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From 2727 to 229, we recall some wellsknown results on mixed Hodge

structures. We use fhe notations i reely. Th }Pasiczreferences
. . eligne in z€1n .

on this topic are i)?, Sectslon 8], [E1, Part II], ande}FE’Z,_C'hapltres 2

and 3|. The recent book [PS] may be useful. First, we start with the

pure Hodge structures on proper smooth algebraic varieties.

2.27. (Hodge structures for proper smooth varieties). Let X be a
proper smooth algebraic variety over C. Then the triple (Zx, (2%, F), «),
where 2% is the holomorphic de Rham complex with the filtration béte
Fand a: Cx — QY% is the inclusion, is a cohomological Hodge complex
(CHC, for short) of weight zero.

If we define weight filtrations as follows:

0 if m<0
W, =
Qx {@X it m>0
and
W08 = 0 %f m <0
Q% it m >0,

then we can see that (Zx, (Qx, W), (2%, F,W)) is a cohomological
mixed Hodge complex (CMHC, for short). We need these weight fil-
trations in the following arguments.

The next ope is also a fundamental example. For the details, see
lelzein lelzein2

TET, I.1.] or [E2, 3.5].

2.28. (Mixed Hodge structures for proper simple normal crossing va-

rieties). Let D be a proper simple normal crossing algebraic variety
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over C. Let ¢ ; — D be the Mayer—Vietoris simplicial resolution
(cf. Definition [77). The following complex of sheaves, denoted by Qpe,
80*@[)0 - gl*QDl — gk*@Dk o,

is a resolution of Qp. More explicitly, the differential dj : €. Qpr —
Epr1xQprs1 is Efil( 1) )\j i1 for every k > 0. The weight filtration
W on Qpe. is defined by

QD' @ Emx QD’”

m>q
=(0— - —uQps — €4+1.Qpar1 — -+ +).
We obtain the resolution 2},. of Cp as follows:

0.0 — €1, Q01 — = e 0 — e

Of course, dj : €Y — €p1: Q01 18 Ekﬂ( 1)7X% 1. Let 5(Q%.)
be the single complex associated to the double complex Q%.. The
Hodge filtration F' on s(€2%,.) is defined by

Fp:s(0—>~-~—>OH€*Q%.—>e*Q%+.1—>~-~).

We note that
E*Q%. — (EO*Q%O — 61*9%1 —_ e e — Ek*Q%k —_ .. )
for every p. The weight filtration W on s(2},.) is defined by
Wo(s(0250)) = (@) o)
m2q
— 5(0 — ... =0 ng*qu _>€q+1*Q.Dq+l — )
We note that
G Qpr ~ £ Qonl—a),

and

Gr‘ffq(s(Qb.)) ~ €2 [—1q]-
Then (Zp, (Qps, W), (s(2%.), W, F)) is a CMHC. Here, we omitted
the quasi-isomorphisms « : Zp @ Q — Qpe. and 5 : (Qps, W) —
(s(£2%.), W) since there is no danger of confusion. This CMHC in-

duces a natural mixed Hodge structure on H*(D,Z). We note that the
spectral sequence with respect to W on Qpe. is

Wqu Herq(D GI'W QD‘) Herq(D,gp*@Dp[_p])
= HI(D?,Q)
— H""(D,Q)
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such that the differential @7 : yE"? — BP9 is given by
p+1 }
B =S (1PN - HI(DP, Q) — HY(D", Q)
=0
and it degenerates in E5. The spectral sequence with respect to F'is
pEV! = HPTY(D, Grip(s(Qh.))) = HY(D*®, Q).)
— H"*(D,C)

and it degenerates in Ej.

For,the precise defjnitians of CHC and CMHG (CHMC, in French),
eligne | ze1ln . s
see ;)2, Section 8] or [E2, Chapitre 3|. See also &'S, 2.3.3 and 3.3]. The

third example is not so standard but is indispensable for our injectivity
theorems.

