ERRATUM TO "A FOOTNOTE TO A THEOREM OF KAWAMATA"

OSAMU FUJINO, MARGARIDA MENDES LOPES, RITA PARDINI, AND SOFIA TIRABASSI

Abstract

We give an alternative proof of Theorem A in the paper: M. Mendes Lopes, R. Pardini, S. Tirabassi, A footnote to a theorem of Kawamata. We also explain how to fill a gap in the original proof.

1. Introduction

In this paper, we give an alternative proof of the following theorem, which is the main result of [MPT]:

Theorem 1.1 (see [MPT, Theorem A]). Let X be a smooth variety defined over \mathbb{C} with logarithmic Kodaira dimension $\bar{\kappa}(X)=0$ and logarithmic irregularity $\bar{q}(X)=\operatorname{dim} X$. Then the quasi-Albanese map $\alpha: X \rightarrow A$ is birational and there exists a closed subset Z of A with $\operatorname{codim}_{A} Z \geq 2$ such that $\alpha: X \backslash \alpha^{-1}(Z) \rightarrow A \backslash Z$ is proper.

The proof given in [MPT] contains a gap, noticed by the first named author of this paper; in $\S 3$ we explain this gap and how to avoid it.

Acknowledgments. We are grateful to Mark Spivakovsky and Beatriz Molina-Samper for informing us of the results on embedded resolutions of [MS], that are crucial for the argument in $\S 3$.
O. Fujino was partially supported by JSPS KAKENHI Grant Numbers JP19H01787, JP20H00111, JP21H00974, JP21H04994. M. Mendes Lopes was partially supported by FCT/Portugal through Centro de Análise Matemática, Geometria e Sistemas Dinâmicos (CAMGSD), IST-ID, projects UIDB/04459/2020 and UIDP/04459/2020. R. Pardini was partially supported by Project PRIN 2022BTA242 of italian MUR and is a member of INdAM-GNSAGA. S. Tirabassi was partially supported by project 2023-0387 funded by the Vetenskaprådet.

Conventions: We work over the field \mathbb{C} of complex number and we use freely Iitaka's theory of quasi-Albanese maps and logarithmic Kodaira dimension developed in [I1] and [I2] (see also [F1]).

2. Proof of Theorem 1.1

In this section we prove Theorem 1.1. The birationality of $\alpha: X \rightarrow A$ is a well-known theorem by Kawamata (see [K2]), hence we are going to prove the existence of the desired closed subset Z. The proof given here uses Kawamata's subadditivity formula in [K1]. Before we start the proof of Theorem 1.1, we note the following fact (see also [MPT, Lemma 2.2]):

[^0]Remark 2.1 (Log canonical centers). Let X be a smooth variety and let Δ_{X} be a simple normal crossings divisor on X, so that $\left(X, \Delta_{X}\right)$ is \log canonical. Let $\Delta_{X}=\sum_{i \in I} \Delta_{i}$ be the irreducible decomposition of Δ_{X}; then a closed subset W of X is a log canonical center of $\left(X, \Delta_{X}\right)$ if and only if W is an irreducible component of $\Delta_{i_{1}} \cap \ldots \cap \Delta_{i_{k}}$ for some $\left\{i_{1}, \ldots, i_{k}\right\} \subset I$. When $\Delta_{i_{1}} \cap \ldots \cap \Delta_{i_{k}}$ is connected for every $\left\{i_{1}, \ldots, i_{k}\right\} \subset I$, we say that Δ_{X} is a strong normal crossings divisor in the terminology of [MS].

We now turn to the proof of Theorem 1.1.
Proof of Theorem 1.1. Let $\alpha: X \rightarrow A$ be the quasi-Albanese map. By Kawamata's theorem (see [K2, Corollary 29] and [F1, Corollary 10.2]), we see that α is birational.
Step 1. Let

$$
0 \longrightarrow \mathbb{G}_{m}^{d} \longrightarrow A \xrightarrow{\pi} B \longrightarrow 0
$$

be the Chevalley decomposition. Then A is a principal \mathbb{G}_{m}^{d}-bundle over an abelian variety B in the Zariski topology (see, for example, [BCM, Theorems 4.4.1 and 4.4.2]) and there is a natural completion $\bar{\pi}: \bar{A} \rightarrow B$ of $\pi: A \rightarrow B$ where \bar{A} is a \mathbb{P}^{d}-bundle. We set $\Delta_{\bar{A}}:=\bar{A} \backslash A$; then $\Delta_{\bar{A}}$ is a simple normal crossings divisor on \bar{A}, and $\left(\bar{A}, \Delta_{\bar{A}}\right)$ is a \log canonical pair.

