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Vanishing theorems for toric polyhedra

By

Osamu Fujino∗

Abstract

A toric polyhedron is a reduced closed subscheme of a toric variety that are partial unions

of the orbits of the torus action. We prove vanishing theorems for toric polyhedra. We also

give a proof of the E1-degeneration of Hodge to de Rham type spectral sequence for toric

polyhedra in any characteristic. Finally, we give a very powerful extension theorem for ample

line bundles.
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§ 1. Introduction

In this paper, we treat vanishing theorems for toric polyhedra. Section 2 is a
continuation of my paper [F1], where we gave a very simple, characteristic-free approach
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to vanishing theorems on toric varieties by using multiplication maps. Here, we give a
generalization of Danilov’s vanishing theorem on toric polyhedra.

Theorem 1.1 (Vanishing Theorem). Let Y = Y (Φ) be a projective toric poly-
hedron defined over a field k of arbitrary characteristic. Then

Hi(Y, Ω̃aY ⊗ L) = 0 for i 6= 0

holds for every ample line bundle L on Y .

Note that a toric polyhedron is a reduced closed subscheme of a toric variety that
are partial unions of the orbits of the torus action. Once we understand Ishida’s de
Rham complexes on toric polyhedra, then we can easily see that the arguments in [F1]
works for toric polyhedra with only small modifications. Moreover, we give a proof of
the E1-degeneration of Hodge to de Rham type spectral sequence for toric polyhedra.

Theorem 1.2 (E1-degeneration). Let Y = Y (Φ) be a complete toric polyhedron
defined over a field k of any characteristic. Then the spectral sequence

Ea,b1 = Hb(Y, Ω̃aY ) ⇒ Ha+b(Y, Ω̃•Y )

degenerates at the E1-term.

It seems to be new when the characteristic of the base field is positive. So, Section
2 supplements [BTLM], [D], and [I]. In Section 3, we will give the following two results
supplementary to [F1].

Theorem 1.3 (cf. [F1, Theorem 1.1]). Let X be a toric variety defined over a
field k of any characteristic and let A and B be reduced torus invariant Weil divi-
sors on X without common irreducible components. Let L be a line bundle on X. If
Hi(X, Ω̃aX(log(A+B))(−A)⊗L⊗l) = 0 for some positive integer l, then Hi(X, Ω̃aX(log(A+
B))(−A)⊗ L) = 0.

It is a slight generalization of [F1, Theorem 1.1].

Theorem 1.4. Let X be a complete toric variety defined over a field k of any
characteristic and let A and B be reduced torus invariant Weil divisors on X without
common irreducible components. Then the spectral sequence

Ea,b1 = Hb(X, Ω̃aX(log(A+B))(−A)) ⇒ Ha+b(X, Ω̃•X(log(A+B))(−A))

degenerates at the E1-term.
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One of the main results of this paper is the next theorem, which is a complete
generalization of [M, Theorem 5.1]. For the precise statement, see Theorem 4.5 below.
We will give a proof of Theorem 1.5 as an application of our new vanishing arguments
in Section 4. The technique in Section 4 is very powerful and produces Kollár type
vanishing theorem in the toric category, which is missing in [F1].

Theorem 1.5 (Extension Theorem). Let X be a projective toric variety defined
over a field k of any characteristic and let L be an ample line bundle on X. Let Y
be a toric polyhedron on X and let IY be the defining ideal sheaf of Y on X. Then
Hi(X, IY ⊗ L) = 0 for any i > 0. In particular, the restriction map H0(X,L) →
H0(Y, L) is surjective.

We state a special case of the vanishing theorems in Section 4 for the reader’s
convenience.

Theorem 1.6 (cf. Theorem 4.3). Let f : Z → X be a toric morphism between
projective toric varieties and let A and B be reduced torus invariant Weil divisors on
Z without common irreducible components. Let L be an ample line bundle on X. Then
Hi(X,L⊗Rjf∗Ω̃aZ(log(A+B))(−A)) = 0 for any i > 0, j ≥ 0, and a ≥ 0.

In the final section: Section 5, we treat toric polyhdera as quasi-log varieties and
explain the background and motivation of this work.

Acknowledgments. I was partially supported by the Grant-in-Aid for Young
Scientists (A) ]17684001 from JSPS. I was also supported by the Inamori Foundation.
I am grateful to Professor Shigefumi Mori for his questions, comments, and warm en-
couragement. I thank Hiroshi Sato and the referee for their comments. I also thank
Takeshi Abe for answering my question.

