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Abstract. In this paper, we explain some vanishing theorems for non-compact complex
analytic spaces. We see that Nakano’s vanishing theorem on weakly 1-complete complex
manifolds is very useful.

1. Vanishing theorems for non-compact analytic spaces

Let us start with Nakano’s vanishing theorem on weakly 1-complete complex manifolds.

Theorem 1.1 (Nakano’s vanishing theorem). Let X be a weakly 1-complete complex
manifold and let E be a Nakano positive vector bundle on X. Then, we have

H i(X,ωX ⊗ E) = 0

for every i > 0. In particular, for every c ∈ R, we see that

H i(Xc, ωX ⊗ E) = 0

holds for every i > 0.

As a special case of Theorem 1.1, we have:

Corollary 1.2 (Kodaira vanishing theorem for weakly 1-complete complex manifolds).
Let X be a weakly 1-complete complex manifold and let L be a positive line bundle on X.
Then H i(X,ωX⊗L) = 0 holds for every i > 0. In particular, we have H i(Xc, ωX⊗L) = 0
for every i > 0.

If X is compact in Corollary 1.2, then the statement is nothing but Kodaira’s original
vanishing theorem. For various geometric applications, the following corollary of Theorem
1.1 may be useful.

Corollary 1.3. Let π : X → Y be a proper morphism of complex analytic spaces such that
X is smooth. Let E be a Nakano positive vector bundle on X. Then Riπ∗ (ωX ⊗ E) = 0
holds for every i > 0.

For the minimal model theory for projective morphisms between complex analytic
spaces (see [Fn2]), we need:

Corollary 1.4 (Relative Kodaira vanishing theorem). Let π : X → Y be a projective
morphism of complex analytic spaces. Let L be a π-ample line bundle on X. Then
Riπ∗ (ωX ⊗ L) = 0 holds for every i > 0.
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Once we establish Corollary 1.4, there is no difficulty to prove the relative Kawamata–
Viehweg vanishing theorem for projective morphisms between complex varieties, which
will play a crucial role in the theory of minimal models (see [Fn2]).

Theorem 1.5 (Kawamata–Viehweg vanishing theorem for projective morphisms of com-
plex varieties). Let X be a smooth complex variety and let π : X → Y be a projective
morphism of complex varieties. Assume that D is an R-divisor on X such that D is
π-nef and π-big and that Supp{D} is a simple normal crossing divisor on X. Then
Riπ∗OX(KX + ⌈D⌉) = 0 for every i > 0.

One of the main purposes of this paper is to make the following vanishing theorem for
weakly 1-complete complex analytic spaces, which is mainly due to Fujiki and Hironaka,
more accessible.

Theorem 1.6 (Fujiki’s vanishing theorem, see [Fk, Theorem N′]). Let X be a weakly
1-complete complex analytic space and let S be a coherent sheaf on X. Let L be a positive
line bundle on X. Then, for every c ∈ R, there exists a positive integer m0 such that

H i(Xc,S ⊗ L⊗m ⊗M) = 0

holds for i ≥ 1, m ≥ m0, and for every semipositive line bundleM on X.

We give an important remark on Theorem 1.6. .

Remark 1.7. Hironaka contributed to the formulation and the proof of Theorem 1.6. In
[Fk], Fujiki wrote:

The author learned the formulation of this theorem and the idea of its
proof from Prof. Hironaka.

For Hironaka’s contribution, see also [Na1, §3. Comments].

As an obvious application of Theorem 1.6, we have:

Theorem 1.8 ([K, Theorem 2.1]). Let X be a weakly 1-complete complex analytic space
and let S be a coherent sheaf on X. Let L be a positive line bundle on X. Then, for every
c ∈ R, there exists a positive integer k0 such that there exist finitely many global sections
of S ⊗ L⊗k over some open neighborhood of Xc which generate S ⊗ L⊗k there for every
k ≥ k0.

Hence, we have the following embedding theorem, which is a generalization of Kodaira’s
embedding theorem. When X is compact, Theorem 1.9 is Grauert’s generalization of
Kodaira’s embedding theorem (see [G] and [No, Theorem 8.5.8]).

