A MEMORANDUM ON THE INVARIANCE OF PLURIGENERA (PRIVATE NOTE)

OSAMU FUJINO

Proposition 1. Let X be a complex manifold. Let p, q be smooth nonnegative functions on X such that $q \neq 0$ almost everywhere. Assume that

$$\operatorname{Vol}(X,\omega) = \int_X 1 dV_\omega < \infty$$

and

$$\int_X \frac{p}{q} dV_\omega \le C$$

holds for some constant $C \geq 1$, where dV_{ω} is a volume form on X. Let $U \subset X$ be any open set of X and dV_{ω_U} a volume form on U such that $dV_{\omega_U} \leq C_U dV_{\omega}$ for some constant $C_U \geq 1$. Then, we have

$$\int_{U} \log\left(\frac{p}{q}\right) dV_{\omega_{U}} \leq \frac{1}{e} + C_{U} \operatorname{Vol}(X, \omega) (\log C_{U} + \log C).$$

Moreover, let a_i be a smooth nonnegative function on X for $1 \le i \le k$ such that $a_i \ne 0$ almost everywhere for $1 \le i \le k - 1$. We put $a_0 \equiv 1$ and $a = a_k$. Assume that

$$\int_X \frac{a_{i+1}}{a_i} dV_\omega \le C$$

holds for $0 \le i \le k - 1$. Then

$$\frac{1}{k} \int_{U} \log a \, dV_{\omega_U} \le \frac{1}{e} + C_U \operatorname{Vol}(X, \omega) (\log C_U + \log C).$$

Date: 2006/3/28, Version 1.3.

The arguments in this note are indispensable when we obtain local uniform supremum norm estimates from the global L^2 -estimates. I like intrinsic formulations.

Proof. By Jensen's inequality,

$$\int_{U} \log\left(\frac{p}{q}\right) \frac{dV_{\omega_{U}}}{\operatorname{Vol}(U,\omega_{U})} \leq \log \int_{U} \frac{p}{q} \frac{dV_{\omega_{U}}}{\operatorname{Vol}(U,\omega_{U})}$$
$$= \log\left(\frac{1}{\operatorname{Vol}(U,\omega_{U})}\right) + \log \int_{U} \frac{p}{q} dV_{\omega_{U}}$$
$$\leq \log\left(\frac{1}{\operatorname{Vol}(U,\omega_{U})}\right) + \log \int_{X} \frac{p}{q} C_{U} dV_{\omega}$$
$$\leq \log\left(\frac{1}{\operatorname{Vol}(U,\omega_{U})}\right) + \log C_{U} + \log C,$$

where $\operatorname{Vol}(U, \omega_U) = \int_U 1 dV_{\omega_U} < \infty$. Therefore, we have

$$\int_{U} \log\left(\frac{p}{q}\right) dV_{\omega_{U}} \leq \operatorname{Vol}(U, \omega_{U}) \log\left(\frac{1}{\operatorname{Vol}(U, \omega_{U})}\right) + \operatorname{Vol}(U, \omega_{U})(\log C_{U} + \log C)$$

Lemma 2. We consider $g(x) = x \log(\frac{1}{x})$ for x > 0. Then $g(x) \le g(\frac{1}{e}) = \frac{1}{e}$ for any x > 0. Moreover, g(x) > 0 for x < 1, g(1) = 0, and g(x) < 0 for x > 1. We note that $g(x) \to 0$ as $x \to 0$.

Proof. We have $g(x) = -x \log x$ and $g'(x) = -\log x - 1$. Thus, we obtain the desired properties.

Therefore, we obtain

$$\int_{U} \log\left(\frac{p}{q}\right) dV_{\omega_{U}} \leq \frac{1}{e} + C_{U} \operatorname{Vol}(X, \omega) (\log C_{U} + \log C).$$

The latter statement is obvious.

