
FUJITA-TYPE FREENESS FOR QUASI-LOG CANONICAL CURVES
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Abstract. We prove Fujita-type basepoint-freeness for projective quasi-log canonical
curves and surfaces.

1. Introduction

Fujita’s freeness conjecture is very famous and is still open for higher-dimensional vari-
eties. Now we know that it holds true in dimension ≤ 5 (for the details, see [YZ] and the
references therein).

Conjecture 1.1 (Fujita’s freeness conjecture). Let X be a smooth projective variety of
dimension n. Let L be an ample Cartier divisor. Then the complete linear system |KX +
(n+ 1)L| is basepoint-free.

In this paper, we treat a generalization of Fujita’s freeness conjecture for highly singular
varieties. More precisely, we are mainly interested in quasi-log canonical pairs. A quasi-
log canonical pair may be reducible and is not necessarily equidimensional. The union of
some log canonical centers of a given log canonical pair is a typical example of quasi-log
canonical pairs. We think that it is worth formulating and studying various conjectures
for quasi-log canonical pairs in order to solve the original conjecture by some inductive
arguments on the dimension.

Conjecture 1.2 (Fujita-type freeness for quasi-log canonical pairs). Let [X,ω] be a pro-
jective quasi-log canonical pair of dimension n. Let M be a Cartier divisor on X. We
put N = M − ω. Assume that NdimXi ·Xi > (dimXi)

dimXi for every positive-dimensional
irreducible component Xi of X. For every positive-dimensional subvariety Z which is not
an irreducible component of X, we put

nZ = min
i
{dimXi |Xi is an irreducible component of X with Z ⊂ Xi}

and assume that NdimZ ·Z ≥ ndimZ
Z . Then the complete linear system |M | is basepoint-free.

If NdimXi ·Xi >
(
1
2
n(n+ 1)

)dimXi and NdimZ ·Z >
(
1
2
n(n+ 1)

)dimZ
hold in Conjecture

1.2, then we have already known that the complete linear system |M | is basepoint-free
by the second author’s theorem (see [L, Theorem 1.1] for the precise statement). It is a
generalization of Angehrn–Siu’s theorem (see [AS]). When dimX = 1, we can easily check
that Conjecture 1.2 holds true.

Theorem 1.3 (Theorem 3.1). Conjecture 1.2 holds true for n = 1.

The main technical result of this paper is the following theorem.
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Theorem 1.4 (Theorem 3.2). Let [X,ω] be a quasi-log canonical pair such that X is a
normal projective irreducible surface. Let M be a Cartier divisor on X. We put N = M−ω.
We assume that N2 > 4 and N ·C ≥ 2 for every curve C on X. Let P be any closed point
of X that is not included in Nqklt(X,ω), the union of all qlc centers of [X,ω]. Then there
exists s ∈ H0(X, INqklt(X,ω) ⊗OX(M)) such that s(P ) ̸= 0, where INqklt(X,ω) is the defining
ideal sheaf of Nqklt(X,ω) on X.

The proof of Theorem 1.4 in Section 3 heavily depends on the first author’s new result
obtained in [F6] (see Theorem 2.12 below), which comes from the theory of variations of
mixed Hodge structure on cohomology with compact support. By combining Theorems
1.3 and 1.4 with our result on the normalization of quasi-log canonical pairs (see Theorem
2.11 below), we prove Conjecture 1.2 for n = 2 in full generality.

Corollary 1.5 (Corollary 3.3). Conjecture 1.2 holds true for n = 2.

We note that we can recover the main theorem of [F4] by combining Theorem 1.3 and
Corollary 1.5 with the main result of [F2].

Corollary 1.6 ([F4, Theorem 1.3]). Let (X,∆) be a projective semi-log canonical pair of
dimension n. Let M be a Cartier divisor on X. We put N = M − (KX + ∆). Assume
that Nn ·Xi > nn for every irreducible component Xi of X and that Nk ·Z ≥ nk for every
subvariety Z with 0 < dimZ = k < n. We further assume that n = 1 or 2. Then the
complete linear system |M | is basepoint-free.

