp+q
c (X −∆,C)

degenerates at E1 by Deligne’s theory of mixed Hodge structures. This
implies that the natural inclusion

ι!CX−∆ ⊂ OX(−∆),

where ι : X −∆ → X, induces surjections

φi : Hi(X, ι!CX−∆) → Hi(X,OX(−∆))

for all i. On the other hand, we can easily see that

ι!CX−∆ ⊂ OX(−∆−D) ⊂ OX(−∆)

because SuppD ⊂ Supp∆. Thus φi factors as

Hi(X, ι!CX−∆) → Hi(X,OX(−∆−D)) → Hi(X,OX(−∆))

for every i. Hence

Hi(X,OX(−∆−D)) → Hi(X,OX(−∆))

is surjective for every i. By Serre duality, we obtain that

Hq(X,OX(KX +∆)) → Hq(X,OX(KX +∆+D))

is injective for every q.

In this paper, we use the notion of Du Bois complexes and Du Bois
singularities for the proof of Theorem 1.1 and Theorem 1.4. More pre-
cisely, we use the notion of Du Bois complexes for pairs, which is related
to the mixed Hodge structures on cohomology with compact support.
Consequently, the proof of Theorem 1.1 is simpler than the arguments
in [Fuj3, Section 2.3 and Section 2.4] (see also Section 3 and Section
4 in [Fuj2]). Note that we just need the E1-degeneration of Hodge to
de Rham type spectral sequences associated to the mixed Hodge struc-
tures on cohomology with compact support. We do not need the explicit
descriptions of the weight filtrations.

We strongly recommend the reader to see [Fuj8]. This paper and
[Fuj8] simplify and generalize the main part of [Fuj3, Chapter 2] (see
also [Fuj2, Sections 3, 4, and 5]). We note that the foundation of the
theory of semi-log canonical pairs discussed in [Fuj9] is composed of the
results established in this paper and [Fuj8] (see [Fuj2] and [Fuj3]).



Injectivity theorems 5

We summarize the contents of this paper. In Section 2, we collect
some basic definitions and notations. In Section 3, we briefly review
Du Bois complexes and Du Bois singularities. Section 4 is devoted to
the proof of Theorem 1.1 and Theorem 1.4. In Section 5, we collect
some miscellaneous comments on related topics, for example, Ambro’s
proof of the injectivity theorem in [Amb2], the extension theorem from
log canonical centers, etc. We also explain some interesting applications
of Theorem 1.4 due to Ambro ([Amb2]) in order to show how to use
Theorem 1.4. In Section 6, we discuss the relative version of the main
theorem: Theorem 6.1. We also discuss some applications.

Acknowledgments. The author was partially supported by Grant-
in-Aid for Young Scientists (A) 24684002 from JSPS. He would like to
thank Professors Akira Fujiki and Taro Fujisawa for answering his ques-
tions. He also would like to thank Professor Morihiko Saito. The discus-
sions with him on [FFS] helped the author remove some ambiguities in a
preliminary version of this paper. Finally, he thanks Professor Shunsuke
Takagi for useful comments.

We will work over C, the field of complex numbers, throughout this
paper. In this paper, a variety means a (not necessarily equidimensional)
reduced separated scheme of finite type over C. We will make use of the
standard notation of the minimal model program as in [Fuj7].

§2. Preliminaries

First, we briefly recall basic definitions of divisors. We note that we
have to deal with reducible varieties in this paper. For the details, see,
for example, [Har, Section 2] and [Liu, Section 7.1].

2.1. Let X be a noetherian scheme with structure sheaf OX and
let KX be the sheaf of total quotient rings of OX . Let K∗

X denote the
(multiplicative) sheaf of invertible elements in KX , and O∗

X the sheaf of
invertible elements in OX . We note that OX ⊂ KX and O∗

X ⊂ K∗
X .

2.2 (Cartier, Q-Cartier, and R-Cartier divisors). A Cartier divisor
D on X is a global section of K∗

X/O∗
X , that is, D is an element of

H0(X,K∗
X/O∗

X). A Q-Cartier divisor (resp. R-Cartier divisor) is an
element of H0(X,K∗

X/O∗
X)⊗Z Q (resp. H0(X,K∗

X/O∗
X)⊗Z R).

2.3 (Linear, Q-linear, and R-linear equivalence). Let D1 and D2 be
two R-Cartier divisors on X. Then D1 is linearly (resp. Q-linearly, or
R-linearly) equivalent to D2, denoted by D1 ∼ D2 (resp. D1 ∼Q D2, or



6 O. Fujino

D1 ∼R D2) if

D1 = D2 +

k∑
i=1

ri(fi)

such that fi ∈ Γ(X,K∗
X) and ri ∈ Z (resp. ri ∈ Q, or ri ∈ R) for every

i. We note that (fi) is a principal Cartier divisor associated to fi, that
is, the image of fi by Γ(X,K∗

X) → Γ(X,K∗
X/O∗

X).

2.4 (Supports). Let D be a Cartier divisor on X. The support of
D, denoted by SuppD, is the subset of X consisting of points x such
that a local equation for D is not in O∗

X,x. The support of D is a closed
subset of X.

2.5 (Weil divisors, Q-divisors, and R-divisors). Let X be an equidi-
mensional reduced separated scheme of finite type over C. We note that
X is not necessarily regular in codimension one. A (Weil) divisor D on
X is a finite formal sum

n∑
i=1

diDi

where Di is an irreducible reduced closed subscheme of X of pure codi-
mension one and di is an integer for every i such that Di ̸= Dj for
i ̸= j.

If di ∈ Q (resp. di ∈ R) for every i, then D is called a Q-divisor
(resp. R-divisor). We define the round-up ⌈D⌉ =

∑r
i=1⌈di⌉Di (resp. the

round-down ⌊D⌋ =
∑r
i=1⌊di⌋Di), where for every real number x, ⌈x⌉

(resp. ⌊x⌋) is the integer defined by x ≤ ⌈x⌉ < x + 1 (resp. x − 1 <
⌊x⌋ ≤ x). The fractional part {D} of D denotes D − ⌊D⌋. We call D a
boundary R-divisor if 0 ≤ di ≤ 1 for every i.

