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Abstract.

We prove some injectivity, torsion-free, and vanishing theorems
for simple normal crossing pairs. Our results heavily depend on the
theory of mixed Hodge structures on cohomology groups with compact
support. We also treat several basic properties of semi divisorial log
terminal pairs.
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§1. Introduction

In this paper, we prove some vanishing theorems for simple normal
crossing pairs, which will play important roles in the study of higher
dimensional algebraic varieties. We note that the notion of simple nor-
mal crossing pairs includes here the case when the ambient variety it-
self has several irreducible components with simple normal crossings.
Theorem 1.1 is a generalization of the works of several authors: Kawa-
mata, Viehweg, Kollár, Esnault–Viehweg, Ambro, Fujino, and others
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(cf. [Ko1], [KMM], [EV], [Ko2], [A], [F2], [F4], [F7], [F8], [F11], and so
on).

Theorem 1.1 (see Theorem 3.7). Let (Y,∆) be a simple normal
crossing pair such that ∆ is a boundary R-divisor on Y . Let f : Y → X
be a proper morphism to an algebraic variety X and let L be a Cartier
divisor on Y such that L− (KY + ∆) is f-semi-ample.

(i) every associated prime of Rqf∗OY (L) is the generic point of
the f-image of some stratum of (Y,∆) for every q.

(ii) let π : X → V be a projective morphism to an algebraic variety
V such that

L− (KY + ∆) ∼R f
∗H

for some π-ample R-divisor H on X. Then Rqf∗OY (L) is π∗-
acyclic, that is,

Rpπ∗R
qf∗OY (L) = 0

for every p > 0 and q ≥ 0.

When X is a divisor on a smooth variety M , Theorem 1.1 is con-
tained in [A] and plays crucial roles in the theory of quasi-log varieties.
For the details, see [F8, Chapter 3] and [F9]. WhenX is quasi-projective,
it is proved in [FF, Section 6]. Here, we need no extra assumptions onX.
Therefore, Theorem 1.1 is new. The theory of resolution of singularities
for reducible varieties has recently been developing (cf. [BM] and [BP]).
It refines several vanishing theorems in [F8]. It is one of the main themes
of this paper. We will give a proof of Theorem 1.1 in Section 3. Note
that we do not treat normal crossing varieties. We only discuss simple
normal crossing varieties because the theory of resolution of singular-
ities for reducible varieties works well only for simple normal crossing
varieties. We note that the fundamental theorems for the log minimal
model program for log canonical pairs can be proved without using the
theory of quasi-log varieties (cf. [F10] and [F11]). The case when Y is
smooth in Theorem 1.1 is sufficient for [F10] and [F11]. For that case,
see [F7] and [F11, Sections 5 and 6]. Our proof of Theorem 1.1 heavily
depends on the theory of mixed Hodge structures on cohomology groups
with compact support.

1.2 (Hodge theoretic viewpoint). Let X be a projective simple nor-
mal crossing variety with dimX = n. We are mainly interested in
H•(X,ωX) or H•(X,ωX ⊗ L) for some line bundle L on X. By the
theory of mixed Hodge structures,

GrnFH
•(X,C) ' H•−n(X, ν∗ωXν ),
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where ν : Xν → X is the normalization, and

Gr0FH
•(X,C) ' H•(X,OX).

Note that F is the Hodge filtration on the natural mixed Hodge structure
on H•(X,Q). Let D be a simple normal crossing divisor on X. Then
we obtain

GrnFH
•(X \D,C) ' H•−n(X, ν∗ωXν ⊗OX(D))

and
Gr0FH

•
c (X \D,C) ' H•(X,OX(−D)).

Note that
Gr0FH

•(X \D,C) ' H•(X,OX)

and that

H•−n(X, ν∗ωXν ⊗OX(D)) 6' H•−n(X,ωX ⊗OX(D)).

We also note that H•
c (X \ D,Q) need not be the dual vector space of

H2n−•(X\D,Q) whenX is not smooth. In this setting, we are interested
in H•(X,ωX(D)) or H•(X,ωX(D) ⊗ L). Therefore, we consider the
natural mixed Hodge structure on H•

c (X\D,C) and take the dual vector
space of

Gr0FH
•
c (X \D,C) ' H•(X,OX(−D))

by Serre duality. Then we obtain Hn−•(X,ωX(D)). We note that if L
is semi-ample then we can reduce the problem to the case when L is
trivial by the usual covering trick. The above observation is crucial for
our treatment of the vanishing theorems and the semipositivity theorems
in [F8] and [FF]. In this paper, we do not discuss the Hodge theoretic
part of vanishing and semipositivity theorems. We prove Theorem 1.1
by assuming the Hodge theoretic injectivity theorem: Theorem 3.1. For
the details of the Hodge theoretic part, see [F8], [FF], and [F15].

The author learned the following example from Kento Fujita.

Example 1.3. Let X1 = P2 and let C1 be a line on X1. Let
X2 = P2 and let C2 be a smooth conic on X2. We fix an isomorphism
τ : C1 → C2. By gluing X1 and X2 along τ : C1 → C2, we obtain a
simple normal crossing surface X such that −KX is ample (cf. [Ft]). We
can check that X can not be embedded into any smooth varieties as a
simple normal crossing divisor.

Example 1.3 shows that Theorem 1.1 is not covered by the results
in [A], [F4], and [F8].
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Remark 1.4 (cf. [F8, Proposition 3.65]). We can construct a proper
simple normal crossing variety X with the following property. Let f :
Y → X be a proper morphism from a simple normal crossing variety Y
such that f induces an isomorphism f |V : V ' U where V (resp. U) is a
dense Zariski open subset of Y (resp.X) which contains the generic point
of any stratum of Y (resp. X). Then Y is non-projective. Therefore,
we can not directly use Chow’s lemma to reduce our main theorem
(cf. Theorem 1.1) to the quasi-projective case (cf. [FF, Section 6]).

