ADDENDUM TO "ON ISOLATED LOG CANONICAL SINGULARITIES WITH INDEX ONE"

OSAMU FUJINO

Abstract

We add a supplementary argument to the paper: O. Fujino, On isolated \log canonical singularities with index one.

In this short note, we will freely use the notation in [F]. As Masayuki Kawakita pointed out it, it does not seem to be obvious that the statement in Remark 5.3 in [F$]$ directly follows from the proof of Theorem 5.2 in [F]. It is because $V_{1}^{\prime} \cap V_{2}^{\prime}$ in Step 3 in the proof of Theorem 5.2 is not necessarily connected. Therefore, we would like to add the following proposition between Theorem 5.2 and Remark 5.3 in [F]. Note that the proof of Theorem 5.2 and Remark 5.3 in $[\mathrm{F}]$ are both correct. We just add a supplementary argument for the reader's convenience. We note that Remark 5.3 is indispensable for the proof of Theorem 5.5 in [F], where we prove that our invariant μ coincides with Ishii's Hodge theoretic invariant.

Proposition. If $V_{1}^{\prime} \cap V_{2}^{\prime}$ is disconnected, equivalently, has two connected components W_{1}^{\prime} and W_{2}^{\prime}, in Step 3 in the proof of Theorem 5.2, then

$$
\mathbb{C} \simeq H^{m-1}\left(W_{i}^{\prime}, \mathcal{O}_{W_{i}^{\prime}}\right) \xrightarrow{\left.\delta\right|_{W_{i}^{\prime}} ^{\prime}} H^{m}\left(V^{\prime}, \mathcal{O}_{V^{\prime}}\right) \simeq \mathbb{C}
$$

is an isomorphism for $i=1,2$, where δ is the connecting homomorphism of the Mayer-Vietoris exact sequence.

Proof. We note that $H^{m-1}\left(W_{i}^{\prime}, \mathcal{O}_{W_{i}^{\prime}}\right) \simeq \mathbb{C}$ for $i=1,2$ by Theorem 5.2. We also note that $H^{m}\left(V_{i}^{\prime}, \mathcal{O}_{V_{i}^{\prime}}\right)=0$ for $i=1,2$ by Step 3 in the proof of Theorem 5.2. We consider the following Mayer-Vietoris exact sequence

$$
\begin{aligned}
\cdots & \rightarrow H^{m-1}\left(V_{1}^{\prime}, \mathcal{O}_{V_{1}^{\prime}}\right) \oplus H^{m-1}\left(V_{2}^{\prime}, \mathcal{O}_{V_{2}^{\prime}}\right) \\
& \xrightarrow{\alpha} H^{m-1}\left(W_{1}^{\prime}, \mathcal{O}_{W_{1}^{\prime}}\right) \oplus H^{m-1}\left(W_{2}^{\prime}, \mathcal{O}_{W_{2}^{\prime}}\right) \\
& \stackrel{\delta}{\rightarrow} H^{m}\left(V^{\prime}, \mathcal{O}_{V^{\prime}}\right) \rightarrow 0
\end{aligned}
$$

Date: 2012/1/4, version 1.05.
as in Step 3 in the proof of Theorem 5.2. Note that $\operatorname{Im} \alpha \simeq \operatorname{Ker} \delta$ is a one-dimensional \mathbb{C}-vector space. We consider the exact sequence:
$\cdots \rightarrow H^{m-1}\left(V_{1}^{\prime}, \mathcal{O}_{V_{1}^{\prime}}\right) \rightarrow H^{m-1}\left(W_{i}^{\prime}, \mathcal{O}_{W_{i}^{\prime}}\right) \rightarrow H^{m}\left(V_{1}^{\prime}, \mathcal{O}_{V_{1}^{\prime}}\left(-W_{i}^{\prime}\right)\right) \rightarrow 0$.
By the Serre duality,

$$
H^{m}\left(V_{1}^{\prime}, \mathcal{O}_{V_{1}^{\prime}}\left(-W_{i}^{\prime}\right)\right)
$$

is isomorphic to

$$
H^{0}\left(V_{1}^{\prime}, \mathcal{O}_{V_{1}^{\prime}}\left(K_{V_{1}^{\prime}}+W_{i}^{\prime}\right)\right)
$$

for $i=1,2$. We can check that $H^{0}\left(V_{1}^{\prime}, \mathcal{O}_{V_{1}^{\prime}}\left(K_{V_{1}^{\prime}}+W_{i}^{\prime}\right)\right)=0$ for $i=1,2$ by the same way as in Step 3 in the proof of Theorem 5.2. Therefore, the natural map, which is induced by the restriction,

$$
H^{m-1}\left(V_{1}^{\prime}, \mathcal{O}_{V_{1}^{\prime}}\right) \rightarrow H^{m-1}\left(W_{i}^{\prime}, \mathcal{O}_{W_{i}^{\prime}}\right) \simeq \mathbb{C}
$$

is surjective for $i=1,2$. Thus, we see that

$$
\operatorname{Im} \alpha \simeq \mathbb{C}\left(\subset H^{m-1}\left(W_{1}^{\prime}, \mathcal{O}_{W_{1}^{\prime}}\right) \oplus H^{m-1}\left(W_{2}^{\prime}, \mathcal{O}_{W_{2}^{\prime}}\right) \simeq \mathbb{C}^{2}\right)
$$

contains neither $H^{m-1}\left(W_{1}^{\prime}, \mathcal{O}_{W_{1}^{\prime}}\right) \simeq \mathbb{C}$ nor $H^{m-1}\left(W_{2}^{\prime}, \mathcal{O}_{W_{2}^{\prime}}\right) \simeq \mathbb{C}$. This implies that

$$
\mathbb{C} \simeq H^{m-1}\left(W_{i}^{\prime}, \mathcal{O}_{W_{i}^{\prime}}\right) \xrightarrow{\left.\delta\right|_{W_{i}^{\prime}}} H^{m}\left(V^{\prime}, \mathcal{O}_{V^{\prime}}\right) \simeq \mathbb{C}
$$

is non-trivial, equivalently, an isomorphism, for $i=1,2$.
The statement in [F, Remark 5.3] follows from Step 3 in the proof of [F, Theorem 5.2] and Proposition.

Acknowledgments. The author thanks Professor Masayuki Kawakita for pointing out an ambiguity between the proof of Theorem 5.2 and the statement in Remark 5.3 in [F].

References

[F] O. Fujino, On isolated log canonical singularities with index one, J. Math. Sci. Univ. Tokyo 18 (2011), 299-323.

Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606-8502, Japan

E-mail address: fujino@math.kyoto-u.ac.jp