Let $\bar{\alpha}: \bar{X} \rightarrow \bar{A}$ be a compactification of $\alpha: X \rightarrow A$, that is, \bar{X} is a smooth complete algebraic variety containing $X, \Delta_{\bar{X}}:=\bar{X} \backslash X$ is a simple normal crossing divisor on \bar{X} and $\bar{\alpha}$ is a morphism extending α.

Claim. Let D be an irreducible component of $\Delta_{\bar{X}}$ such that $\bar{\alpha}(D)$ is a divisor. Then $\bar{\pi}: \bar{\alpha}(D) \rightarrow B$ is dominant.
Proof of Claim. We set $D_{1}:=\bar{\alpha}(D)$. If $\bar{\pi}: D_{1} \rightarrow B$ is not dominant, then we can write $D_{1}=\bar{\pi}^{*} D_{2}$ for some prime divisor D_{2} on B. By Remark 2.1 every \log canonical center of $\left(\bar{A}, \Delta_{\bar{A}}\right)$ dominates B, therefore D_{1} does not contain any log canonical center (so in particular it is not a component of $\left.\Delta_{\bar{A}}\right)$. Thus we have

$$
\operatorname{mult}_{D}\left(K_{\bar{X}}+\Delta_{\bar{X}}-\bar{\alpha}^{*}\left(K_{\bar{A}}+\Delta_{\bar{A}}\right)\right)=1
$$

Let E be any $\bar{\alpha}$-exceptional divisor on \bar{X} such that $\bar{\alpha}(E)$ is not a \log canonical center of $\left(\bar{A}, \Delta_{\bar{A}}\right)$. Then

$$
\operatorname{mult}_{E}\left(K_{\bar{X}}+\Delta_{\bar{X}}-\bar{\alpha}^{*}\left(K_{\bar{A}}+\Delta_{\bar{A}}\right)\right) \geq 1
$$

holds since $K_{\bar{A}}+\Delta_{\bar{A}}$ is Cartier and Supp $\bar{\alpha}^{*} \Delta_{\bar{A}} \subset \operatorname{Supp} \Delta_{\bar{X}}$. Hence

$$
K_{\bar{X}}+\Delta_{\bar{X}}-\bar{\alpha}^{*}\left(K_{\bar{A}}+\Delta_{\bar{A}}\right) \geq \varepsilon \bar{\alpha}^{*} D_{1}
$$

for some $0<\varepsilon \ll 1$ since the support of D_{1} does not contain any log canonical center of $\left(\bar{A}, \Delta_{\bar{A}}\right)$. By construction, we have $K_{\bar{A}}+\Delta_{\bar{A}} \sim 0$. Thus we obtain

$$
0=\bar{\kappa}(X)=\kappa\left(\bar{X}, K_{\bar{X}}+\Delta_{\bar{X}}\right) \geq \kappa\left(\bar{X}, \bar{\alpha}^{*} D_{1}\right)=\kappa\left(\bar{A}, D_{1}\right)=\kappa\left(B, D_{2}\right)>0
$$

where the last inequality follows from the fact that D_{2} is a nonzero effective divisor on the abelian variety B. This contradiction proves the claim.