Notation. Let N be a free Z-module of rank n ≥ 0 and let M be its dual
Z-module. The natural pairing 〈 , 〉 : N ×M → Z is extended to the bilinear form
〈 , 〉 : NR ×MR → R, where NR = N ⊗Z R and MR = M ⊗Z R. A non-empty subset
σ of NR is said to be a cone if there exists a finite subset {n1, · · · , ns} of N such that
σ = R≥0n1 + · · · + R≥0ns, where R≥0 = {r ∈ R; r ≥ 0}, and that σ ∩ (−σ) = {0},
where −σ = {−a; a ∈ σ}. A subset ρ of a cone σ is said to be a face of σ and we
denote ρ ≺ σ if there exists an element m of MR such that 〈a,m〉 ≥ 0 for every a ∈ σ
and ρ = {a ∈ σ; 〈a,m〉 = 0}. A set ∆ of cones of NR is said to be a fan if (1)
σ ∈ ∆ and ρ ≺ σ imply ρ ∈ ∆, and (2) σ, τ ∈ ∆ and ρ = σ ∩ τ imply ρ ≺ σ and
ρ ≺ τ . We do not assume that ∆ is finite, that is, ∆ does not always consist of a finite
number of cones. For a cone σ of NR, σ∨ = {x ∈ MR; 〈a, x〉 ≥ 0 for every a ∈ σ}
and σ⊥ = {x ∈ MR; 〈a, x〉 = 0 for every a ∈ σ}. Let X = X(∆) be the toric variety
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associated to a fan ∆. Note that X is just locally of finite type over k in our notation,
where k is the base field of X(∆). Each cone σ of ∆ uniquely defines an (n − dimσ)-
dimensional torus TN(σ) = Speck[M ∩ σ⊥] on X(∆). The closure of TN(σ) in X(∆) is
denoted by V (σ).

§ 2. Vanishing theorem and E1-degeneration

We will work over a fixed field k of any characteristic throughout this section.

§ 2.1. Toric polyhedra

Let us recall the definition of toric polyhedra. See [I, Definition 3.5].

Definition 2.1.1. For a subset Φ of a fan ∆, we say that Φ is star closed if
σ ∈ Φ, τ ∈ ∆ and σ ≺ τ imply τ ∈ Φ.

Definition 2.1.2 (Toric polyhedron). For a star closed subset Φ of a fan ∆, we
denote by Y = Y (Φ) the reduced subscheme

⋃
σ∈Φ V (σ) of X = X(∆), and we call it

the toric polyhedron associated to Φ.

Example 2.1.3. Let X = P2 and let T ⊂ P2 be the big torus. We put Y =
P2 \ T . Then Y is a toric polyhedron, which is a circle of three projective lines.

The above example is a special case of the following one.

Example 2.1.4. Let X = X(∆) be an n-dimensional toric variety. We put
Φm = {σ ∈ ∆;dimσ ≥ m} for 0 ≤ m ≤ n. Then Φm is a star closed subset of ∆ and
the toric polyhedron Ym = Y (Φm) is pure (n−m)-dimensional.

Example 2.1.5. We consider X = A3
k = Speck[x1, x2, x3]. Then the subvariety

Y = (x1 = x2 = 0) ∪ (x3 = 0) ' A1
k ∪ A2

k of X is a toric polyhedron, which is not pure
dimensional.

Remark 2.1.6. Let Y be a toric polyhedron. We do not know how to describe
line bundles on Y by combinatorial data. Note that a line bundle L on Y can not
necessarily be extended to a line bundle L on X.

In [I], Ishida defined the de Rham complex Ω̃•Y of a toric polyhedron Y . When Y

is a toric variety, Ishida’s de Rham complex is nothing but Danilov’s de Rham complex
(see [D, Chapter I. §4]). For the details, see [I]. Here, we quickly review Ω̃•Y when X is
affine.
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2.1.7 (Ishida’s de Rham complex). We put ∆ = {π, its faces}, where π is a cone
in NR. Then X = X(∆) is an affine toric variety Speck[M ∩π∨]. Let Φ be a star closed
subset of ∆ and let Y be the toric polyhedron associated to Φ. In this case, Ω̃aY is an
OY = k[M ∩ π∨]/k[M ∩ (π∨ \ (∪σ∈Φσ

⊥))]-module generated by xm ⊗mα1 ∧ · · · ∧mαa
,

wherem ∈M∩(π∨∩(∪σ∈Φσ
⊥)) andmα1 , · · · ,mαa

∈M [ρ(m)], for any a ≥ 0. Note that
ρ(m) = π∩m⊥ is a face of π when m ∈M ∩π∨, and that M [ρ(m)] = M ∩ρ(m)⊥ ⊂M .