Theorem 1.9 (Embedding theorem, Hironaka). Let X be a weakly 1-complete complex
analytic space and let L be a positive line bundle on X. We take some c ∈ R and consider
Xc. Then there exists a positive integer m0 such that for every m ≥ m0 we can find finite
elements ϕ0, · · · , ϕN of H0(Xc,L⊗m) which embed Xc as a locally closed analytic subspace
of PN with L⊗m ≃ Φ∗OPN (1), where Φ: Xc ↪→ PN is the induced embedding.

Remark 1.10. In [Na2, §21], Nakano wrote that Theorem 1.9 was first obtained by Hi-
ronaka. For Hironaka’s contribution to the theory of weakly 1-complete complex analytic
spaces, see also Remark 1.7.

As an easy consequence of Theorem 1.9, we have a metric characterization of ample
line bundles on compact complex analytic spaces.
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Corollary 1.11. Let X be a compact complex analytic space and let L be a line bundle
on X. Then L is positive if and only if L is ample.

We close this section with Fujita’s vanishing theorem. We will see that it is also a
corollary of Theorem 1.6.

Theorem 1.12 (Fujita’s vanishing theorem). Let X be a projective scheme over C and
let L be an ample line bundle on X. Let F be a coherent sheaf on X. Then there exists
a positive integer m(F ,L) such that H i(X,F ⊗ L⊗m ⊗M) = 0 for i > 0, m ≥ m(F ,L),
and for every nef line bundleM on X.

For the details of Fujita’s vanishing theorem, see, for example, [Fn1, Section 3.8].

2. Basic definitions

We are mainly interested in singular complex analytic spaces. Here, we will only explain
some basic definitions necessary for understanding theorems in Section 1. For the details,
see [D2, Chapter IX. §2.].

Definition 2.1 (Strictly plurisubharmonic and plurisubharmonic functions). Let V be an
analytic subspace of an open subset U in Cn. A smooth function ϕ on V is by definition
the restriction on V of some smooth function ϕ̃ defined on an open neighborhood U ′ of
V in U . An R-valued smooth function ϕ on V is said to be strictly plurisubharmonic
(resp. plurisubharmonic) on V if there is a smooth function ϕ̃ as above such that it is
strictly plurisubharmonic (resp. plurisubharmonic) in the usual sense.

By Definition 2.1, we can define smooth (strictly) plurisubharmonic functions on com-
plex analytic spaces. For the details, see [D2, Chapter IX. (2.5) Definition and (2.6)
Lemma].

Definition 2.2 (Weakly 1-complete complex analytic spaces). Let X be a complex ana-
lytic space. If there exists an R-valued smooth function Ψ on X which is plurisubharmonic
such that Xc := {x ∈ X | Ψ(x) < c} is relatively compact in X for every c ∈ R, then X
is said to be weakly 1-complete. We call Ψ an exhaustion function of X.

Of course, if X is smooth in Definition 2.2, then X is called a weakly 1-complete complex
manifold. We note that every compact analytic space is weakly 1-complete by definition.
We also note that every closed analytic subspace of a weakly 1-complete complex analytic
space is weakly 1-complete.

Remark 2.3 (Pseudoconvex complex manifolds). In some literature (see, for example,
[D1, (8.6) Definition] and [D2, Chapter VIII. (5.1) Definition]), a weakly 1-complete
complex manifold is called a weakly pseudoconvex complex manifold. We note that a
compact complex manifold is automatically a weakly 1-complete complex manifold.

We will freely use the following remark in Section 3 without mentioning it explicitly.

Remark 2.4. Let X be a weakly 1-complete complex analytic space with an exhaustion
function Ψ. As in Definition 2.2, we put

Xc := {x ∈ X | Ψ(x) < c}.
We set Ψc := (c−Ψ)−1. Then Xc is a weakly 1-complete complex analytic space and Ψc

is an exhaustion function on Xc. In this case, for every c′ < c, we have

Xc′ = {x ∈ X | Ψ(x) < c′} = {x ∈ Xc | Ψc(x) < (c− c′)−1}.
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Let f : Y → X be a proper morphism of complex analytic spaces. Then f ∗Ψ is a
smooth plurisubharmonic function on Y . It is obvious that

Yc := {y ∈ Y | f ∗Ψ(y) < c} = f−1(Xc)

holds for every c ∈ R. In particular, Yc is compact since f is proper. This means that Y
is a weakly 1-complete complex analytic space with an exhaustion function f ∗Ψ.