We put

D≤k =
∑
di≤k

diDi, D≥k =
∑
di≥k

diDi, D=k =
∑
di=k

diDi = k
∑
di=k

Di

and
kD =

∑
di=k

Di

for every k ∈ R. We note that D=1 = 1D.

Next, we recall the definition of simple normal crossing pairs.

Definition 2.6 (Simple normal crossing pairs). We say that the pair
(X,D) is simple normal crossing at a point a ∈ X if X has a Zariski
open neighborhood U of a that can be embedded in a smooth variety
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Y , where Y has regular system of parameters (x1, · · · , xp, y1, · · · , yr) at
a = 0 in which U is defined by a monomial equation

x1 · · ·xp = 0

and

D =
r∑
i=1

αi(yi = 0)|U , αi ∈ R.

We say that (X,D) is a simple normal crossing pair if it is simple normal
crossing at every point of X. If (X, 0) is a simple normal crossing pair,
thenX is called a simple normal crossing variety. IfX is a simple normal
crossing variety, then X has only Gorenstein singularities. Thus, it has
an invertible dualizing sheaf ωX . Therefore, we can define the canonical
divisor KX such that ωX ≃ OX(KX) (cf. [Liu, Section 7.1 Corollary
1.19]). It is a Cartier divisor on X and is well-defined up to linear
equivalence.

We note that a simple normal crossing pair is called a semi-snc pair
in [Kol, Definition 1.10].

Definition 2.7 (Strata and permissibility). Let X be a simple nor-
mal crossing variety and let X =

∪
i∈I Xi be the irreducible decomposi-

tion of X. A stratum of X is an irreducible component of Xi1 ∩· · ·∩Xik

for some {i1, · · · , ik} ⊂ I. A Cartier divisor D on X is permissible
if D contains no strata of X in its support. A finite Q-linear (resp. R-
linear) combination of permissible Cartier divisors is called a permissible
Q-divisor (resp. R-divisor) on X.

2.8. Let X be a simple normal crossing variety. Let PerDiv(X) be
the abelian group generated by permissible Cartier divisors on X and
let Weil(X) be the abelian group generated by Weil divisors on X. Then
we can define natural injective homomorphisms of abelian groups

ψ : PerDiv(X)⊗Z K → Weil(X)⊗Z K

for K = Z, Q, and R. Let ν : X̃ → X be the normalization. Then we
have the following commutative diagram.

Div(X̃)⊗Z K ∼

ψ̃

// Weil(X̃)⊗Z K

ν∗

��
PerDiv(X)⊗Z K

ψ
//

ν∗

OO

Weil(X)⊗Z K
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Note that Div(X̃) is the abelian group generated by Cartier divisors on

X̃ and that ψ̃ is an isomorphism since X̃ is smooth.
By ψ, every permissible divisor (resp. Q-divisor or R-divisor) can be

considered as a Weil divisor (resp. Q-divisor or R-divisor). Therefore,
various operations, for example, ⌊D⌋, {D}, and so on, make sense for a
permissible R-divisor D on X.

Definition 2.9 (Simple normal crossing divisors). Let X be a sim-
ple normal crossing variety and let D be a Cartier divisor on X. If
(X,D) is a simple normal crossing pair and D is reduced, then D is
called a simple normal crossing divisor on X.

Remark 2.10. Let X be a simple normal crossing variety and let
D be a K-divisor on X where K = Q or R. If SuppD is a simple normal
crossing divisor on X and D is K-Cartier, then ⌊D⌋ and ⌈D⌉ (resp. {D},
D<1, and so on) are Cartier (resp. K-Cartier) divisors on X (cf. [BiVP,
Section 8]).

The following lemma is easy but important.

Lemma 2.11. Let X be a simple normal crossing variety and let B
be a permissible R-divisor on X such that ⌊B⌋ = 0. Let A be a Cartier
divisor on X. Assume that A ∼R B. Then there exists a permissible
Q-divisor C on X such that A ∼Q C, ⌊C⌋ = 0, and SuppC = SuppB.

Proof. We can write B = A +
∑k
i=1 ri(fi), where fi ∈ Γ(X,K∗

X)
and ri ∈ R for every i. Let P ∈ X be a scheme theoretic point corre-
sponding to some stratum of X. We consider the following affine map

Kk → H0(XP ,K∗
XP
/O∗

XP
)⊗Z K

induced by (a1, · · · , ak) 7→ A+
∑k
i=1 ai(fi), where XP = SpecOX,P and

K = Q or R. Then we can check that

P = {(a1, · · · , ak) ∈ Rk |A+
∑
i

ai(fi) is permissible} ⊂ Rk

is an affine subspace of Rk defined over Q. Therefore, we see that

S = {(a1, · · · , ak) ∈ P |Supp(A+
∑
i

ai(fi)) ⊂ SuppB} ⊂ P

is an affine subspace of Rk defined over Q. Since (r1, · · · , rk) ∈ S, we
know that S ≠ ∅. We take a point (s1, · · · , sk) ∈ S∩Qk which is general

in S and sufficiently close to (r1, · · · , rk) and put C = A+
∑k
i=1 si(fi).

By construction, C is a permissible Q-divisor such that C ∼Q A, ⌊C⌋ =
0, and SuppC = SuppB. Q.E.D.
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§3. A quick review of Du Bois complexes

In this section, we briefly review Du Bois complexes and Du Bois
singularities. For the details, see, for example, [DuB], [Ste], [GNPP,
Exposé V], [Sai], [PS], [Kov2], and [Kol, Chapter 6].

3.1 (Du Bois complexes). Let X be an algebraic variety. Then we
can associate a filtered complex (Ω•

X , F ) called the Du Bois complex of
X in a suitable derived category Db

diff,coh(X) (see [DuB, 1. Complexes

filtrés d’opérateurs différentiels d’ordre ≤ 1]). We put

Ω0
X = Gr0FΩ

•
X .