§ 2.2. Multiplication maps

In this subsection, let us quickly review the multiplication maps in [F1, Section 2].

2.2.1 (Multiplication maps). For a fan ∆ in NR, we have the associated toric
variety X = X(∆). We put N ′ = 1

lN and M ′ = HomZ(N ′,Z) for any positive integer l.
We note that M ′ = lM . Since NR = N ′

R, ∆ is also a fan in N ′
R. We write ∆′ to express

the fan ∆ in N ′
R. Let X ′ = X(∆′) be the associated toric variety. We note that X ' X ′

as toric varieties. We consider the natural inclusion ϕ : N → N ′. Then ϕ induces a
finite surjective toric morphism F : X → X ′. We call it the l-times multiplication map
of X.

Remark 2.2.2. The l-times multiplication map F : X → X ′ should be called
the l-th power map of X. However, we follow [F1] in this paper.

2.2.3 (Convention). Let A be an object on X. Then we write A′ to indicate the
corresponding object on X ′. Let Φ be a star closed subset of ∆ and let Y be the toric
polyhedron associated to Φ. Then F : X → X ′ induces a finite surjective morphism
F : Y → Y ′.

2.2.4 (Split injections on the big torus). By fixing a base of M , we have k[M ] '
k[x1, x

−1
1 , · · · , xn, x−1

n ]. We can write xm = xm1
1 xm2

2 · · ·xmn
n for m = (m1, · · · ,mn) ∈

Zn = M . Let T be the big torus of X. Then we have the isomorphism of OT = k[M ]-
modules k[M ]⊗Z ∧aM → ΩaT for any a ≥ 0 induced by

xm ⊗mα1 ∧ · · · ∧mαa 7→ xm
dxmα1

xmα1
∧ · · · ∧ dxmαa

xmαa
,

where m,mα1 , · · · ,mαa ∈ Zn = M . Therefore, F∗ΩaT corresponds to a k[M ′]-module
k[M ] ⊗Z ∧aM . We consider the k[M ′]-module homomorphisms k[M ′] ⊗Z ∧aM ′ →
k[M ]⊗Z ∧aM given by xmβ ⊗mα1 ∧ · · · ∧mαa 7→ xlmβ ⊗mα1 ∧ · · · ∧mαa , and k[M ]⊗Z
∧aM → k[M ′]⊗Z ∧aM ′ induced by xmγ ⊗mα1 ∧ · · · ∧mαa 7→ xmβ ⊗mα1 ∧ · · · ∧mαa

if mγ = lmβ and xmγ ⊗ mα1 ∧ · · · ∧ mαa 7→ 0 otherwise. Thus, these k[M ′]-module
homomorphisms give split injections ΩaT ′ → F∗ΩaT for any a ≥ 0.
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§ 2.3. Proof of the vanishing theorem and E1-degeneration

Let us start the proof of the vanishing theorem and E1-degeneration. The next
proposition plays a key role in the proof.

Proposition 2.3.1. Let X be a toric variety and let Y ⊂ X be a toric polyhe-
dron. Let F : X → X ′ be the l-times multiplication map and let F : Y → Y ′ be the
induced map. Then there exists a split injection Ω̃aY ′ → F∗Ω̃aY for any a ≥ 0.

Proof. We write X = X(∆) and Y = Y (Φ). Then Y (Φ) has the open covering
{Y (Φ)∩U(π);π ∈ Φ}, where U(π) = Speck[M ∩π∨]. We put Z = Z(Ψ) = Y (Φ)∩U(π).
Then, by the description of Ω̃aZ in [I, Section 2] or 2.1.7, we have natural embeddings
OZ ⊂ k[M ] and Ω̃aZ ⊂ k[M ] ⊗Z ∧aM for any a > 0 as k-vector spaces. Note that
OZ is spanned by {xm;m ∈ M ∩ (π∨ ∩ (∪σ∈Ψσ

⊥))} as a k-vector space. In 2.2.4, we
constructed split injections k[M ′] ⊗Z ∧aM ′ → k[M ] ⊗Z ∧aM for any a ≥ 0. This split
injections induce split injections

Ω̃aZ′ → F∗Ω̃aZ
∩ ∩

k[M ′]⊗Z ∧aM ′→ k[M ]⊗Z ∧aM

for all a ≥ 0 as k-vector spaces. However, it is not difficult to see that Ω̃aZ′ → F∗Ω̃aZ and
its split F∗Ω̃aZ → Ω̃aZ′ are OZ′-homomorphisms for any a ≥ 0. The above constructed
split injections for Y (Φ)∩U(π) can be patched together. Thus, we obtain split injections
Ω̃aY ′ → F∗Ω̃aY for any a ≥ 0.