There exists another standard approach to various Kodaira type
vanishing theorems. It is an analytic method (see, for example, [F5] and
[F6]). At the present time, the relationship between our Hodge theoretic
approach and the analytic method is not clear.

We summarize the contents of this paper. In Section 2, we collect
some basic definitions and results for the study of simple normal cross-
ing varieties and divisors on them. Section 3 is the main part of this
paper. It is devoted to the study of injectivity, torsion-free, and vanish-
ing theorems for simple normal crossing pairs. We note that we do not
prove the Hodge theoretic injectivity theorem: Theorem 3.1. We just
quote it from [F8] (see also [F15]). Section 4 is an easy application of
the vanishing theorem in Section 3. We prove the basic properties of
semi divisorial log terminal pairs in the sense of Kollár. In Section 5,
we explain our new semipositivity theorem, which is a generalization of
the Fujita–Kawamata semipositivity theorem, without proof. It depends
on the theory of variations of mixed Hodge structures on cohomology
groups with compact support and is related to the results obtained in
Section 3. Anyway, the vanishing theorem and the semipositivity the-
orem discussed in this paper follow from the theory of mixed Hodge
structures on cohomology groups with compact support.

For various applications of Theorem 1.1 and related topics, see [F8],
[FF], [F13], [F14], [F15], and so on.

Acknowledgments. The author was partially supported by the
Grant-in-Aid for Young Scientists (A) ]20684001 from JSPS. He would
like to thank Professors Takeshi Abe, Taro Fujisawa, and Shunsuke Tak-
agi for discussions and useful comments. He would also like to thank
Professor János Kollár for giving him a preliminary version of his book
[Ko3]. The main part of this paper is a revised version of Section 5 of the
author’s unpublished preprint [F4]. Although he tried to publish [F4],
its importance could have been misunderstood by the referee in 2007,
when almost all the minimal modelers were mainly interested in the big
development by Birkar–Cascini–Hacon–McKernan. When he wrote [F4]
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We will work over C, the complex number field, throughout this
paper. But we note that, by using the Lefschetz principle, all the results
in this paper hold over an algebraically closed field k of characteristic
zero.

§2. Preliminaries

First, we quickly recall basic definitions of divisors. We note that we
have to deal with reducible algebraic schemes in this paper. For details,
see, for example, [H, Section 2] and [L, Section 7.1].

2.1. Let X be a noetherian scheme with structure sheaf OX and
let KX be the sheaf of total quotient rings of OX . Let K∗

X denote the
(multiplicative) sheaf of invertible elements in KX , and O∗

X the sheaf of
invertible elements in OX . We note that OX ⊂ KX and O∗

X ⊂ K∗
X .

2.2 (Cartier, Q-Cartier, and R-Cartier divisors). A Cartier divisor
D on X is a global section of K∗

X/O∗
X , that is, D is an element of

H0(X,K∗
X/O∗

X). A Q-Cartier divisor (resp. R-Cartier divisor) is an
element of H0(X,K∗

X/O∗
X) ⊗Z Q (resp. H0(X,K∗

X/O∗
X) ⊗Z R).

2.3 (Linear, Q-linear, and R-linear equivalence). Let D1 and D2 be
two R-Cartier divisors on X. Then D1 is linearly (resp. Q-linearly, or
R-linearly) equivalent to D2, denoted by D1 ∼ D2 (resp. D1 ∼Q D2, or
D1 ∼R D2) if

D1 = D2 +
k∑
i=1

ri(fi)

such that fi ∈ Γ(X,K∗
X) and ri ∈ Z (resp. ri ∈ Q, or ri ∈ R) for every

i. We note that (fi) is a principal Cartier divisor associated to fi, that
is, the image of fi by Γ(X,K∗

X) → Γ(X,K∗
X/O∗

X). Let f : X → Y
be a morphism. If there is an R-Cartier divisor B on Y such that
D1 ∼R D2 + f∗B, then D1 is said to be relatively R-linearly equivalent
to D2. It is denoted by D1 ∼R,f D2.

2.4 (Supports). Let D be a Cartier divisor on X. The support of
D, denoted by SuppD, is the subset of X consisting of points x such
that a local equation for D is not in O∗

X,x. The support of D is a closed
subset of X.

2.5 (Weil divisors, Q-divisors, and R-divisors). Let X be an equidi-
mensional reduced separated algebraic scheme. We note that X is not
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necessarily regular in codimension one. A (Weil) divisor D on X is a
finite formal sum

n∑
i=1

diDi

where Di is an irreducible reduced closed subscheme of X of pure codi-
mension one and di is an integer for every i such that Di 6= Dj for
i 6= j.

If di ∈ Q (resp. di ∈ R) for every i, then D is called a Q-divisor
(resp. R-divisor). We define the round-up dDe =

∑r
i=1ddieDi (resp. the

round-down bDc =
∑r
i=1bdicDi), where for every real number x, dxe

(resp. bxc) is the integer defined by x ≤ dxe < x+1 (resp. x−1 < bxc ≤
x). The fractional part {D} of D denotes D − bDc. We define D<1 =∑
di<1 diDi and so on. We call D a boundary R-divisor if 0 ≤ di ≤ 1 for

every i.

Next, we recall the definition of simple normal crossing pairs.

Definition 2.6 (Simple normal crossing pairs). We say that the pair
(X,D) is simple normal crossing at a point a ∈ X if X has a Zariski
open neighborhood U of a that can be embedded in a smooth variety
Y , where Y has regular system of parameters (x1, · · · , xp, y1, · · · , yr) at
a = 0 in which U is defined by a monomial equation

x1 · · ·xp = 0

and

D =
r∑
i=1

αi(yi = 0)|U , αi ∈ R.