There is a natural map (Ω•
X , σ) → (Ω•

X , F ). It induces OX → Ω0
X .

If OX → Ω0
X is a quasi-isomorphism, then X is said to have Du Bois

singularities. We sometimes simply say that X is Du Bois. Let Σ be
a reduced closed subvariety of X. Then there is a natural map ρ :
(Ω•

X , F ) → (Ω•
Σ, F ) in D

b
diff,coh(X). By taking the cone of ρ with a shift

by one, we obtain a filtered complex (Ω•
X,Σ, F ) in Db

diff,coh(X). Note

that (Ω•
X,Σ, F ) was essentially introduced by Steenbrink in [Ste, Section

3]. We put
Ω0
X,Σ = Gr0FΩ

•
X,Σ.

Then there are a map JΣ → Ω0
X,Σ, where JΣ is the defining ideal sheaf

of Σ on X, and the following commutative diagram

JΣ
//

��

OX
//

��

OΣ
+1 //

��
Ω0
X,Σ

// Ω0
X

// Ω0
Σ

+1 //

in the derived category Db
coh(X) (see also Remark 3.3 below).

By using the theory of mixed Hodge structures on cohomology with
compact support, we have the following theorem.

Theorem 3.2. Let X be a variety and let Σ be a reduced closed
subvariety of X. We put j : X − Σ ↪→ X. Then we have the following
properties.

(1) The complex (Ω•
X,Σ)

an is a resolution of j!CXan−Σan .
(2) If in addition X is proper, then the spectral sequence

Ep,q1 = Hq(X,ΩpX,Σ) ⇒ Hp+q(Xan, j!CXan−Σan)

degenerates at E1, where ΩpX,Σ = GrpFΩ
•
X,Σ[p].
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From now on, we will simply writeX (resp.OX and so on) to express
Xan (resp. OXan and so on) if there is no risk of confusion.

Proof. Here, we use the formulation of [PS, §3.3 and §3.4]. We
assume that X is proper. We take cubical hyperresolutions πX : X• →
X and πΣ : Σ• → Σ fitting in a commutative diagram.

Σ•

πΣ

��

// X•

πX

��
Σ

ι
// X

Let Hdg(X) := RπX∗Hdg•(X•) be a mixed Hodge complex of sheaves
on X giving the natural mixed Hodge structure on H•(X,Z) (see [PS,
Definition 5.32 and Theorem 5.33]). We can obtain a mixed Hodge com-
plex of sheaves Hdg(Σ) := RπΣ∗Hdg•(Σ•) on Σ analogously. Roughly
speaking, by forgetting the weight filtration and the Q-structure of
Hdg(X) and considering it in Db

diff,coh(X), we obtain the Du Bois com-

plex (Ω•
X , F ) of X (see [GNPP, Exposé V (3.3) Théoréme]). We can

also obtain the Du Bois complex (Ω•
Σ, F ) of Σ analogously. By taking

the mixed cone of Hdg(X) → ι∗Hdg(Σ) with a shift by one, we obtain a
mixed Hodge complex of sheaves on X giving the natural mixed Hodge
structure onH•

c (X−Σ,Z) (see [PS, 5.5 Relative Cohomology]). Roughly
speaking, by forgetting the weight filtration and the Q-structure, we ob-
tain the desired filtered complex (Ω•

X,Σ, F ) in Db
diff,coh(X). When X

is not proper, we take completions of X and Σ of X and Σ and apply
the above arguments to X and Σ. Then we restrict everything to X.
The properties (1) and (2) obviously hold by the above description of
(Ω•

X,Σ, F ). By the above construction and description of (Ω•
X,Σ, F ), we

know that the map JΣ → Ω0
X,Σ in Db

coh(X) is induced by natural maps
of complexes. Q.E.D.

Remark 3.3. Note that the Du Bois complex Ω•
X is nothing but

the filtered complex RπX∗(Ω
•
X•
, F ). For the details, see [GNPP, Exposé

V (3.3) Théoréme and (3.5) Définition]. Therefore, the Du Bois complex
of the pair (X,Σ) is given by

Cone•(RπX∗(Ω
•
X•
, F ) → ι∗RπΣ∗(Ω

•
Σ•
, F ))[−1].

By the construction of Ω•
X , there is a natural map aX : OX → Ω•

X

which induces OX → Ω0
X in Db

coh(X). Moreover, the composition of
aanX : OXan → (Ω•

X)an with the natural inclusion CXan ⊂ OXan induces

a quasi-isomorphism CXan
≃−→ (Ω•

X)an. We have a natural map aΣ :
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OΣ → Ω•
Σ with the same properties as aX and the following commutative

diagram.

OX
//

aX

��

OΣ

aΣ

��
Ω•
X

// Ω•
Σ

Therefore, we have a natural map b : JΣ → Ω•
X,Σ such that b induces

JΣ → Ω0
X,Σ in Db

coh(X) and that the composition of ban : (JΣ)
an →

(Ω•
X,Σ)

an with the natural inclusion j!CXan−Σan ⊂ (JΣ)
an induces a

quasi-isomorphism j!CXan−Σan
≃−→ (Ω•

X,Σ)
an. We need the weight fil-

tration and the Q-structure in order to prove the E1-degeneration of
Hodge to de Rham type spectral sequence. We used the framework of
[PS, §3.3 and §3.4] because we had to check that various diagrams related
to comparison morphisms are commutative (see [PS, Remark 3.23]) for
the proof of Theorem 3.2 (2) and so on.

Let us recall the definition of Du Bois pairs by [Kov2, Definition
3.13].

Definition 3.4 (Du Bois pairs). With the notation of 3.1 and The-
orem 3.2, if the map JΣ → Ω0

X,Σ is a quasi-isomorphism, then the pair
(X,Σ) is called a Du Bois pair.

By the definitions, we can easily check the following useful proposi-
tion.

Proposition 3.5. With the notation of 3.1 and Theorem 3.2, we
assume that both X and Σ are Du Bois. Then the pair (X,Σ) is a Du
Bois pair, that is, JΣ → Ω0

X,Σ is a quasi-isomorphism.