The following theorem is one of the main theorems of this paper. It is a general-
ization of Danilov’s vanishing theorem for toric varieties (see [D, 7.5.2. Theorem]).

Theorem 2.3.2 (cf. Theorem 1.1). Let Y = Y (Φ) be a projective toric polyhe-
dron defined over a field k of any characteristic. Then

Hi(Y, Ω̃aY ⊗ L) = 0 for i 6= 0

holds for every ample line bundle L on Y .

Proof. We assume that l = p > 0, where p is the characteristic of k. In this case,
F ∗L′ ' L⊗p. Thus, we obtain

Hi(Y, Ω̃aY ⊗ L) ' Hi(Y ′, Ω̃aY ′ ⊗ L′)

⊂ Hi(Y ′, F∗Ω̃aY ⊗ L′)

' Hi(Y, Ω̃aY ⊗ L⊗p),
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where we used the split injection in Proposition 2.3.1 and the projection formula. By
iterating the above arguments, we obtain Hi(Y, Ω̃aY ⊗ L) ⊂ Hi(Y, Ω̃aY ⊗ L⊗p

r

) for any
positive integer r. By Serre’s vanishing theorem, we obtain Hi(Y, Ω̃aY ⊗L) = Hi(Y, Ω̃aY ⊗
L⊗p

r

) = 0 for i > 0. When the characteristic of k is zero, we can assume that everything
is defined over R, where R(⊃ Z) is a finitely generated ring. By the above result, the
vanishing theorem holds over R/P , where P is any general maximal ideal of R, since
R/P is a finite field and the ampleness is an open condition. Therefore, we have the
desired vanishing theorem over the generic point of SpecR. Of course, it holds over
k.

If Y is a toric variety, then Theorem 2.3.2 is nothing but Danilov’s vanishing the-
orem. For the other vanishing theorems on toric varieties, see [F1] and the results in
Sections 3 and 4. The next corollary is a special case of Theorem 2.3.2.

Corollary 2.3.3. Let Y = Y (Φ) be a projective toric polyhedron and L an ample
line bundle on Y . Then we obtain Hi(Y,L) = 0 for any i > 0.

Proof. It is sufficient to remember that Ω̃0
Y ' OY .

Remark 2.3.4. Let X be a projective toric variety. Then, it is obvious that
Hi(X,OX) = 0 for i > 0. However, Hi(Y,OY ) is not necessarily zero for some i > 0
when Y is a projective toric polyhedron. See Example 2.1.3. More explicitly, let X
be an n-dimensional non-singular complete toric variety. We put Y = X \ T , where T
is the big torus. Then Hn−1(Y,OY ) is dual to H0(Y,OY ) since KY ∼ 0. Therefore,
Hn−1(Y,OY ) 6= {0}.

The following theorem is a supplement to Theorem 2.3.2.

Theorem 2.3.5. Let Y be a toric polyhedron on a toric variety X. Let L be a
line bundle on Y . Assume that L = L|Y for some line bundle L on X. If Hi(Y, Ω̃aY ⊗
L⊗l) = 0 for some positive integer l, then Hi(Y, Ω̃aY ⊗ L) = 0.

Proof. Let F : X → X ′ be the l-times multiplication map. Then F ∗L′ ' L⊗l.
Therefore, F ∗L′ ' L⊗l. By the same argument as in the proof of Theorem 2.3.2, we
obtain the desired statement.

By the construction of the split injections in Proposition 2.3.1 and the definition
of the exterior derivative, we have the following proposition.

Proposition 2.3.6. We assume that l = p > 0, where p is the characteristic of
k. Then there exist morphisms of complexes

φ :
⊕

a≥0

Ω̃aY ′ [−a] → F∗Ω̃•Y
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and
ψ : F∗Ω̃•Y →

⊕

a≥0

Ω̃aY ′ [−a]

such that ψ ◦ φ is a quasi-isomorphism. Note that the complex
⊕

a≥0 Ω̃aY ′ [−a] has zero
differentials.

