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Abstract. We formulate and establish a generalization of Kollár’s injectivity theorem for
adjoint bundles twisted by suitable multiplier ideal sheaves. As applications, we generalize
Kollár’s torsion-freeness, Kollár’s vanishing theorem, and a generic vanishing theorem
for pseudo-effective line bundles. Our approach is not Hodge theoretic but analytic,
which enables us to treat singular Hermitian metrics with nonalgebraic singularities. For
the proof of the main injectivity theorem, we use L2-harmonic forms on noncompact
Kähler manifolds. For applications, we prove a Bertini-type theorem on the restriction of
multiplier ideal sheaves to general members of free linear systems.

Contents

1. Introduction 1
1.1. Main results 3
2. Preliminaries 7
3. Restriction lemma 9
4. Proof of Proposition 1.9 17
5. Proof of Theorem A 20
6. Twists by Nakano semipositive vector bundles 30
References 31

1. Introduction

The Kodaira vanishing theorem [Kod] is one of the most celebrated results in com-
plex geometry, and it has been generalized to several significant results; for example, the
Kawamata–Viehweg vanishing theorem, the Nadel vanishing theorem, Kollár’s injectivity
theorem (see [F9, Chapter 3]). Kodaira’s original proof is based on the theory of harmonic
(differential) forms, and has currently been developed to two approaches from different per-
spectives: One is the Hodge theoretic approach, which is algebro-geometric theory based
on Hodge structures and spectral sequences. The other is the transcendental approach,
which is an analytic theory focusing on harmonic forms and L2-methods for ∂-equations.
These approaches have been nourishing each other in the last decades.

As is well known, the Kawamata–Viehweg vanishing theorem plays a crucial role in
the theory of minimal models for higher-dimensional complex algebraic varieties with only
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mild singularities. Now some generalizations of Kollár’s injectivity theorem allow us to
extend the framework of the minimal model program to highly singular varieties (see [A1],
[A2], [EV], [F1], [F2], [F3], [F6], [F7], [F8], [F9], [F10], [F12], [F13], [F14]). The reader
can find various vanishing theorems and their applications in the minimal model program
in [F9, Chapters 3 and 6]. Kollár’s original injectivity theorem, which is one of the most
important generalizations of the Kodaira vanishing theorem, was first established by using
the Hodge theory (see [Kol1]). The following theorem, which is a special case of [F9,
Theorem 3.16.2], is obtained from the theory of mixed Hodge structures on cohomology
with compact support.

Theorem 1.1 (Injectivity theorem for log canonical pairs). Let D be a simple normal
crossing divisor on a smooth projective variety X and F be a semiample line bundle on X.
Let s be a nonzero global section of a positive multiple F⊗m such that the zero locus s−1(0)
contains no log canonical centers of the log canonical pair (X,D). Then the map

×s : H i(X,KX ⊗D ⊗ F ) → H i(X,KX ⊗D ⊗ F⊗m+1)

induced by ⊗s is injective for every i. Here KX denotes the canonical bundle of X.

The Hodge theoretic approach for Theorem 1.1 is algebro-geometric. For the proof, we
first take a suitable resolution of singularities and then take a cyclic cover. After that, we
apply the E1-degeneration of a Hodge to de Rham type spectral sequence coming from the
theory of mixed Hodge structures on cohomology with compact support. In this proof,
we do not directly use analytic arguments; on the contrary, we have no analytic proof for
Theorem 1.1. This indicates that a precise relation between the Hodge theoretic approach
and the transcendental method is not clear yet and is still mysterious. There is room for
further research from the analytic viewpoint. In this paper, we pursue the transcendental
approach for vanishing theorems instead of the Hodge theoretic approach.

A transcendental approach for Kollár’s important work (see [Kol1]) was first given by
Enoki, which improves Kollár’s original injectivity theorem to semipositive line bundles on
compact Kähler manifolds as an easy application of the theory of harmonic forms. After
Enoki’s work, several authors obtained some generalizations of Kollár’s injectivity theorem
from the analytic viewpoint, based on the theory of L2-harmonic forms (see, for example,
[En], [Ta], [O3], [F4], [F5], [MaS1], [MaS2], and [MaS4]). Based on the same philosophy,
it is natural to expect Theorem 1.1 to hold in the complex analytic setting. However, as
we mentioned above, there is no analytic proof for Theorem 1.1. Difficulties lie in that the
usual L2-method does not work for log canonical singularities, and that no transcendental
methods are corresponding to the theory of mixed Hodge structures (see [MaS8, No, LRW]
for some approaches). The transcendental method often provides some powerful tools not
only in complex geometry but also in algebraic geometry. Therefore it is of interest to
study various vanishing theorems and related topics by using the transcendental method.

In this paper, by developing the transcendental approach for vanishing theorems, we
prove Kollár’s injectivity, vanishing, torsion-free theorems, and a generic vanishing theo-
rem for KX ⊗ F ⊗ J (h), where KX is the canonical bundle of X, F is a pseudo-effective
line bundle on X, and J (h) is the multiplier ideal sheaf associated with a singular Her-
mitian metric h. More specifically, this paper contains three main contributions: The first
contribution is to prove a generalization of Kollár’s injectivity theorem for adjoint bundles
twisted by suitable multiplier ideal sheaves (Theorem A). The second contribution is to
establish a Bertini-type theorem on the restriction of multiplier ideal sheaves (Theorem



INJECTIVITY THEOREM FOR PSEUDO-EFFECTIVE LINE BUNDLES 3

1.10). Theorem 1.10 provides a useful tool and enables us to use the inductive argument
on dimension. The third contribution is to deduce various results related to vanishing
theorems as applications of Theorem 1.10 and Theorem A, (Theorems B, C, D, E, and
F). Since we adopt the transcendental method, we can formulate all the results for singu-
lar Hermitian metrics and (quasi-)plurisubharmonic functions with arbitrary singularities.
This is one of the main advantages of our approach in this paper. The Hodge theoretic
approach explained before does not work for singular Hermitian metrics with nonalgebraic
singularities. Furthermore, we sometimes have to deal with singular Hermitian metrics
with nonalgebraic singularities for several important applications in birational geometry
even when we consider problems in algebraic geometry (see, for example, [Si], [Pa], [DHP],
[GM], and [LP]). Therefore, it is worth formulating and proving various results for singular
Hermitian metrics with arbitrary singularities although they are much more complicated
than singular Hermitian metrics with only algebraic singularities.

1.1. Main results. Here, we explain the main results of this paper (Theorems A, B, C, D,
E, F, and Theorem 1.10). Theorem A and Theorem 1.10 play important roles in this paper,
and other results follow from Theorem A and Theorem 1.10 (see Proposition 1.9). We first
recall the definition of pseudo-effective line bundles on compact complex manifolds.

Definition 1.2 (Pseudo-effective line bundles). Let F be a holomorphic line bundle on a
compact complex manifold X. We say that F is pseudo-effective if there exists a singular
Hermitian metric h on F with

√
−1Θh(F ) ≥ 0. When X is projective, it is well known

that F is pseudo-effective if and only if F is pseudo-effective in the usual sense, that is,
F⊗m ⊗H is big for any ample line bundle H on X and any positive integer m.

The first result is an Enoki-type injectivity theorem.

Theorem A (Enoki-type injectivity). Let F be a holomorphic line bundle on a compact
Kähler manifold X and let h be a singular Hermitian metric on F . LetM be a holomorphic
line bundle on X and let hM be a smooth Hermitian metric on M . Assume that

√
−1ΘhM (M) ≥ 0 and

√
−1(Θh(F )− tΘhM (M)) ≥ 0

for some t > 0. Let s be a nonzero global section of M . Then the map

×s : H i(X,KX ⊗ F ⊗ J (h)) → H i(X,KX ⊗ F ⊗ J (h)⊗M)

induced by ⊗s is injective for every i, where KX is the canonical bundle of X and J (h) is
the multiplier ideal sheaf of h.

Remark 1.3. Let L be a semipositive line bundle on X, that is, it admits a smooth
Hermitian metric with semipositive curvature. Let F = L⊗m and M = L⊗k for positive
integers m and k. Then we obtain Enoki’s original injectivity theorem (see [En, Theorem
0.2]) from Theorem A.

In the case of M = F , Theorem A has been proved in [MaS4] under the assumption
supX |s|h <∞. This assumption is a natural condition to guarantee that the multiplication
map ×s is well-defined. However, for our applications in this paper, we need to formulate
Theorem A for a different (M,hM) from (F, h). This formulation, which may look slightly
artificial, is quite powerful and can produce applications, but raises a new difficulty in
the proof: the set of points x ∈ X with ν(h, x) > 0 is not necessarily contained in a
proper Zariski closed set, although such a situation was excluded in [MaS4] thanks to
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the assumption supX |s|h < ∞, where ν(h, x) denotes the Lelong number of the local
weight of h at x. Compared to [MaS4], Theorem A is novel in the technique to overcome
this difficulty (see Section 5 for the technical details), and further, it will be generalized
to certain noncompact manifolds along with other techniques (see [MaS5]). Note that
Theorem A can be seen as a generalization not only of Enoki’s injectivity theorem but also
of the Nadel vanishing theorem. In Section 4, we will explain how to reduce Demailly’s
original formulation of the Nadel vanishing theorem (see Theorem 1.4 below) to Theorem
A for the reader’s convenience.

Theorem 1.4 (Nadel vanishing theorem due to Demailly: [D2, Theorem 4.5]). Let V be
a smooth projective variety equipped with a Kähler form ω. Let L be a holomorphic line
bundle on V and let hL be a singular Hermitian metric on L such that

√
−1ΘhL(L) ≥ εω

for some ε > 0. Then
H i(V,KV ⊗ L⊗ J (hL)) = 0

for every i > 0, where KV is the canonical bundle of V and J (hL) is the multiplier ideal
sheaf of hL.

A semiample line bundle is always semipositive. Thus, as a direct consequence of The-
orem A, we obtain Theorem B, which is a generalization of Kollár’s original injectivity
theorem (see [Kol1]).

Theorem B (Kollár-type injectivity). Let F be a holomorphic line bundle on a compact
Kähler manifold X and let h be a singular Hermitian metric on F such that

√
−1Θh(F ) ≥

0. Let N1 and N2 be semiample line bundles on X and let s be a nonzero global section of
N2. Assume that N⊗a

1 ≃ N⊗b
2 for some positive integers a and b. Then the map

×s : H i(X,KX ⊗ F ⊗ J (h)⊗N1) → H i(X,KX ⊗ F ⊗ J (h)⊗N1 ⊗N2)

induced by ⊗s is injective for every i, where KX is the canonical bundle of X and J (h) is
the multiplier ideal sheaf of h.