Let us quickly explain our strategy to prove Conjecture 1.2. From now on, we will
use the same notation as in Conjecture 1.2. We take an arbitrary closed point P of
X. Then it is sufficient to find s ∈ H0(X,OX(M)) with s(P ) ̸= 0. Let Xi be an
irreducible component of X such that P ∈ Xi. By adjunction (see Theorem 2.8 (i)),
[Xi, ω|Xi

] is a quasi-log canonical pair. By the vanishing theorem (see Theorem 2.8 (ii)),
the natural restriction map H0(X,OX(M)) → H0(Xi,OXi

(M)) is surjective. Therefore,
by replacing X with Xi, we may assume that X is irreducible. By adjunction again,
[Nqklt(X,ω), ω|Nqklt(X,ω)] is a quasi-log canonial pair. By the vanishing theorem, the
natural restriction map H0(X,OX(M)) → H0(Nqklt(X,ω),ONqklt(X,ω)(M)) is surjective.
Therefore, if P ∈ Nqklt(X,ω), then we can use induction on the dimension. Thus we
may further assume that P ̸∈ Nqklt(X,ω). In this situation, we know that X is nor-

mal at P . Let ν : X̃ → X be the normalization. Then, by Theorem 2.11, [X̃, ν∗ω] is a
quasi-log canonical pair with ν∗INqklt(X̃,ν∗ω) = INqklt(X,ω). Therefore, it is sufficient to find

s̃ ∈ H0(X̃, INqklt(X̃,ν∗ω) ⊗ OX̃(ν
∗M)) with s̃(P̃ ) ̸= 0, where P̃ = ν−1(P ). By replacing X

with X̃, we may assume that X is a normal irreducible variety. By using Theorem 2.12,
we can take a boundary R-divisor ∆, that is, an effective R-divisor ∆ with ∆ = ∆≤1, on
X such that KX + ∆ ∼R ω + εN for 0 < ε ≪ 1 and J (X,∆) = INqklt(X,ω). Note that
J (X,∆) is the multiplier ideal sheaf of (X,∆). Since J (X,∆) = INqklt(X,ω), (X,∆) is klt
in a neighborhood of P . Anyway, it is sufficient to find s ∈ H0(X,J (X,∆) ⊗ OX(M))
with s(P ) ̸= 0. In this paper, we will carry out the above strategy in dimension two.

Acknowledgments. The first author was partially supported by JSPS KAKENHI Grant
Numbers JP16H03925, JP16H06337. The authors would like to thank Kenta Hashizume
and Professor Wenfei Liu for discussions. They also thank the referee for valuable com-
ments.

We will work over C, the complex number field, throughout this paper. A scheme means
a separated scheme of finite type over C. A variety means a reduced scheme, that is, a
reduced separated scheme of finite type over C. We sometimes assume that a variety
is irreducible without mentioning it explicitly if there is no risk of confusion. We will
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freely use the standard notation of the minimal model program and the theory of quasi-log
schemes as in [F1] and [F5]. For the details of semi-log canonical pairs, see [F2].

2. Preliminaries

In this section, we collect some basic definitions and explain some results on quasi-log
schemes.

Definition 2.1 (R-divisors). Let X be an equidimensional variety, which is not necessarily
regular in codimension one. LetD be an R-divisor, that is,D is a finite formal sum

∑
i diDi,

where Di is an irreducible reduced closed subscheme of X of pure codimension one and di
is a real number for every i such that Di ̸= Dj for i ̸= j. We put

D<1 =
∑
di<1

diDi, D≤1 =
∑
di≤1

diDi, D>1 =
∑
di>1

diDi, and D=1 =
∑
di=1

Di.

We also put

⌈D⌉ =
∑
i

⌈di⌉Di and ⌊D⌋ = −⌈−D⌉,

where ⌈di⌉ is the integer defined by di ≤ ⌈di⌉ < di + 1. When D = D≤1 holds, we usually
say that D is a subboundary R-divisor.

Let B1 and B2 be R-Cartier divisors on X. Then B1 ∼R B2 means that B1 is R-linearly
equivalent to B2.

Let us quickly recall singularities of pairs for the reader’s convenience. We recommend
the reader to see [F5, Section 2.3] for the details.

Definition 2.2 (Singularities of pairs). Let X be a normal variety and let ∆ be an R-
divisor on X such that KX + ∆ is R-Cartier. Let f : Y → X be a projective birational
morphism from a smooth variety Y . Then we can write

KY = f ∗(KX +∆) +
∑
E

a(E,X,∆)E,

where a(E,X,∆) ∈ R and E is a prime divisor on Y . By taking f : Y → X suitably,
we can define a(E,X,∆) for any prime divisor E over X and call it the discrepancy of E
with respect to (X,∆). If a(E,X,∆) > −1 (resp. a(E,X,∆) ≥ −1) holds for any prime
divisor E over X, then we say that (X,∆) is sub klt (resp. sub log canonical). If (X,∆) is
sub klt (resp. sub log canonical) and ∆ is effective, then we say that (X,∆) is klt (resp. log
canonical). If (X,∆) is log canonical and a(E,X,∆) > −1 for any prime divisor E that is
exceptional over X, then we say that (X,∆) is plt.