Proof. We consider the following diagram.

Ω̃aY ′
φa−−−−→ F∗Ω̃aY

ψa−−−−→ Ω̃aY ′

0

y
yd

y0

Ω̃a+1
Y ′ −−−−→

φa+1
F∗Ω̃a+1

Y −−−−→
ψa+1

Ω̃a+1
Y ′

Here, φi and ψi are OY ′ -homomorphisms constructed in Proposition 2.3.1 for any i.
Since we assume that l = p, the above diagram is commutative. Therefore, we obtain
the desired morphisms of complexes φ and ψ.

As an application of Proposition 2.3.6, we can prove the E1-degeneration of Hodge
to de Rham type spectral sequence for toric polyhedra.

Theorem 2.3.7 (cf. Theorem 1.2). Let Y = Y (Φ) be a complete toric polyhe-
dron. Then the spectral sequence

Ea,b1 = Hb(Y, Ω̃aY ) ⇒ Ha+b(Y, Ω̃•Y )

degenerates at the E1-term.

Proof. The following proof is well known. See, for example, the proof of Theorem
4 in [BTLM]. We assume that l = p > 0, where p is the characteristic of k. Then, by
Proposition 2.3.6,

∑

a+b=n

dimk E
a,b
∞ = dimk Hn(Y, Ω̃•Y ) = dimk Hn(Y, F∗Ω̃•Y )

≥
∑

a+b=n

dimkH
b(Y ′, Ω̃aY ′) =

∑

a+b=n

dimk E
a,b
1 .

In general,
∑
a+b=n dimk E

a,b
∞ ≤ ∑

a+b=n dimk E
a,b
1 . Therefore, Ea,b∞ ' Ea,b1 holds and

the spectral sequence degenerates at E1. When the characteristic of k is zero, we
can assume that everything is defined over Q. Moreover, we can construct a toric
polyhedron Y defined over Z such that Y = Y ×SpecZ SpecQ. By applying the above
E1-degeneration on a general fiber of f : Y → SpecZ and the base change theorem, we



Vanishing theorems for toric polyhedra 89

obtain that
∑
a+b=n dimQE

a,b
1 = dimQHn(Y, Ω̃•Y ). In particular,

∑
a+b=n dimk E

a,b
1 =

dimk Hn(Y, Ω̃•Y ) and we have the desired E1-degeneration over k.

We close this section with the following two remarks on Ishida’s results.

Remark 2.3.8. If k = C and ∆ consists of a finite number of cones, then Ishida’s
de Rham complex Ω̃•Y is canonically isomorphic to the Du Bois complex Ω•

Y
(see The-

orem 4.1 in [I]). Therefore, the E1-degeneration in Theorem 2.3.7 was known when
k = C. We note that Ha+b(Y, Ω̃•Y ) is isomorphic to Ha+b(Y,C) in this case.

Remark 2.3.9. Let Y = Y (Φ) be a toric polyhedron. In [I, p.130], Ishida
introduced a complex C•(Φ(2),O⊗Λa). For the definition and the basic properties, see
[I, Sections 2 and 3]. Note that Ω̃aY → C0(Φ(2),O⊗Λa) → · · · → Cj(Φ(2),O⊗Λa) → · · ·
is a resolution of Ω̃aY , that is, Ω̃aY ' H0(C•(Φ(2),O⊗Λa)) and Hi(C•(Φ(2),O⊗Λa)) = 0
for i 6= 0 (cf. [I, Proposition 2.4]). Assume that Y is complete. Let L be a nef line
bundle on Y . Then it is not difficult to see that Ω̃aY ⊗ L → C•(Φ(2),O ⊗ Λa) ⊗ L is a
Γ-acyclic resolution of Ω̃aY ⊗ L. Therefore, if L is ample, then Theorem 2.3.2 implies
that H0(Y, Ω̃aY ⊗ L) = H0(D•) and Hi(Y, Ω̃aY ⊗ L) = Hi(D•) = 0 for i 6= 0, where D•

is a complex of k-vector spaces Γ(Y,C•(Φ(2),O ⊗ Λa)⊗ L).

§ 3. Suppplements

In this section, we make some remarks on my paper [F1]. Let X = X(∆) be a
toric variety defined over a field k of any characteristic. Note that ∆ is not assumed
to be finite in this section. First, we define Ω̃aX(log(A + B))(−A), which is a slight
generalization of Ω̃aX(logB) in [F1, Definition 1.2].