Remark 1.5. (1) Let X be a smooth projective variety and (F, h) be a trivial Hermitian
line bundle. Then we obtain Kollár’s original injectivity theorem (see [Kol1, Theorem 2.2])
from Theorem B.
(2) For the proof of Theorem B, we may assume that b = 1, that is, N2 ≃ N⊗a

1 by replacing
s with sb. We note that the composition

H i(X,KX ⊗ F ⊗ J (h)⊗N1)
×s−→ H i(X,KX ⊗ F ⊗ J (h)⊗N1 ⊗N2)

×sb−1

−→ H i(X,KX ⊗ F ⊗ J (h)⊗N1 ⊗N⊗b
2 )

is the map ×sb induced by ⊗sb.
Theorem C is a generalization of Kollár’s torsion-free theorem and Theorem D is a

generalization of Kollár’s vanishing theorem (see [Kol1, Theorem 2.1]).

Theorem C (Kollár-type torsion-freeness). Let f : X → Y be a surjective morphism from
a compact Kähler manifold X onto a projective variety Y . Let F be a holomorphic line
bundle on X and let h be a singular Hermitian metric on F such that

√
−1Θh(F ) ≥ 0.

Then
Rif∗(KX ⊗ F ⊗ J (h))

is torsion-free for every i, where KX is the canonical bundle of X and J (h) is the multiplier
ideal sheaf of h.
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Theorem D (Kollár-type vanishing theorem). Let f : X → Y be a surjective morphism
from a compact Kähler manifold X onto a projective variety Y . Let F be a holomorphic
line bundle on X and let h be a singular Hermitian metric on F such that

√
−1Θh(F ) ≥ 0.

Let N be a holomorphic line bundle on X. We assume that there exist positive integers a
and b and an ample line bundle H on Y such that N⊗a ≃ f ∗H⊗b. Then we obtain that

H i(Y,Rjf∗(KX ⊗ F ⊗ J (h)⊗N)) = 0

for every i > 0 and j, where KX is the canonical bundle of X and J (h) is the multiplier
ideal sheaf of h.

Remark 1.6. (1) If X is a smooth projective variety and (F, h) is trivial, then Theorem C
is nothing but Kollár’s torsion-free theorem. Furthermore, if N ≃ f ∗H, that is, a = b = 1,
then Theorem D is the Kollár vanishing theorem. For the details, see [Kol1, Theorem 2.1].
(2) There exists a clever proof of Kollár’s torsion-freeness by the theory of variations of
Hodge structure (see [Ar]).
(3) In [MaS6], the second author obtained a natural analytic generalization of Kollár’s
vanishing theorem, which corresponds to the case where h is a smooth Hermitian metric
and contains Ohsawa’s vanishing theorem (see [O2]) as a special case.
(4) In [F15], the first author proved a vanishing theorem containing both Theorem 1.4 and
Theorem D as special cases, which is called the vanishing theorem of Kollár–Nadel type.

By combining Theorem D with the Castelnuovo–Mumford regularity, we can easily ob-
tain Corollary 1.7, which is a complete generalization of [Hö, Lemma 3.35 and Remark
3.36]. The proof of [Hö, Lemma 3.35] depends on a generalization of the Ohsawa–Takegoshi
L2 extension theorem. We note that Höring claims the weak positivity of f∗(KX/Y ⊗ F )
under some extra assumptions by using [Hö, Lemma 3.35]. For the details, see [Hö, 3.H
Multiplier ideals].

Corollary 1.7. Let f : X → Y be a surjective morphism from a compact Kähler manifold
X onto a projective variety Y . Let F be a holomorphic line bundle on X and let h be a
singular Hermitian metric on F such that

√
−1Θh(F ) ≥ 0. Let H be an ample and globally

generated line bundle on Y . Then

Rif∗(KX ⊗ F ⊗ J (h))⊗H⊗m

is globally generated for every i ≥ 0 and m ≥ dimY +1, where KX is the canonical bundle
of X and J (h) is the multiplier ideal sheaf of h.

As a direct consequence of Theorem D, we obtain Theorem E. See Definition 1.8 for the
definition of GV-sheaves in the sense of Pareschi and Popa and see [Sc, Theorem 25.5 and
Definition 26.3] for the details of GV-sheaves.

Theorem E (GV-sheaves). Let f : X → A be a morphism from a compact Kähler manifold
X to an Abelian variety A. Let F be a holomorphic line bundle on X and let h be a singular
Hermitian metric on F such that

√
−1Θh(F ) ≥ 0. Then

Rif∗(KX ⊗ F ⊗ J (h))

is a GV-sheaf for every i, where KX is the canonical bundle of X and J (h) is the multiplier
ideal sheaf of h.
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Definition 1.8 (GV-sheaves in the sense of Pareschi and Popa: [PP]). Let A be an Abelian
variety. A coherent sheaf F on A is said to be a GV-sheaf if

codimPic0(A){L ∈ Pic0(A) |H i(A,F ⊗ L) ̸= 0} ≥ i

for every i.

The final one is a generalization of the generic vanishing theorem (see [GL], [Ha], [PP]).
The formulation of Theorem F is closer to [Ha] and [PP] than to the original generic
vanishing theorem by Green and Lazarsfeld in [GL].

Theorem F (Generic vanishing theorem). Let f : X → A be a morphism from a compact
Kähler manifold X to an Abelian variety A. Let F be a holomorphic line bundle on X and
let h be a singular Hermitian metric on F such that

√
−1Θh(F ) ≥ 0. Then

codimPic0(A){L ∈ Pic0(A) |H i(X,KX ⊗ F ⊗ J (h)⊗ f ∗L) ̸= 0} ≥ i− (dimX − dim f(X))

for every i ≥ 0, where KX is the canonical bundle of X and J (h) is the multiplier ideal
sheaf of h.

The main results explained above are closely related to each other. The following propo-
sition, which is also one of the main contributions in this paper, shows several relations
among them. From Proposition 1.9, we see that it is sufficient to prove Theorem A. The
proof of Proposition 1.9 will be given in Section 4.

Proposition 1.9. We have the following relations among the above theorems.

(i) Theorem A implies Theorem B.
(ii) Theorem B is equivalent to Theorem C and Theorem D.
(iii) Theorem D implies Theorem E.
(iv) Theorem C and Theorem E imply Theorem F.

A key ingredient of Proposition 1.9 is the following theorem, which can be seen as a
Bertini-type theorem on the restriction of multiplier ideal sheaves to general members of
free linear systems. Theorem 1.10 enables us to use the inductive argument on dimension.
We remark that G in Theorem 1.10 is not always an intersection of countably many Zariski
open sets (see Example 3.10). The proof of Theorem 1.10, which is quite technical, will be
given in Section 3

Theorem 1.10 (Density of good divisors: Theorem 3.6). Let X be a compact complex
manifold, let Λ be a free linear system on X with dimΛ ≥ 1, and let φ be a quasi-
plurisubharmonic function on X. We put

G := {H ∈ Λ |H is smooth and J (φ|H) = J (φ)|H}.
Then G is dense in Λ in the classical topology, that is, the Euclidean topology.

Although the above formulation is sufficient for our applications, it is of independent
interest to find a more precise formulation. The following problem, posed by Sébastien
Boucksom, is reasonable from the viewpoint of Berndtsson’s complex Prekopa theorem
(see [Be]).

Problem 1.11. In Theorem 1.10, is the complement Λ \ G a pluripolar subset of Λ?

All the results explained above hold even if we replace KX with KX ⊗ E, where E is
any Nakano semipositive vector bundle on X. We will explain Theorem 1.12 in Section 6.
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Theorem 1.12 (Twists by Nakano semipositive vector bundles). Let E be a Nakano
semipositive vector bundle on a compact Kähler manifold X. Then Theorems A, B, C, D,
E, F, Theorem 1.4, Corollary 1.7, and Proposition 1.9 hold even when KX is replaced with
KX ⊗ E.

In this paper, we assume that all the varieties and manifolds are compact and connected
for simplicity. We summarize the contents of this paper. In Section 2, we recall some
basic definitions and collect several preliminary lemmas. Section 3 is devoted to the proof
of Theorem 1.10. Theorem 1.10 plays a crucial role in the proof of Proposition 1.9. In
Section 4, we prove Proposition 1.9 and Corollary 1.7, and explain how to reduce Theorem
1.4 to Theorem A. By these results, we see that all we have to do is to establish Theorem
A. In Section 5, we give a detailed proof of Theorem A. In the final section: Section 6, we
explain how to modify the arguments used before for the proof of Theorem 1.12.
After the authors put a preprint version of this paper on arXiv, some further general-

izations of Theorem A have been studied in [MaS5], [CDM], [ZZ], and a relative version
of Theorem 1.10 has been established in [F16], by developing the techniques in this pa-
per. See [Ta], [F5], [MaS5], [CDM], [F16] for some injectivity, torsion-free, and vanishing
theorems for noncompact manifolds.

Acknowledgments. The authors would like to thank Professor Toshiyuki Sugawa for
giving them the reference on Example 3.10 and Professor Taro Fujisawa for his warm
encouragement. Furthermore, they are deeply grateful to Professor Sébastien Boucksom
for kindly suggesting Problem 1.11. The first author thanks Takahiro Shibata for discus-
sion. He was partially supported by Grant-in-Aid for Young Scientists (A) 24684002 from
JSPS and by JSPS KAKENHI Grant Numbers JP16H03925, JP16H06337, JP19H01787,
JP20H00111, JP21H00974. The second author was partially supported by Grant-in-Aid
for Young Scientists (A) ♯17H04821, Grant-in-Aid for Scientific Research (B) ♯ 21H00976,
and Fostering Joint International Research (A) ♯19KK0342 from JSPS.

2. Preliminaries

We briefly review the definition of singular Hermitian metrics, (quasi-)plurisubharmonic
functions, and Nadel’s multiplier ideal sheaves. See [D3] for the details.

Definition 2.1 (Singular Hermitian metrics and curvatures). Let F be a holomorphic line
bundle on a complex manifold X. A singular Hermitian metric on F is a metric h which
is given in every trivialization θ : F |Ω ≃ Ω× C by

|ξ|h = |θ(ξ)|e−φ on Ω,

where ξ is a section of F on Ω and φ ∈ L1
loc(Ω) is an arbitrary function. Here L1

loc(Ω) is
the space of locally integrable functions on Ω. We usually call φ the weight function of the
metric with respect to the trivialization θ. The curvature of a singular Hermitian metric
h is defined by √

−1Θh(F ) := 2
√
−1∂∂φ,

where φ is a weight function and
√
−1∂∂φ is taken in the sense of currents. It is easy to

see that the right-hand side does not depend on the choice of trivializations.