We say that (X,D) is a simple normal crossing pair if it is simple normal
crossing at every point of X. If (X, 0) is a simple normal crossing pair,
thenX is called a simple normal crossing variety. IfX is a simple normal
crossing variety, then X has only Gorenstein singularities. Thus, it has
an invertible dualizing sheaf ωX . Therefore, we can define the canonical
divisor KX such that ωX ' OX(KX) (cf. [L, Section 7.1 Corollary 1.19]).
It is a Cartier divisor on X and is well-defined up to linear equivalence.

We note that a simple normal crossing pair is called a semi-snc pair
in [Ko3, Definition 1.10].

Definition 2.7 (Strata and permissibility). Let X be a simple nor-
mal crossing variety and let X =

∪
i∈I Xi be the irreducible decomposi-

tion of X. A stratum of X is an irreducible component of Xi1 ∩· · ·∩Xik

for some {i1, · · · , ik} ⊂ I. A Cartier divisor D on X is permissible
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if D contains no strata of X in its support. A finite Q-linear (resp. R-
linear) combination of permissible Cartier divisors is called a permissible
Q-Cartier divisor (resp. R-Cartier divisor) on X.

2.8. Let X be a simple normal crossing variety. Let PerDiv(X) be
the abelian group generated by permissible Cartier divisors on X and
let Weil(X) be the abelian group generated by Weil divisors on X. Then
we can define natural injective homomorphisms of abelian groups

ψ : PerDiv(X) ⊗Z K → Weil(X) ⊗Z K

for K = Z, Q, and R. Let ν : X̃ → X be the normalization. Then we
have the following commutative diagram.

Div(X̃) ⊗Z K ∼

ψ̃

// Weil(X̃) ⊗Z K

ν∗

��
PerDiv(X) ⊗Z K

ψ
//

ν∗

OO

Weil(X) ⊗Z K

Note that Div(X̃) is the abelian group generated by Cartier divisors on
X̃ and that ψ̃ is an isomorphism since X̃ is smooth.

By ψ, every permissible Cartier (resp. Q-Cartier or R-Cartier) di-
visor can be considered as a Weil divisor (resp. Q-divisor or R-divisor).
Therefore, various operations, for example, bDc, D<1, and so on, make
sense for a permissible R-Cartier R-divisor D on X.

We note the following easy example.

Example 2.9. Let X be a simple normal crossing variety in C3 =
SpecC[x, y, z] defined by xy = 0. We set D1 = (x + z = 0) ∩ X and
D2 = (x− z = 0)∩X. Then D = 1

2D1 + 1
2D2 is a permissible Q-Cartier

Q-divisor on X. In this case, bDc = (x = z = 0) on X. Therefore, bDc
is not a Cartier divisor on X.

Definition 2.10 (Simple normal crossing divisors). Let X be a
simple normal crossing variety and let D be a Cartier divisor on X. If
(X,D) is a simple normal crossing pair and D is reduced, then D is
called a simple normal crossing divisor on X.

Remark 2.11. Let X be a simple normal crossing variety and let
D be a K-divisor on X where K = Q or R. If SuppD is a simple normal
crossing divisor on X and D is K-Cartier, then bDc and dDe (resp. {D},
D<1, and so on) are Cartier (resp. K-Cartier) divisors on X (cf. [BP,
Section 8]).
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The following lemma is easy but important.

Lemma 2.12. Let X be a simple normal crossing variety and let
B be a permissible R-Cartier R-divisor on X such that bBc = 0. Let A
be a Cartier divisor on X. Assume that A ∼R B. Then there exists a
permissible Q-Cartier Q-divisor C on X such that A ∼Q C, bCc = 0,
and SuppC = SuppB.

Proof. We can write B = A +
∑k
i=1 ri(fi), where fi ∈ Γ(X,K∗

X)
and ri ∈ R for every i. Here, KX is the sheaf of total quotient rings of
OX (see 2.1). Let P ∈ X be a scheme theoretic point corresponding to
some stratum of X. We consider the following affine map

Kk → H0(XP ,K∗
XP
/O∗

XP
) ⊗Z K

given by (a1, · · · , ak) 7→ A +
∑k
i=1 ai(fi), where XP = SpecOX,P and

K = Q or R. Then we can check that

P = {(a1, · · · , ak) ∈ Rk |A+
∑
i

ai(fi) is permissible} ⊂ Rk

is an affine subspace of Rk defined over Q. Therefore, we see that

S = {(a1, · · · , ak) ∈ P |Supp(A+
∑
i

ai(fi)) ⊂ SuppB} ⊂ P

is an affine subspace of Rk defined over Q. Since (r1, · · · , rk) ∈ S, we
know that S 6= ∅. We take a point (s1, · · · , sk) ∈ S∩Qk which is general
in S and sufficiently close to (r1, · · · , rk) and set C = A+

∑k
i=1 si(fi). By

construction, C is a permissible Q-Cartier Q-divisor such that C ∼Q A,
bCc = 0, and SuppC = SuppB. Q.E.D.

We need the following important definition in Section 3.

Definition 2.13 (Strata and permissibility for pairs). Let (X,D)
be a simple normal crossing pair such that D is a boundary R-divisor on
X. Let ν : Xν → X be the normalization. We define Θ by the formula

KXν + Θ = ν∗(KX +D).

Then a stratum of (X,D) is an irreducible component of X or the ν-
image of a log canonical center of (Xν ,Θ). We note that (Xν ,Θ) is log
canonical. When D = 0, this definition is compatible with Definition
2.7. A Cartier divisor B on X is permissible with respect to (X,D) if B
contains no strata of (X,D) in its support. A finite R-linear (resp. Q-
linear) combination of permissible Cartier divisors with respect to (X,D)
is called a permissible R-divisor (resp. Q-divisor)with respect to (X,D).
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For the reader’s convenience, we recall Grothendieck’s Quot scheme.
For the details, see, for example, [N, Theorem 5.14] and [AK, Section
2]. We will use it in the proof of the main theorem: Theorem 3.7.