Definition 3.1. Let X be a toric variety and let A and B be reduced torus
invariant Weil divisors on X without common irreducible components. We put W =
X \ Sing(X), where Sing(X) is the singular locus of X. Then we define Ω̃aX(log(A +
B))(−A) = ι∗(ΩaW (log(A + B)) ⊗ OW (−A)) for any a ≥ 0, where ι : W ↪→ X is the
natural open immersion.

By the same argument as in [F1, Section 2] (see also Subsection 2.2), the split
injection ΩaT ′ → F∗ΩaT induces the following split injection.

Proposition 3.2. Let F : X → X ′ be the l-times multiplication map. Then the
split injection ΩaT ′ → F∗ΩaT naturally induces the following split injection Ω̃aX′(log(A′ +
B′))(−A′) → F∗Ω̃aX(log(A+B))(−A) for any a ≥ 0.

The next proposition is obvious by the definition of the exterior derivative and the
construction of the split injections in Proposition 3.2 (cf. Proposition 2.3.6).
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Proposition 3.3. We assume that l = p > 0, where p is the characteristic of k.
Then there exist morphisms of complexes

φ :
⊕

a≥0

Ω̃aX′(log(A′ +B′))(−A′)[−a] → F∗Ω̃•X(log(A+B))(−A)

and
ψ : F∗Ω̃•X(log(A+B))(−A) →

⊕

a≥0

Ω̃aX′(log(A′ +B′))(−A′)[−a]

such that the composition ψ ◦ φ is a quasi-isomorphism. We note that the complex⊕
a≥0 Ω̃aX′(log(A′ +B′))(−A′)[−a] has zero differentials.

The following E1-degeneration is a direct consequence of Proposition 3.3. See the
proof of Theorem 2.3.7.

Theorem 3.4 (cf. Theorem 1.4). Let X be a complete toric variety and let A
and B be reduced torus invariant Weil divisors on X without common irreducible com-
ponents. Then the spectral sequence

Ea,b1 = Hb(X, Ω̃aX(log(A+B))(−A)) ⇒ Ha+b(X, Ω̃•X(log(A+B))(−A))

degenerates at the E1-term.

Remark 3.5. If k = C and X is non-singular and complete, then it is well
known that Ha+b(X,Ω•X) = Ha+b(X,C), Ha+b(X,Ω•X(logB)) = Ha+b(X \ B,C), and
Ha+b(X,Ω•X(logA)⊗OX(−A)) = Ha+b

c (X \A,C), where Ha+b
c (X \A,C) is the coho-

mology group with compact support.

Finally, we state a generalization of [F1, Theorem 1.1]. The proof is obvious. See
also Theorem 4.3 below.

Theorem 3.6 (cf. Theorem 1.3). Let X be a toric variety and let A and B be
reduced torus invariant Weil divisors on X without common irreducible components. Let
L be a line bundle on X. If Hi(X, Ω̃aX(log(A + B))(−A) ⊗ L⊗l) = 0 for some positive
integer l, then Hi(X, Ω̃aX(log(A+B))(−A)⊗ L) = 0.

Some other vanishing theorems in [F1] can be generalized by using Theorem 3.6.
We leave the details for the reader’s exercise.

§ 4. Kollár type vanishing theorems and extension theorem

In this section, we treat a variant of the method in [F1]. Here, every toric variety
is defined over a field k of any characteristic and a fan is not necessarily finite. Let
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f : Z → X be a toric morphism of finite type. Then we have the following commutative
diagram of l-times multiplication maps.

Z
FZ

−−−−→ Z ′

f

y
yf ′

X −−−−→
FX

X ′

This means that FX : X → X ′ and FZ : Z → Z ′ are the l-times multiplication maps
explained in 2.2 and that FX ◦ f = f ′ ◦ FZ . Let F be a coherent sheaf on Z such that
there exists a split injection α : F ′ → FZ∗ F . Then we have an obvious lemma.

Lemma 4.1. We have a split injection

β = Rjf ′∗α : Rjf ′∗F ′ → FX∗ R
jf∗F

for any j.

Proof. Since FX and FZ are finite, we have the following isomorphisms

FX∗ R
jf∗F ' Rj(FX ◦ f)∗F ' Rj(f ′ ◦ FZ)∗F ' Rjf ′∗(F

Z
∗ F)

by Leray’s spectral sequence. Therefore, we obtain a split injection

β = Rjf ′∗α : Rjf ′∗F ′ → FX∗ R
jf∗F

for any j.