The notion of multiplier ideal sheaves introduced by Nadel plays an important role in
the recent developments of complex geometry and algebraic geometry.
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Definition 2.2 ((Quasi-)plurisubharmonic functions and multiplier ideal sheaves). A func-
tion u : Ω → [−∞,∞) defined on an open set Ω ⊂ Cn is said to be plurisubharmonic if

• u is upper semicontinuous, and
• for every complex line L ⊂ Cn, the restriction u|Ω∩L to L is subharmonic on Ω∩L,
that is, for every a ∈ Ω and ξ ∈ Cn satisfying |ξ| < d(a,Ωc), the function u satisfies
the mean inequality

u(a) ≤ 1

2π

∫ 2π

0

u(a+ eiθξ) dθ.

Let X be a complex manifold. A function φ : X → [−∞,∞) is said to be plurisubhar-
monic on X if there exists an open cover {Ui}i∈I of X such that φ|Ui

is plurisubharmonic
on Ui (⊂ Cn) for every i. We can easily see that this definition is independent of the
choice of open covers. A quasi-plurisubharmonic function is a function φ which is locally
equal to the sum of a plurisubharmonic function and of a smooth function. If φ is a
quasi-plurisubharmonic function on a complex manifold X, then the multiplier ideal sheaf
J (φ) ⊂ OX is defined by

Γ(U,J (φ)) := {f ∈ OX(U) | |f |2e−2φ ∈ L1
loc(U)}

for every open set U ⊂ X. Then it is known that J (φ) is a coherent ideal sheaf (see, for
example, [D3, (5.7) Lemma]). Let S be a complex submanifold of X. Then the restriction
J (φ)|S of the multiplier ideal sheaf J (φ) to S is defined by the image of J (φ) under the
natural surjective morphism OX → OS, that is,

J (φ)|S = J (φ)/J (φ) ∩ IS,

where IS is the defining ideal sheaf of S on X. We note that the restriction J (φ)|S does
not always coincide with J (φ)⊗OS = J (φ)/J (φ) · IS.

We have already used J (h) in theorems in Section 1.

Definition 2.3. Let F be a holomorphic line bundle on a complex manifold X and let h
be a singular Hermitian metric on F . We assume

√
−1Θh(F ) ≥ γ for some smooth (1, 1)-

form γ on X. We fix a smooth Hermitian metric h∞ on F . Then we can write h = h∞e
−2ψ

for some ψ ∈ L1
loc(X). Then ψ coincides with a quasi-plurisubharmonic function φ on X

almost everywhere. We define the multiplier ideal sheaf J (h) of h by J (h) := J (φ).

We close this section with the following lemmas, which will be used in the proof of
Theorem A in Section 5.

Lemma 2.4 ([O1, Proposition 1.1]). Let ω and ω̃ be positive (1, 1)-forms on an n-dimensional
complex manifold with ω̃ ≥ ω. If u is an (n, q)-form, then |u|2ω̃ dVω̃ ≤ |u|2ω dVω. Further-
more, if u is an (n, 0)-form, then |u|2ω̃ dVω̃ = |u|2ω dVω. Here |u|ω (resp. |u|ω̃) is the pointwise
norm of u with respect to ω (resp. ω̃) and dVω (resp. dVω̃) is the volume form defined by
dVω := ωn/n! (resp. dVω̃ := ω̃n/n!).

Proof. This lemma follows from simple computations. Thus, we omit the proof. □

Lemma 2.5. Let φ : H1 → H2 be a bounded operator (continuous linear map) between
Hilbert spaces H1,H2. If {wk}∞k=1 weakly converges to w in H1, then {φ(wk)}∞k=1 weakly
converges to φ(w).
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Proof. By taking the adjoint operator φ∗, for every v ∈ H2, we have

⟨⟨φ(wk), v⟩⟩H2
= ⟨⟨wk, φ∗(v)⟩⟩H1

→ ⟨⟨w,φ∗(v)⟩⟩H1
= ⟨⟨φ(w), v⟩⟩H2

.

This completes the proof. □
Lemma 2.6. Let L be a closed subspace in a Hilbert space H. Then L is closed with respect
to the weak topology of H, that is, if a sequence {wk}∞k=1 in L weakly converges to w, then
the weak limit w belongs to L.

Proof. By the orthogonal decomposition, there exists a closed subspace M such that L =
M⊥. Then it follows that w ∈M⊥ = L since 0 = ⟨⟨wk, v⟩⟩H → ⟨⟨w, v⟩⟩H for any v ∈M . □

3. Restriction lemma

This section is devoted to the proof of Theorem 1.10 (see Theorem 3.6), which will play
a crucial role in the proof of Proposition 1.9. The following lemma is a direct consequence
of the Ohsawa–Takegoshi L2 extension theorem (see [OT, Theorem]).

Lemma 3.1. Let X be a complex manifold and let φ be a quasi-plurisubharmonic function
on X. We consider a filtration

Fk ⊂ Fk−1 ⊂ · · · ⊂ F1 ⊂ F0 := X,

where Fi is a smooth hypersurface of Fi−1 for every i. Then we obtain that

J (φ|Fk
) ⊂ J (φ|Fk−1

)|Fk
⊂ · · · ⊂ J (φ|F1)|Fk

⊂ J (φ)|Fk
.

Proof. This immediately follows from the Ohsawa–Takegoshi L2 extension theorem. □
The following lemma is a key ingredient of the proof of Theorem 1.10 (see Theorem 3.6).

Lemma 3.2. Let X and φ be as in Theorem 1.10. Let Hi be a Cartier divisor on X for
1 ≤ i ≤ k. We assume the following condition:

♠ The divisor
∑k

i=1Hi is a simple normal crossing divisor on X. Moreover, for every
1 ≤ i1 < i2 < · · · < il ≤ k and any P ∈ Hi1∩Hi2∩· · ·∩Hil, the set {fi1 , fi2 , · · · , fil}
is a regular sequence for OX,P/J (φ)P , where fi is a (local) defining equation of Hi

for every i.

Furthermore, we assume that J (φ|Fk
) = J (φ)|Fk

holds, where Fi := H1 ∩ H2 ∩ · · · ∩ Hi

for 1 ≤ i ≤ k. Then for every j, the equality J (φ|Fj
) = J (φ)|Fj

holds on a neighborhood
of Fk in Fj.

Before we prove Lemma 3.2, we make some remarks to help the reader understand
condition ♠.

Remark 3.3. (1) Let (A,m) be a local ring and let M be a finitely generated (nonzero)
A-module. Let {x1, . . . , xr} be a sequence of elements of m. We put M0 = M and
Mi = M/x1M + · · · + xiM . Then {x1, . . . , xr} is said to be a regular sequence for M if
×xi+1 : Mi →Mi is injective for every 0 ≤ i ≤ r − 1.
(2) Condition ♠ in Lemma 3.2 does not depend on the order of {H1, H2, · · · , Hk} (see,

for example, [MaH, Theorem 16.3] and [AK, Chapter III, Corollary (3.5)]).
(3) Let F be a coherent analytic sheaf on a compact complex manifold X. Then there

exists a finite family {Yi}i∈I of irreducible analytic subsets of X such that

AssOX,x
(Fx) = {px,1, . . . , px,r(x)},
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where px,1, . . . , px,r(x) are prime ideals of OX,x associated to the irreducible components of
the germs x ∈ Yi (see, for example [Man, (I.6) Lemma]). Note that Yi is called an analytic
subset associated with F . In this paper, we simply say that Yi is an associated prime of F
if there is no risk of confusion. Then condition ♠ is equivalent to the following condition:

• The divisor
∑k

i=1Hi is a simple normal crossing divisor on X. Moreover, for every
1 ≤ i1 < i2 < · · · < il−1 < il ≤ k, the divisor Hil contains no associated primes of
OX/J (φ) and OHi1

∩···∩Hil−1
/J (φ)|Hi1

∩···∩Hil−1
.

(4) (3.1) below may be helpful to understand condition ♠. We put Hi1···im := Hi1 ∩ · · ·∩
Him for every 1 ≤ i1 < · · · < im ≤ k. Then we can inductively check that

0 → J (φ)|Hi1···il−1
⊗OHi1···il−1

(−Hil) → J (φ)|Hi1···il−1
→ J (φ)|Hi1···il

→ 0

is exact and that

0 →
(
OHi1···il−1

/J (φ)|Hi1···il−1

)
⊗OHi1···il−1

(−Hil)

→ OHi1···il−1
/J (φ)|Hi1···il−1

→ OHi1···il
/J (φ)|Hi1···il

→ 0
(3.1)

is also exact (see (3.3) and (3.4) in the proof of Lemma 3.2).

Proof of Lemma 3.2. By condition ♠, the morphism γ in the following commutative dia-
gram is injective.

(3.2) 0

� �

0

��
0 // J (φ)⊗OX(−H1)

��

α // J (φ)

��

// Cokerα //

β

��

0

0 // OX(−H1)

��

// OX

��

// OH1
// 0

(OX/J (φ))⊗OX(−H1)
γ //

��

OX/J (φ)

��
0 0

Therefore β is also injective. This implies that Cokerα = J (φ)|H1 by definition. Thus, we
obtain the following short exact sequence:

0 → J (φ)⊗OX(−H1) → J (φ) → J (φ)|H1 → 0.

We also obtain the following short exact sequence:

0 → (OX/J (φ))⊗OX(−H1)
γ→ OX/J (φ) → OH1/J (φ)|H1 → 0

by the above big commutative diagram. Similarly, by condition ♠, we can inductively
check that

(3.3) 0 → J (φ)|Fi
⊗OFi

(−Hi+1) → J (φ)|Fi
→ J (φ)|Fi+1

→ 0

and

(3.4) 0 → (OFi
/J (φ)|Fi

)⊗OFi
(−Hi+1) → OFi

/J (φ)|Fi
→ OFi+1

/J (φ)|Fi+1
→ 0
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are exact for every 1 ≤ i ≤ k−1. For 0 ≤ i ≤ k−1, we consider the following commutative
diagram:

0

��

0

��
0 // J (φ|Fi

)⊗OFi
(−Hi+1)

ai
��

// J (φ)|Fi
⊗OFi

(−Hi+1)

��

// Coker bi ⊗OFi
(−Hi+1) //

di
��

0

0 // J (φ|Fi
)

��

bi // J (φ)|Fi

��

// Coker bi // 0

Coker ai
ci //

��

J (φ)|Fi+1

��
0 0.