2.29. (Mixed Hodge structures on compact support cohomology groups).
Let X be a proper smooth algebraic variety over C and D a sim-
ple normal crossing divisor on X. We consider the mixed cones of
o : QX' — Qpe apd Y Q% — Qz?. With|eq_1%i$larple %Tngsl n(ﬁf complexes
and weight filtrations (for the details, see [ET, 1.3.], [E2, 3.7.14] or &'S,
Theorem 3.22]), where ¢ and v are induced by the natural restriction
map. More precisely, we define a complex

Qx_pe = Cone®(¢)[—1].

Then we have
(Qx_p+)” = (Qx)? ® (Qps ).
The weight filtration on Qx_pe is defined as follows:

(WinQx—pe)” = (WinQx )P & (Wins1(Qpe )"

We note that Qx_ pe is quasi-isomorphic to jiQx_p, where j : X —D —
X is the natural open immersion. We put

Q%_ps = Cone®(¢)[—1].
We note that
D = OV @ (520 )7
We define filtrations on 2% _ . as follows:
(Wi _pe)? = (Wi Q5)" & (Won (sQpe )P

and
(% _pe)? = (FTQ% )P @ (F" (sQe) )P
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Then we obtain that the triple (jiZx_p, (Qx_ps, W), (2% _pe, W, F')) is
a CMHC. It defines a natural mixed Hodge structure on H?(X — D, Z).
We note that

Gl“gv@xfp- = Qx
and
Gl“ivp@xfp- = GI“KPQD- = p-1:Qpr-1[—(p — 1)]
for p > 1. Therefore, the spectral sequence with respect to W
wEP? = HPH(X, G Qx_pe) = HIT(X — D,Q)
degenerates in Fy, where
wB = HY(X,Q)
and
wEL" = (D", Q)
for every p > 1. Since we can check that the complex
0— Q%(log D)(—D) — Q% — £0.02%0
e A e 2 e
is exact by direct local calculations, we see that (Q%_p., F') is quasi-
isomorphic to (2% (log D)(—D), F) in DT F(X,C), where
FPQS (log D)(—D)
= (0= 0= O (log D)(~D) — 0% (log D)(~D) = -+).
Therefore, the spectral sequence
EYY = HY(X, % (log D)(—D)) = H"™(X, Q% (log D)(—D))

degenerates in E) and the right hand side is isomorphic to HP™(X —
D,C).

From here, we treat mixed Hodge structures on much more compli-
cated algebraic varieties (cf. [E2; 3.9]).

2.30. (Mixed Hodge structures for proper simple normal crossing pairs).
Let (X, D) be a proper simple normal crossing pair over C such that D
is reduced. Let € : X* — X be the Mayer—Vietoris simplicial resolution
of X. As we saw in the previous step, we have a CMHC

U Zsce— s Qg W), (Lo pye, W, F))
on X", where j, : X" — D™ — X" is the natural open immersion with
D" = gD, and we know that (Q2%._ pny., F) is quasi-isomorphic to
(Q%~(log D™)(—D™), F) in DTF(X™ C) for every n > 0. Therefore,
by using the Mayer—Vietoris simplicial resolution € : X* — X, we can
construct a CMHC (jiZx_p, (Ko, W), (K¢, W, F)) on X that induces
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a natural mixed Hodge structure on H?(X — D,Z). More explicitly,
we put

Kq = 5(€0+Qx0—(poye — €1.Qx1_(p1)e — -+ — €rQxr_(prye — -+ +)
and
Kc = 5(50*93(0_(170). — el (prye = = Eln_(prye — ).
We define filtrations as follows:
WinKq = S(EO*Wm@Xo—(DO)- - 51*Wm+1@xl—(D1)- —

— Wik Qxr_(prye — - +),

WinKe = s(€0:Win%o0_ poye = €1:Win 1 Q51 _(prye — -
— Wik prye — ),
and
FPKc = s(e0:F"Q%0_(poye — €1 F"Q51_(prye — + -
— e PP prye — ).
Then we obtain