Let us recall the definition of positive and semipositive line bundles on singular complex
analytic spaces. It is indispensable in order to understand Fujiki’s vanishing theorem (see
Theorem 1.6).

Definition 2.5 (Positive and semipositive line bundles). Let X be a complex analytic
space and let L be a line bundle on X. Assume that L is defined by the system of
transition functions {fαβ} with respect to some open covering U = {Uα} of X. In this
situation, a metric on L is given by the system of R>0-valued functions h = {hα}, where
each hα is a smooth function defined on Uα, such that hα = 1

|fαβ |2
hβ holds on Uα ∩ Uβ. If

− log hα is strictly plurisubharmonic (resp. plurisubharmonic) on Uα for every α, then L
is said to be positive (resp. semipositive).

In this short paper, we do not define Nakano positive vector bundles explicitly since
the definition is somewhat complicated. The following lemma, which easily follows from
the definition of Nakano positive vector bundles, seems to be sufficient for our almost all
applications.

Lemma 2.6. Let X be a complex manifold, let E be a vector bundle on X, and let L be a
a positive line bundle on X. Let U be a relatively compact open subset of X. Then there
exists a positive integer m0 such that E ⊗ L⊗m ⊗M is Nakano positive on U for every
m ≥ m0 and for every semipositive line bundleM on X.

Proof. Once we understand the definition of Nakano positive vector bundles (see, for
example, [D1, (6.9) Definition] and [D2, Chapter VII. (6.3) Definition]), we have no
difficulty in checking this statement. �

3. Proof of theorems and corollaries

In this section, we will prove theorems and corollaries in Section 1. Let us look at the
proof of Nakano’s vanishing theorem: Theorem 1.1.

Proof of Theorem 1.1. This statement is well known as Nakano’s vanishing theorem. For
the details, see, for example, [D1, (9.1) Nakano vanishing theorem] and [D2, Chapter
VIII. (5.5) Theorem]. We take an exhaustion function Ψ of X such that Xc = {x ∈ X |
Ψ(x) < c} and put Ψc = (c−Ψ)−1. Then we can easily see that Xc is a weakly 1-complete
complex manifold with an exhaustion function Ψc (see Remark 2.4). Hence we get the
desired vanishing theorem on Xc. �
Remark 3.1. Kodaira established the foundation of the theory of compact complex
manifolds. Nakano generalized Kodaira’s results for non-compact complex manifolds (see,
for example, [Na2]). On the other hand, Demailly generalized Hörmander’s techniques
(see, for example, [D1] and [D2]). Hence, Nakano’s approach is more differential geometric
than Demailly’s. The author feels that the treatment of Theorem 1.1 in [D1] and [D2] is
simpler than the one in [Na2].

Corollaries 1.2 and 1.3 are almost obvious by Theorem 1.1.
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Proof of Corollary 1.2. This is a special case of Theorem 1.1. We note that a line bundle
L is positive if and only if it is Nakano positive. �

Proof of Corollary 1.3. We take any point P ∈ Y . Then we can find an arbitrary small
Stein open neighborhood U of P in Y and a strictly plurisubharmonic exhaustion function
Ψ on U . Then π−1(U) is a weakly 1-complete complex manifold with an exhaustion
function π∗Ψ. By Theorem 1.1, H i(π−1(U), ωX ⊗ E) = 0 for every i > 0. This implies
that Riπ∗ (ωX ⊗ E) = 0 holds for every i > 0. This is what we wanted. �

For the proof of Corollary 1.4 and Theorem 1.6, we prepare a very important lemma.

Lemma 3.2. Let π : Y → X be a projective morphism of complex analytic spaces, let L
be a positive line bundle on X, and let N be a π-ample line bundle on Y . Let U be any
relatively compact open subset of X. Then there exists a positive integer m0 such that
N ⊗ π∗L⊗m is positive on π−1(U) for every m ≥ m0.