The assumption J (φ|Fk
) = J (φ)|Fk

implies that J (φ|Fk−1
)|Fk

= J (φ)|Fk
holds by

J (φ|Fk
) ⊂ J (φ|Fk−1

)|Fk
⊂ · · · ⊂ J (φ)|Fk

in Lemma 3.1. If J (φ|Fi
)|Fi+1

= J (φ)|Fi+1
on

a neighborhood of Fk in Fi+1, then ci is surjective on a neighborhood of Fk in Fi+1 by
the definition of J (φ|Fi

)|Fi+1
. Then di is also surjective on a neighborhood of Fk in Fi

by the above big commutative diagram. By Nakayama’s lemma, Coker bi is zero on a
neighborhood of Fk in Fi. This implies that J (φ|Fi

) = J (φ)|Fi
on a neighborhood of Fk

in Fi. Thus, we obtain that J (φ|Fi−1
)|Fi

= J (φ)|Fi
on a neighborhood of Fk in Fi since we

have J (φ|Fi
) ⊂ J (φ|Fi−1

)|Fi
⊂ J (φ)|Fi

by Lemma 3.1. By repeating this argument, we
see that J (φ|Fj

) = J (φ)|Fj
on a neighborhood of Fk in Fj for every j. This is the desired

property. □
Lemma 3.4. Assume that {H1, · · · , Hm} satisfies condition ♠ in Lemma 3.2. Let Hm+1

be a smooth Cartier divisor on X such that
∑m+1

i=1 Hi is a simple normal crossing divisor
on X and that Hm+1 contains no associated primes of

OX/J (φ) and OHi1
∩···∩Hil

/J (φ)|Hi1
∩···∩Hil

for every 1 ≤ i1 < · · · < il ≤ m. Then {H1, · · · , Hm, Hm+1} also satisfies condition ♠.

Proof. This is obvious from Remark 3.3 (3). □
Lemma 3.5. Let Λ0 be a sublinear system of a free linear system Λ on X with dimΛ0 ≥ 1.
Assume that {H1, · · · , Hm} satisfies condition ♠ in Lemma 3.2. We put

F0 := {D ∈ Λ0 | {H1, · · · , Hm, D} satisfies ♠}.
Then F0 is Zariski open in Λ0. In particular, if F0 is not empty, then it is a dense Zariski
open set of Λ0.

Moreover, we assume that there exists D0 ∈ F0 such that J (φ|V ) = J (φ)|V , where V
is an irreducible component of H1 ∩ · · · ∩ Hm ∩ D0. Let D be a member of F0 such that
V is an irreducible component of H1 ∩ · · · ∩Hm ∩D. Then J (φ|D) = J (φ)|D holds on a
neighborhood of V in D.

Proof. We put

F := {D ∈ Λ | {H1, · · · , Hm, D} satisfies ♠}.
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Then by Remark 3.3 (3) and Lemma 3.4, it is easy to see that F is a dense Zariski open
set in Λ since Λ is a free linear system on X. Therefore, F0 = F ∩ Λ0 is Zariski open in
Λ0. By Lemma 3.2, the equality J (φ|D) = J (φ)|D holds on a neighborhood of V in D if
D ∈ F0 and V is an irreducible component of H1 ∩ · · · ∩Hm ∩D. We note that we do not
need the compactness of X in the proof of Lemma 3.2. Therefore, we can shrink X and
assume that V = H1 ∩ · · · ∩Hm ∩D in the above argument. □
The following theorem (see Theorem 1.10) is one of the key results of this paper.

Theorem 3.6 (Density of good divisors: Theorem 1.10). Let X be a compact complex
manifold, let Λ be a free linear system on X with dimΛ ≥ 1, and let φ be a quasi-
plurisubharmonic function on X. We put

G := {H ∈ Λ |H is smooth and J (φ|H) = J (φ)|H}.
Then G is dense in Λ in the classical topology.

Proof. We may assume that φ ̸≡ −∞. Throughout this proof, we put f := ΦΛ : X →
Y := f(X) ⊂ PN . Note that N = dimΛ. We divide the proof into several steps.

Step 0 (Idea of the proof). In this step, we will explain an idea of the proof.
A general member H of Λ is smooth by Bertini’s theorem, and it always satisfies that

J (φ|H) ⊂ J (φ)|H by Lemma 3.1. Hence, the problem is to check that the opposite
inclusion holds for any member of a dense subset in Λ.

If dimΛ = 1, that is, Λ is a pencil, then a member H of Λ is a fiber of the morphism f =
ΦΛ : X → P1 at a point P ∈ P1. By Fubini’s theorem, we have J (φ|f−1(P )) ⊃ J (φ)|f−1(P )

for almost all P ∈ P1. This is the desired statement when dimΛ = 1. In general, we have
H1 ∩H2 ̸= ∅ for two general members H1 and H2 of Λ. For this reason, we choose H1 and
H2 suitably (see Step 2 and Step 3), take the blow-up Z → X along H1 ∩H2, and reduce
the problem to the pencil case (see Step 4).

Step 1. In this step, we will prove the theorem when dimY = 1.
Let ψ0, . . . , ψN be a basis of H0(PN ,OPN (1)). We put

Y = {(y, [a0 : · · · : aN ]) ∈ Y × PN | a0ψ0(y) + · · ·+ aNψN(y) = 0} ⊂ Y × PN

and consider the following commutative diagram:

X

f̃
��

� � // X × PN

��

// X

f

��
Y � � //

π
##H

HH
HH

HH
HH

H Y × PN

p2

��

// Y

PN ,

where X ↪→ X × PN → X is the base change of Y ↪→ Y × PN → Y by f : X → Y , p2
is the second projection, and π = p2|Y . We can easily see that there exists a nonempty

Zariski open set U of PN such that π and f̃ are étale and smooth over U , respectively.
We note that Λ = f ∗|OPN (1)| by construction. Let H be a member of Λ corresponding
to a point of U . Then H is smooth and J (φ|H) ⊂ J (φ)|H holds by Lemma 3.1. On the

other hand, by applying Fubini’s theorem to (π ◦ f̃)−1(U) → U , the opposite inclusion
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J (φ)|H ⊂ J (φ|H) holds for almost all H ∈ Λ. This means that G is dense in Λ in the
classical topology.

Step 2. In this step, we will prove the following preparatory lemma.

Lemma 3.7. Let D1 and D2 be two members of Λ such that {D1, D2} satisfies condition ♠
in Lemma 3.2. Let P0 be the pencil spanned by D1 and D2. Then, for almost all D ∈ P0,
the member D is smooth, {D} satisfies condition ♠, and J (φ|D) = J (φ)|D holds outside
D1 ∩D2.

Proof of Lemma 3.7. Let Ai be a hyperplane in PN such thatDi = f ∗Ai, and pr : PN 99K P1

be the linear projection from the subspace A1 ∩ A2
∼= PN−2. Then the meromorphic map

X 99K P1 associated with P0 is the composition of f : X → PN and pr : PN 99K P1.
Since the blow-up of PN along A1 ∩ A2 gives an elimination of the indeterminacy locus of
pr : PN 99K P1, the blow-up p : Z → X along D1 ∩D2 satisfies the following commutative
diagram:

Z
p //

q   A
AA

AA
AA

A X

���
�
�

f=ΦΛ // PN

pr}}{
{
{
{

P1.

By applying Fubini’s theorem to q : Z → P1, we obtain that J (p∗φ|q−1(Q)) = J (p∗φ)|q−1(Q)

for almost all Q ∈ P1. Lemma 3.5 implies that {D} satisfies condition ♠ for almost all
D ∈ P0. The desired properties follow since p is an isomorphism outside D1 ∩D2. □
Step 3. In this step, we will find a smooth member H of Λ such that J (φ|H) = J (φ)|H
and that {H} satisfies condition ♠.

From now on, we assume that dimΛ ≥ 2 and that the statement of Theorem 3.6 holds
for lower dimensional free linear systems. We put l := dimY . By Step 1, we have a smooth
member H of Λ with the desired properties when l = 1. Therefore, we may assume that
l ≥ 2. We take two general hyperplanes B1 and B2 of PN . We put D1 := f ∗B1 and
D2 := f ∗B2. By Lemma 3.7, we can take a hyperplane A1 of PN such that X1 := f ∗A1 is
smooth, {X1} satisfies condition ♠, and J (φ|X1) = J (φ)|X1 outside D1 ∩D2. Let Λ|X1 be
the linear system on X1 defined by f1 : X1 = X ∩ f−1(A1) → Y ∩ A1 ⊂ A1

∼= PN−1, that
is, the set of pull-backs of the hyperplanes in A1

∼= PN−1 by f1. By construction, we have
dimΛ|X1 = dimΛ− 1. Thus, we see that

{H ∈ Λ |X1 ∩H is smooth and J (φ|X1∩H) = J (φ|X1)|X1∩H}
is dense in Λ in the classical topology by the induction hypothesis. Then we can take
general hyperplanes A2, A3, · · · , Al of PN such that dim(A1 ∩ · · · ∩ Al ∩ Y ) = 0 and that
f−1(Q) is smooth and

(3.5) J (φ|f−1(Q)) = J (φ|X1)|f−1(Q)

for every Q ∈ A1∩ · · ·∩Al∩Y by using the induction hypothesis repeatedly. Without loss
of generality, we may assume that f−1(Q) ∩D1 ∩D2 = ∅ for every Q ∈ A1 ∩ · · · ∩Al ∩ Y .
Since

J (φ|X1) = J (φ)|X1

holds outside D1 ∩D2,

(3.6) J (φ|X1)|f−1(Q) = J (φ)|f−1(Q)
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holds for every Q ∈ A1 ∩ · · · ∩ Al ∩ Y . Therefore, we have

J (φ|f−1(Q)) = J (φ|X1)|f−1(Q) = J (φ)|f−1(Q)

for every Q ∈ A1 ∩ · · · ∩ Al ∩ Y by (3.5) and (3.6). We may assume that {X1 =
f ∗A1, f

∗A2, · · · , f ∗Al} satisfies condition ♠. We take one point P of A1 ∩ · · · ∩Al ∩Y and
fix A2, · · · , Al. By applying Lemma 3.5 to the linear system

Λ0 := {D ∈ Λ | f−1(P ) ⊂ D},
we see that

F0 := {D ∈ Λ0 | {D, f ∗A2, · · · , f ∗Al} satisfies ♠}
is Zariski open in Λ0. Note that F0 is nonempty by X1 = f ∗A1 ∈ F0. By the latter
conclusion of Lemma 3.5, we have:

Lemma 3.8. Let Ag be a general hyperplane of PN passing through P . We put Xg := f ∗Ag.
Then J (φ|Xg) = J (φ)|Xg holds on a neighborhood of f−1(P ) in Xg.

Let π : X ′ → X be the blow-up along f−1(P ) and let BlP (PN) → PN be the blow-
up of PN at P . The induced morphism α : X ′ → BlP (PN) and the linear projection
γ : PN 99K PN−1 from P ∈ PN satisfy the following commutative diagram.

X ′ π //

α

��

X

f
��
Y � _

��
BlP (PN)

β
��

// PN

γzzu
u
u
u
u

PN−1.