If there exist a projective birational morphism f : Y → X from a smooth variety Y
and a prime divisor E on Y such that a(E,X,∆) = −1 and (X,∆) is log canonical in a
neighborhood of the generic point of f(E), then f(E) is called a log canonical center of
(X,∆).

Definition 2.3 (Multiplier ideal sheaves). Let X be a normal variety and let ∆ be an
effective R-divisor on X such that KX + ∆ is R-Cartier. Let f : Y → X be a projective
birational morphism from a smooth variety such that

KY +∆Y = f ∗(KX +∆)

and Supp∆Y is a simple normal crossing divisor on Y . We put

J (X,∆) = f∗OY (−⌊∆Y ⌋)
and call it the multiplier ideal sheaf of (X,∆). We can easily check that J (X,∆) is a
well-defined ideal sheaf on X. The closed subscheme defined by J (X,∆) is denoted by
Nklt(X,∆).
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The notion of globally embedded simple normal crossing pairs plays a crucial role in the
theory of quasi-log schemes described in [F5, Chapter 6].

Definition 2.4 (Globally embedded simple normal crossing pairs). Let Y be a simple
normal crossing divisor on a smooth variety M and let B be an R-divisor on M such that
Y and B have no common irreducible components and that the support of Y + B is a
simple normal crossing divisor on M . In this situation, (Y,BY ), where BY := B|Y , is
called a globally embedded simple normal crossing pair. A stratum of (Y,BY ) means a log
canonical center of (M,Y +B) included in Y .

Let us recall the notion of quasi-log schemes, which was first introduced by Florin Ambro
(see [A]). The following definition is slightly different from the original one. For the
details, see [F3, Appendix A]. In this paper, we will use the framework of quasi-log schemes
established in [F5, Chapter 6].

Definition 2.5 (Quasi-log schemes). A quasi-log scheme is a scheme X endowed with an
R-Cartier divisor (or R-line bundle) ω on X, a closed subscheme Nqlc(X,ω) ⊊ X, and a
finite collection {C} of reduced and irreducible subschemes of X such that there exists a
proper morphism f : (Y,BY ) → X from a globally embedded simple normal crossing pair
(Y,BY ) satisfying the following properties:

(1) f ∗ω ∼R KY +BY .
(2) The natural map OX → f∗OY (⌈−(B<1

Y )⌉) induces an isomorphism

INqlc(X,ω)
∼−→ f∗OY (⌈−(B<1

Y )⌉ − ⌊B>1
Y ⌋),

where INqlc(X,ω) is the defining ideal sheaf of Nqlc(X,ω).
(3) The collection of subvarieties {C} coincides with the images of (Y,BY )-strata that

are not included in Nqlc(X,ω).

We simply write [X,ω] to denote the above data

(X,ω, f : (Y,BY ) → X)

if there is no risk of confusion. We note that the subvarieties C are called the qlc strata of
(X,ω, f : (Y,BY ) → X) or simply of [X,ω]. If C is a qlc stratum of [X,ω] but is not an
irreducible component of X, then C is called a qlc center of [X,ω]. The union of all qlc
centers of [X,ω] is denoted by Nqklt(X,ω).

If BY is a subboundary R-divisor, then [X,ω] in Definition 2.5 is called a quasi-log
canonical pair.

Definition 2.6 (Quasi-log canonical pairs). Let (X,ω, f : (Y,BY ) → X) be a quasi-log
scheme as in Definition 2.5. We say that (X,ω, f : (Y,BY ) → X) or simply [X,ω] is a
quasi-log canonical pair (qlc pair, for short) if Nqlc(X,ω) = ∅. Note that the condition
Nqlc(X,ω) = ∅ is equivalent to B>1

Y = 0, that is, BY = B≤1
Y .

The following example is very important. Precisely speaking, the notion of quasi-log
schemes was originally introduced by Florin Ambro (see [A]) in order to establish the cone
and contraction theorem for generalized log varieties. Note that a generalized log variety
(X,∆) means that X is a normal variety and ∆ is an effective R-divisor on X such that
KX +∆ is R-Cartier as in Example 2.7 below.

Example 2.7. Let X be a normal irreducible variety and let ∆ be an effective R-divisor
on X such that KX +∆ is R-Cartier. Let f : Y → X be a projective birational morphism
from a smooth variety Y . We define ∆Y by

KY +∆Y = f ∗(KX +∆).
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We may assume that Supp∆Y is a simple normal crossing divisor on Y by taking f : Y →
X suitably. We put M = Y ×C and consider Y ≃ Y × {0} ↪→ Y ×C = M . Then we can
see (Y,∆Y ) as a globally embedded simple normal crossing pair. We put ω := KX +∆ and

INqlc(X,ω) := f∗OY (⌈−(∆<1
Y )⌉ − ⌊∆>1

Y ⌋) ⊂ OX .