Proof. We take a positive integer k such that N⊗k is very ample over some open neigh-
borhood of U . By replacing N with N⊗k and shrinking X around U suitably, we may
assume that N is very ample over X. Then, by the proof of [Fk, Lemma 2], we get a
desired positive integer m0. For the details, see [Fk, Lemma 2]. �

Let us prove Corollary 1.4.

Proof of Corollary 1.4. We use the same notation as in the proof of Corollary 1.3. On
U , e−Ψ is a positive metric on the trivial line bundle OU . We take some c ∈ R such
that P ∈ Uc. By Lemma 3.2, the line bundle L is positive on π−1(Uc). Hence we have
H i(π−1(Uc), ωX⊗L) = 0 for every i > 0 by Corollary 1.2. This implies Riπ∗ (ωX ⊗ L) = 0
for every i > 0. �

Proof of Theorem 1.5. It is not difficult to prove this theorem by using Corollary 1.4,
Kawamata’s covering trick, and so on. The reader can find all the details in [Nay, §3].
Hence we omit the details here. �

From now on, we will prove Theorem 1.6. Let us start with the following very important
lemma.

Lemma 3.3. Let X be a complex variety and let S be a coherent sheaf on X. Let L be a
positive line bundle on X. We put T := T1 ∪ T2, where T1 is the singular locus of X and
T2 := {x ∈ X | S is not locally free at x}. Let U be any relatively compact open subset of
X. Then, after shrinking X around U suitably, we can construct a commutative diagram

Y

f   @
@@

@@
@@

@
g // Z

h
��
X

satisfying the following properties:

(i) h : Z → X is the normalization,
(ii) g is a finite composite of blow-ups,
(iii) Y is smooth,
(iv) f is an isomorphism over X \ T ,
(v) f ∗S/T (f ∗S) is locally free, where T (f ∗S) is the torsion part of f ∗S, and
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(vi) there exists an effective Cartier divisor E on Y such that OY (−E) is f -ample,
OY (−E)⊗ f ∗L⊗a is positive for some integer a > 0, and g(E) = h−1(T ) holds set
theoretically.

Lemma 3.3 will play a crucial role in the proof of Theorem 1.6.

Proof of Lemma 3.3. Let h : Z → X be the normalization. By [R, 3.5. Theorem], we can
take a proper bimeromorphic morphism ρ : Z ′ → X such that ρ is an isomorphism over
X \ T and that ρ∗S/T (ρ∗S) is locally free, where T (ρ∗S) is the torsion part of ρ∗S. Let
g1 : Z1 → Z be the blow-up along the ideal J , where J is the defining ideal sheaf of
h−1(T ) on Z. Let Γ be the graph of Z ′ 99K Z1. By applying the flattening theorem (see
[Hi, Corollary 1 and Definition 4.4.3]) to Γ → Z1 and using the desingularization theorem
(see, for example, [BM, Theorem 13.3]), after shrinking X around U suitably, we get a
finite sequence of blow-ups Z ← Z1 ← Z2 ← · · · ← Zm =: Y such that Y is smooth,
f : Y → X factors through Z ′, and g : Y → Z is an isomorphism over Z \ h−1(T ). Since
g : Y → Z is a finite composite of blow-ups, we can construct an effective Cartier divisor
E on Y such that OY (−E) is g-ample with g(E) = h−1(T ) after shrinking X suitably.
Since h is finite, OY (−E) is f -ample. Therefore, by Lemma 3.2, we can take a positive
integer a such that OY (−E) ⊗ f ∗L⊗a is positive after shrinking X suitably again. By
construction, f : Y → X factors through Z ′. Therefore, we can check that f ∗S/T (f ∗S)
is locally free. Thus, Y → Z → X has all the desired properties. �

For the proof of Theorem 1.6, we prepare the following easy two lemmas.

Lemma 3.4. Let

(3.1) 0→ S1 → S2 → S3 → 0

be a short exact sequence of coherent sheaves on X. If Theorem 1.6 holds true for S1 and
S3 (resp. S1 and S2), then it also holds true for S2 (resp. S3).

Proof. This is obvious. It is sufficient to consider the long exact sequence in cohomology
induced by (3.1). �

Lemma 3.5. Let

(3.2) 0→ S1 → S2 → S3 → S4 → 0

be an exact sequence of coherent sheaves on X. If Theorem 1.6 holds true for S1, S2 and
S4, then it also holds true for S3.