We put f ′ := β ◦ α and Y ′ := f ′(X ′). By applying the induction hypothesis to f ′ : X ′ →
Y ′ ⊂ PN−1, we can take a general hyperplane A of PN−1 such that f ′∗A is smooth and that

(3.7) J (π∗φ|f ′−1(A)) = J (π∗φ)|f ′−1(A).

Let A0 be the hyperplane of PN spanned by P and A. Then we can see that

(3.8) {f ∗A2, · · · , f ∗Al, H := f ∗A0}
satisfies condition ♠ since A is a general hyperplane of PN−1. We see that J (φ|H) =
J (φ)|H by (3.7) and Lemma 3.8, and that {H} satisfies condition ♠ by (3.8). Therefore
this H has the desired properties.

Step 4. In this final step, we will prove that G is dense in Λ in the classical topology.
We will use the induction on dimX. If dimX = 1, then dimY = 1. Therefore, by Step 1,

we see that G is dense in Λ in the classical topology. Therefore, we assume that dimX ≥ 2.
If dimY = 1, then G is dense by Step 1. Thus, we may assume that dimΛ ≥ dimY ≥ 2.
By Step 3, we can take a smooth member H0 of Λ such that J (φ|H0) = J (φ)|H0 and that
{H0} satisfies condition ♠. By applying the induction hypothesis to Λ|H0 , we see that

G ′ := {H ′ ∈ Λ |H0 ∩H ′ is smooth and J (φ|H0∩H′) = J (φ|H0)|H0∩H′}
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is dense in Λ in the classical topology. Since Λ is a free linear system, we know that

{H ′ ∈ Λ | {H0, H
′} satisfies ♠}

is a nonempty Zariski open set in Λ. Therefore,

G ′′ := {H ′ ∈ G ′ | {H0, H
′} satisfies ♠}

is also dense in Λ in the classical topology. We note that

J (φ|H0∩H′) = J (φ|H0)|H0∩H′ = J (φ)|H0∩H′

for every H ′ ∈ G ′ since J (φ|H0) = J (φ)|H0 . Therefore, we obtain that

(3.9) J (φ|H0∩H′) = J (φ|H′)|H0∩H′ = J (φ)|H0∩H′

for every H ′ ∈ G ′′. By the latter conclusion of Lemma 3.5, (3.9) indicates that J (φ|H′) =
J (φ)|H′ on a neighborhood of H0 ∩ H ′ in H ′ for every H ′ ∈ G ′′. We consider the pencil
PH′ spanned by H0 and H ′ ∈ G ′′, that is, the sublinear system of Λ spanned by H0 and
H ′. Let D be a general member of PH′ . Then by Lemma 3.5, {H0, D} satisfies ♠ and
J (φ|D) = J (φ)|D holds on a neighborhood of H0 ∩ H ′ in D. Hence, by Lemma 3.7, we
say that almost all members of PH′ are contained in G. By this observation, we obtain
that G is dense in Λ in the classical topology.

Thus, we obtain the desired statement. □
The following examples show that G in Theorem 1.10 (Theorem 3.6) is not always Zariski

open in Λ, or even an intersection of countably many nonempty Zariski open sets of Λ

Example 3.9. We put

ψ(z) :=
∞∑
k=1

2−k log

∣∣∣∣z − 1

k

∣∣∣∣
for z ∈ C. Then it is easy to see that ψ(z) is smooth for |z| ≥ 2. By using a suitable
partition of unity, we can construct a function φ(z) on P1 such that φ(z) = ψ(z) for |z| ≤ 3
and that φ(z) is smooth for |z| ≥ 2 on P1. We can see that φ is a quasi-plurisubharmonic
function on P1. Since the Lelong number ν(φ, 1/n) of φ at 1/n is 2−n for every positive
integer n, we see that J (φ) = OP1 by Skoda’s theorem (see, for example, [D3, (5.6)
Lemma]). Therefore J (φ)|P = OP for every P ∈ P1. On the other hand, we have
φ(1/n) = −∞ for every positive integer n. If P = 1/n for some positive integer n, then
J (φ|P ) = 0. Thus

G := {H ∈ |OP1(1)| | J (φ|H) = J (φ)|H}
is not a Zariski open set of |OP1(1)| (≃ P1).

Example 3.10. We put K := {z ∈ C | |z| ≤ 1}. Let {wn}∞n=1 be a countable dense subset
of K and let {an}∞n=1 be positive real numbers such that

∑∞
n=1 an <∞. We put

ψ(z) :=
∞∑
n=1

an log |z − wn|

for z ∈ C. Then we see that

• ψ is subharmonic on C and ψ ̸≡ −∞,
• ψ = −∞ on an uncountable dense subset of K, and
• ψ is discontinuous almost everywhere on K.
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For the details, see [Ra, Theorem 2.5.4]. By using a suitable partition of unity, we can
construct a function φ(z) on P1 such that φ(z) = ψ(z) for |z| ≤ 3 and that φ(z) is smooth
for |z| ≥ 2 on P1. Then we can see that φ is a quasi-plurisubharmonic function on P1. In
this case,

G := {H ∈ |OP1(1)| | J (φ|H) = J (φ)|H}
can not be written as an intersection of countably many nonempty Zariski open sets of
|OP1(1)|.

As a direct consequence of Theorem 3.6, we have:

Corollary 3.11 (Generic restriction theorem). Let X be a compact complex manifold and
let φ be a quasi-plurisubharmonic function on X. Let Λ be a free linear system on X with
dimΛ ≥ 1. We put

H := {H ∈ G |H contains no associated primes of OX/J (φ)},
where

G := {H ∈ Λ |H is smooth and J (φ|H) = J (φ)|H}
as in Theorem 3.6. Then H is dense in Λ in the classical topology. Moreover, the following
short sequence

(3.10) 0 → J (φ)⊗OX(−H) → J (φ) → J (φ|H) → 0

is exact for any member H of H.

Proof. It is easy to see that

{H ∈ Λ |H contains no associated primes of OX/J (φ)}
is a nonempty Zariski open set of Λ since Λ is a free linear system on X. Therefore H is
dense in Λ in the classical topology by Theorem 3.6 (see Theorem 1.10).

Let H be a member of H. Then we obtain the following commutative diagram (see also
(3.2)).

0 // J (φ)⊗OX(−H)
� _

��

α // J (φ)
� _

��

// Cokerα� _

��

// 0

0 // OX(−H) // OX
// OH

// 0

As in the proof of Lemma 3.2, we obtain Cokerα = J (φ)|H . Since H ∈ H ⊂ G, we have
J (φ)|H = J (φ|H). Therefore, we obtain the desired short exact sequence (3.10). □
We will use Corollary 3.11 in Step 3 in the proof of Proposition 1.9 (see Section 4). We

close this section with a remark on the multiplier ideal sheaves associated with effective
Q-divisors on smooth projective varieties.

Remark 3.12 (Multiplier ideal sheaves for effective Q-divisors). Let X be a smooth
projective variety and letD be an effective Q-divisor onX. Let S be a smooth hypersurface
in X. We assume that S is not contained in any component of D. Then we obtain the
following short exact sequence:

(3.11) 0 → J (X,D)⊗OX(−S) → AdjS(X,D) → J (S,D|S) → 0,

where J (X,D) (resp. J (S,D|S)) is the multiplier ideal sheaf associated withD (resp.D|S).
Note that AdjS(X,D) is the adjoint ideal of D along S (see, for example, [L3, Theorem
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3.3]). If S is in general position with respect to D, then we can easily see that AdjS(X,D)
coincides with J (X,D). Let H be a general member of a free linear system Λ with
dimΛ ≥ 1. Then we can easily see that

(3.12) J (H,D|H) = J (X,D)|H
holds by the definition of the multiplier ideal sheaves for effective Q-divisors (see, for
example, [L2, Example 9.5.9]).
By this observation, ifX is a smooth projective variety and φ is a quasi-plurisubharmonic

function associated with an effective Q-divisor D on X, then G in Theorem 3.6 (see The-
orem 1.10) and H in Corollary 3.11 are dense Zariski open in Λ by (3.12). Moreover, we
can easily check that (3.10) in Corollary 3.11 holds for general members H of Λ by (3.11).

4. Proof of Proposition 1.9

In this section, we prove Proposition 1.9 and explain how to reduce Corollary 1.7 and
Theorem 1.4 to Theorem D and Theorem A, respectively.

Proof of Proposition 1.9. Our proof of Proposition 1.9 consists of the following six steps:

Step 1 (Theorem A =⇒ Theorem B). Since N1 is semiample, we can take a smooth

Hermitian metric h1 on N1 such that
√
−1Θh1(N1) ≥ 0. We put h2 := h

b/a
1 . Then

√
−1(Θhh1(F ⊗N1)− tΘh2(N2)) ≥ 0

for 0 < t ≪ 1. It follows that J (hh1) = J (h) since h1 is smooth. Therefore, by Theorem
A, we obtain the injectivity in Theorem B.

Step 2 (Theorem B =⇒ Theorem C). We assume that Rif∗(KX⊗F ⊗J (h)) has a torsion
subsheaf. Then we can find a very ample line bundle H on Y and 0 ̸= t ∈ H0(Y,H) such
that

α : Rif∗(KX ⊗ F ⊗ J (h)) → Rif∗(KX ⊗ F ⊗ J (h))⊗H

induced by ⊗t is not injective. We take a sufficiently large positive integer m such that
Kerα ⊗ H⊗m is generated by global sections. Then we have H0(Y,Kerα ⊗ H⊗m) ̸= 0.
Without loss of generality, by making m sufficiently large, we may further assume that

(4.1) Hp(Y,Rqf∗(KX ⊗ F ⊗ J (h))⊗H⊗m) = 0

and

(4.2) Hp(Y,Rqf∗(KX ⊗ F ⊗ J (h))⊗H⊗m+1) = 0

for every p > 0 and q by the Serre vanishing theorem. By construction,

H0(Y,Rif∗(KX ⊗ F ⊗ J (h))⊗H⊗m) → H0(Y,Rif∗(KX ⊗ F ⊗ J (h))⊗H⊗m+1)(4.3)

induced by α is not injective. Thus, by (4.1), (4.2), and (4.3), we see that

H i(X,KX ⊗ F ⊗ J (h)⊗ f ∗H⊗m) → H i(X,KX ⊗ F ⊗ J (h)⊗ f ∗H⊗m+1)

induced by ⊗f ∗t is not injective. This contradicts Theorem B. Therefore Rif∗(KX ⊗ F ⊗
J (h)) is torsion-free.
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Step 3 (Theorem B =⇒ Theorem D). We use the induction on dimY . If dimY = 0, then
the statement is obvious. We take a sufficiently large positive integer m and a general
divisor B ∈ |H⊗m| such that D := f−1(B) is smooth, contains no associated primes
of OX/J (h), and satisfies J (h|D) = J (h)|D by Theorem 3.6 (see Theorem 1.10) and
Corollary 3.11. By the Serre vanishing theorem, we may further assume that

