$2.4 E_{1}$-DEGENERATIONS OF HODGE TO DE RHAM TYPE SPECTRAL SEQUENCES

OSAMU FUJINO

2. E_{1}-Degenerations of Hodge to de Rham type spectral SEQUENCES

From ${ }^{\frac{51}{2} .27}$ to ${ }_{\frac{\mid 82}{2} .29}^{2}$, we recall some well-known results on mixed Hodge structures. We use the notations in 102 dreely. The basic references on this topic are [D2, Section 8], [E1, Part II], and $[E 2$, Chapitres 2 and 3]. The recent book [PSS] may be useful. First, we start with the pure Hodge structures on proper smooth algebraic varieties.
s1 2.27. (Hodge structures for proper smooth varieties). Let X be a proper smooth algebraic variety over \mathbb{C}. Then the triple $\left(\mathbb{Z}_{X},\left(\Omega_{X}^{\bullet}, F\right), \alpha\right)$, where Ω_{X}^{\bullet} is the holomorphic de Rham complex with the filtration bête F and $\alpha: \mathbb{C}_{X} \rightarrow \Omega_{X}^{\bullet}$ is the inclusion, is a cohomological Hodge complex (CHC, for short) of weight zero.

If we define weight filtrations as follows:

$$
W_{m} \mathbb{Q}_{X}=\left\{\begin{array}{lll}
0 & \text { if } & m<0 \\
\mathbb{Q}_{X} & \text { if } & m \geq 0
\end{array}\right.
$$

and

$$
W_{m} \Omega_{X}^{\bullet}=\left\{\begin{array}{lll}
0 & \text { if } & m<0 \\
\Omega_{X}^{\bullet} & \text { if } & m \geq 0
\end{array}\right.
$$

then we can see that $\left(\mathbb{Z}_{X},\left(\mathbb{Q}_{X}, W\right),\left(\Omega_{X}^{\bullet}, F, W\right)\right)$ is a cohomological mixed Hodge complex (CMHC, for short). We need these weight filtrations in the following arguments.

The next one is also a fundamental example. For the details, see

s2 2.28. (Mixed Hodge structures for proper simple normal crossing varieties). Let D be a proper simple normal crossing algebraic variety

[^0]over \mathbb{C}. Let $\varepsilon_{\dot{\sigma}_{1}} P^{\bullet} \rightarrow D$ be the Mayer-Vietoris simplicial resolution (cf. Definition $\sqrt[7]{ }$). The following complex of sheaves, denoted by $\mathbb{Q}_{D^{\bullet}}$,
$$
\varepsilon_{0 *} \mathbb{Q}_{D^{0}} \rightarrow \varepsilon_{1 *} \mathbb{Q}_{D^{1}} \rightarrow \cdots \rightarrow \varepsilon_{k *} \mathbb{Q}_{D^{k}} \rightarrow \cdots,
$$
is a resolution of \mathbb{Q}_{D}. More explicitly, the differential $d_{k}: \varepsilon_{k *} \mathbb{Q}_{D^{k}} \rightarrow$ $\varepsilon_{k+1 *} \mathbb{Q}_{D^{k+1}}$ is $\sum_{j=0}^{k+1}(-1)^{j} \lambda_{j, k+1}^{*}$ for every $k \geq 0$. The weight filtration W on $\mathbb{Q}_{D} \cdot$ is defined by
\[

$$
\begin{aligned}
W_{-q}\left(\mathbb{Q}_{D} \cdot\right) & =\bigoplus_{m \geq q} \varepsilon_{m *} \mathbb{Q}_{D^{m}} \\
& =\left(0 \rightarrow \cdots \rightarrow \varepsilon_{q *} \mathbb{Q}_{D^{q}} \rightarrow \varepsilon_{q+1 *} \mathbb{Q}_{D^{q+1}} \rightarrow \cdots\right) .
\end{aligned}
$$
\]

We obtain the resolution Ω_{D}^{\bullet}. of \mathbb{C}_{D} as follows:

$$
\varepsilon_{0 *} \Omega_{D^{0}}^{\bullet} \rightarrow \varepsilon_{1 *} \Omega_{D^{1}}^{\bullet} \rightarrow \cdots \rightarrow \varepsilon_{k *} \Omega_{D^{k}}^{\bullet} \rightarrow \cdots
$$