Theorem 2.14 (Grothendieck). Let S be a noetherian scheme, let
π : X → S be a projective morphism, and let L be a relatively very
ample line bundle on X. Then for any coherent OX-module E and
any polynomial Φ ∈ Q[λ], the functor QuotΦ,LE/X/S is representable by a

projective S-scheme QuotΦ,LE/X/S.

§3. Vanishing theorems

Let us start with the following injectivity theorem (cf. [F4, Proposi-
tion 3.2] and [F8, Proposition 2.23]). The proof of Theorem 3.1 in [F8]
is purely Hodge theoretic. It uses the theory of mixed Hodge structures
on cohomology groups with compact support (cf. 1.2). For the details,
see [F8, Chapter 2] and [F15].

Theorem 3.1 (Hodge theoretic injectivity theorem). Let (X,S+B)
be a simple normal crossing pair such that X is proper, S + B is a
boundary R-divisor, S is reduced, and bBc = 0. Let L be a Cartier
divisor on X and let D be an effective Cartier divisor whose support is
contained in SuppB. Assume that L ∼R KX +S +B. Then the natural
homomorphisms

Hq(X,OX(L)) → Hq(X,OX(L+D)),

which are induced by the inclusion OX → OX(D), are injective for all
q.

Remark 3.2. In [F15], we prove a slight generalization of Theorem
3.1. However, Theorem 3.1 is sufficient for the proof of Theorem 3.4
below.

The next lemma is an easy generalization of the vanishing theorem
of Reid–Fukuda type for simple normal crossing pairs, which is a very
special case of Theorem 3.7 (i). However, we need Lemma 3.3 for our
proof of Theorem 3.7.

Lemma 3.3 (Relative vanishing lemma). Let f : Y → X be a proper
morphism from a simple normal crossing pair (Y,∆) to an algebraic
variety X such that ∆ is a boundary R-divisor on Y . We assume that
f is an isomorphism at the generic point of any stratum of the pair
(Y,∆). Let L be a Cartier divisor on Y such that L ∼R,f KY +∆. Then
Rqf∗OY (L) = 0 for every q > 0.
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Proof. By shrinking X, we may assume that L ∼R KY + ∆. By
applying Lemma 2.12 to {∆}, we may further assume that ∆ is a Q-
divisor and L ∼Q KY + ∆.

Step 1. We assume that Y is irreducible. In this case, L−(KY +∆)
is nef and log big over X with respect to the pair (Y,∆), that is, L −
(KY +∆) is nef and big over X and (L− (KY +∆))|W is big over f(W )
for every stratum W of the pair (Y,∆). Therefore, Rqf∗OY (L) = 0 for
every q > 0 by the vanishing theorem of Reid–Fukuda type (see, for
example, [F8, Lemma 4.10]).

Step 2. Let Y1 be an irreducible component of Y and let Y2 be the
union of the other irreducible components of Y . Then we have a short
exact sequence

0 → OY1(−Y2|Y1) → OY → OY2 → 0.

We set L′ = L|Y1 − Y2|Y1 . Then we have a short exact sequence

0 → OY1(L
′) → OY (L) → OY2(L|Y2) → 0

and L′ ∼Q KY1 + ∆|Y1 . On the other hand, we can check that

L|Y2 ∼Q KY2 + Y1|Y2 + ∆|Y2 .

We have already known that Rqf∗OY1(L
′) = 0 for every q > 0 by Step

1. By induction on the number of the irreducible components of Y , we
have Rqf∗OY2(L|Y2) = 0 for every q > 0. Therefore, Rqf∗OY (L) = 0 for
every q > 0 by the exact sequence:

· · · → Rqf∗OY1(L
′) → Rqf∗OY (L) → Rqf∗OY2(L|Y2) → · · · .

So, we finish the proof of Lemma 3.3. Q.E.D.

Although Lemma 3.3 is a very easy generalization of the relative
Kawamata–Viehweg vanishing theorem, it is sufficiently powerful for the
study of reducible varieties once we combine it with the recent results
in [BM] and [BP]. In Section 4, we will see an application of Lemma 3.3
for the study of semi divisorial log terminal pairs.

It is the time to state the main injectivity theorem for simple normal
crossing pairs. It is a direct application of Theorem 3.1. Our formulation
of Theorem 3.4 is indispensable for the proof of our main theorem: The-
orem 3.7.

Theorem 3.4 (Injectivity theorem for simple normal crossing pairs).
Let (X,∆) be a simple normal crossing pair such that X is proper and
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that ∆ is a boundary R-divisor on X. Let L be a Cartier divisor on X
and let D be an effective Cartier divisor that is permissible with respect
to (X,∆). Assume the following conditions.

(i) L ∼R KX + ∆ +H,
(ii) H is a semi-ample R-divisor, and
(iii) tH ∼R D+D′ for some positive real number t, where D′ is an

effective R-Cartier R-divisor that is permissible with respect to
(X,∆).

Then the homomorphisms

Hq(X,OX(L)) → Hq(X,OX(L+D)),

which are induced by the natural inclusion OX → OX(D), are injective
for all q.

Remark 3.5. For the definition and the basic properties of semi-
ample R-divisors, see [F11, Definition 4.11, Lemma 4.13, and Lemma
4.14].