Then (X,ω, f : (Y,∆Y ) → X) is a quasi-log scheme. In this case, C is a qlc center of [X,ω]
if and only if C is a log canonical center of (X,∆). If C is a qlc stratum but is not a qlc
center of [X,ω], then C is nothing but X.

One of the most important results in the theory of quasi-log schemes is the following
theorem.

Theorem 2.8. Let [X,ω] be a quasi-log scheme and let X ′ be the union of Nqlc(X,ω)
with a (possibly empty) union of some qlc strata of [X,ω]. Then we have the following
properties.

(i) (Adjunction). Assume that X ′ ̸= Nqlc(X,ω). Then [X ′, ω′] is a quasi-log scheme
with ω′ = ω|X′ and Nqlc(X ′, ω′) = Nqlc(X,ω). Moreover, the qlc strata of [X ′, ω′]
are exactly the qlc strata of [X,ω] that are included in X ′.

(ii) (Vanishing theorem). Assume that π : X → S is a proper morphism between
schemes. Let L be a Cartier divisor on X such that L − ω is nef and log big
over S with respect to [X,ω], that is, L − ω is π-nef and (L − ω)|C is π-big for
every qlc stratum C of [X,ω]. Then Riπ∗(IX′ ⊗OX(L)) = 0 for every i > 0, where
IX′ is the defining ideal sheaf of X ′ on X.

For the proof of Theorem 2.8, see, for example, [F5, Theorem 6.3.5]. We note that
we generalized Kollár’s torsion-free and vanishing theorems in [F5, Chapter 5] by using
the theory of mixed Hodge structures on cohomology with compact support in order to
establish Theorem 2.8.

Let us quickly recall the definition of semi-log canonical pairs for the reader’s conve-
nience.

Definition 2.9 (Semi-log canonical pairs). Let X be an equidimensional variety that
is normal crossing in codimension one and satisfies Serre’s S2 condition and let ∆ be
an effective R-divisor on X such that the singular locus of X contains no irreducible

components of Supp∆. Assume that KX + ∆ is R-Cartier. Let ν : X̃ → X be the
normalization. We put KX̃ + ∆X̃ = ν∗(KX + ∆), that is, ∆X̃ is the union of the inverse

images of ∆ and the conductor of X. If (X̃,∆X̃) is log canonical, then (X,∆) is called a
semi-log canonical pair.

The theory of quasi-log schemes plays an important role for the study of semi-log canon-
ical pairs by the following theorem: Theorem 2.10. For the precise statement and some
related results, see [F2].

Theorem 2.10 ([F2, Theorem 1.2]). Let (X,∆) be a quasi-projective semi-log canonical
pair. Then [X,KX +∆] is a quasi-log canonical pair.

For the proof of Corollary 1.5, we will use Theorem 2.11 below.

Theorem 2.11 ([FL, Theorem 1.1]). Let [X,ω] be a quasi-log canonical pair such that X

is irreducible. Let ν : X̃ → X be the normalization. Then [X̃, ν∗ω] naturally becomes a
quasi-log canonical pair with the following properties:

(i) if C is a qlc center of [X̃, ν∗ω], then ν(C) is a qlc center of [X,ω], and
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(ii) Nqklt(X̃, ν∗ω) = ν−1(Nqklt(X,ω)). More precisely, the equality

ν∗INqklt(X̃,ν∗ω) = INqklt(X,ω)

holds, where INqklt(X,ω) and INqklt(X̃,ν∗ω) are the defining ideal sheaves of Nqklt(X,ω)

and Nqklt(X̃, ν∗ω) respectively.

The following theorem is a special case of [F6, Theorem 1.5]. It is a deep result based on
the theory of variations of mixed Hodge structure on cohomology with compact support.

Theorem 2.12 ([F6, Theorem 1.5]). Let [X,ω] be a quasi-log canonical pair such that X is
a normal projective irreducible variety. Then there exists a projective birational morphism
p : X ′ → X from a smooth projective variety X ′ such that

KX′ +BX′ +MX′ = p∗ω,

where BX′ is a subboundary R-divisor, that is, BX′ = B≤1
X′ , such that SuppBX′ is a simple

normal crossing divisor and that p∗BX′ is effective, and MX′ is a nef R-divisor on X ′.
Furthermore, we can make BX′ satisfy p(B=1

X′ ) = Nqklt(X,ω).

We close this section with an easy lemma, which is essentially contained in [F5, Chapter
6].