Of course, $d_{k}: \varepsilon_{k *} \Omega_{D^{k}}^{\bullet} \rightarrow \varepsilon_{k+1 *} \Omega_{D^{k+1}}^{\bullet}$ is $\sum_{j=0}^{k+1}(-1)^{j} \lambda_{j, k+1}^{*}$. Let $s\left(\Omega_{D^{\bullet}}^{\bullet}\right)$ be the single complex associated to the double complex $\Omega_{D^{\bullet}}^{\bullet}$. The Hodge filtration F on $s\left(\Omega_{D^{\bullet}}^{\bullet}\right)$ is defined by

$$
F^{p}=s\left(0 \rightarrow \cdots \rightarrow 0 \rightarrow \varepsilon_{*} \Omega_{D \bullet}^{p} \rightarrow \varepsilon_{*} \Omega_{D^{\bullet}}^{p+1} \rightarrow \cdots\right) .
$$

We note that

$$
\varepsilon_{*} \Omega_{D^{\bullet}}^{p}=\left(\varepsilon_{0 *} \Omega_{D^{0}}^{p} \rightarrow \varepsilon_{1 *} \Omega_{D^{1}}^{p} \rightarrow \cdots \rightarrow \varepsilon_{k *} \Omega_{D^{k}}^{p} \rightarrow \cdots\right)
$$

for every p. The weight filtration W on $s\left(\Omega_{D_{\bullet}}^{\bullet}\right)$ is defined by

$$
\begin{aligned}
W_{-q}\left(s\left(\Omega_{D_{\bullet}}^{\bullet}\right)\right) & =s\left(\bigoplus_{m \geq q} \varepsilon_{m *} \Omega_{D^{m}}^{\bullet}\right) \\
& =s\left(0 \rightarrow \cdots \rightarrow 0 \rightarrow \varepsilon_{q *} \Omega_{D^{q}}^{\bullet} \rightarrow \varepsilon_{q+1 *} \Omega_{D^{q+1}}^{\bullet} \rightarrow \cdots\right) .
\end{aligned}
$$

We note that

$$
\operatorname{Gr}_{-q}^{W} \mathbb{Q}_{D} \bullet \simeq \varepsilon_{q *} \mathbb{Q}_{D^{q}}[-q],
$$

and

$$
\operatorname{Gr}_{-q}^{W}\left(s\left(\Omega_{D_{\bullet}^{\bullet}}^{\bullet}\right)\right) \simeq \varepsilon_{q^{*}} \Omega_{D^{q}}^{\bullet}[-q] .
$$

Then $\left(\mathbb{Z}_{D},\left(\mathbb{Q}_{D} \bullet, W\right),\left(s\left(\Omega_{D}^{\bullet}\right), W, F\right)\right)$ is a CMHC. Here, we omitted the quasi-isomorphisms $\alpha: \mathbb{Z}_{D} \otimes \mathbb{Q} \rightarrow \mathbb{Q}_{D^{\bullet}}$ and $\beta:\left(\mathbb{Q}_{D^{\bullet}}, W\right) \rightarrow$ $\left(s\left(\Omega_{D \bullet \bullet}^{\bullet}\right), W\right)$ since there is no danger of confusion. This CMHC induces a natural mixed Hodge structure on $H^{\bullet}(D, \mathbb{Z})$. We note that the spectral sequence with respect to W on $\mathbb{Q}_{D} \bullet$ is

$$
\begin{aligned}
{ }_{w} E_{1}^{p, q}=H^{p+q}\left(D, \operatorname{Gr}_{-p}^{W} \mathbb{Q}_{D} \bullet\right) & =H^{p+q}\left(D, \varepsilon_{p *} \mathbb{Q}_{D^{p}}[-p]\right) \\
& =H^{q}\left(D^{p}, \mathbb{Q}\right) \\
& \Longrightarrow H^{p+q}(D, \mathbb{Q})
\end{aligned}
$$

such that the differential $d_{1}^{p, q}:{ }_{W} E_{1}^{p, q} \rightarrow{ }_{W} E_{1}^{p+1, q}$ is given by