(4.4) H i(Y,Rjf∗(KX ⊗ F ⊗ J (h)⊗N)⊗H⊗m) = 0

for every i > 0 and j. By Corollary 3.11 and adjunction, we have the following short exact
sequence:

0 → KX ⊗ F ⊗ J (h)⊗N → KX ⊗ F ⊗ J (h)⊗N ⊗ f ∗H⊗m

→ KD ⊗ F |D ⊗ J (h|D)⊗N |D → 0.
(4.5)

Since B is a general member of |H⊗m|, we may assume that B contains no associated
primes of Rjf∗(KX ⊗ F ⊗ J (h)⊗N) for every j. Hence, by (4.5), we can obtain

0 → Rjf∗(KX ⊗ F ⊗ J (h)⊗N) → Rjf∗(KX ⊗ F ⊗ J (h)⊗N)⊗H⊗m

→ Rjf∗(KD ⊗ F |D ⊗ J (h|D)⊗N |D) → 0

for every j. By using the long exact sequence and the induction on dimY , we obtain

H i(Y,Rjf∗(KX ⊗ F ⊗ J (h)⊗N)) = H i(Y,Rjf∗(KX ⊗ F ⊗ J (h)⊗N)⊗H⊗m)

for every i ≥ 2 and j. Thus we have

(4.6) H i(Y,Rjf∗(KX ⊗ F ⊗ J (h)⊗N)) = 0

for every i ≥ 2 and j by (4.4). By Leray’s spectral sequence, (4.4), and (4.6), we have the
following commutative diagram:

H1(Y,Sj)

α
��

� � // Hj+1(X,KX ⊗ F ⊗ J (h)⊗N)
� _

β
��

H1(Y,Sj ⊗H⊗m) �
� // Hj+1(X,KX ⊗ F ⊗ J (h)⊗N ⊗ f ∗H⊗m)

for every j, where Sj stands for Rjf∗(KX⊗F⊗J (h)⊗N). Since β is injective by Theorem
B, we obtain that α is also injective. By (4.4), we have

H1(Y,Rjf∗(KX ⊗ F ⊗ J (h)⊗N)⊗H⊗m) = 0

for every j. Therefore, we have H1(Y,Rjf∗(KX ⊗ F ⊗ J (h)⊗N)) = 0 for every j. Thus,
we obtain the desired vanishing theorem in Theorem D.

Step 4 (Theorems C and D =⇒ Theorem B). By replacing s and N2 with s⊗m and N⊗m
2

for some positive integer m (see also Remark 1.5), we may assume that N2 is globally
generated. We consider

f := Φ|N2| : X → Y.

ThenN2 ≃ f ∗H for some ample line bundleH on Y and s = f ∗t for some t ∈ H0(Y,H). We
take a smooth Hermitian metric h1 on N1 such that

√
−1Θh1(N1) ≥ 0. Then

√
−1Θhh1(F⊗

N1) ≥ 0 and J (hh1) = J (h). By Theorem C, we obtain that

Rif∗(KX ⊗ F ⊗ J (h)⊗N1)
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is torsion-free for every i. Therefore, the map

Rif∗(KX ⊗ F ⊗ J (h)⊗N1) → Rif∗(KX ⊗ F ⊗ J (h)⊗N1)⊗H

induced by ⊗t is injective for every i. By N2 ≃ f ∗H, we see that

H0(Y,Rif∗(KX ⊗ F ⊗ J (h)⊗N1)) → H0(Y,Rif∗(KX ⊗ F ⊗ J (h)⊗N1 ⊗N2))(4.7)

induced by ⊗t is injective for every i. By Theorem D, (4.7) implies that

H i(X,KX ⊗ F ⊗ J (h)⊗N1) → H i(X,KX ⊗ F ⊗ J (h)⊗N1 ⊗N2)

induced by ⊗s is injective for every i.

Step 5 (Theorem D =⇒ Theorem E). The following lemma implies that Rjf∗(KX ⊗ F ⊗
J (h)) is a GV-sheaf by [Sc, Theorem 25.5] (see also [Ha] and [PP]). For simplicity, we put
F j := Rjf∗(KX ⊗ F ⊗ J (h)) for every j.

Lemma 4.1. For every finite étale morphism p : B → A of Abelian varieties and every
ample line bundle H on B, we have

(4.8) H i(B,H ⊗ p∗F j) = 0

for every i > 0 and j.

Proof of Lemma 4.1. We put Z := B ×A X. Then we have the following commutative
diagram.

(4.9) Z
q //

g
��

X

f
��

B p
// A

By construction, q is also finite and étale. Therefore, we have q∗KX = KZ and q∗J (h) =
J (q∗h). By the flat base change theorem,

p∗Rjf∗(KX ⊗ F ⊗ J (h)) ≃ Rjg∗(KZ ⊗ q∗F ⊗ J (q∗h)).

By Theorem D, we obtain the desired vanishing (4.8). □

Step 6 (Theorems C and E =⇒ Theorem F). By Theorem C, we have F j := Rjf∗(KX ⊗
F ⊗ J (h)) = 0 for j > dimX − dim f(X). We consider the following spectral sequence:

Epq
2 = Hp(A,F q ⊗ L) ⇒ Hp+q(X,KX ⊗ F ⊗ J (h)⊗ f ∗L)

for every L ∈ Pic0(A). Note that F j is a GV-sheaf for every j and that F j = 0 for
j > dimX − dim f(X). Then we obtain

codimPic0(A){L ∈ Pic0(A) |H i(X,KX ⊗ F ⊗ J (h)⊗ f ∗L) ̸= 0} ≥ i− (dimX − dim f(X))

for every i ≥ 0.

We completed the proof of Proposition 1.9. □

We prove Corollary 1.7 as an application of Theorem D.
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Proof of Corollary 1.7 (Theorem D =⇒ Corollary 1.7). By Theorem D, we have

Hp(Y,Rif∗(KX ⊗ F ⊗ J (h))⊗H⊗m−p) = 0

for every p ≥ 1, i ≥ 0, and m ≥ dimY + 1. Thus, the Castelnuovo–Mumford regularity
(see [L1, Section 1.8]) implies that Rif∗(KX ⊗ F ⊗J (h))⊗H⊗m is globally generated for
every i ≥ 0 and m ≥ dimY + 1. □
We close this section with a proof of Theorem 1.4 based on Theorem A for the reader’s

convenience.

Proof of Theorem 1.4 (Theorem A =⇒ Theorem 1.4). Let A be an ample line bundle on
V . Then there exists a sufficiently large positive integerm such that A⊗m is very ample and
that H i(V,KV ⊗ L ⊗ J (hL) ⊗ A⊗m) = 0 for every i > 0 by the Serre vanishing theorem.
We can take a smooth Hermitian metric hA on A such that

√
−1ΘhA(A) is a smooth

positive (1, 1)-form on V . Therefore, we have
√
−1ΘhmA

(A⊗m) ≥ 0. By the condition√
−1ΘhL(L) ≥ εω, we see that

√
−1(ΘhL(L) − tΘhmA

(A⊗m)) ≥ 0 for some 0 < t ≪ 1. We
take a nonzero global section s of A⊗m. By Theorem A, we see that

×s : H i(V,KV ⊗ L⊗ J (hL)) → H i(V,KV ⊗ L⊗ J (hL)⊗ A⊗m)

is injective for every i. Thus, we obtain thatH i(V,KV ⊗L⊗J (hL)) = 0 for every i > 0. □

5. Proof of Theorem A

In this section, we will give the proof of Theorem A.

Theorem 5.1 (Theorem A). Let F (resp. M) be a line bundle on a compact Kähler
manifold X with a singular Hermitian metric h (resp. a smooth Hermitian metric hM)
satisfying

√
−1ΘhM (M) ≥ 0 and

√
−1Θh(F )− b

√
−1ΘhM (M) ≥ 0 for some b > 0.

Then for a (nonzero) section s ∈ H0(X,M), the multiplication map induced by ⊗s

×s : Hq(X,KX ⊗ F ⊗ J (h))
⊗s−−−−−→ Hq(X,KX ⊗ F ⊗ J (h)⊗M)

is injective for every q. Here KX is the canonical bundle of X and J (h) is the multiplier
ideal sheaf of h.

Proof of Theorem 5.1 (Theorem A). The proof can be divided into four steps.

Step 1. Throughout the proof, we fix a Kähler form ω on X. For a given singular
Hermitian metric h on F , by applying [DPS, Theorem 2.3] to the weight of h, we obtain
a family of singular Hermitian metrics {hε}1≫ε>0 on F with the following properties:

(a) hε is smooth on Yε := X \ Zε, where Zε is a proper closed analytic subset on X.
(b) hε′ ≤ hε′′ ≤ h holds on X when ε′ > ε′′ > 0.
(c) J (h) = J (hε) on X.
(d)

√
−1Θhε(F ) ≥ b

√
−1ΘhM (M)− εω on X.

Here property (d) is obtained from the assumption
√
−1Θh(F ) ≥ b

√
−1ΘhM (M).

The main difficulty of the proof is that Zε may essentially depend on ε, compared to
[MaS4] in which Zε is independent of ε. To overcome this difficulty, we consider suitable
complete Kähler forms {ωε,δ}δ>0 on Yε such that ωε,δ converges to ω as δ → 0. To construct
such complete Kähler forms, we first take a complete Kähler form ωε on Yε with the
following properties:
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• ωε is a complete Kähler form on Yε.
• ωε ≥ ω on Yε.
• ωε =

√
−1∂∂Ψε for some bounded function Ψε on a neighborhood of every p ∈ X.

See [F4, Section 3] for the construction of ωε. For the Kähler form ωε,δ on Yε defined to be

ωε,δ := ω + δωε for ε and δ with 0 < δ ≪ ε,

it is easy to see the following properties hold:

(A) ωε,δ is a complete Kähler form on Yε = X \ Zε for every δ > 0.
(B) ωε,δ ≥ ω on Yε for every δ > 0.
(C) Ψ+ δΨε is a bounded local potential function of ωε,δ and converges to Ψ as δ → 0.

Here Ψ is a local potential function of ω. The first property enables us to consider harmonic
forms on the noncompact Yε, and the third property enables us to construct the de Rham–
Weil isomorphism from the ∂-cohomology on Yε to the Čech cohomology on X.

Remark 5.2. In the proof of Theorem 5.1, we actually consider only a countable se-
quence {εk}∞k=1 (resp. {δℓ}∞ℓ=1) conversing to zero since we need to apply Cantor’s diagonal
argument, but we often use the notation ε (resp. δ) for simplicity.