Let L be a line bundle on X. Then we obtain the following useful proposition.

Proposition 4.2. If Hi(X,Rjf∗F ⊗ L⊗l) = 0 for some positive integer l, then
Hi(X,Rjf∗F ⊗ L) = 0.

Proof. Let FX be the l-times multiplication map. As usual, we have

Hi(X,Rjf∗F ⊗ L) ' Hi(X ′, Rjf ′∗F ′ ⊗ L′)

⊂ Hi(X ′, FX∗ R
jf∗F ⊗ L′)

' Hi(X,Rjf∗F ⊗ L⊗l)

because (FX)∗L′ ' L⊗l. So, we obtain the desired statement.

Therefore, we get a very powerful vanishing theorem.
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Theorem 4.3. Let f : Z → X be a proper toric morphism and let A and B

be reduced torus invariant Weil divisors on Z without common irreducible components.
Assume that π : X → S is a projective toric morphism and L is a π-ample line bundle
on X. Then Riπ∗(L⊗Rjf∗Ω̃aZ(log(A+B))(−A)) = 0 for any i > 0, j ≥ 0, and a ≥ 0.

Proof. The problem is local. So, we can assume that S is affine. We put F =
Ω̃aZ(log(A+B))(−A). Then, this is a direct consequence of Proposition 3.2 and Propo-
sition 4.2 by Serre’s vanishing theorem.

We obtain Kollár type vanishing theorem for toric varieties as a special case of
Theorem 4.3.

Corollary 4.4 (Kollár type vanishing theorem). Let f : Z → X be a proper
toric morphism and let B be a reduced torus invariant Weil divisor on Z. Assume that X
is projective and L is an ample line bundle on X. Then Hi(X,Rjf∗OZ(KZ+B)⊗L) = 0
for any i > 0 and j ≥ 0.

Proof. It is sufficient to put a = dimZ in Theorem 4.3.

The next theorem is one of the main results of this paper. See also Theorem 5.3.

Theorem 4.5 (cf. [M, Theorem 5.1]). Let π : X → S be a proper toric mor-
phism and Y = Y (Φ) a toric polyhedron on X = X(∆). Let L be a π-ample line bundle
on X. Let IY be the defining ideal sheaf of Y on X. Then Riπ∗(IY ⊗ L) = 0 for any
i > 0. Since Riπ∗L = 0 for any i > 0, we have that Ri(π|Y )∗(L|Y ) = 0 for any i > 0
and that the restriction map π∗L→ (π|Y )∗(L|Y ) is surjective.

Proof. If Y = X, then there is nothing to prove. So, we can assume that Y ( X.
Let f : V → X be a toric resolution such that KV + E = f∗(KX + D) and that
Supp(f−1(Y )) is a simple normal crossing divisor on V . We decompose E = E1 + E2,
where E1 = Supp(f−1(Y )) and E2 = E − E1.

Claim. We have an isomorphism IY ' f∗OV (−E1).

Proof of Claim. By the definition of E1, f : V → X induces a morphism f : E1 →
Y . We consider the following commutative diagram.

0 // IY

²²

// OX
'

²²

// OY

²²

// 0

0 // f∗OV (−E1) // OX // f∗OE1
// · · ·



Vanishing theorems for toric polyhedra 93

Since OY → f∗OE1 is injective, we have IY ' f∗OV (−E1).

By the vanishing theorem (cf. Theorem 4.3 and Corollary 4.4), we obtain that

Riπ∗(f∗OV (−E1)⊗ L) ' Riπ∗(IY ⊗ L) = 0

for any i > 0 because −E1 ∼ KV + E2. The other statements are obvious by exact
sequences.

§ 5. Toric polyhedra as quasi-log varieties

In this section, all (toric) varieties are assumed to be of finite type over the complex
number field C to use the results in [F2]. We will explain the background and motivation
of the results obtained in the previous sections. Note that this section is independent of
the other sections. We quickly review the notation of the log minimal model program.

Notation. Let V be a normal variety and let B be an effective Q-divisor on V

such that KV + B is Q-Cartier. Then we can define the discrepancy a(E, V,B) ∈ Q
for any prime divisor E over V . If a(E, V,B) ≥ −1 for any E, then (V,B) is called log
canonical. Let (V,B) be a log canonical pair. If E is a prime divisor over V such that
a(E, V,B) = −1, then cV (E) is called log canonical center of (V,B), where cV (E) is the
closure of the image of E on V .