Proof. We split (3.2) into the following two short exact sequences:

(3.3) 0→ S1 → S2 → S ′ → 0

and

(3.4) 0→ S ′ → S3 → S4 → 0.

By assumption and (3.3), we see that Theorem 1.6 holds true for S ′ (see Lemma 3.4).
Then, by Lemma 3.4 and (3.4), we obtain that Theorem 1.6 holds for S3. This is what
we wanted. �

Lemma 3.6. Let X be a weakly 1-complete complex manifold and let A be a positive
line bundle on X. Then, for every c ∈ R, there exists some positive integer m such that
H0(Xc,A⊗m) ̸= 0.
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Proof. We take an arbitrary point P ∈ Xc. Let f : Y → X be the blow-up at P . Then we
have ωY ≃ f ∗ωX ⊗ OY ((n − 1)E), where n = dimX and E ≃ Pn−1 is the f -exceptional
divisor on Y . Note that Y is a weakly 1-complete complex manifold. We can take some
positive integer m such that

ω⊗−1
Y ⊗ f ∗A⊗m ⊗OY (−E) ≃ f ∗ (A⊗m ⊗ ω⊗−1

X

)
⊗OY (−nE)

is positive on Yc (see Lemmas 2.6 and 3.2). Hence, by Corollary 1.2, H i(Yc, f
∗A⊗m ⊗

OY (−E)) = 0 for every i > 0. We note that f∗OY (−E) ≃ mP holds, where mP is the
ideal sheaf corresponding to P . Therefore, we have H1(Xc,A⊗m ⊗mP ) = 0 since it is a
subspace of H1(Yc, f

∗A⊗m⊗OY (−E)) = 0. This implies that the natural restriction map

H0(Xc,A⊗m)→ A⊗m ⊗OX/mP ≃ C

is surjective. In particular, H0(Xc,A⊗m) ̸= 0. We finish the proof. �
Let us prove Theorem 1.6.

Proof of Theorem 1.6. We use induction on n := dimSuppS. If n = 0, then it is obvious.
From now on, we assume that Theorem 1.6 holds in the lower dimensional case.

Step 1. In this step, we will reduce the proof to the case where X is a variety and S is a
torsion-free coherent sheaf on X. The reduction argument in this step is very well known
(see, for example, the proof of [Fn1, Theorem 3.8.1]). We will explain it here for the sake
of completeness.

Let NX be the nilradical of OX . By shrinking X around Xc suitably, we fave N k
Z = 0

for some positive integer k. We consider the following short exact sequence:

0→ N i+1
X S → N

i
XS → N i

XS/N i+1
X S → 0.

Then, by Lemma 3.4, we can reduce the proof to the case where X is reduced since
N k−1
X S and N i

XS/N i+1
X S are supported on Xred for every i. Hence we can assume that

X is reduced. Let X = X1 ∪ · · · ∪Xk be its decomposition into irreducible components
after shrinking X around Xc suitably. Let I be the defining ideal sheaf of X1 on X. We
consider the short exact sequence

0→ IS → S → S/IS → 0.

The outer terms of the above short exact sequence are supported on X2 ∪ · · · ∪ Xk and
X1, respectively. By induction on the number of irreducible components and Lemma 3.4,
we can reduce the proof to the case where X is irreducible. Thus, from now on, we can
assume that X is a variety. Finally, we consider the short exact sequence:

0→ T (S)→ S → S/T (S)→ 0,

where T (S) is the torsion part of S. Since dimSupp T (S) < n = dimX, we can reduce
the proof to the case where S is torsion-free by induction on n and Lemma 3.4. We finish
the proof of Step 1.

Hence, from now on, we assume that X is a variety and S is a torsion-free coherent
sheaf on X. We take some d > c. We put U := Xd and use Lemma 3.3. We replace X
with Xd+ε for 0 < ε ≪ 1. Then we get a proper bimeromorphic morphism f : Y → X
from a complex manifold Y . Note that Y is weakly 1-complete by construction.