Lemma 2.13. Let [X,ω] be a quasi-log canonical pair such that X is an irreducible curve.
Let P be a smooth point of X such that P is not a qlc center of [X,ω]. Then we can
consider a natural quasi-log structure on [X,ω + tP ] induced from [X,ω] for every t ≥ 0.
We put

c = max{t ≥ 0 | [X,ω + tP ] is quasi-log canonical}.
Then 0 < c ≤ 1 holds.

Proof. Since [X,ω] is a qlc pair, we can take a projective surjective morphism f : (Y,BY ) →
X from a globally embedded simple normal crossing pair (Y,BY ) such that BY is a sub-
boundary R-divisor on Y and that the natural map OX → f∗OY (⌈−(B<1

Y )⌉) is an isomor-
phism. By taking some blow-ups, we may further assume that (Y, SuppBY + Supp f ∗P )
is a globally embedded simple normal crossing pair. Then it is easy to see that

(X,ω + tP, f : (Y,BY + tf ∗P ) → X)

is a quasi-log scheme for every t ≥ 0. We assume that c > 1. Then multS(BY + f ∗P ) < 1
for any irreducible component S of Supp f ∗P . Therefore, f ∗P ≤ ⌈−(B<1

Y )⌉ holds. Thus
we have OX ⊊ OX(P ) ⊂ f∗OY (⌈−(B<1

Y )⌉). This is a contradiction. This means that c ≤ 1
holds. By definition, we can easily see that 0 < c holds. □

3. Proof

In this section, we prove the results in Section 1, that is, Theorems 1.3, 1.4, Corollaries
1.5, and 1.6.

First, we prove Theorem 1.3, that is, we prove Conjecture 1.2 when dimX = 1.

Theorem 3.1 (Theorem 1.3). Let [X,ω] be a projective quasi-log canonical pair of dimen-
sion one. Let M be a Cartier divisor on X. We put N = M − ω. Assume that N ·Xi > 1
for every one-dimensional irreducible component Xi of X. Then the complete linear system
|M | is basepoint-free.

Proof. Let P be an arbitrary closed point of X. If P is a qlc center of [X,ω], then
H1(X, IP ⊗OX(M)) = 0 by Theorem 2.8 (ii), where IP is the defining ideal sheaf of P on
X. Therefore, the natural restriction map

H0(X,OX(M)) → OX(M)⊗ C(P )
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is surjective. Thus, the complete linear system |M | is basepoint-free in a neighborhood of
P . From now on, we assume that P is not a qlc center of [X,ω]. Let Xi be the unique
irreducible component of X containing P . By Theorem 2.8 (ii), H1(X, IXi

⊗OX(M)) = 0,
where IXi

is the defining ideal sheaf of Xi on X. We note that Xi is a qlc stratum of
[X,ω]. Thus, the restriction map

H0(X,OX(M)) → H0(Xi,OXi
(M))

is surjective. Therefore, by replacing X with Xi, we may assume that X is irreducible. By
Lemma 2.13, we can take c ∈ R such that 0 < c ≤ 1 and that P is a qlc center of [X,ω+cP ].
Since deg(M − (ω + cP )) > 1− c ≥ 0, we have H1(X, IP ⊗OX(M)) = 0 by Theorem 2.8
(ii). Therefore, by the same argument as above, |M | is basepoint-free in a neighborhood
of P . Thus we obtain that the complete linear system |M | is basepoint-free. □
Next, we prove Theorem 1.4, which is the main technical result of this paper.

Theorem 3.2 (Theorem 1.4). Let [X,ω] be a quasi-log canonical pair such that X is a
normal projective irreducible surface. Let M be a Cartier divisor on X. We put N = M−ω.
We assume that N2 > 4 and N ·C ≥ 2 for every curve C on X. Let P be any closed point
of X that is not included in Nqklt(X,ω). Then there exists s ∈ H0(X, INqklt(X,ω)⊗OX(M))
such that s(P ) ̸= 0.

Proof. By assumption and Nakai’s ampleness criterion for R-divisors (see [CP]), N is ample.
In Step 1, we will prove Theorem 3.2 under the extra assumption that P is a smooth point
of X. In Step 2, we will treat the case where P is a singular point of X.