Step 2. We assume that there exists an irreducible component D of $\Delta_{\bar{X}}$ such that $\bar{\alpha}(D)$ is a divisor with $\bar{\alpha}(D) \not \subset \bar{A} \backslash A$ and we set $D^{\prime}:=\bar{\alpha}(D) \cap A$. By the Claim in Step 1, D^{\prime} dominates B, therefore we can find a subgroup \mathbb{G}_{m} of A such that $\left.\varphi\right|_{D^{\prime}}: D^{\prime} \rightarrow A_{1}$ is dominant, where

$$
0 \longrightarrow \mathbb{G}_{m} \longrightarrow A \xrightarrow{\varphi} A_{1} \longrightarrow 0 .
$$

Note that A is a principal \mathbb{G}_{m}-bundle over A_{1} in the Zariski topology (see, for example, [BCM, Theorems 4.4.1 and 4.4.2]). We take a compactification

$$
f^{\dagger}: X^{\dagger} \xrightarrow{\alpha^{\dagger}} A^{\dagger} \xrightarrow{\varphi^{\dagger}} A_{1}^{\dagger}
$$

of

$$
f: X \xrightarrow{\alpha} A \xrightarrow{\varphi} A_{1},
$$

where X^{\dagger}, A^{\dagger}, and A_{1}^{\dagger} are smooth complete algebraic varieties such that $X^{\dagger} \backslash X, A^{\dagger} \backslash A$, and $A_{1}^{\dagger} \backslash A_{1}$ are simple normal crossing divisors. We note that \bar{A} never coincides with A^{\dagger} when $A_{1} \neq B$. The general fiber of f^{\dagger} is obviously \mathbb{P}^{1} by construction. Let F be a general fiber of f. Since $\left.\varphi\right|_{D^{\prime}}: D^{\prime} \rightarrow A_{1}$ is dominant, we have $\#\left(\mathbb{P}^{1} \backslash F\right) \geq 3$. This implies $\bar{\kappa}(F)=1$. Note that A_{1} is a quasi-abelian variety, hence we have $\bar{\kappa}\left(A_{1}\right)=0$. By Kawamata's theorem (see [K1, Theorem 1] and [F2, Chapter 8]), we obtain

$$
0=\bar{\kappa}(X) \geq \bar{\kappa}(F)+\bar{\kappa}\left(A_{1}\right)=1
$$

This is a contradiction, showing that every irreducible component of $\Delta_{\bar{X}}$ which is not contracted by $\bar{\alpha}$ is mapped to $\Delta_{\bar{A}}$. Let Δ^{\prime} be the sum of the irreducible components of $\Delta_{\bar{X}}$ which are not mapped to $\Delta_{\bar{A}}$. It is obvious that $\operatorname{codim}_{\bar{A}} \bar{\alpha}\left(\Delta^{\prime}\right) \geq 2$ holds since Δ^{\prime} is $\bar{\alpha}$-exceptional. We put $Z:=\bar{\alpha}\left(\Delta^{\prime}\right) \cap A$. Then Z is a closed subset of A with $\operatorname{codim}_{A} Z \geq 2$. It is easy to see that

$$
\alpha: X \backslash \alpha^{-1}(Z) \rightarrow A \backslash Z
$$

is proper.
This finishes the proof of Theorem 1.1.

3. On the original proof in [MPT]

The final part (§3.2) of the original proof of Theorem 1.1 given in [MPT] contains the unsubstantiated claim that, if \bar{X} contains a divisor contracted to a \log canonical center W of $\left(\bar{A}, \Delta_{\bar{A}}\right)$, then $\bar{\alpha}$ factors through the blow-up of \bar{A} along W. This claim is then used to reduce the proof to the special case treated in $\S 3.1$ of [MPT].

We explain here how to reduce the proof to the special case by a different argument.
Let T be a smooth variety and let Δ_{T} be a simple normal crossing divisor on T. Let $f: T^{\prime} \rightarrow T$ be the blow-up of a log canonical center of $\left(T, \Delta_{T}\right)$. We set

$$
K_{T^{\prime}}+\Delta_{T^{\prime}}:=f^{*}\left(K_{T}+\Delta_{T}\right)
$$

Then it is easy to see that T^{\prime} is smooth and $\Delta_{T^{\prime}}$ is a simple normal crossing divisor on T^{\prime}. We call $f:\left(T^{\prime}, \Delta_{T^{\prime}}\right) \rightarrow\left(T, \Delta_{T}\right)$ a crepant pull-back of $\left(T, \Delta_{T}\right)$.