$$
d_{1}^{p, q}=\sum_{j=0}^{p+1}(-1)^{j} \lambda_{j, p+1}^{*}: H^{q}\left(D^{p}, \mathbb{Q}\right) \rightarrow H^{q}\left(D^{p+1}, \mathbb{Q}\right)
$$

and it degenerates in E_{2}. The spectral sequence with respect to F is

$$
\begin{aligned}
{ }_{F} E_{1}^{p, q}=\mathbb{H}^{p+q}\left(D, \operatorname{Gr}_{F}^{p}\left(s\left(\Omega_{D}^{\bullet} \cdot\right)\right)\right) & =H^{q}\left(D^{\bullet}, \Omega_{D}^{p}\right) \\
& \Longrightarrow H^{p+q}(D, \mathbb{C})
\end{aligned}
$$

and it degenerates in E_{1}.
For the precise definitions of CHC and CMHC (CHMC, in French), see [D2, Section 8] or [E2, Chapitre 3]. See also [PS, 2.3.3 and 3.3]. The third example is not so standard but is indispensable for our injectivity theorems.
s3 2.29. (Mixed Hodge structures on compact support cohomology groups). Let X be a proper smooth algebraic variety over \mathbb{C} and D a simple normal crossing divisor on X. We consider the mixed cones of $\phi: \mathbb{Q}_{X} \rightarrow \mathbb{Q}_{D} \cdot$ and $\psi: \Omega_{X}^{\bullet} \rightarrow \Omega_{D}^{\bullet} \cdot$ with suitable shifts of complexes
 Theorem 3.22]), where ϕ and ψ are induced by the natural restriction map. More precisely, we define a complex

$$
\mathbb{Q}_{X-D}=\operatorname{Cone}^{\bullet}(\phi)[-1] .
$$

Then we have

$$
\left(\mathbb{Q}_{X-D}\right)^{p}=\left(\mathbb{Q}_{X}\right)^{p} \oplus\left(\mathbb{Q}_{D} \bullet\right)^{p-1} .
$$

The weight filtration on \mathbb{Q}_{X-D} • is defined as follows:

$$
\left(W_{m} \mathbb{Q}_{X-D}\right)^{p}=\left(W_{m} \mathbb{Q}_{X}\right)^{p} \oplus\left(W_{m+1}\left(\mathbb{Q}_{D} \bullet\right)\right)^{p-1}
$$

We note that $\mathbb{Q}_{X-D} \cdot$ is quasi-isomorphic to $j!\mathbb{Q}_{X-D}$, where $j: X-D \rightarrow$ X is the natural open immersion. We put

$$
\Omega_{X-D}^{\bullet}=\operatorname{Cone}^{\bullet}(\psi)[-1] .
$$

We note that

$$
\Omega_{X-D}^{p}{ }_{\bullet}^{\bullet}=\Omega_{X}^{p} \oplus\left(s \Omega_{D}^{\bullet} \cdot\right)^{p-1}
$$

We define filtrations on Ω_{X-D}^{\bullet}, as follows:

$$
\left(W_{m} \Omega_{X-D}^{\bullet}\right)^{p}=\left(W_{m} \Omega_{X}^{\bullet}\right)^{p} \oplus\left(W_{m+1}\left(s \Omega_{D}^{\bullet} \cdot\right)\right)^{p-1}
$$

and

$$
\left(F^{r} \Omega_{X-D}^{\bullet}\right)^{p}=\left(F^{r} \Omega_{X}^{\bullet}\right)^{p} \oplus\left(F^{r}\left(s \Omega_{D}^{\bullet} \bullet\right)\right)^{p-1}
$$

Then we obtain that the triple $\left(j!\mathbb{Z}_{X-D},\left(\mathbb{Q}_{X-D^{\bullet}}, W\right),\left(\Omega_{X-D^{\bullet}}^{\bullet}, W, F\right)\right)$ is a CMHC. It defines a natural mixed Hodge structure on $H_{c}^{\bullet}(X-D, \mathbb{Z})$. We note that

$$
\operatorname{Gr}_{0}^{W} \mathbb{Q}_{X-D}{ }^{\bullet}=\mathbb{Q}_{X}
$$

and

$$
\operatorname{Gr}_{-p}^{W} \mathbb{Q}_{X-D} \cdot=\operatorname{Gr}_{1-p}^{W} \mathbb{Q}_{D^{\bullet}}=\varepsilon_{p-1 *} \mathbb{Q}_{D^{p-1}}[-(p-1)]
$$