Step 2. In this step, we will prove that Theorem 1.6 holds true for f∗(f
∗S ⊗OY (−kE))

for some positive integer k.
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Let Ψ be a smooth exhaustion function of X. Then Y is a weakly 1-complete complex
manifold with an exhaustion function f ∗Ψ. The line bundle OY (−E)⊗ f ∗L⊗a is positive
(see Lemma 3.3). Since f ∗S/T (f ∗S) is locally free, we can find a positive integer k such
that

(3.5) H i(Yc, f
∗S/T (f ∗S)⊗OY (−kE)⊗ f ∗L⊗ka ⊗M′) = 0

for every i > 0 and for every semipositive line bundle M′ on Y by Lemma 2.6 and
Theorem 1.1. Since T (f ∗S) is torsion, we may assume that

(3.6) H i(Yc, T (f
∗S)⊗OY (−kE)⊗ f ∗L⊗ka ⊗M′) = 0

for every i > 0 and for every semipositive line bundleM′ on Y . Since OY (−E) is f -ample,
we may further assume that

(3.7) Rif∗ (f
∗S ⊗OY (−kE)) = 0

on Xc for every i > 0 (see, for example, [BS, Chapter IV. Theorem 2.1]). Hence, by (3.5),
(3.6), and (3.7), we have

H i(Xc, f∗ (f
∗S ⊗OY (−kE))⊗ L⊗ka ⊗M)

≃ H i(Yc, f
∗S ⊗OY (−kE)⊗ f ∗L⊗ka ⊗ f ∗M) = 0

for every i > 0 and for every semipositive line bundleM on X. This means that Theorem
1.6 holds for f∗ (f

∗S ⊗OY (−kE)).

Step 3. In this step, we will prove that Theorem 1.6 holds true for f∗f
∗S.

We use the positive integer k obtained in Step 2. We consider the exact sequence

(3.8) 0→ T1 → f ∗S ⊗OY (−kE)→ f ∗S → T2 → 0

induced by the natural map f ∗S⊗OY (−kE)→ f ∗S, where T1 and T2 are torsion coherent
sheaves on Y . We split (3.8) into the following two short exact sequences:

(3.9) 0→ T1 → f ∗S ⊗OY (−kE)→ S† → 0

and

(3.10) 0→ S† → f ∗S → T2 → 0.

By (3.9), we obtain

(3.11) 0→ T3 → f∗ (f
∗S ⊗OY (−kE))→ f∗S† → T4 → 0

for some torsion coherent sheaves T3 and T4 on X. By (3.10), we have

(3.12) 0→ f∗S† → f∗f
∗S → T5 → 0

for some torsion coherent sheaf T5 on X. Since T3 and T4 are torsion coherent sheaves
on X, by Lemma 3.5, (3.11), and the result in Step 2, we see that Theorem 1.6 holds for
f∗S†. Hence Theorem 1.6 holds true for f∗f

∗S by Lemma 3.4 and (3.12) since T5 is a
torsion coherent sheaf on X. This is what we wanted.

Step 4. In this step, we will prove that Theorem 1.6 holds true for S. More precisely, we
will construct the following short exact sequence:

(3.13) 0→ f∗f
∗S → S ⊗ L⊗l → C → 0,

where l is some positive integer.
Once we obtain (3.13), by Lemma 3.4, we see that Theorem 1.6 holds for S ⊗L⊗l since
C is a torsion sheaf on X and Theorem 1.6 holds for f∗f

∗S by Step 3. Thus, Theorem
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1.6 holds for S. Hence it is sufficient to construct (3.13). We consider the following short
exact sequence:

(3.14) 0→ S → f∗f
∗S → T ′ → 0

induced by the natural map S → f∗f
∗S. By construction, T ′ is a torsion coherent sheaf

and Supp T ′ is contained in T in Lemma 3.3. Let A be the sheaf of annihilators of T ′.