Proof of Theorem 3.4. We set S = b∆c and B = {∆} throughout
this proof. We obtain a projective birational morphism f : Y → X from
a simple normal crossing variety Y such that f is an isomorphism over
X \ Supp(D + D′ + B), and that the union of the support of f∗(S +
B+D+D′) and the exceptional locus of f has a simple normal crossing
support on Y (cf. [BP, Theorem 1.4]). Let B′ be the strict transform
of B on Y . We may assume that SuppB′ is disjoint from any strata of
Y that are not irreducible components of Y by taking blowing-ups. We
write

KY + S′ +B′ = f∗(KX + S +B) + E,

where S′ is the strict transform of S and E is f -exceptional. By the
construction of f : Y → X, S′ is Cartier and B′ is R-Cartier. Therefore,
E is also R-Cartier. It is easy to see that E+ = dEe ≥ 0. We set
L′ = f∗L + E+ and E− = E+ − E ≥ 0. We note that E+ is Cartier
and E− is R-Cartier because SuppE is simple normal crossing on Y
(cf. Remark 2.11). Since f∗H is an R>0-linear combination of semi-
ample Cartier divisors, we can write f∗H ∼R

∑
i aiHi, where 0 < ai < 1

and Hi is a general Cartier divisor on Y for every i. We set

B′′ = B′ + E− +
ε

t
f∗(D +D′) + (1 − ε)

∑
i

aiHi

for some 0 < ε � 1. Then L′ ∼R KY + S′ + B′′. By construction,
bB′′c = 0, the support of S′ + B′′ is simple normal crossing on Y , and
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SuppB′′ ⊃ Suppf∗D. So, Theorem 3.1 implies that the homomorphisms

Hq(Y,OY (L′)) → Hq(Y,OY (L′ + f∗D))

are injective for all q. By Lemma 3.3, Rqf∗OY (L′) = 0 for every q > 0
and it is easy to see that f∗OY (L′) ' OX(L). By the Leray spectral
sequence, the homomorphisms

Hq(X,OX(L)) → Hq(X,OX(L+D))

are injective for all q. Q.E.D.

Lemma 3.6. Let f : Z → X be a proper morphism from a sim-
ple normal crossing pair (Z,B) to an algebraic variety X. Let X be
a projective variety such that X contains X as a Zariski dense open
subset. Then there exist a proper simple normal crossing pair (Z,B)
that is a compactification of (Z,B) and a proper morphism f : Z → X
that compactifies f : Z → X. Moreover, Z \ Z is a divisor on Z,
SuppB ∪ Supp(Z \ Z) is a simple normal crossing divisor on Z, and
Z \ Z has no common irreducible components with B. We note that we
can make B a K-Cartier K-divisor on Z when so is B on Z, where K
is Z, Q, or R. When f is projective, we can make Z projective.

Proof. Let B ⊂ Z be any compactification of B ⊂ Z. By blowing
up Z inside Z\Z, we may assume that f : Z → X extends to f : Z → X,
Z is a simple normal crossing variety, and Z \ Z is of pure codimension
one (see [BM, Theorem 1.5]). By [BP, Theorem 1.4], we can construct
a desired compactification. Note that we can make B a K-Cartier K-
divisor by the argument in [BP, Section 8]. Q.E.D.

Theorem 3.7 below is our main theorem of this paper, which is a
generalization of Kollár’s torsion-free and vanishing theorem (see [Ko1,
Theorem 2.1]). The reader find various applications of Theorem 3.7 in
[F8], [FF], and [F13]. We note that Theorem 3.7 for embedded normal
crossing pairs was first formulated by Florin Ambro for his theory of
quasi-log varieties (cf. [A]). For the details of the theory of quasi-log
varieties, see [F8, Chapter 3] and [F9].

Theorem 3.7. Let (Y,∆) be a simple normal crossing pair such
that ∆ is a boundary R-divisor on Y . Let f : Y → X be a proper
morphism to an algebraic variety X and let L be a Cartier divisor on Y
such that L− (KY + ∆) is f-semi-ample.

(i) every associated prime of Rqf∗OY (L) is the generic point of
the f-image of some stratum of (Y,∆) for every q.
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(ii) let π : X → V be a projective morphism to an algebraic variety
V such that

L− (KY + ∆) ∼R f
∗H

for some π-ample R-divisor H on X. Then Rqf∗OY (L) is π∗-
acyclic, that is,

Rpπ∗R
qf∗OY (L) = 0

for every p > 0 and q ≥ 0.

Proof. We set S = b∆c, B = {∆}, and H ′ ∼R L − (KY + ∆)
throughout this proof. Let us start with the proof of (i).

Step 1. First, we assume that X is projective. We may assume that
H ′ is semi-ample by replacing L (resp. H ′) with L + f∗A′ (resp. H ′ +
f∗A′), where A′ is a very ample Cartier divisor on X. Suppose that
Rqf∗OY (L) has a local section whose support does not contain the f -
images of any strata of (Y, S+B). More precisely, let U be a non-empty
Zariski open set and let s ∈ Γ(U,Rqf∗OY (L)) be a non-zero section of
Rqf∗OY (L) on U whose support V ⊂ U does not contain the f -images
of any strata of (Y, S + B). Let V be the closure of V in X. We note
that V \ V may contain the f -image of some stratum of (Y, S +B). Let
Y2 be the union of the irreducible components of Y that are mapped
into V \ V and let Y1 be the union of the other irreducible components
of Y . We set

KY1 + S1 +B1 = (KY + S +B)|Y1

such that S1 is reduced and that bB1c = 0. By replacing Y , S, B, L, and
H ′ with Y1, S1, B1, L|Y1 , and H ′|Y1 , we may assume that no irreducible
components of Y are mapped into V \V . Let C be a stratum of (Y, S+B)
that is mapped into V \ V . Let σ : Y ′ → Y be the blowing-up along C.
We set E = σ−1(C). We can write

KY ′ + S′ +B′ = σ∗(KY + S +B)

such that S′ is reduced and bB′c = 0. Thus,

σ∗H ′ ∼R σ
∗L− (KY ′ + S′ +B′)

and
σ∗H ′ ∼R σ

∗L− E − (KY ′ + (S′ − E) +B′).

We note that S′ − E is effective. We replace Y , H ′, L, S, and B with
Y ′, σ∗H ′, σ∗L − E, S′ − E, and B′. By repeating this process finitely
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many times, we may assume that V does not contain the f -images of
any strata of (Y, S +B). Then we can find a very ample Cartier divisor
A on X with the following properties.