for $p \geq 1$. Therefore, the spectral sequence with respect to W

$$
{ }_{W} E_{1}^{p, q}=H^{p+q}\left(X, \operatorname{Gr}_{-p}^{W} \mathbb{Q}_{X-D}{ }^{\bullet}\right) \Longrightarrow H_{c}^{p+q}(X-D, \mathbb{Q})
$$

degenerates in E_{2}, where

$$
{ }_{w} E_{1}^{0, q}=H^{q}(X, \mathbb{Q})
$$

and

$$
{ }_{W} E_{1}^{p, q}=H^{q}\left(D^{p-1}, \mathbb{Q}\right)
$$

for every $p \geq 1$. Since we can check that the complex

$$
\begin{aligned}
0 \rightarrow & \Omega_{X}^{\bullet}(\log D)(-D) \rightarrow \Omega_{X}^{\bullet} \rightarrow \varepsilon_{0 *} \Omega_{D^{0}} \\
& \rightarrow \varepsilon_{1 *} \Omega_{D^{1}}^{\bullet} \rightarrow \cdots \rightarrow \varepsilon_{k_{*}} \Omega_{D^{k}}^{\bullet} \rightarrow \cdots
\end{aligned}
$$

is exact by direct local calculations, we see that $\left(\Omega_{X-D^{\bullet}}^{\bullet}, F\right)$ is quasiisomorphic to $\left(\Omega_{X}^{\bullet}(\log D)(-D), F\right)$ in $D^{+} F(X, \mathbb{C})$, where

$$
\begin{aligned}
& F^{p} \Omega_{X}^{\bullet}(\log D)(-D) \\
& \quad=\left(0 \rightarrow \cdots \rightarrow 0 \rightarrow \Omega_{X}^{p}(\log D)(-D) \rightarrow \Omega_{X}^{p+1}(\log D)(-D) \rightarrow \cdots\right) .
\end{aligned}
$$

Therefore, the spectral sequence

$$
E_{1}^{p, q}=H^{q}\left(X, \Omega_{X}^{p}(\log D)(-D)\right) \Longrightarrow \mathbb{H}^{p+q}\left(X, \Omega_{X}^{\bullet}(\log D)(-D)\right)
$$

degenerates in E_{1} and the right hand side is isomorphic to $H_{c}^{p+q}(X-$ $D, \mathbb{C})$.

From here, we treat mixed Hodge structures on much more complicated algebraic varieties (cf. [$[\mathrm{EZ} 2,3.9]$).
s4 2.30. (Mixed Hodge structures for proper simple normal crossing pairs). Let (X, D) be a proper simple normal crossing pair over \mathbb{C} such that D is reduced. Let $\varepsilon: X^{\bullet} \rightarrow X$ be the Mayer-Vietoris simplicial resolution of X. As we saw in the previous step, we have a CMHC

$$
\left(j_{n!} \mathbb{Z}_{X^{n}-D^{n}},\left(\mathbb{Q}_{X^{n}-\left(D^{n}\right)} \bullet, W\right),\left(\Omega_{X^{n}-\left(D^{n}\right)} \bullet, W, F\right)\right)
$$

on X^{n}, where $j_{n}: X^{n}-D^{n} \rightarrow X^{n}$ is the natural open immersion with $D^{n}=\varepsilon_{n}^{*} D$, and we know that $\left(\Omega_{X^{n}-\left(D^{n}\right)}^{\bullet}, F\right)$ is quasi-isomorphic to $\left(\Omega_{X^{n}}^{\bullet}\left(\log D^{n}\right)\left(-D^{n}\right), F\right)$ in $D^{+} F\left(X^{n}, \mathbb{C}\right)$ for every $n \geq 0$. Therefore, by using the Mayer-Vietoris simplicial resolution $\varepsilon: X^{\bullet} \rightarrow X$, we can construct a CMHC $\left(j!\mathbb{Z}_{X-D},\left(K_{\mathbb{Q}}, W\right),\left(K_{\mathbb{C}}, W, F\right)\right)$ on X that induces
a natural mixed Hodge structure on $H_{c}^{\bullet}(X-D, \mathbb{Z})$. More explicitly, we put