Step 1. In this step, we assume that P is a smooth point of X. Since N2 > 4, we can
take an effective R-divisor B on X such that B ∼R N with multP B = 2 + α > 2. By
Theorem 2.12, there exists a projective birational morphism p : X ′ → X from a smooth
projective surface X ′ such that KX′ + BX′ + MX′ = p∗ω, where BX′ is a subboundary
R-divisor such that p∗BX′ is effective and MX′ is a nef R-divisor on X ′. Let Exc(p) denote
the exceptional locus of p. By taking some more blow-ups, we may further assume that
p(B=1

X′ ) = Nqklt(X,ω) and that SuppBX′ ∪ Supp p−1
∗ B ∪ Exc(p) is contained in a simple

normal crossing divisor Σ on X ′ (see Theorem 2.12).
Let ε be a small positive real number such that (1−ε)(2+α) > 2. We can take an effective

p-exceptional Q-divisor E on X ′ such that −E is p-ample and that MX′ + ε(p∗N − E) is
semi-ample for any ε > 0. For 0 < ε ≪ 1, we put ∆ε := p∗(BX′ + εE + Gε) where Gε

is a general effective R-divisor such that Gε ∼R MX′ + ε(p∗N − E), SuppGε and SuppΣ
have no common irreducible components, ⌊Gε⌋ = 0, and Supp(Σ+Gε) is a simple normal
crossing divisor on X ′. Since the effective part of −⌊BX′ + εE +Gε⌋ is p-exceptional and
p(B=1

X′ ) = Nqklt(X,ω), we obtain

J (X,∆ε) = p∗OX′(−⌊BX′ + εE +Gε⌋)
= p∗OX′(−⌊(BX′ + εE +Gε)

≥1⌋)
= p∗OX′(−B=1

X′ )

= INqklt(X,ω).

We put Bε := (1− ε)B and define

rε = max{t ≥ 0 | (X,∆ε + tBε) is log canonical at P}.
By construction, multP Bε > 2 and ∆ε is an effective R-divisor on X. Therefore, we have
0 < rε < 1. Note that (X,∆ε) is klt at P . By construction again, there is an irreducible
component Sε of Σ such that

rε multSε p
∗Bε +multSε BX′ + εmultSε E = 1.
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Therefore,

0 < rε =
1−multSε BX′ − εmultSε E

(1− ε)multSε p
∗B

< 1

holds. Since there are only finitely many components of Σ, we can take {εi}∞i=1 and δ > 0
such that 0 < εi ≪ 1, J (X,∆εi) = INqklt(X,ω), (X,∆εi) is klt at P , (X,∆εi + rεiBεi) is log
canonical at P but is not klt at P with δ < rεi < 1 for every i, and εi ↘ 0 for i ↗ ∞.
By p : X ′ → X, we get a natural quasi-log structure on [X,ωε] with ωε := KX+∆ε+rεBε

for any ε = εi (see Example 2.7). Note that [X,ωε] is qlc in a neighborhood of P since
(X,∆ε + rεBε) is log canonical around P . Let Wε be the minimal qlc center of [X,ωε]
passing through P , equivalently, let Wε be the minimal log canonical center of (X,∆ε +
rεBε) passing through P . Let Vε be the union of all qlc centers of [X,ωε] contained in
Nqklt(X,ω) = Nklt(X,∆ε). We put Zε = Nqlc(X,ωε)∪Vε∪Wε and Yε = Nqlc(X,ωε)∪Vε.
Then [Zε, ωε|Zε ] and [Yε, ωε|Yε ] have natural quasi-log structures induced from [X,ωε] by
adjunction (see Theorem 2.8 (i)). Since

M − ωε = M − (KX +∆ε + rεBε) ∼R (1− rε)(1− ε)N,

which is still ample, the restriction map

(3.1) H0(X,OX(M)) → H0(Zε,OZε(M))

is surjective by Theorem 2.8 (ii).

Case 1. If dimWε = 0, then Wε = P is isolated in Zε by construction. Thus Zε is the
disjoint union of P and Yε. Therefore, by (3.1), the restriction map

H0(X,OX(M)) → H0(Yε,OYε(M))⊕H0(P,OP (M))

is surjective. This means that there exists s ∈ H0(X,OX(M)) such that s(P ) ̸= 0 and
s ∈ H0(X, IYε ⊗ OX(M)) ⊂ H0(X, INqklt(X,ω) ⊗ OX(M)). Note that IYε is the defining
ideal sheaf of Yε on X and the natural inclusion IYε ⊂ INqklt(X,ω) holds by construction.
This is what we wanted.

Case 2. By Case 1, we may assume that dimWε = 1 for any ε = εi. By construction,
P is not a qlc center of [Zε, ωε|Zε ]. Therefore, Zε is smooth at P since dimWε = 1 (see,
for example, [F5, Theorem 6.3.11 (ii)]). Let us consider [Zε, ωε|Zε + cεP ] where cε is the
minimum positive real number such that P is a qlc center of [Zε, ωε|Zε + cεP ] (see Lemma
2.13 and its proof). We write ∆ε + rεBε = Wε +∆′

ε. We put multP ∆′
ε = βε ≥ 0. Then

βε = multP ∆ε + rε(1− ε)(2 + α)− 1 ≥ rε(1− ε)(2 + α)− 1.