(a) f∗A is permissible with respect to (Y, S +B), and
(b) Rqf∗OY (L) → Rqf∗OY (L) ⊗OX(A) is not injective.

We may assume that H ′ − f∗A is semi-ample by replacing L (resp. H ′)
with L + f∗A (resp. H ′ + f∗A). If necessary, we replace L (resp. H ′)
with L + f∗A′′ (resp. H ′ + f∗A′′), where A′′ is a very ample Cartier
divisor. Then, we have

H0(X,Rqf∗OY (L)) ' Hq(Y,OY (L))

and
H0(X,Rqf∗OY (L) ⊗OX(A)) ' Hq(Y,OY (L+ f∗A)).

We obtain that

H0(X,Rqf∗OY (L)) → H0(X,Rqf∗OY (L) ⊗OX(A))

is not injective by (b) if A′′ is sufficiently ample. So,

Hq(Y,OY (L)) → Hq(Y,OY (L+ f∗A))

is not injective. It contradicts Theorem 3.4. Therefore, the support
of every non-zero local section of Rqf∗OY (L) contains the f -image of
some stratum of (Y,∆), equivalently, the support of every non-zero local
section of Rqf∗OY (L) is equal to the union of the f -images of some strata
of (Y,∆). This means that every associated prime of Rqf∗OY (L) is the
generic point of the f -image of some stratum of (Y,∆). We finish the
proof when X is projective.

Step 2. Next, we assume that X is not projective. Note that the
problem is local. So, we shrink X and may assume that X is affine.
We can write H ′ ∼R H ′

1 + H ′
2, where H ′

1 (resp. H ′
2) is a semi-ample

Q-divisor (resp. a semi-ample R-divisor) on Y . We can write H ′
2 ∼R∑

i aiAi, where 0 < ai < 1 and Ai is a general effective Cartier divisor
on Y for every i. Replacing B (resp. H ′) with B +

∑
i aiAi (resp. H ′

1),
we may assume that H ′ is a semi-ample Q-divisor. Without loss of
generality, we may further assume that (Y,B + S + H ′) is a simple
normal crossing pair. We compactify X and apply Lemma 3.6. Then
we obtain a compactification f : Y → X of f : Y → X. Let H ′ be the
closure of H ′ on Y . If H ′ is not a semi-ample Q-divisor, then we take
blowing-ups of Y inside Y \Y and obtain a semi-ample Q-divisor H̃ ′ on
Y such that H̃ ′|Y = H ′. Let B (resp. S) be the closure of B (resp. S)
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on Y . We may assume that S is Cartier and B is R-Cartier (cf. Lemma
3.6). We construct a coherent sheaf F on Y which is an extension
of OY (L). We consider Grothendieck’s Quot scheme Quot1,OY

F/Y /Y (see

Theorem 2.14). Note that the restriction of Quot1,OY

F/Y /Y to Y is nothing
but Y because F|Y = OY (L) is a line bundle on Y . Therefore, the
structure morphism from Quot1,OY

F/Y /Y to Y has a section s over Y . By

taking the closure of s(Y ) in Quot1,OY

F/Y /Y , we have a compactification Y †

of Y and a line bundle L on Y † with L|Y = OY (L). If necessary, we
take more blowing-ups of Y † outside Y (cf. [BP, Theorem 1.4]). Then
we obtain a new compactification Y and a Cartier divisor L on Y with
L|Y = L (cf. Lemma 3.6). In this situation, H̃ ′ ∼R L − (KY + S + B)
does not necessarily hold. We can write

H ′ +
∑
i

bi(fi) = L− (KY + S +B),

where bi is a real number and fi ∈ Γ(Y,K∗
Y ) for every i. We set

E = H̃ ′ +
∑
i

bi(fi) − (L− (KY + S +B)).

We note that we can see fi ∈ Γ(Y ,K∗
Y

) for every i (cf. [L, Section 7.1
Proposition 1.15]). We replace L (resp. B) with L + dEe (resp. B +
{−E}). Then we obtain the desired property of Rqf∗OY (L) since X is
projective. We note that dEe is Cartier because SuppE is in Y \ Y and
E is R-Cartier (cf. Remark 2.11). So, we finish the whole proof of (i).

From now on, we prove (ii).

Step 1. We assume that dimV = 0. In this case, we can write
H ∼R H1 + H2, where H1 (resp. H2) is an ample Q-divisor (resp. an
ample R-divisor) on X. So, we can write H2 ∼R

∑
i aiAi, where 0 <

ai < 1 and Ai is a general very ample Cartier divisor on X for every i.
Replacing B (resp. H) with B +

∑
i aif

∗Ai (resp. H1), we may assume
that H is an ample Q-divisor. We take a general member A ∈ |mH|,
where m is a sufficiently large and divisible integer, such that A′ = f∗A
and Rqf∗OY (L + A′) is π∗-acyclic, that is, Γ-acyclic, for all q. By (i),
we have the following short exact sequences,

0 → Rqf∗OY (L) → Rqf∗OY (L+A′) → Rqf∗OA′(L+A′) → 0.

for every q. Note that Rqf∗OA′(L + A′) is π∗-acyclic by induction on
dimX and Rqf∗OY (L+A′) is also π∗-acyclic by the above assumption.
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Thus, Epq2 = 0 for p ≥ 2 in the following commutative diagram of
spectral sequences.

Epq2 = Hp(X,Rqf∗OY (L))

ϕpq

��

+3 Hp+q(Y,OY (L))

ϕp+q

��
E
pq

2 = Hp(X,Rqf∗OY (L+A′)) +3 Hp+q(Y,OY (L+A′))

We note that ϕ1+q is injective by Theorem 3.4. We have that

E1q
2

α−→ H1+q(Y,OY (L))

is injective by the fact that Epq2 = 0 for p ≥ 2. We also have that
E

1q

2 = 0 by the above assumption. Therefore, we obtain E1q
2 = 0 since

the injection

E1q
2

α−→ H1+q(Y,OY (L))
ϕ1+q

−→ H1+q(Y,OY (L+A′))

factors through E
1q

2 = 0. This implies that Hp(X,Rqf∗OY (L)) = 0 for
every p > 0.