$$
K_{\mathbb{Q}}=s\left(\varepsilon_{0 *} \mathbb{Q}_{X^{0}-\left(D^{0}\right)} \rightarrow \varepsilon_{1 *} \mathbb{Q}_{X^{1}-\left(D^{1}\right)} \bullet \rightarrow \cdots \rightarrow \varepsilon_{k *} \mathbb{Q}_{X^{k}-\left(D^{k}\right)} \rightarrow \cdots\right)
$$

and

$$
K_{\mathbb{C}}=s\left(\varepsilon_{0 *} \Omega_{X^{0}-\left(D^{0}\right)}^{\bullet} \rightarrow \varepsilon_{1 *} \Omega_{X^{1}-\left(D^{1}\right)}^{\bullet} \rightarrow \cdots \rightarrow \varepsilon_{k *} \Omega_{X^{k}-\left(D^{k}\right)}^{\bullet} \rightarrow \cdots\right)
$$

We define filtrations as follows:

$$
\begin{array}{rl}
W_{m} K_{\mathbb{Q}}=s & \left(\varepsilon_{0 *} W_{m} \mathbb{Q}_{X^{0}-\left(D^{0}\right)} \rightarrow \varepsilon_{1 *} W_{m+1} \mathbb{Q}_{X^{1}-\left(D^{1}\right)} \rightarrow \cdots\right. \\
& \left.\rightarrow \varepsilon_{k *} W_{m+k} \mathbb{Q}_{X^{k}-\left(D^{k}\right)} \bullet \rightarrow \cdots\right), \\
W_{m} K_{\mathbb{C}}=s & s\left(\varepsilon_{0 *} W_{m} \Omega_{X^{0}-\left(D^{0}\right.}^{\bullet} \cdot \rightarrow \varepsilon_{1 *} W_{m+1} \Omega_{X^{1}-\left(D^{1}\right)}^{\bullet} \rightarrow \cdots\right. \\
& \left.\rightarrow \varepsilon_{k *} W_{m+k} \Omega_{X^{k}-\left(D^{k}\right) \bullet} \rightarrow \cdots\right),
\end{array}
$$

and

$$
\begin{aligned}
& F^{p} K_{\mathbb{C}}=s\left(\varepsilon_{0 *} F^{p} \Omega_{X^{0}-\left(D^{0}\right)}^{\bullet} \rightarrow \varepsilon_{1 *} F^{p} \Omega_{X^{1}-\left(D^{1}\right)}^{\bullet} \rightarrow \cdots\right. \\
&\left.\rightarrow \varepsilon_{k *} F^{p} \Omega_{X^{k}-\left(D^{k}\right)^{\bullet}} \rightarrow \cdots\right) .
\end{aligned}
$$

Then we obtain

$$
\operatorname{Gr}_{m}^{W} K_{\mathbb{Q}}=\bigoplus_{q} \varepsilon_{q *} \operatorname{Gr}_{m+q}^{W}\left(\mathbb{Q}_{X^{q}-\left(D^{q}\right)} \bullet\right)[-q]
$$

and

$$
\left(\operatorname{Gr}_{m}^{W} K_{\mathbb{C}}, F\right)=\left(\bigoplus_{q} \varepsilon_{q *} \operatorname{Gr}_{m+q}^{W}\left(\Omega_{X^{q}-\left(D^{q}\right)}^{\bullet}\right)[-q], F\right)
$$

The descriptions of W in ${ }^{\left\lvert\, \frac{\mathrm{s}^{2} 3}{2 .} 29\right.}$ help us understand $\mathrm{Gr}_{m}^{W} K_{\mathbb{Q}}$ and $\left(\mathrm{Gr}_{m}^{W} K_{\mathbb{C}}, F\right)$. We can see that $\left(K_{\mathbb{C}}, F\right)$ is quasi-isomorphic to $\left(s\left(\Omega_{X}^{\bullet} \bullet\left(\log D^{\bullet}\right)\left(-D^{\bullet}\right)\right), F\right)$ in $D^{+} F(X, \mathbb{C})$, where

$$
\begin{aligned}
F^{p}=s(0 \rightarrow & \cdots \rightarrow 0 \rightarrow \varepsilon_{*} \Omega_{X}^{p} \cdot\left(\log D^{\bullet}\right)\left(-D^{\bullet}\right) \\
& \left.\rightarrow \varepsilon_{*} \Omega_{X \bullet}^{p+1}\left(\log D^{\bullet}\right)\left(-D^{\bullet}\right) \rightarrow \cdots\right) .
\end{aligned}
$$