Let us recall the following well-known results on Du Bois singulari-
ties.

Theorem 3.6. Let X be a normal algebraic variety with only quo-
tient singularities. Then X has only rational singularities. In particular,
X is Du Bois.

Theorem 3.6 follows from, for example, [DuB, 5.2. Théorème], and
[Kov1]. Lemma 3.7 will play an important role in the proof of Theorem
1.4.

Lemma 3.7. Let X be a variety with closed subvarieties X1 and
X2 such that X = X1 ∪X2. Assume that X1, X2, and X1 ∩X2 are Du
Bois. Note that, in particular, we assume that X1∩X2 is reduced. Then
X is Du Bois.
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For the proof of Lemma 3.7, see, for example, [Sch, Lemma 3.4]. We
close this section with a remark on Du Bois singularities.

Remark 3.8 (Du Bois singularities and log canonical singularities).
Kollár and Kovács established that log canonical singularities are Du
Bois in [KolK]. Moreover, semi-log canonical singularities are Du Bois
(see [Kol, Corollary 6.32]). We note that the arguments in [KolK] heavily
depend on the recent developments of the minimal model program by
Birkar–Cascini–Hacon–McKernan and the results by Ambro and Fujino
(see, for example, [Amb1], [Fuj3], [Fuj6], and [Fuj7]). We need a special
case of Theorem 1.6 for the arguments in [KolK]. In this paper, we will
just use Du Bois complexes for cyclic covers of simple normal crossing
pairs. Our proof in Section 4 is independent of the deep result in [KolK].

The fact that (semi-)log canonical singularities are Du Bois does
not seem to be so useful when we consider various Kodaira-type vanish-
ing theorems for (semi-)log canonical pairs. This is because (semi-)log
canonical singularities are not necessarily Cohen–Macaulay. The ap-
proach to various Kodaira-type vanishing theorems for semi-log canon-
ical pairs in [Fuj9] is based on the vanishing theorem in [Fuj8] (see
Theorem 1.6, [Fuj2], and [Fuj3]) and the theory of partial resolution
of singularities for reducible varieties (see [BiVP]).

§4. Proof of theorems

In this section, we prove Theorem 1.1 and Theorem 1.4.

Proof of Theorem 1.4. Without loss of generality, we may assume
that X is connected. We set S = ⌊∆⌋ and B = {∆}. By perturbing
B, we may assume that B is a Q-divisor (cf. Lemma 2.11). We set
M = OX(L−KX−S). Let N be the smallest positive integer such that
NL ∼ N(KX + S + B). In particular, NB is an integral Weil divisor.
We take the N -fold cyclic cover

π′ : Y ′ = SpecX

N−1⊕
i=0

M−i → X

associated to the sectionNB ∈ |MN |. More precisely, let s ∈ H0(X,MN )
be a section whose zero divisor is NB. Then the dual of s : OX → MN

defines an OX -algebra structure on
⊕N−1

i=0 M−i. Let Y → Y ′ be the
normalization and let π : Y → X be the composition morphism. It is
well-known that

Y = SpecX

N−1⊕
i=0

M−i(⌊iB⌋).
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For the details, see [EV, 3.5. Cyclic covers]. Note that Y has only quo-
tient singularities. We set T = π∗S. Let T =

∑
i∈I Ti be the irreducible

decomposition. Then every irreducible component of Ti1 ∩ · · · ∩ Tik has
only quotient singularities for every {i1, · · · , ik} ⊂ I. Hence it is easy to
see that both Y and T have only Du Bois singularities by Theorem 3.6
and Lemma 3.7 (see also [Ish]). Therefore, the pair (Y, T ) is a Du Bois
pair by Proposition 3.5. This means that OY (−T ) → Ω0

Y,T is a quasi-
isomorphism. See also [FFS, 3.4]. We note that T is Cartier. Hence
OY (−T ) is the defining ideal sheaf of T on Y . The E1-degeneration of

Ep,q1 = Hq(Y,ΩpY,T ) ⇒ Hp+q(Y, j!CY−T )

implies that the homomorphism

Hq(Y, j!CY−T ) → Hq(Y,OY (−T ))

induced by the natural inclusion

j!CY−T ⊂ OY (−T )

is surjective for every q (see Remark 3.3). By taking a suitable direct
summand

C ⊂ M−1(−S)
of

π∗(j!CY−T ) ⊂ π∗OY (−T ),
we obtain a surjection

Hq(X, C) → Hq(X,M−1(−S))

induced by the natural inclusion C ⊂ M−1(−S) for every q. We can
check the following simple property by examining the monodromy action
of the Galois group Z/NZ of π : Y → X on C around SuppB.

Lemma 4.1 (cf. [KolM, Corollary 2.54]). Let U ⊂ X be a connected
open set such that U ∩ Supp∆ ̸= ∅. Then H0(U, C|U ) = 0.

Proof. If U ∩ SuppB ̸= ∅, then H0(U, C|U ) = 0 since the mon-
odromy action on C|U\SuppB around SuppB is nontrivial. If U∩SuppS ̸=
∅, then H0(U, C|U ) = 0 since C is a direct summand of π∗(j!CY−T ) and
T = π∗S. Q.E.D.

This property is utilized via the following fact. The proof is obvious.

Lemma 4.2 (cf. [KolM, Lemma 2.55]). Let F be a sheaf of Abelian
groups on a topological space X and F1, F2 ⊂ F subsheaves. Let Z ⊂ X
be a closed subset. Assume that
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(1) F2|X−Z = F |X−Z , and
(2) if U is connected, open and U ∩Z ̸= ∅, then H0(U,F1|U) = 0.

Then F1 is a subsheaf of F2.

As a corollary, we obtain:

Corollary 4.3 (cf. [KolM, Corollary 2.56]). Let M ⊂ M−1(−S)
be a subsheaf such that M |X−Supp∆ = M−1(−S)|X−Supp∆. Then the
injection

C → M−1(−S)

factors as
C →M → M−1(−S).