Now, with the same notation and assumptions of $\S 2$, let D be a component of Δ_{X} such that $\bar{\alpha}(D)$ is a divisor not contained in $\Delta_{\bar{A}}$. In the terminology of [MS] the divisor $\Delta_{\bar{A}}$ is a strong normal crossings divisor (see Remark 2.1). Then we are precisely in the situation of $\S 5.1$ of $[\mathrm{MS}]$ and by Corollary 2, ibid., there is a finite sequence of crepant pull-backs

$$
\left(\bar{A}, \Delta_{\bar{A}}\right)=:\left(T_{0}, \Delta_{T_{0}}\right) \leftarrow_{f_{1}}^{f_{1}}\left(T_{1}, \Delta_{T_{1}}\right) \leftarrow_{f_{2}}^{f_{2}} \cdots \leftarrow_{f_{k}}^{\leftarrow}\left(T_{k}, \Delta_{T_{k}}\right)
$$

such that the strict transform of $\bar{\alpha}(D)$ on T_{k} does not contain any log canonical center of $\left(T_{k}, \Delta_{T_{k}}\right)$. In addition, the components of $\Delta_{\bar{A}}$ are preserved by the \mathbb{G}_{m}^{d}-action and therefore it is easy to check that \mathbb{G}_{m}^{d} acts also on T_{1} and the action preserves the components of $\Delta_{T_{1}}$.

An inductive argument then shows that \mathbb{G}_{m}^{d} acts on T_{k} and preserves the components of $\Delta_{T_{k}}$

So, up to replacing $\left(\bar{A}, \Delta_{\bar{A}}\right)$ by $\left(T_{k}, \Delta_{T_{k}}\right)$ and modifying \bar{X} accordingly, we may assume that $\bar{\alpha}(D)$ does not contain any log canonical center and that the \mathbb{G}_{m}^{d}-action extends to \bar{A}. We conclude by observing that the argument in [MPT, §3.1] (the "special case") works in this situation.

References

[BCM] A. Białynicki-Birula, J. B. Carrell, W. M. McGovern, Algebraic quotients. Torus actions and cohomology. The adjoint representation and the adjoint action, Encyclopaedia of Mathematical Sciences, 131. Invariant Theory and Algebraic Transformation Groups, II. Springer-Verlag, Berlin, 2002.
[F1] O. Fujino, On quasi-Albanese maps, preprint (2015) available at https://www.math.kyotou.ac.jp/ fujino/papersandpreprints.html.
[F2] O. Fujino, Iitaka conjecture-an introduction, SpringerBriefs in Mathematics. Springer, Singapore, 2020.
[I1] S. Iitaka, Logarithmic forms of algebraic varieties, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 23 (1976), no. 3, 525-544.
[I2] S. Iitaka, On logarithmic Kodaira dimension of algebraic varieties, Complex analysis and algebraic geometry, pp. 175-189, Iwanami Shoten Publishers, Tokyo, 1977.
[K1] Y. Kawamata, Addition formula of logarithmic Kodaira dimensions for morphisms of relative dimension one, Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977), 207-217, Kinokuniya Book Store, Tokyo, 1978.
[K2] Y. Kawamata, Characterization of abelian varieties, Compositio Math. 43 (1981), no. 2, 253-276.
[MPT] M. Mendes Lopes, R. Pardini, S. Tirabassi, A footnote to a theorem of Kawamata, Math. Nachr. 296 (2023), no. 10, 4739-4744.
[MS] B. Molina-Samper, Combinatorial aspects of classical resolution of singularities, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113 (2019), No. 4, 3931-3948 .

Department of Mathematics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan

Email address: fujino@math.kyoto-u.ac.jp
CAmgSD/Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

Email address: mmendeslopes@tecnico.ulisboa.pt
Dipartimento di Matematica, Università degli studi di Pisa, Largo Pontecorvo 5, 56127 Pisa (PI), Italy

Email address: rita.pardini@unipi.it
Department of Mathematics, Stockholm University, Albano Campus, Stockholm, SweDEN

Email address: tirabassi@math.su.se

[^0]: Date: 2024/3/18, version 0.09.
 2020 Mathematics Subject Classification. Primary 14E05; Secondary 14K99, 14E30.
 Key words and phrases. quasi-Albanese maps, logarithmic Kodaira dimension.