We note that

βε ≤ multP (∆
′
ε|Wε) < 1

holds because (X,Wε +∆′
ε) is plt in a neighborhood of P . We note that

(X,Wε +∆′
ε + (1−multP (∆

′
ε|Wε))H)

is log canonical but is not plt in a neighborhood of P , where H is a general smooth curve
passing through P . Therefore,

cε = 1−multP (∆
′
ε|Wε) ≤ 1− βε ≤ 2− rε(1− ε)(2 + α).

In this situation,

deg((M − ωε)|Wε − cεP ) = (1− rε)(1− ε)N ·Wε − cε

≥ 2(1− rε)(1− ε)− 2 + rε(1− ε)(2 + α)

= (1− ε)rεα− 2ε.
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Here we used the assumption N ·Wε ≥ 2. We note that (1 − εi)rεiα − 2εi > 0 for every
i ≫ 0 since εi ↘ 0 for i ↗ ∞ and rεi > δ > 0 for every i by construction. Therefore, if we
choose 0 < ε = εi ≪ 1, then

deg(M |Wε − (ωε|Wε + cεP )) > 0.

Thus, we see that the restriction map

(3.2) H0(Zε,OZε(M)) → H0(Yε,OYε(M))⊕H0(P,OP (M))

is surjective by considering the quasi-log structure of [Zε, ωε|Zε + cεP ] with the aid of
Theorem 2.8. By combining (3.2) with (3.1), the restriction map

H0(X,OX(M)) → H0(Yε,OYε(M))⊕H0(P,OP (M))

is surjective. As in Case 1, we get s ∈ H0(X,OX(M)) such that s(P ) ̸= 0 and s ∈
H0(X, INqklt(X,ω) ⊗OX(M)).

Anyway, we can construct s ∈ H0(X, INqklt(X,ω) ⊗OX(M)) such that s(P ) ̸= 0 when P
is a smooth point of X.

Step 2. In this step, we assume that P is a singular point of X. Let π : Y → X be the
minimal resolution of P . Then we have the following commutative diagram

X ′

p

  B
BB

BB
BB

B

q

��
Y π

// X,

where p : X ′ → X is a projective birational morphism from a smooth surface X ′ con-
structed in Step 1 by using Theorem 2.12. Let ∆ε be an effective R-divisor on X as
in Step 1. We put π∗(KX + ∆ε) = KY + ∆Y

ε . We note that ∆Y
ε is effective since π is

the minimal resolution of P . By construction, π is an isomorphism outside π−1(P ). In
particular, π is an isomorphism over some open neighborhood of Nqklt(X,ω). Therefore,
J (Y,∆Y

ε ) = Iπ−1(Nqklt(X,ω)) holds since J (X,∆ε) = INqklt(X,ω), where Iπ−1(Nqklt(X,ω)) is
the defining ideal sheaf of π−1(Nqklt(X,ω)). Since (π∗N)2 > 4, we can take an effec-
tive R-divisor B on X such that B ∼R N and multQD > 2, where D = π∗B, for some
Q ∈ π−1(P ). We put Dε := (1− ε)D and Bε := (1− ε)B and define

sε = max{t ≥ 0 | (Y,∆Y
ε + tDε) is log canonical at any point of π−1(P )}.

Then we have 0 < sε < 1 since multQDε > 2 for 0 < ε ≪ 1. Therefore, we can take
Qε ∈ π−1(P ) such that (Y,∆Y

ε + sεDε) is log canonical but is not klt at Qε. As in Step 1,
we may assume that SuppBX′∪Supp p−1

∗ B∪Exc(p) is contained in a simple normal crossing
divisor Σ on X ′. By the same argument as in Step 1, we can take some point R on π−1(P ),
{εi}∞i=1, and δ > 0 such that 0 < εi ≪ 1, εi ↘ 0 for i ↗ ∞, J (Y,∆Y

εi
) = Iπ−1(Nqklt(X,ω)),

(Y,∆Y
εi
+ sεiDεi) is log canonical at R but is not klt at R with δ < sεi < 1 for every i since

there are only finitely many components of Σ. By q : X ′ → Y , we have a natural quasi-log
structure on [Y, ωY

ε ] with ωY
ε := KY +∆Y

ε +sεDε for any ε = εi (see Example 2.7). If there
is a one-dimensional qlc center C of [Y, ωY

ε ] for some ε with (π∗M − ωY
ε ) · C = 0, then

C ⊂ π−1(P ). This is because

(π∗M − ωY
ε ) · C = (1− sε)(1− ε)N · π∗C = 0.