Step 2. We assume that V is projective. By replacing H (resp. L)
with H + π∗G (resp. L + (π ◦ f)∗G), where G is a very ample Cartier
divisor on V , we may assume that H is an ample R-divisor. If G is a
sufficiently ample Cartier divisor on V , then we have

Hk(V,Rpπ∗Rqf∗OY (L) ⊗G) = 0

for every k ≥ 1,

H0(V,Rpπ∗Rqf∗OY (L) ⊗OV (G)) ' Hp(X,Rqf∗OY (L) ⊗OX(π∗G))

' Hp(X,Rqf∗OY (L+ f∗π∗G))

for every p and q, and Rpπ∗R
qf∗OY (L) ⊗ OV (G) is generated by its

global sections for every p and q. Since

L+ f∗π∗G− (KY + ∆) ∼R f
∗(H + π∗G),

and H + π∗G is ample, we can apply Step 1 and obtain

Hp(X,Rqf∗OY (L+ f∗π∗G)) = 0

for every p > 0. Thus, Rpπ∗Rqf∗OY (L) = 0 for every p > 0 by the
above arguments.
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Step 3. When V is not projective, we shrink V and may assume
that V is affine. By the same argument as in Step 1, we may assume
that H is Q-Cartier. Let π : X → V be a compactification of π : X → V
such that X and V are projective. We may assume that there exists a
π-ample Q-divisor H on X such that H|X = H. By Lemma 3.6, we can
compactify f : (Y, S + B) → X and obtain f : (Y , S + B) → X. We
note that f

∗
H ∼R L − (KY + S + B) does not necessarily hold, where

L is a Cartier divisor on Y constructed as in Step 2 in the proof of (i).
By the same argument as in Step 2 in the proof of (i), we obtain that
Rpπ∗R

qf∗OY (L) = 0 for every p > 0 and q ≥ 0.

We finish the whole proof of (ii). Q.E.D.

§4. Semi divisorial log terminal pairs

Let us start with the definition of semi divisorial log terminal pairs
in the sense of Kollár. For details of singularities which appear in the
minimal model program, see [F3] and [Ko3].

Definition 4.1 (Semi divisorial log terminal pairs). Let X be an
equidimensional reduced separated S2 algebraic scheme which is simple
normal crossing in codimension one. Let ∆ =

∑
i ai∆i be an R-Weil

divisor onX such that 0 < ai ≤ 1 for every i and that ∆i is not contained
in the singular locus of X, where ∆i is a prime divisor on X for every
i and ∆i 6= ∆j for i 6= j. Assume that KX + ∆ is R-Cartier. The pair
(X,∆) is semi divisorial log terminal (sdlt, for short) if a(E,X,∆) > −1
for every exceptional divisor E over X such that (X,∆) is not a simple
normal crossing pair at the generic point of cX(E), where cX(E) is the
center of E on X.

We note that if (X,∆) is sdlt and X is irreducible then (X,∆) is a
divisorial log terminal pair (dlt, for short). The following theorem is a
direct generalization of [F8, Theorem 4.14] (cf. [F12, Proposition 2.4]).
It is an easy application of Lemma 3.3.

Theorem 4.2 (cf. [F12, Theorem 5.2]). Let (X,D) be a semi diviso-
rial log terminal pair. Let X =

∪
i∈I Xi be the irreducible decomposition.

We set
Y =

∪
i∈J

Xi ⊂ X

for J ⊂ I. Then Y is Cohen–Macaulay, seminormal, and has only Du
Bois singularities. In particular, each irreducible component of X is
normal and X itself is Cohen–Macaulay.
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We note that an irreducible component of a seminormal scheme need
not be seminormal (see [Ko3, Example 10.12]). We also note that an
irreducible component of a Cohen–Macaulay scheme need not be Cohen–
Macaulay. The author learned the following example from Shunsuke
Takagi.

Example 4.3. We set

R = C[x, y, z, w]/(yz − xw, xz2 − y2w).

ThenX = SpecR is a reduced reducible two-dimensional Cohen–Macaulay
scheme. An irreducible component

Y = SpecR/(y3 − x2z, z3 − yw2)

of X is not Cohen–Macaulay. It is because

R/(y3 − x2z, z3 − yw2) ' C[s4, s3t, st3, t4].

The Cohen–Macaulayness of X is very important for various duality
theorems. We use it in the proof of Theorem 5.1 in [FF].

Let us start the proof of Theorem 4.2.

Proof of Theorem 4.2. By [BP, Theorem 1.4], there is a morphism
f : Z → X given by a composite of blowing-ups with smooth centers
such that (Z, f−1

∗ D+ Exc(f)) is a simple normal crossing pair and that
f is an isomorphism over U , where U is the largest Zariski open subset
of X such that (U,D|U ) is a simple normal crossing pair. Then we can
write

KZ +D′ = f∗(KX +D) + E,

where D′ and E are effective and have no common irreducible compo-
nents. By construction, E is f -exceptional and Supp(E+D′) is a simple
normal crossing divisor on Z. Since X is S2 and simple normal crossing
in codimension one, X is seminormal. Then we obtain f∗OZ ' OX . Let
Z =

∪
i∈I Zi be the irreducible decomposition. We consider the short

exact sequence

0 → OV (−W |V ) → OZ → OW → 0,

where W =
∪
i∈J Zi and V =

∪
i∈I\J Zi. Therefore,

0 → OV (dEe −W |V ) → OZ(dEe) → OW (dEe) → 0

is exact. We note that dEe is Cartier (cf. Remark 2.11). By Lemma 3.3,
Rif∗OZ(dEe) = 0 for every i > 0. We note that

dEe ∼R,f KZ +D′ + {−E}.
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Since
(dEe −W )|V ∼R,f KV + (D′ + {−E})|V ,