For the proof, it is sufficient to show that an arbitrary cohomology class η ∈ Hq(X,KX⊗
F ⊗J (h)) satisfying sη = 0 ∈ Hq(X,KX ⊗F ⊗J (h)⊗M) is actually zero. We represent
the cohomology class η ∈ Hq(X,KX ⊗ F ⊗ J (h)) by a ∂-closed F -valued (n, q)-form u
with ∥u∥h,ω <∞ by using the standard de Rham–Weil isomorphism

Hq(X,KX ⊗ F ⊗ J (h)) ∼=
Ker ∂ : Ln,q(2)(F )h,ω → Ln,q+1

(2) (F )h,ω

Im ∂ : Ln,q−1
(2) (F )h,ω → Ln,q(2)(F )h,ω

.

Here ∂ is the densely defined closed operator defined by the usual ∂-operator and Ln,q(2)(F )h,ω
is the L2-space of F -valued (n, q)-forms on X with respect to the L2-norm ∥ • ∥h,ω defined
by

∥ • ∥2h,ω :=

∫
X

| • |2h,ω dVω,

where dVω := ωn/n! and n := dimX. Our purpose is to prove that u is ∂-exact (namely,
u ∈ Im ∂ ⊂ Ln,q(2)(F )h,ω) under the assumption that the cohomology class of su is zero in

Hq(X,KX ⊗ F ⊗ J (h)⊗M).
From now on, we mainly consider the L2-space Ln,q(2)(Yε, F )hε,ωε,δ

of F -valued (n, q)-forms

on Yε (not X) with respect to hε and ωε,δ (not h and ω). For simplicity we put

Ln,q(2)(F )ε,δ := Ln,q(2)(Yε, F )hε,ωε,δ
and ∥ • ∥ε,δ := ∥ • ∥hε,ωε,δ

.

The following inequality plays an important role in the proof.

∥u∥ε,δ ≤ ∥u∥h,ωε,δ
≤ ∥u∥h,ω <∞.(5.1)

In particular, the norm ∥u∥ε,δ is uniformly bounded since the right hand side is independent
of ε, δ. The first inequality follows from property (b) of hε, and the second inequality follows
from Lemma 2.4 and property (B) of ωε,δ. Strictly speaking, the left hand side should be
∥u|Yε∥ε,δ, but we often omit the symbol of restriction. Now we have the following orthogonal
decomposition (for example see [MaS4, Proposition 5.8]).

Ln,q(2)(F )ε,δ = Im ∂ ⊕Hn,q
ε,δ (F ) ⊕ Im ∂

∗
ε,δ.
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Here ∂
∗
ε,δ is (the maximal extension of) the formal adjoint of the ∂-operator and Hn,q

ε,δ (F )
is the set of harmonic F -valued (n, q)-forms on Yε, namely

Hn,q
ε,δ (F ) := {w ∈ Ln,q(2)(F )ε,δ | ∂w = 0 and ∂

∗
ε,δw = 0}.

Remark 5.3. The formal adjoint coincides with the Hilbert space adjoint since ωε,δ is

complete for δ > 0 (see, for example, [D4, (3.2) Theorem in Chapter VIII]). The ∂-operator
also depends on hε and ωε,δ in the sense that the domain and range of the closed operator

∂ depend on them, but we abbreviate ∂ε,δ to ∂.

The F -valued (n, q)-form u (representing η) belongs to Ln,q(2)(F )ε,δ by (5.1), and thus u

can be decomposed as follows:

u = ∂wε,δ + uε,δ for some wε,δ ∈ Dom ∂ ⊂ Ln,q−1
(2) (F )ε,δ and uε,δ ∈ Hn,q

ε,δ (F ).(5.2)

Note that the orthogonal projection of u to Im ∂
∗
ε,δ must be zero since u is ∂-closed.

Step 2. The purpose of this step is to prove Proposition 5.7, which reduces the proof to
the study of the asymptotic behavior of the norm of suε,δ. When we consider a suitable
limit of uε,δ in the following proposition, we need to carefully choose the L2-space since
the L2-space Ln,q(2)(F )ε,δ depends on ε and δ. We remark that {ε}ε>0 and {δ}δ>0 denote

countable sequences converging to zero (see Remark 5.2). Let {δ0}δ0>0 denote another
countable sequence converging to zero.

Proposition 5.4. There exist a subsequence {δν}∞ν=1 of {δ}δ>0 and αε ∈ Ln,q(2)(F )hε,ω with

the following properties:

• For any ε, δ0 > 0, as δν tends to 0,

uε,δν converges to αε with respect to the weak L2-topology in Ln,q(2)(F )ε,δ0 .

• For any ε > 0,

∥αε∥hε,ω ≤ lim
δ0→0

∥αε∥ε,δ0 ≤ lim
δν→0

∥uε,δν∥ε,δν ≤ ∥u∥h,ω.

Remark 5.5. The weak limit αε does not depend on δ0, and the subsequence {δν}∞ν=1 does
not depend on ε and δ0.

Proof of Proposition 5.4. For given ε, δ0 > 0, by taking a sufficiently small δ with 0 < δ <
δ0, we have

∥uε,δ∥ε,δ0 ≤ ∥uε,δ∥ε,δ ≤ ∥u∥ε,δ ≤ ∥u∥h,ω.(5.3)

The first inequality follows from ωε,δ ≤ ωε,δ0 and Lemma 2.4, the second inequality follows
since uε,δ is the orthogonal projection of u with respect to ε, δ, and the last inequality
follows from (5.1). Since the right hand side is independent of δ, the family {uε,δ}δ>0 is
uniformly bounded in Ln,q(2)(F )ε,δ0 . Therefore, there exists a subsequence {δν}∞ν=1 of {δ}δ>0

such that uε,δν converges to αε,δ0 with respect to the weak L2-topology in Ln,q(2)(F )ε,δ0 This

subsequence {δν}∞ν=1 may depend on ε, δ0, but we can choose a subsequence independent
of them by applying Cantor’s diagonal argument.

Now we show that αε,δ0 does not depend on δ0. For arbitrary δ′0, δ
′′
0 with 0 < δ′0 ≤ δ′′0 ,

the natural inclusion Ln,q(2)(F )ε,δ′0 → Ln,q(2)(F )ε,δ′′0 is a bounded operator (continuous linear

map) by ∥ • ∥ε,δ′′0 ≤ ∥• ∥ε,δ′0 , and thus uε,δν weakly converges to αε,δ′0 in not only Ln,q(2)(F )ε,δ′0
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but also Ln,q(2)(F )ε,δ′′0 by Lemma 2.5. Therefore, it follows that αε,δ′0 = αε,δ′′0 since the weak

limit is unique.
Finally, we consider the norm of αε. It is easy to see that

∥αε∥ε,δ0 ≤ lim
δν→0

∥uε,δν∥ε,δ0 ≤ lim
δν→0

∥uε,δν∥ε,δν ≤ ∥u∥h,ω.

The first inequality follows since the norm is lower semicontinuous with respect to the
weak convergence, the second inequality follows from ωε,δ0 ≥ ωε,δν , and the last inequality
follows from (5.3). Fatou’s lemma yields

∥αε∥2hε,ω =

∫
Yε

|αε|2hε,ω dVω ≤ lim
δ0→0

∫
Yε

|αε|2hε,ωε,δ0
dVωε,δ0

= lim
δ0→0

∥αε∥2ε,δ0 .

These inequalities lead to the desired estimate in the proposition. □

For simplicity, we use the same notation {uε,δ}δ>0 for the subsequence {uε,δν}∞ν=1 in
Proposition 5.4. We fix ε0 > 0 and consider the weak limit of αε in the fixed L2-space
Ln,q(2)(F )hε0 ,ω. For a sufficiently small ε > 0, we have

∥αε∥hε0 ,ω ≤ ∥αε∥hε,ω ≤ ∥u∥h,ω
by property (b) and Proposition 5.4. By taking a subsequence of {αε}ε>0, we may assume
that αε weakly converges to some α in Ln,q(2)(F )hε0 ,ω.

Proposition 5.6. If the weak limit α is zero in Ln,q(2)(F )hε0 ,ω, then the cohomology class η

is zero in Hq(X,KX ⊗ F ⊗ J (h)).

Proof of Proposition 5.6. For every δ with 0 < δ ≤ δ0, we can easily check

u− uε,δ ∈ Im ∂ in Ln,q(2)(F )ε,δ ⊂ Im ∂ in Ln,q(2)(F )ε,δ0

from the construction of uε,δ. As δ → 0, we obtain

u− αε ∈ Im ∂ in Ln,q(2)(F )ε,δ0

by Lemma 2.6 and Proposition 5.4. We remark that Im ∂ is a closed subspace (see [MaS4,
Proposition 5.8]). On the other hand, we have the following commutative diagram:

Ker ∂ in Ln,q(2)(F )ε,δ0
q1 // Ker ∂

Im ∂
of Ln,q(2)(F )ε,δ0

∼=
f1

// Ȟq(X,KX ⊗ F ⊗ J (h))

Ker ∂ in Ln,q(2)(F )hε,ω

j1

OO

j2 // Ker ∂ in Ln,q(2)(F )hε0 ,ω
q2 // Ker ∂

Im ∂
of Ln,q(2)(F )hε0 ,ω.

∼= f2

OO

Here j1, j2 are the natural inclusions, q1, q2 are the natural quotient maps, and f1, f2
are the de Rham–Weil isomorphisms (see [MaS4, Proposition 5.5] for the construction).
Strictly speaking, f1 is an isomorphism to Ȟq(X,KX ⊗ F ⊗ J (hε)), but which coincides
with Ȟq(X,KX ⊗ F ⊗J (h)) by property (c). To check that j2 is well-defined, we have to
see that ∂w = 0 on Yε0 if ∂w = 0 on Yε. By the L2-integrability and [D4, (7.3) Lemma,
Chapter VIII], the equality ∂w = 0 can be extended from Yε to X (in particular Yε0). The
key point here is the L2-integrability with respect to ω (not ωε,δ).
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Since j2(u−αε) weakly converges to j2(u−α) and the ∂-cohomology is finite dimensional,
we obtain

lim
ε→0

q2(u− αε) = q2(u− α) = q2(u)

by Lemma 2.5 and the assumption α = 0. On the other hand, it follows that q1(u−αε) = 0
from the first half argument. Hence, we have q2(u) = 0, that is, u ∈ Im ∂ ⊂ Ln,q(2)(F )hε0 ,ω.

From q2(u) = 0, we can prove the conclusion, that is, u ∈ Im ∂ ⊂ Ln,q(2)(F )h,ω. Indeed,

we can obtain q3(u) = 0 (which leads to the conclusion) by the following commutative
diagram:

Ker ∂ in Ln,q(2)(F )hε0 ,ω
q2 // Ker ∂

Im ∂
of Ln,q(2)(F )hε0 ,ω

∼=
f2

// Ȟq(X,KX ⊗ F ⊗ J (hε0))

Ker ∂ in Ln,q(2)(F )h,ω

OO

q3 // Ker ∂

Im ∂
of Ln,q(2)(F )h,ω

∼=
f3

// Ȟq(X,KX ⊗ F ⊗ J (h)).