Let X = X(∆) be a toric variety and let D be the complement of the big torus.
Then the next proposition is well known. So, we omit the proof.

Proposition 5.1. The pair (X,D) is log canonical and KX + D ∼ 0. Let W
be a closed subvariety of X. Then, W is a log canonical center of (X,D) if and only if
W = V (σ) for some σ ∈ ∆ \ {0}.

By Proposition 5.1 and adjunction in [A, Theorem 4.4] and [F3, Theorem 3.12], we
have the following useful theorem.

Theorem 5.2. Let Y = Y (Φ) be a toric polyhedron on X. Then, the log canon-
ical pair (X,D) induces a natural quasi-log structure on (Y, 0). Note that (Y, 0) has only
qlc singularities.

Here, we do not explain the definition of quasi-log varieties. It is because it is very
difficult to grasp. See the introduction of [F3] and 5.6 below. The essential point of
the theory of quasi-log varieties is contained in the proof of Theorem 5.3 below. The
following theorem: Theorem 5.3 is my motivation for Theorem 4.5. It depends on the
deep results obtained in [F2].
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Theorem 5.3 (cf. [M, Theorem 5.1]). Let π : X → S be a proper toric mor-
phism and Y = Y (Φ) a toric polyhedron on X = X(∆). Let M be a Cartier divisor on
X such that M is π-nef and π-big and M |V (σ) is π-big for any σ ∈ ∆ \ Φ. Let IY be
the defining ideal sheaf of Y on X. Then Riπ∗(IY ⊗OX(M)) = 0 for any i > 0. Since
Riπ∗OX(M) = 0 for any i > 0, we have that Riπ∗OY (M) = 0 for any i > 0 and that
the restriction map π∗OX(M) → π∗OY (M) is surjective.

Sketch of the proof. If Y = X, then there is nothing to prove. So, we can assume
that Y ( X. Let f : V → X be a toric resolution such that KV + E = f∗(KX + D)
and that Supp(f−1(Y )) is a simple normal crossing divisor on V . We decompose E =
E1 + E2, where E1 = Supp(f−1(Y )) and E2 = E − E1. We consider the short exact
sequence

0 → OV (−E1) → OV → OE1 → 0.

Then we obtain the exact sequence

0 → f∗OV (−E1) → OX → f∗OE1 → R1f∗OV (−E1) → · · · .

Since −E1 ∼ KV + E2, R1f∗OV (−E1) ' R1f∗OV (KV + E2) and every non-zero local
section of R1f∗OV (−E1) contains in its support the f -image of some strata of (V,E2)
(see, for example, [A, Theorem 7.4] or [F3, Theorem 3.13]). Note that W is a stratum
of (V,E2) if and only if W is V or a log canonical center of (V,E2). On the other hand,
the support of f∗OE1 is contained in Y . Therefore, the connecting homomorphism
f∗OE1 → R1f∗OV (−E1) is a 0-map. Thus, we obtain

0 → f∗OV (−E1) → OX → OY → 0

and IY ' f∗OV (−E1). We consider f∗M ∼ f∗M − E1 − (KV + E2). By the vanish-
ing theorem (see [F2] and [F3, Theorem 3.13]), we obtain Riπ∗(f∗OV (f∗M − E1)) '
Riπ∗(IY ⊗ OX(M)) = 0 for any i > 0. The other statements are obvious by exact
sequences.

Remark 5.4. In Theorem 5.3, by the Lefschetz principle, we can replace the
base field C with a field k of characteristic zero. I believe that Theorem 5.3 holds true
for toric varieties defined over a field k of any characteristic. However, I did not check
it.

Remark 5.5. In the proof of Theorem 5.3, we did not use the fact that π : X →
S is toric. We just needed the properties in Proposition 5.1.

5.6 (Comments on Theorem 5.2). We freely use the notation in the proof of The-
orem 5.3. We assume that Y ( X. Then we have the following properties.
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1. g∗0 ∼ KE1 + E2|E1 , where g = f |E1 : E1 → Y .

2. E2|E1 is reduced and g∗OE1 ' OY .

3. The collection of subvarieties {V (σ)}σ∈Φ coincides with the image of torus invariant
irreducible subvarieties of V which are contained in E1.

Therefore, Y is a quasi-log variety with the quasi-log canonical class 0 and the subvari-
eties V (σ) for σ ∈ Φ are the qlc centers of Y . We sometimes call g : (E1, E2|E1) → Y a
quasi-log resolution. For the details, see [F3].
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