Theorem 3. In Proposition 1, we further assume that $\log a$ is a quasipsh function. Let Y be a relatively compact open set of X. Then there exists a positive constant C' such that

$$\sup_{x \in Y} \frac{1}{k} \log a(x) \le C' < \infty.$$

Proof. Let $W_{\alpha} \Subset U_{\alpha} \Subset X$ be relatively compact open sets of X for $1 \le \alpha \le N$. Assume that $Y \subset \bigcup_{\alpha=1}^{N} W_{\alpha}$ and U_{α} can be seen as a domain in \mathbb{C}^{n} for any α , where $n = \dim X$, and \mathcal{L} can be trivialized on each U_{α} . Let $dV_{\omega_{\alpha}}$ be the Euclidean volume form on $U_{\alpha} \subset \mathbb{C}^{n}$. We note that we can assume that $dV_{\omega_{\alpha}} \le C_{\alpha}dV_{\omega}$ on U_{α} for some constant $C_{\alpha} \ge 1$ (if we need, we can shrink U_{α}). Take a point $x \in Y$. Then there is an α such that $x \in W_{\alpha}$. On each U_{α} , we can further assume that $\log a = u_{\alpha} + v_{\alpha}$, where u_{α} is a psh function and v_{α} is a smooth

function. For every $x \in W_{\alpha}$, there exists an open polydisk U_x whose center is x such that $U_x \Subset U_{\alpha}$ and

$$\operatorname{Vol}(U_x,\omega_{\alpha}) = \int_{U_x} 1 dV_{\omega_{\alpha}} = C_0.$$

Note that the positive constant C_0 is independent of $x \in W_{\alpha}$. By the sub-mean-value property of u_{α} , we have

$$u_{\alpha}(x) \leq \frac{1}{\operatorname{Vol}(U_{x},\omega_{\alpha})} \int_{U_{x}} u_{\alpha} dV_{\omega_{\alpha}} = \frac{1}{C_{0}} \int_{U_{x}} u_{\alpha} dV_{\omega_{\alpha}}$$

Note that

$$\frac{1}{k}v_{\alpha}(x) \le C_1$$

for any $x \in W_{\alpha}$ and

$$\frac{1}{kC_0} \int_{U_x} |v_\alpha| dV_{\omega_\alpha} \le C_2$$

for any U_x , where C_1 and C_2 are positive constants independent of x and U_x . Thus, we obtain

$$\frac{1}{k}\log a(x) = \frac{1}{k}u_{\alpha}(x) + \frac{1}{k}v_{\alpha}(x)$$

$$\leq \frac{1}{kC_{0}}\int_{U_{x}}u_{\alpha}dV_{\omega_{\alpha}} + C_{1}$$

$$\leq \frac{1}{kC_{0}}\int_{U_{x}}\log a \, dV_{\omega_{\alpha}} + C_{1} + C_{2}$$

$$\leq \frac{1}{C_{0}}\left(\frac{1}{e} + C_{\alpha}\operatorname{Vol}(X,\omega)(\log C_{\alpha} + \log C)\right) + C_{1} + C_{2}$$

$$=: C^{\alpha}.$$

Thus we have

$$\sup_{x \in W_{\alpha}} \frac{1}{k} \log a(x) \le C^{\alpha}.$$

Then we obtain the upper bound $C' = \max_{\alpha} C^{\alpha} < \infty$.

Remark 4. Let \mathcal{L} be a holomorphic line bundle on X and h a smooth hermitian metric on \mathcal{L} . Let s_j be a holomorphic section of \mathcal{L} on X for $1 \leq j \leq l$. Then $\log \sum_{j=1}^{l} |s_j|_h^2$ is a quasi-psh function on X, where $|s_j|_h$ is the pointwise norm of s_j with respect to h. For geometric applications, we use Theorem 3 for $a = \sum_{j=1}^{l} |s_j|_h^2$.

Acknowledgments. I was partially supported by The Sumitomo Foundation and by the Grant-in-Aid for Young Scientists (A) #17684001 from JSPS.

GRADUATE SCHOOL OF MATHEMATICS, NAGOYA UNIVERSITY, CHIKUSA-KU NAGOYA 464-8602 JAPAN *E-mail address*: fujino@math.nagoya-u.ac.jp