Therefore,
Hq(X,M) → Hq(X,M−1(−S))

is surjective for every q.

Proof. The first part is clear from Lemma 4.1 and Lemma 4.2. This
implies that we have maps

Hq(X, C) → Hq(X,M) → Hq(X,M−1(−S)).

As we saw above, the composition is surjective. Hence so is the map on
the right. Q.E.D.

Therefore, Hq(X,M−1(−S−D)) → Hq(X,M−1(−S)) is surjective
for every q. By Serre duality, we obtain that

Hq(X,OX(KX)⊗M(S)) → Hq(X,OX(KX)⊗M(S +D))

is injective for every q. This means that

Hq(X,OX(L)) → Hq(X,OX(L+D))

is injective for every q. Q.E.D.

Let us prove Theorem 1.1, the main theorem of this paper. The proof
of Theorem 1.4 works for Theorem 1.1 with some minor modifications.

Proof of Theorem 1.1. Without loss of generality, we may assume
that X is connected. We can take an effective Cartier divisor D′ on
X such that D′ − D is effective and SuppD′ ⊂ Supp∆. Therefore, by
replacing D with D′, we may assume that D is a Cartier divisor. We set
S = ⌊∆⌋ and B = {∆}. By Lemma 2.11, we may assume that B is a Q-
divisor. We set M = OX(L−KX − S). Let N be the smallest positive
integer such that NL ∼ N(KX + S + B). We define an OX -algebra
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structure of
⊕N−1

i=0 M−i(⌊iB⌋) by s ∈ H0(X,MN ) with (s = 0) = NB.
We set

π : Y = SpecX

N−1⊕
i=0

M−i(⌊iB⌋) → X

and T = π∗S. Let Y =
∑
j∈J Yj be the irreducible decomposition. Then

every irreducible component of Yj1 ∩ · · · ∩ Yjl has only quotient singu-
larities for every {j1, · · · , jl} ⊂ J . Let T =

∑
i∈I Ti be the irreducible

decomposition. Then every irreducible component of Ti1 ∩ · · · ∩ Tik has
only quotient singularities for every {i1, · · · , ik} ⊂ I. Hence it is easy to
see that both Y and T are Du Bois by Theorem 3.6 and Lemma 3.7 (see
also [Ish]). Therefore, the pair (Y, T ) is a Du Bois pair by Proposition
3.5. This means that OY (−T ) → Ω0

Y,T is a quasi-isomorphism. See also
[FFS, 3.4]. We note that T is Cartier. Hence OY (−T ) is the defining
ideal sheaf of T on Y . The E1-degeneration of

Ep,q1 = Hq(Y,ΩpY,T ) ⇒ Hp+q(Y, j!CY−T )

implies that the homomorphism

Hq(Y, j!CY−T ) → Hq(Y,OY (−T ))

induced by the natural inclusion

j!CY−T ⊂ OY (−T )

is surjective for every q (see Remark 3.3). By taking a suitable direct
summand

C ⊂ M−1(−S)
of

π∗(j!CY−T ) ⊂ π∗OY (−T ),
we obtain a surjection

Hq(X, C) → Hq(X,M−1(−S))

induced by the natural inclusion C ⊂ M−1(−S) for every q. It is easy
to see that Lemma 4.1 holds for this new setting. Hence Corollary 4.3
also holds without any modifications. Therefore,

Hq(X,M−1(−S −D)) → Hq(X,M−1(−S))

is surjective for every q. By Serre duality, we obtain that

Hq(X,OX(L)) → Hq(X,OX(L+D))

is injective for every q. Q.E.D.
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§5. Miscellaneous comments

In this section, we collect some miscellaneous comments on related
topics.

5.1. Ambro’s injectivity theorems

Let X be a smooth variety and let Σ be a simple normal crossing di-
visor on X. In order to prove the main theorem of [Amb2] (see Theorem
1.4), Ambro used the complex (Ω•

X(∗Σ), F ) and the natural inclusion

(Ω•
X(log Σ), F ) ⊂ (Ω•

X(∗Σ), F ).

Hence the arguments in [Amb2] are different from the proof of Theorem
1.4 given in Section 4. We do not know how to generalize his approach
to the case when X is a simple normal crossing variety and Σ is a simple
normal crossing divisor on X.

5.2. Extension theorem from log canonical centers

The following result is a slight generalization of [Amb2, Theorem
6.4]. Note that [FG, Proposition 5.12], which is closely related to the
abundance conjecture, is a special case of Theorem 5.2.1.

Theorem 5.2.1 (Extension theorem). Let (X,∆) be a proper log
canonical pair. Let L be a Cartier divisor on X such that H = L−(KX+
∆) is a semi-ample R-divisor on X. Let D be an effective R-divisor on
X such that D ∼R tH for some positive real number t and let Z be the
union of the log canonical centers of (X,∆) contained in SuppD. Then
the natural restriction map

H0(X,OX(L)) → H0(Z,OZ(L))

is surjective.

Proof. Let f : Y → X be a birational morphism from a smooth
projective variety Y such that Exc(f) ∪ Suppf−1

∗ ∆ is a simple normal
crossing divisor on Y . Then we can write

KY +∆Y = f∗(KX +∆) + E

where E is an effective f -exceptional Cartier divisor and ∆Y is a bound-
ary R-divisor. Without loss of generality, we may further assume that
f−1(Z) is a divisor on Y . Let W be the union of all the log canonical
centers of (Y,∆Y ) whose images by f are contained in Z. Note that W
is a divisor on Y such that W ≤ ⌊∆Y ⌋. We consider the short exact
sequence

0 → OY (E −W ) → OY (E) → OW (E) → 0.
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Since
E −W = KY + (∆Y −W )− f∗(KX +∆),

there are no associated primes of R1f∗OY (E − W ) in Z = f(W ) by
[Fuj7, Theorem 6.3 (i)]. Therefore, the connecting homomorphism

δ : f∗OW (E) → R1f∗OY (E −W )

is zero. Hence we obtain

OX ≃ f∗OY (E) → f∗OW (E)

is surjective. This implies that f∗OW (E) ≃ OZ . Since H
0(Y,OY (f

∗L+
E)) ≃ H0(X,OX(L)) and H0(W,OW (f∗L+ E)) ≃ H0(Z,OZ(L)), it is
sufficient to prove that the natural restriction map

H0(Y,OY (f
∗L+ E)) → H0(W,OW (f∗L+ E))

is surjective. By assumption, there is a morphism g : X → V such that
V is a normal projective variety, g∗OX ≃ OV , and H ∼R g

∗A, where A
is an ample R-divisor on V . We note that

(f∗L+ E −W )− (KY +∆Y −W ) = f∗(L− (KX +∆))

∼R f
∗g∗A.