Let f : Y
g−→ Z

h−→ X be as in Lemma 3.3. We put

condX := HomOX
(h∗OZ ,OX) ⊂ OX

and call it the conductor ideal sheaf on X. It is also an ideal sheaf on Z. We write it as
condZ when we view the conductor ideal sheaf as an ideal sheaf on Z. Since OY (−E) ⊗
f ∗L⊗a is positive on Yd, we can find a non-zero global section ϕ of OY (−b1E)⊗ f ∗L⊗ab1

on Yd for some positive integer b1 by Lemma 3.6. We can see ϕ as a global section of
g∗OY (−b1E) ⊗ h∗L⊗ab1 on Zd. We write it as ϕZ when we view ϕ as a global section
of g∗OY (−b1E) ⊗ h∗L⊗ab1 . Since Z is normal, g∗OY (−b1E) is an ideal sheaf on Z. We
note that g(E) = h−1(T ) by construction. Hence, there exists a positive integer b2 such
that ϕ⊗b2

Z ∈ H0(Zc+ε, h
∗L⊗ab1b2 ⊗ condZ) for 0 < ε ≪ 1 by the Nullstellenzatz (see, for

example, [No, Theorem 6.4.20]). Therefore, we can see ϕ⊗b2
Z as a global section ϕX of

L⊗ab1b2 ⊗ condX on Xc+ε. Since ϕ ∈ H0(Yd,OY (−b1E) ⊗ f ∗L⊗ab1), ϕX vanishes along
T = f(E) over some open neighborhood of Xc. By the Nullstellenzatz (see, for example,
[No, Theorem 6.4.20]) again, we can find a sufficiently large positive integer b3 such that

ψ := ϕ⊗b3
X ∈ H0(Xc,L⊗ab1b2b3 ⊗A).

By taking ⊗ψ, we get the following commutative diagram:

(3.15) 0 // S //

⊗ψ
��

f∗f
∗S //

⊗ψ
��

T ′ //

⊗0

��

0

0 // S ⊗ L⊗l // f∗f
∗S ⊗ L⊗l // T ′ ⊗ L⊗l // 0

from (3.14), where l = ab1b2b3. Thus we get a short exact sequence:

0→ f∗f
∗S ⊗ψ−→ S ⊗ L⊗l → C → 0

from (3.15). This is what we wanted.

We finish the proof of Theorem 1.6. �
Proof of Theorem 1.8. This is an easy application of Theorem 1.6. For the details, see
the proof of [K, Theorem 2.1]. Note that the argument in [K] is well known to algebraic
geometers. �
Proof of Theorem 1.9. The following argument is more or less well known to algebraic
geometers (see [Ha, Chapter II. Section 7]). Hence we will omit some details. We put
S = OX and use Theorem 1.8. Then there exists a positive integer k0 such that L⊗k is
generated by finitely many global sections over some open neighborhood of Xc. We take
P,Q ∈ Xc. Let mP (resp. mQ) be the ideal sheaf corresponding to P (resp. Q). We take
some d > c. By Theorem 1.6, we may assume that the evaluation map

(3.16) H0(Xd,L⊗k)→ L⊗k ⊗OX/mP ⊕ L⊗k ⊗OX/mQ

is surjective for every k ≥ k0. By Theorem 1.6 again, we may assume that

(3.17) H0(Xd,mP ⊗ L⊗k)→ mP/m
2
P ⊗ L⊗k
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is surjective for every k ≥ k0. By (3.16), (3.17), and the compactness of Xc, we can find
a positive integer m0 with the desired properties (see also [Ha, Chapter II. Proposition
7.3]). �
Corollary 1.11 is obvious by Theorem 1.9.

Proof of Corollary 1.11. If L is ample, then it is easy to see that L is positive. On the
other hand, if L is positive, then L is ample by the embedding theorem: Theorem 1.9.
We note that every compact analytic space is automatically weakly 1-complete. �
We prove Theorem 1.12 as an application of Theorem 1.6.

Proof of Theorem 1.12. We can see X as a complex analytic space by Serre’s GAGA. By
Corollary 1.11, L is positive. Since X is compact, by Theorem 1.6, we can find m0 such
that H i(X,F ⊗ L⊗m ⊗M′) = 0 holds for i > 0, m ≥ m0, and for every semipositive
line bundle M′ on X. Let M be a nef line bundle. Then L ⊗ M is ample. This
means that L ⊗M is positive. Hence it is obviously semipositive. Therefore, we have
H i(X,F ⊗ L⊗m ⊗ L ⊗ M) = 0 for i > 0 and m ≥ m0. Thus, it is sufficient to put
m(F ,L) := m0 + 1. �
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