Gryy Ko = @D £G4 (Qxo—(paye) [~
q

and

(GTKK&F) = (@ 5q*GrK+q(QB(L(DQ)°)[_Q]7F)-

q

3
The descriptions of W in }‘3729 help us understand Gr}Y Kq and (Gt} K¢, F).
We can see that (K¢, F) is quasi-isomorphic to (s(Q2%. (log D*)(—D*)), F')
in DTF(X,C), where

FP=50—---—0— 0% (logD*)(—-D*)
— e, 8 (log D*)(=D*) — ---).
We note that Q%.(log D*)(—D*) is the double complex
0 — 20, 0%a(log DY)(=D°) = £, (log D)(~D') — - -
— 21, 0%x (log D*)(=DF) — -
Therefore, the spectral sequence
EPT = HY(X*, O%.(log D*)(—D*)) = H"*9(X, 5(Q%. (log D*)(—D*)))

degenerates in E) and the right hand side is isomorphic to HPT (X —
D,C).
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Let us start the proof of the Ej-degeneration that we already used

f
in the proof of Proposition }‘7

2.31 (F;-degeneration for Proposition }'77 Here, we use the notation
in the proof of Proposition }'77 In this case, Y has only quotient sin-
gularities. Then (Zy, (2, F), a) is a CHC, where F' is the filtration

teenbrink
béte and o : Cy — QY is the inclusion. For the details, see ;Sf,

(1.6)]. Tt i asy téo See t?at T is a divisor with V-normal crossings

on Y see Definition]). We can easily check that YV
is singular only over the singular locus of SuppB. Let ¢ : T* — T
be the Mayerf\/@;fris simplicial resolution. Though 7" has singular-
ities, Definition [77 makes sense without any modifications. We note
that 7™ has only quotient singularities for every n > 0 by the con-
struction of 7 : Y — X. We can also check that the same construc-

2
tion in S. & works with minor modifications and we have a CMHC

(Zg, (Qpe, W), (s(Q%.), W, F)) that induces a natura] mixed Hodge
structure on H*(7,Z). By the same arguments as in 2.29, we can con-
struct a triple (1Zy 7, (Qy_7e¢, W), (K¢, W, F)), where j : Y —=T — Y
is the natural open immersion. It is a CMHC that induces a nat-
ural mixed Hodge structure on H(Y — T,7Z) and (K¢, F') is quasi-

isomorphic to (% (log T)(=T), F) in DYF(Y, C), where
Fo83 (log T)(—T)
= (0= = 0= D0 T)(~T) — B (log T)(~T) — ).
Therefore, the spectral sequence
EPt = H(Y, Q0 (log T)(=T)) = H'"(Y, Q3. (log T)(~T))

degenerates in E; and the right hand side is isomorphic to HPT (Y —
T,C).

The final pne is the Ej-degeneration that we used in the proof of
Proposition }'77 It may be one of the main contributions of this chapter.

2.32 (E)-degeneratiog for Proposition }'7'7 We use the notation in the
proof of Proposition }'7'7 Lete:Y*® — Y be the Mayer—Vietoris sim-
plicial resolution. By the previous step, we can obtain a CMHC

(ijyn,Tn, (QY"*(T”)H W)7 (K(Ca W7 F))

for each n > 0. Of course, j, : YY" —T™ — Y™ is the natural open
immersion for every n > 0. Therefore, we can construct a CMHC

(j!ZY*Tv (KQ7 W)? (KCv W7 F))
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4
onY asin ETBO. It induces a natural mixed Hodge structure on H? (Y —
T,7Z). We note that (K¢, F') is quasi-isomorphic to (s(2y. (log T*)(=1"*)), F)
in DTF(Y,C), where

FP =50 — - —0— e, (logT*)(—=T")
— WL log T°)(=T%) — --+).
For the details, see }ZS%O above. Thus, the desired spectral sequence
EPT = HI(Y*, 0% (log T*)(=T*)) = HPF(Y, 5(Qe (log T*) (~T")))
degenerates in Fy. It is what we need in the proof of Proposition 27

Note that HPT(Y, s(Q%. (log T*)(=T*))) ~ HP*(Y — T, C).
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