By the assumption on D and the construction of

Y
f−→ X

g−→ V,

we can find an effective ample Cartier divisor D1 and an effective ample
R-divisor D2 on V such that D1 + D2 ∼R sA for some positive real
number s, W ≤ f∗g∗D1, and that Suppf∗g∗(D1 +D2) contains no log
canonical centers of (Y,∆Y −W ). Hence

Hi(Y,OY (f
∗L+ E −W )) → Hi(Y,OY (f

∗L+ E))

is injective for every i (see [Fuj7, Theorem 6.1]). See also Theorem 1.5.
In particular,

H1(Y,OY (f
∗L+ E −W )) → H1(Y,OY (f

∗L+ E))

is injective. Thus we obtain that

H0(Y,OY (f
∗L+ E)) → H0(W,OW (f∗L+ E))

is surjective. Therefore, we obtain the desired surjection. Q.E.D.
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The proof of Theorem 5.2.1 is essentially the same as that of [FG,
Proposition 5.12] and is different from the arguments in [Amb2, Section
6]. The framework discussed in [Fuj7] is sufficient for Theorem 5.2.1.
We recommend the reader to compare the above proof with the proof
of [Amb2, Theorem 6.4], which is shorter than our proof and is based
on [Amb2, Theorem 6.2]. We will present the original proof of The-
orem 5.2.1 as an application of Theorem 5.3.3 below for the reader’s
convenience. For the relative version of Theorem 5.2.1, see Theorem 6.4
below.

5.3. The maximal non-lc ideal sheaves

By combining Theorem 1.4 with the notion of maximal non-lc ideal
sheaves, we have some interesting results due to Ambro ([Amb2]). Note
that the ideal sheaf defined in [Amb2, Definition 4.3] is nothing but the
maximal non-lc ideal sheaf introduced in [FST, Definition 7.1] (see also
[Fuj7, Remark 7.6]).

Let us recall the definition of maximal non-lc ideal sheaves.

Definition 5.3.1 (Maximal non-lc ideal sheaves). Let X be a nor-
mal variety and let ∆ be an R-divisor on X such that KX + ∆ is R-
Cartier. Let f : Y → X be a resolution with

KY +∆Y = f∗(KX +∆)

such that Supp∆Y is a simple normal crossing divisor. Then we put

J ′(X,∆) = f∗OY (⌈KY − f∗(KX +∆) + εF ⌉)

for 0 < ε ≪ 1, where F = Supp∆≥1
Y . We call J ′(X,∆) the maximal

non-lc ideal sheaf associated to (X,∆). It is easy to see that

J ′(X,∆) = f∗OY (−⌊∆Y ⌋+
∞∑
k=1

k∆Y ).

Note that there is a positive integer k0 such that k∆Y = 0 for every
k > k0. Therefore,

∞∑
k=1

k∆Y = 1∆Y + 2∆Y + · · ·+ k0∆Y .

We also note that

JNLC(X,∆) = f∗OY (−⌊∆Y ⌋+∆=1
Y )
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is the (minimal) non-lc ideal sheaf associated to (X,∆) and that

J (X,∆) = f∗OY (−⌊∆Y ⌋)

is the multiplier ideal sheaf associated to (X,∆). It is obvious that

J (X,∆) ⊂ JNLC(X,∆) ⊂ J ′(X,∆).

For the details of J ′(X,∆), see [FST] (see also [Fuj4]).

Remark 5.3.2 (Non-F-pure ideals). A positive characteristic ana-
log of J ′(X,∆), which we call the non-F-pure ideal associated to (X,∆)
and is denoted by σ(X,∆), introduced in [FST] is now becoming a very
important tool for higher-dimensional algebraic geometry in positive
characteristic.

Theorem 5.3.3 is a nontrivial application of Theorem 1.4. For the
relative version of Theorem 5.3.3, see Theorem 6.2 below.

Theorem 5.3.3 ([Amb2, Theorem 6.2]). Let X be a proper normal
variety and let ∆ be an effective R-divisor on X such that KX + ∆ is
R-Cartier. Let L be a Cartier divisor on X such that L− (KX +∆) is
semi-ample. Let J ′(X,∆) be the maximal non-lc ideal sheaf associated
to (X,∆) and let Y be the closed subscheme defined by J ′(X,∆). Then
we have a short exact sequence

0 → H0(X,J ′(X,∆)⊗OX(L))

→ H0(X,OX(L)) → H0(Y,OY (L)) → 0.

We describe the proof of Theorem 5.3.3 for the reader’s convenience
(see also [Amb2]).

Proof. We take an effective general R-divisor D with small coeffi-
cients such that L− (KX +∆) ∼R D. By replacing ∆ with ∆ +D, we
may assume that L ∼R KX +∆. Let Z → X be a resolution such that
KZ + ∆Z = f∗(KX + ∆). We may assume that Supp∆Z is a simple
normal crossing divisor. We note that

−⌊∆Z⌋+
∞∑
k=1

k∆Z = (KZ + {∆Z}+
∞∑
k=1

k∆Z)− f∗(KX +∆).

We write

−⌊∆Z⌋+
∞∑
k=1

k∆Z = P −N
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where P and N are effective and have no common irreducible compo-
nents. Note that P is f -exceptional since ∆ is effective. Therefore,

f∗L+ P −N ∼R KZ + {∆Z}+
∞∑
k=1

k∆Z .