We note that $\Omega_{X^{\bullet}} \cdot\left(\log D^{\bullet}\right)\left(-D^{\bullet}\right)$ is the double complex

$$
\begin{aligned}
0 \rightarrow \varepsilon_{0 *} \Omega_{X^{0}}\left(\log D^{0}\right)\left(-D^{0}\right) & \rightarrow \varepsilon_{1 *} \Omega_{X^{1}}^{\bullet}\left(\log D^{1}\right)\left(-D^{1}\right) \rightarrow \cdots \\
& \rightarrow \varepsilon_{k *} \Omega_{X^{k}}^{\bullet}\left(\log D^{k}\right)\left(-D^{k}\right) \rightarrow \cdots .
\end{aligned}
$$

Therefore, the spectral sequence

$$
E_{1}^{p, q}=H^{q}\left(X^{\bullet}, \Omega_{X}^{p} \cdot\left(\log D^{\bullet}\right)\left(-D^{\bullet}\right)\right) \Longrightarrow \mathbb{H}^{p+q}\left(X, s\left(\Omega_{X}^{\bullet} \cdot\left(\log D^{\bullet}\right)\left(-D^{\bullet}\right)\right)\right)
$$

degenerates in E_{1} and the right hand side is isomorphic to $H_{c}^{p+q}(X-$ $D, \mathbb{C})$.

Let us start the proof of the E_{1}-degeneration that we already used in the proof of Proposition 1 ? ?
s5 2.31 (E_{1}-degeneration for Proposition ${ }^{1}$? ? ?). Here, we use the notation in the proof of Proposition f??. In this case, Y has only quotient singularities. Then $\left(\mathbb{Z}_{Y},\left(\widetilde{\Omega}_{Y}, F\right), \alpha\right)$ is a CHC, where F is the filtration bete and $\alpha: \mathbb{C}_{Y} \rightarrow \widetilde{\Omega}_{Y}^{\bullet}$ is the inclusion. For the details, see |Steenbrink (1.6)]. It is easy to see that T is a divisor with V-normal crossings
 is singular only over the singular locus of $\operatorname{Supp} B$. Let $\varepsilon: T^{\bullet} \rightarrow T$ be the Mayer-Vietpris simplicial resolution. Though T has singularities, Definition ?? makes sense without any modifications. We note that T^{n} has only quotient singularities for every $n \geq 0$ by the construction of $\pi: Y \rightarrow X$. We can also check that the same construction in $\frac{\Sigma_{2} 2}{2} .28$ works with minor modifications and we have a CMHC $\left(\mathbb{Z}_{T},\left(\mathbb{Q}_{T \bullet}, W\right),\left(s\left(\widetilde{\Omega}_{T}^{\bullet} \bullet\right), W, F\right)\right)$ that induces a natural mixed Hodge structure on $H^{\bullet}(T, \mathbb{Z})$. By the same arguments as in 2.29 , we can construct a triple $\left(j!\mathbb{Z}_{Y-T},\left(\mathbb{Q}_{Y-T} \bullet, W\right),\left(K_{\mathbb{C}}, W, F\right)\right)$, where $j: Y-T \rightarrow Y$ is the natural open immersion. It is a CMHC that induces a natural mixed Hodge structure on $H_{c}^{\bullet}(Y-T, \mathbb{Z})$ and $\left(K_{\mathbb{C}}, F\right)$ is quasiisomorphic to $\left(\widetilde{\Omega}_{Y}^{\bullet}(\log T)(-T), F\right)$ in $D^{+} F(Y, \mathbb{C})$, where

$$
\begin{aligned}
& F^{p} \widetilde{\Omega}_{Y}^{\bullet}(\log T)(-T) \\
& \quad=\left(0 \rightarrow \cdots \rightarrow 0 \rightarrow \widetilde{\Omega}_{Y}^{p}(\log T)(-T) \rightarrow \widetilde{\Omega}_{Y}^{p+1}(\log T)(-T) \rightarrow \cdots\right)
\end{aligned}
$$