Rif∗OV (dEe−W |V ) = 0 for every i > 0 by Lemma 3.3 again. Therefore,
we obtain that

0 → f∗OV (dEe −W |V ) → f∗OZ(dEe) ' OX → f∗OW (dEe) → 0

is exact and that Rif∗OW (dEe) = 0 for every i > 0. Since dEe|W
is effective and OX → f∗OW (dEe) → 0 factors through OY , we have
OY ' f∗OW ' f∗OW (dEe). Therefore, Y is seminormal because so is
W . In the derived category of coherent sheaves on Y , the composition

(1) OY → Rf∗OW → Rf∗OW (dEe) ' OY

is a quasi-isomorphism. Therefore, Y has only Du Bois singularities
because W is a simple normal crossing variety. On the other hand,
Rif∗ωW = 0 for every i > 0 by Lemma 3.3. By applying Grothendieck
duality to (1):

OY → Rf∗OW → OY ,

we obtain

(2) ω•
Y

a→ Rf∗ω
•
W

b→ ω•
Y ,

where ω•
Y (resp. ω•

W ) is the dualizing complex of Y (resp. W ). Note
that b ◦ a is a quasi-isomorphism. Thus we have

hi(ω•
Y ) ⊂ Rif∗ω

•
W = Ri+df∗ωW

where d = dimY = dimW . This implies that hi(ω•
Y ) = 0 for every

i > −dimY . Thus, Y is Cohen–Macaulay and ω•
Y ' ωY [d]. Q.E.D.

As a byproduct of the proof of Theorem 4.2, we obtain the following
useful vanishing theorem. Roughly speaking, Proposition 4.4 says that
Y has only semi-rational singularities.

Proposition 4.4. In the notation of the proof of Theorem 4.2,
f∗OW ' OY and Rif∗OW = 0 for every i > 0.

Proof. By (2) in the proof of Theorem 4.2, we obtain

ωY
α→ f∗ωW

β→ ωY

where β ◦ α is an isomorphism. Since ωW is locally free and f is an
isomorphism over U , f∗ωW is a pure sheaf of dimension d. Thus f∗ωW '
ωY because they are isomorphic over U . Then we obtain Rf∗ω•

W ' ω•
Y
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in the derived category of coherent sheaves on Y . By Grothendieck
duality, Rf∗OW ' RHom(Rf∗ω•

W , ω
•
Y ) ' OY in the derived category

of coherent sheaves on Y . Therefore, f∗OW ' OY and Rif∗OW = 0 for
every i > 0. Q.E.D.

As an easy application of Theorem 4.2, we have an adjunction for-
mula for sdlt pairs.

Corollary 4.5 (Adjunction for sdlt pairs). In the notation of The-
orem 4.2, we define DY by

(KX +D)|Y = KY +DY .

Then the pair (Y,DY ) is semi divisorial log terminal.

Proof. By Theorem 4.2, Y is Cohen–Macaulay. In particular, Y
satisfies Serre’s S2 condition. Then it is easy to see that the pair (Y,DY )
is semi divisorial log terminal. Q.E.D.

We close this section with an important remark.

Remark 4.6. Let (X,D) be a semi divisorial log terminal pair in
the sense of Kollár (see Definition 4.1). Then it is a semi divisorial log
terminal pair in the sense of [F1, Definition 1.1]. A key point is that
any irreducible component of X is normal (see Theorem 4.2). When the
author defined semi divisorial log terminal pairs in [F1, Definition 1.1],
the theory of resolution of singularities for reducible varieties (cf. [BM]
and [BP]) was not available.

§5. Semipositivity theorem

In [F8, Chapter 2], we discuss mixed Hodge structures on cohomol-
ogy groups with compact support for the proof of Theorem 3.1 (see also
[F15]). In [FF], we investigate variations of mixed Hodge structures
on cohomology groups with compact support. By the Hodge theoretic
semipositivity theorem obtained in [FF, Section 5], we can prove the
following theorem as an application of Theorem 3.7.

Theorem 5.1 (Semipositivity theorem). Let (X,D) be a simple
normal crossing pair such that D is reduced and let f : X → Y be a
projective surjective morphism onto a smooth complete algebraic variety
Y . Assume that every stratum of (X,D) is dominant onto Y . Let Σ be
a simple normal crossing divisor on Y such that every stratum of (X,D)
is smooth over Y0 = Y \Σ. Then Rif∗ωX/Y (D) is locally free for every i.
We set X0 = f−1(Y0), D0 = D|X0 , and d = dimX−dimY . We further
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assume that all the local monodromies on Rd−i(f |X0\D0)!QX0\D0 around
Σ are unipotent. Then we obtain that Rif∗ωX/Y (D) is a semipositive
(in the sense of Fujita–Kawamata) locally free sheaf on Y , that is, a nef
locally free sheaf on Y .

We note that Theorem 5.1 is a generalization of the Fujita–Kawamata
semipositivity theorem (cf. [Ka]). We also note that Theorem 5.1 con-
tains the main theorem of [F2]. In [F2], we use variations of mixed
Hodge structures on cohomology groups of smooth quasi-projective va-
rieties. However, our formulation in [FF] based on mixed Hodge struc-
tures on cohomology groups with compact support is more suitable for
reducible varieties than the formulation in [F2] (cf. 1.2). Theorem 3.7
and Theorem 5.1 show that the theory of mixed Hodge structures on co-
homology groups with compact support is useful for the study of higher
dimensional algebraic varieties. For details, see [F8, Chapter 2], [FF],
and [F15].

Finally, we note that in [F14] we prove the projectivity of the moduli
spaces of stable varieties as an application of Theorem 5.1 by Kollár’s
projectivity criterion.
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