Thus

Hi(Z,OZ(f
∗L+ P −N)) → Hi(Z,OZ(f

∗L+ P ))

is injective for every i by Theorem 1.4. This is because

SuppN ⊂ Supp({∆Z}+
∞∑
k=1

k∆Z).

We note that

f∗OZ(f
∗L+ P −N) ≃ J ′(X,∆)⊗OX(L)

and

f∗OZ(f
∗L+ P ) ≃ OX(L).

By the following commutative diagram:

H1(Z,OZ(f
∗L+ P −N))

b // H1(Z,OZ(f
∗L+ P ))

H1(X,J ′(X,∆)⊗OX(L))
d

//

a

OO

H1(X,OX(L)),

c

OO

we obtain that

H1(X,J ′(X,∆)⊗OX(L)) → H1(X,OX(L))

is injective. Note that a and c are injective by the Leray spectral se-
quences and that b is injective by the above argument. Hence the natural
restriction map

H0(X,OX(L)) → H0(Y,OY (L))

is surjective. We obtain the desired short exact sequence. Q.E.D.

Theorem 5.3.3 shows that J ′(X,∆) is useful for some applications.
We give the original proof of Theorem 5.2.1 as an application of Theorem
5.3.3.
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Proof of Theorem 5.2.1. Let ε be a small positive number. Then
it is easy to see that J ′(X,∆+εD) = IZ , where IZ is the defining ideal
sheaf of Z. Since L − (KX +∆ + εD) ∼R (1 − εt)H is semi-ample, we
have the following short exact sequence

0 → H0(X,J ′(X,∆+ εD)⊗OX(L)) → H0(X,OX(L))

→ H0(Z,OZ(L)) → 0

by Theorem 5.3.3. In particular, the natural restriction map

H0(X,OX(L)) → H0(Z,OZ(L))

is surjective. Q.E.D.

The following theorem is Ambro’s inversion of adjunction. For the
relative version of Theorem 5.3.4, see Theorem 6.3 below.

Theorem 5.3.4 ([Amb2, Theorem 6.3]). Let X be a proper normal
irreducible variety and let ∆ be an effective R-divisor on X such that
−(KX +∆) is semi-ample. Suppose that the non-lc locus Nlc(X,∆) of
(X,∆) is not empty, that is, (X,∆) is not log canonical. Then Nlc(X,∆)
is connected and intersects every log canonical center of (X,∆).

We describe Ambro’s proof of Theorem 5.3.4 based on Theorem 1.4
in order to show how to use Theorem 1.4.

Proof. We take an effective general R-divisor D with small coeffi-
cients such that D ∼R −(KX+∆). By replacing ∆ with ∆+D, we may
assume that KX +∆ ∼R 0. We set Y = Nlc(X,∆). By Theorem 5.3.3,
we have the following short exact sequence:

0 → H0(X,J ′(X,∆)) → H0(X,OX) → H0(Y,OY ) → 0.

This implies that H0(Y,OY ) ≃ C. Hence Y is connected. Let C be a
log canonical center of (X,∆). Let f : Z → X be a resolution such that
Exc(f)∪Suppf−1

∗ ∆ is a simple normal crossing divisor and that f−1(C)
is a divisor. We set KZ + ∆Z = f∗(KX + ∆). Let W be the union of
all the irreducible components of ∆=1

Z whose images by f are contained
in C. It is obvious that f(W ) = C. By construction, we have

−⌊∆Z⌋+
∞∑
k=1

k∆Z −W ∼R KZ + {∆Z}+
∞∑
k=1

k∆Z −W

since KZ +∆Z ∼R 0. We set

−⌊∆Z⌋+
∞∑
k=1

k∆Z = P −N
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where P and N are effective and have no common irreducible compo-
nents. Note that P is f -exceptional. By Theorem 1.4,

Hi(Z,OZ(P −N −W )) → Hi(Z,OZ(P −W ))

is injective for every i because SuppN ⊂ Supp({∆Z}+
∑∞
k=1

k∆Z −W ).
Thus the natural restriction map

H0(Z,OZ(P −W )) → H0(N,ON (P −W ))

is surjective. Since H0(Z,OZ(P −W )) = 0, we obtain H0(N,ON (P −
W )) = 0. On the other hand,

H0(N,ON (P −W )) ⊂ H0(N,ON (P )) ̸= 0

implies N ∩W ̸= ∅. Thus we obtain C ∩ Y ̸= ∅. Q.E.D.

Remark 5.3.5. If X is projective in Theorem 5.3.4, then we can
prove Theorem 5.3.4 without using Theorem 5.3.3. We give a sketch of
the proof. We may assume that KX + ∆ ∼R 0. Let f : Y → X be
a dlt blow-up with KY + ∆Y = f∗(KX + ∆). We may assume that

a(E,X,∆) ≤ −1 for every f -exceptional divisor and that (Y,∆≤1
Y + S)

is a dlt pair where S = Supp∆>1
Y . We run a minimal model program

with respect to KY +∆≤1
Y +S. Note that KY +∆≤1

Y +S ∼R S−∆>1
Y ̸= 0

is not pseudo-effective. By the similar argument to the proof of [Fuj1,
Proposition 2.1] (cf. [Fuj3, Theorem 3.47]), we can recover Theorem 5.3.4
when X is projective. We leave the details as exercises for the interested
reader.

§6. Relative version

In this section, we discuss the relative version of Theorem 1.1 and
some related results.

Theorem 6.1 (Relative injectivity theorem). Let X be a simple
normal crossing variety and let ∆ be an R-Cartier R-divisor on X such
that Supp∆ is a simple normal crossing divisor on X and that ∆ is a
boundary R-divisor on X. Let π : X → V be a proper morphism between
algebraic varieties and let L be a Cartier divisor on X and let D be
an effective Weil divisor on X whose support is contained in Supp∆.
Assume that L ∼R,π KX + ∆, that is, there is an R-Cartier divisor B
on V such that L ∼R KX +∆+ π∗B. Then the natural homomorphism

Rqπ∗OX(L) → Rqπ∗OX(L+D)

induced by the inclusion OX → OX(D) is injective for every q.
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By using [BiVP] (see [Fuj8, Lemma 3.6]), we can reduce Theorem
6.1 to Theorem 1.1.