Therefore, the spectral sequence

$$
E_{1}^{p, q}=H^{q}\left(Y, \widetilde{\Omega}_{Y}^{p}(\log T)(-T)\right) \Longrightarrow \mathbb{H}^{p+q}\left(Y, \Omega_{Y}^{\bullet}(\log T)(-T)\right)
$$

degenerates in E_{1} and the right hand side is isomorphic to $H_{c}^{p+q}(Y-$ $T, \mathbb{C})$.

The final one is the E_{1}-degeneration that we used in the proof of Proposition ???. It may be one of the main contributions of this chapter.
s6 2.32 (E_{1}-degeneration for Proposition ${ }_{\text {? }}^{2}$? $)$. We use the notation in the proof of Proposition ??. Let $\varepsilon: Y^{\bullet} \rightarrow Y$ be the Mayer-Vietoris simplicial resolution. By the previous step, we can obtain a CMHC

$$
\left(j_{n!} \mathbb{Z}_{Y^{n}-T^{n}},\left(\mathbb{Q}_{Y^{n}-\left(T^{n}\right)} \bullet, W\right),\left(K_{\mathbb{C}}, W, F\right)\right)
$$

for each $n \geq 0$. Of course, $j_{n}: Y^{n}-T^{n} \rightarrow Y^{n}$ is the natural open immersion for every $n \geq 0$. Therefore, we can construct a CMHC

$$
\left(j!\mathbb{Z}_{Y-T},\left(K_{\mathbb{Q}}, W\right),\left(K_{\mathbb{C}}, W, F\right)\right)
$$

on Y as in $\frac{\left\lvert\, \frac{54}{2} .30\right. \text {. It induces a natural mixed Hodge structure on } H_{c}^{\bullet}(Y-~}{\widetilde{\Omega}}$ $T, \mathbb{Z})$. We note that $\left(K_{\mathbb{C}}, F\right)$ is quasi-isomorphic to $\left(s\left(\widetilde{\Omega}_{Y}^{\bullet} \cdot\left(\log T^{\bullet}\right)\left(-T^{\bullet}\right)\right), F\right)$ in $D^{+} F(Y, \mathbb{C})$, where

$$
\begin{aligned}
F^{p}=s(0 & \rightarrow \\
& \cdots 0 \rightarrow \varepsilon_{*} \widetilde{\Omega}_{Y}^{p} \cdot\left(\log T^{\bullet}\right)\left(-T^{\bullet}\right) \\
& \left.\rightarrow \varepsilon_{*} \widetilde{\Omega}_{Y \bullet}^{p+1}\left(\log T^{\bullet}\right)\left(-T^{\bullet}\right) \rightarrow \cdots\right) .
\end{aligned}
$$

For the details, see $\frac{\Sigma_{2}^{4} .30}{2.30}$ above. Thus, the desired spectral sequence

$$
E_{1}^{p, q}=H^{q}\left(Y^{\bullet}, \widetilde{\Omega}_{Y}^{p} \cdot\left(\log T^{\bullet}\right)\left(-T^{\bullet}\right)\right) \Longrightarrow \mathbb{H}^{p+q}\left(Y, s\left(\widetilde{\Omega}_{Y}^{\bullet}\left(\log T^{\bullet}\right)\left(-T^{\bullet}\right)\right)\right)
$$

degenerates in E_{1}. It is what we need in the proof of Proposition $\left.\right|_{?} ^{2}$?. Note that $\mathbb{H}^{p+q}\left(Y, s\left(\widetilde{\Omega}_{Y}^{\bullet} \cdot\left(\log T^{\bullet}\right)\left(-T^{\bullet}\right)\right)\right) \simeq H_{c}^{p+q}(Y-T, \mathbb{C})$.

References

[^1]
[^0]: Date: 2009/10/18, version 1.05 .
 Now I am revising Section 2.4 in my book.

[^1]: Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606-8502, Japan

 E-mail address: fujino@math.kyoto-u.ac.jp