This means that P is a qlc center of [X,ωε], where ωε := KX +∆ε+ sεBε. In this case, we
can use Case 1 in Step 1. Therefore, for any ε = εi, we may assume that (π∗M−ωY

ε )·C > 0
for every one-dimensional qlc center C of [Y, ωY

ε ]. Now we can apply the arguments for
[X,ωε] and M in Step 1 to [Y, ωY

ε ] and π∗M here. We note that π∗M − ωY
ε is not ample

but is nef and log big with respect to [Y, ωY
ε ]. Thus we can use Theorem 2.8 (ii). Then we
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obtain sY ∈ H0(Y, Iπ−1(Nqklt(X,ω)) ⊗ OY (π
∗M)) such that sY (R) ̸= 0. Therefore, we have

s ∈ H0(X, INqklt(X,ω)⊗OX(M)) such that π∗s = sY . In particular, s(P ) ̸= 0. This is what
we wanted.

Anyway, we finish the proof of Theorem 3.2. □

Now the proof of Corollary 1.5 is easy.

Corollary 3.3 (Corollary 1.5). Conjecture 1.2 is true in dimension two.

Proof. Let P be an arbitrary closed point ofX and letW be the unique minimal qlc stratum
of [X,ω] passing through P . Note that W is irreducible by definition. By adjunction (see
Theorem 2.8 (i)), [W,ω|W ] is an irreducible quasi-log canonical pair. By Theorem 2.8 (ii),
the natural restriction map

(3.3) H0(X,OX(M)) → H0(W,OW (M))

is surjective. From now on, we will see that |M | is basepoint-free in a neighborhood of
P . If W = P , that is, P is a qlc center of [X,ω], then the complete linear system |M | is
obviously basepoint-free in a neighborhood of P by the surjection (3.3). Let us consider
the case where dimW = 1. We put M ′ = M |W and N ′ = N |W = M ′ − ω|W . Then
degN ′ = N ·W > 1 by assumption. Therefore, by Theorem 3.1, |M ′| is basepoint-free at
P because [W,ω|W ] is an irreducible projective quasi-log canonical curve. Therefore, by
the surjection (3.3), we see that |M | is basepoint-free in a neighborhood of P . Thus we
may assume that dimW = dimX = 2 and X is irreducible by replacing X with W since
the restriction map (3.3) is surjective. Therefore, we can assume that X is irreducible and
that X is the unique qlc stratum of [X,ω] passing through P . In particular, X is normal at

P (see, for example, [F5, Theorem 6.3.11 (ii)]). Let ν : X̃ → X be the normalization. Note

that [X̃, ν∗ω] is a qlc pair by Theorem 2.11. We put M̃ = ν∗M and Ñ = ν∗N = M̃−ν∗ω. It

is obvious that M̃ is Cartier. Moreover, we have (Ñ)2 = N2 > 4 and Ñ ·Z ≥ N · ν(Z) ≥ 2

for every curve Z on X̃. Note that dim ν(Z) = dimZ = 1 since ν is finite. We also

note that P ′ := ν−1(P ) is a point since ν : X̃ → X is an isomorphism over some open
neighborhood of P . This is because X is normal at P . Now the assumptions of Theorem

3.2 are all satisfied. Therefore, there is a section s′ ∈ H0(X̃, INqklt(X̃,ν∗ω) ⊗ OX̃(M̃)) such

that s′(P ′) ̸= 0. We note that the non-normal part of X is contained in Nqklt(X,ω) (see,
for example, [F5, Theorem 6.3.11 (ii)]) and that the equality

ν∗INqklt(X̃,ν∗ω) = INqklt(X,ω)

holds by Theorem 2.11. Therefore, we have

H0(X̃, INqklt(X̃,ν∗ω) ⊗OX̃(M̃)) ≃ H0(X, INqklt(X,ω) ⊗OX(M)).

Thus we can descend the section s′ on X̃ to a section s ∈ H0(X, INqklt(X,ω)⊗OX(M)) with
s(P ) ̸= 0. Therefore, by this section s ∈ H0(X,OX(M)), we see that |M | is basepoint-free
in a neighborhood of P . This is what we wanted. □

We close this section with the proof of Corollary 1.6.

Proof of Corollary 1.6. Let (X,∆) be a projective semi-log canonical pair. Then, by The-
orem 2.10, [X,KX + ∆] is a quasi-log canonical pair. Therefore, Corollary 1.6 is a direct
consequence of Theorem 1.3 and Corollary 1.5. □
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