Proof. By shrinking V , we may assume that V is affine and L ∼R
KX+∆. Without loss of generality, we may assume that X is connected.
Let V be a projective compactification of V . By [Fuj8, Lemma 3.6], we
can compactify π : X → V to π : X → V . By the same argument as
in Step 2 in the proof of [Fuj8, Theorem 3.7 (i)], we may assume that
there is a Cartier divisor L on X such that L|X = L. We can write

L− (KX +∆) =
∑
i

bi(fi)

where bi is a real number and fi ∈ Γ(X,K∗
X) for every i. We put

E =
∑
i

bi(fi)− (L− (KX +∆)).

Then we have
L+ ⌈E⌉ ∼R KX +∆+ {−E}.

By the above construction, it is obvious that SuppE ⊂ X \ X. Let D
be the closure of D in X. It is sufficient to prove that the map

φq : Rqπ∗OX(L+ ⌈E⌉) → Rqπ∗OX(L+ ⌈E⌉+D)

induced by the natural inclusion OX → OX(D) is injective for every q.
Suppose that φq is not injective for some q. Let A be a sufficiently ample
general Cartier divisor on V such that H0(V ,Kerφq ⊗OV (A)) ̸= 0. In
this case, the map

H0(V ,Rqπ∗OX(L+ ⌈E⌉)⊗OV (A))

→ H0(V ,Rqπ∗OX(L+ ⌈E⌉+D)⊗OV (A))

induced by φq is not injective. Since A is sufficiently ample, this implies
that

Hq(X,OX(L+ ⌈E⌉+ π∗A))

→ Hq(X,OX(L+ ⌈E⌉+ π∗A+D))

is not injective. Since

L+ ⌈E⌉+ π∗A ∼R KX +∆+ {−E}+ π∗A,

it contradicts Theorem 1.1. Hence φq is injective for every q. Q.E.D.
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The following theorem is the relative version of Theorem 5.3.3. It is
obvious by the proof of Theorem 5.3.3 and Theorem 6.1.

Theorem 6.2. Let X be a normal variety and let ∆ be an effective
R-divisor on X such that KX + ∆ is R-Cartier. Let π : X → V be
a proper morphism between algebraic varieties and let L be a Cartier
divisor on X such that L−(KX+∆) is semi-ample over V . Let J ′(X,∆)
be the maximal non-lc ideal sheaf associated to (X,∆) and let Y be
the closed subscheme defined by J ′(X,∆). Then we have a short exact
sequence

0 → π∗(J ′(X,∆)⊗OX(L)) → π∗OX(L) → π∗OY (L) → 0.

Proof. It is sufficient to prove that π∗OX(L) → π∗OY (L) is sur-
jective. Since the problem is local, we may assume that V is affine
by shrinking V . Then the proof of Theorem 5.3.3 works without any
modifications if we use Theorem 6.1. Q.E.D.

The relative version of Theorem 5.3.4 is:

Theorem 6.3. Let X be a normal variety and let π : X → V be a
proper morphism between algebraic varieties with π∗OX ≃ OV . Let ∆
be an effective R-divisor on X such that −(KX +∆) is semi-ample over
V . Let x be a closed point of V . Suppose that

Nlc(X,∆) ∩ π−1(x) ̸= ∅.

Then Nlc(X,∆)∩π−1(x) is connected and intersects every log canonical
center C of (X,∆) with C ∩ π−1(x) ̸= ∅.

Proof. By shrinking V , we may assume that V is affine. As in
the proof of Theorem 5.3.4, we may assume that KX + ∆ ∼R 0. From
now on, we use the same notation as in the proof of Theorem 5.3.4.
Since OV ≃ π∗OX → π∗OY is surjective by Theorem 6.2, Y ∩ π−1(x) is
connected. By Theorem 6.1,

Ri(π ◦ f)∗OZ(P −N −W ) → Ri(π ◦ f)∗OZ(P −W )

is injective for every i. Thus the natural restriction map

(π ◦ f)∗OZ(P −W ) → (π ◦ f)∗ON (P −W )

is surjective. Since (π ◦ f)∗OZ(P −W ) ⊂ Ix ⊊ OV , where Ix is the
defining ideal sheaf of x on V , we obtain

(π ◦ f)∗ON (P −W ) ⊊ (π ◦ f)∗ON ⊂ (π ◦ f)∗ON (P )

at x. This implies N∩W ∩(π◦f)−1(x) ̸= ∅. Therefore, C∩Y ∩π−1(x) ̸=
∅. Q.E.D.
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Theorem 6.4, which is the relative version of Theorem 5.2.1, directly
follows from Theorem 6.2. See the proof of Theorem 5.2.1 by Theorem
5.3.3 in Subsection 5.3.

Theorem 6.4 (Relative extension theorem). Let (X,∆) be a log
canonical pair and let π : X → V be a proper morphism. Let L be a
Cartier divisor on X such that H = L− (KX+∆) is a π-semi-ample R-
divisor on X. Let D be an effective R-divisor on X such that D ∼R,π tH,
that is, there is an R-Cartier divisor B on V with D ∼R tH + π∗B, for
some positive real number t and let Z be the union of the log canonical
centers of (X,∆) contained in SuppD. Then the natural restriction map

π∗OX(L) → π∗OZ(L)

is surjective.
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[KolK] J. Kollár, S. Kovács, Log canonical singularities are Du Bois, J. Amer.
Math. Soc. 23 (2010), no. 3, 791–813.

[KolM] J. Kollár, S. Mori, Birational geometry of algebraic varieties, With
the collaboration of C. H. Clemens and A. Corti. Translated from
the 1998 Japanese original. Cambridge Tracts in Mathematics, 134.
Cambridge University Press, Cambridge, 1998.
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