□

At the end of this step, we prove Proposition 5.7.

Proposition 5.7. If we have

lim
ε→0

lim
δ→0

∥suε,δ∥hεhM ,ωε,δ
= 0,

then the weak limit α is zero. In particular, the cohomology class η is zero by Proposition
5.6.

Proof of Proposition 5.7. In the proof, we compare the norm of uε,δ with the norm of suε,δ.
For this purpose, we define Y k

ε0
to be

Y k
ε0
:= {y ∈ Yε0 | |s|hM > 1/k at y}

for k ≫ 0. Note the subset Y k
ε0

is an open set in Yε0 . It follows that the restriction αε|Y k
ε0

also weakly converges to α|Y k
ε0

in Ln,q(2)(Y
k
ε0
, F )hε0 ,ω since the restriction map Ln,q(2)(F )hε0 ,ω →

Ln,q(2)(Y
k
ε0
, F )hε0 ,ω is a bounded operator and αε weakly converges to α in Ln,q(2)(F )hε0 ,ω. Since

the norm is lower semicontinuous with respect to the weak convergence, we obtain the
estimate for the L2-norm on Y k

ε0

∥α∥Y k
ε0
,hε0 ,ω

≤ lim
ε→0

∥αε∥Y k
ε0
,hε0 ,ω

≤ lim
ε→0

∥αε∥Y k
ε0
,hε,ω

by property (b). By the same argument, the restriction uε,δ|Y k
ε0

weakly converges to αε|Y k
ε0

in Ln,q(2)(Y
k
ε0
, F )ε,δ0 , and thus we obtain

∥αε∥Y k
ε0
,ε,δ0 ≤ lim

δ→0

∥uε,δ∥Y k
ε0
,ε,δ0 ≤ lim

δ→0

∥uε,δ∥Y k
ε0
,ε,δ

by Lemma 2.4. As δ0 → 0 in the above inequality, we have

∥αε∥Y k
ε0
,hε,ω ≤ lim

δ0→0

∥αε∥Y k
ε0
,ε,δ0 ≤ lim

δ→0

∥uε,δ∥Y k
ε0
,ε,δ
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by Fatou’s lemma (see the argument in Proposition 5.4). These inequalities yield

∥α∥Y k
ε0
,hε0 ,ω

≤ lim
ε→0

lim
δ→0

∥uε,δ∥Y k
ε0
,ε,δ.

On the other hand, it follows that

∥uε,δ∥Y k
ε0
,ε,δ ≤ k∥suε,δ∥Y k

ε0
,hεhM ,ωε,δ

≤ k∥suε,δ∥hεhM ,ωε,δ

since the inequality 1/k < |s|hM holds on Y k
ε0
. This implies that α = 0 on Y k

ε0
for an

arbitrary k ≫ 0. From
∪
k≫0

Y k
ε0
= Yε0 \ {s = 0}, we obtain the desired conclusion. □

Step 3. The purpose of this step is to prove the following proposition:

Proposition 5.8.
lim
ε→0

lim
δ→0

∥∂∗ε,δsuε,δ∥hεhM ,ωε,δ
= 0.

Proof of Proposition 5.8. In the proof, we will often use (5.3). By applying Bochner–
Kodaira–Nakano’s identity and the density lemma to uε,δ and suε,δ (see [MaS1, Proposition
2.8]), we obtain

0 = ⟨⟨
√
−1Θhε(F )Λωε,δ

uε,δ, uε,δ⟩⟩ε,δ + ∥D′∗
ε,δuε,δ∥2ε,δ,(5.4)

∥∂∗ε,δsuε,δ∥2hεhM ,ωε,δ
= ⟨⟨

√
−1ΘhεhM (F ⊗M)Λωε,δ

suε,δ, suε,δ⟩⟩hεhM ,ωε,δ
+ ∥D′∗

ε,δsuε,δ∥2hεhM ,ωε,δ
,

(5.5)

where D′∗
ε,δ is the adjoint operator of the (1, 0)-part of the Chern connection Dhε . Here we

used the fact that uε,δ is harmonic and ∂(suε,δ) = s∂uε,δ = 0. Now we have
√
−1Θhε(F ) ≥ b

√
−1ΘhM (M)− εω ≥ −εω ≥ −εωε,δ

by property (d) and property (B). Hence, the integrand gε,δ of the first term of (5.4)
satisfies

(5.6) − εq|uε,δ|2ε,δ ≤ gε,δ := ⟨
√
−1Θhε(F )Λωε,δ

uε,δ, uε,δ⟩ε,δ.
For the precise argument, see [MaS4, Step 2 in the proof of Theorem 3.1]. Then by (5.4),
we can easily see

lim
ε→0

lim
δ→0

(∫
{gε,δ≥0}

gε,δ dVωε,δ
+ ∥D′∗

ε,δuε,δ∥2ε,δ
)
= lim

ε→0
lim
δ→0

(
−
∫
{gε,δ≤0}

gε,δ dVωε,δ

)
≤ lim

ε→0
lim
δ→0

(
εq

∫
{gε,δ≤0}

|uε,δ|2ε,δ dVωε,δ

)
≤ lim

ε→0
lim
δ→0

(
εq∥uε,δ∥2ε,δ

)
= 0.

Here we used (5.3) in the last equality.
On the other hand, by

√
−1Θhε(F ) ≥ b

√
−1ΘhM (M)− εωε,δ, we have

⟨⟨
√
−1ΘhεhM (F ⊗M)Λωε,δ

suε,δ, suε,δ⟩⟩hεhM ,ωε,δ

≤
(
1 +

1

b

) ∫
Yε

|s|2hMgε,δ dVωε,δ
+
εq

b

∫
Yε

|s|2hM |uε,δ|2ε,δ dVωε,δ

≤
(
1 +

1

b

)
sup
X

|s|2hM
{∫

{gε,δ≥0}
gε,δ dVωε,δ

+
εq

b
sup
X

|s|2hM∥uε,δ∥2ε,δ
}
.
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Furthermore, since D′∗
ε,δ can be expressed as D′∗

ε,δ = − ∗ ∂∗ by the Hodge star operator ∗
with respect to ωε,δ, we have

∥D′∗
ε,δsuε,δ∥2hεhM ,ωε,δ

= ∥sD′∗
ε,δuε,δ∥2hεhM ,ωε,δ

≤ sup
X

|s|2hM∥D′∗
ε,δuε,δ∥2ε,δ.

The right-hand side of (5.5) can be shown to converge to zero by the first half argument
and these inequalities. □
Step 4. In this step, we construct solutions vε,δ of the ∂-equation ∂vε,δ = suε,δ with suitable
L2-norm, and we finish the proof of Theorem 5.1. The proof of the following proposition
is a slight variant of that of [MaS4, Theorem 5.9].

Proposition 5.9. There exist F -valued (n, q − 1)-forms wε,δ on Yε with the following
properties:

• ∂wε,δ = u− uε,δ.

• limδ→0 ∥wε,δ∥ε,δ can be bounded by a constant independent of ε.

Before we begin to prove Proposition 5.9, we recall the content in [MaS4, Section 5] with
our notation. For a finite open cover U := {Bi}i∈I of X by sufficiently small Stein open
sets Bi, we can construct

fε,δ : Ker ∂ in Ln,q(2)(F )ε,δ −−−→ Kerµ in Cq(U , KX ⊗ F ⊗ J (hε))

such that fε,δ induces the de Rham–Weil isomorphism

fε,δ :
Ker ∂

Im ∂
of Ln,q(2)(F )ε,δ

∼=−−−−→ Kerµ

Imµ
of Cq(U , KX ⊗ F ⊗ J (hε)).(5.7)

Here Cq(U , KX ⊗ F ⊗ J (hε)) is the space of q-cochains calculated by U and µ is the
coboundary operator. We remark that Cq(U , KX ⊗ F ⊗ J (hε)) is a Fréchet space with
respect to the seminorm pKi0...iq

(•) defined to be

pKi0...iq
({βi0...iq})2 :=

∫
Ki0...iq

|βi0...iq |2hε,ω dVω

for a relatively compact set Ki0...iq ⋐ Bi0...iq := Bi0 ∩ · · · ∩ Biq (see [MaS4, Theorem 5.3]).
The construction of fε,δ is essentially the same as in the proof of [MaS4, Proposition 5.5].
The only difference is that we use Lemma 5.12 instead of [MaS4, Lemma 5.4] when we
locally solve the ∂-equation to construct fε,δ. Lemma 5.12 will be given at the end of
this step. We prove Proposition 5.9 by replacing some constants appearing in the proof of
[MaS4, Theorem 5.9] with Cε,δ appearing in Lemma 5.12.

Proof of Proposition 5.9. We put Uε,δ := u − uε,δ ∈ Im ∂ ⊂ Ln,q(2)(F )ε,δ. Then there exist

the F -valued (n, q − k − 1)-forms βε,δi0...ik on Bi0...ik \ Zε satisfying

(∗)



∂βε,δi0 = Uε,δ|Bi0
\Zε ,

∂{βε,δi0i1} = µ{βε,δi0 },
∂{βε,δi0i1i2} = µ{βε,δi0i1},

...

∂{βε,δi0...iq−1
} = µ{βε,δi0...iq−2

},
fε,δ(Uε,δ) = µ{βε,δi0...iq−1

}.



INJECTIVITY THEOREM FOR PSEUDO-EFFECTIVE LINE BUNDLES 27

Here βε,δi0...ik is the solution of the above equation whose norm is minimum among all the

solutions (see the construction of fε,δ in [MaS4, Proposition 5.5]). For example, βε,δi0 is the

solution of ∂βε,δi0 = Uε,δ on Bi0 \ Zε whose norm ∥βε,δi0 ∥ε,δ is minimum among all the solu-

tions. In particular ∥βε,δi0 ∥2ε,δ ≤ Cε,δ∥Uε,δ∥2Bi0
,ε,δ ≤ Cε,δ∥Uε,δ∥2ε,δ holds for some constant Cε,δ

by Lemma 5.12, where Cε,δ is a constant such that limδ→0Cε,δ (is finite and) is independent

of ε. Similarly, βε,δi0i1 is the solution of ∂βε,δi0i1 = (βε,δi1 − βε,δi0 ) on Bi0i1 \ Zε and the norm

∥βε,δi0i1∥
2
ε,δ :=

∫
Bi0i1

\Zε

|βε,δi0i1|
2
ε,δ dVε,δ

is minimum among all the solutions. In particular, ∥βε,δi0i1∥
2
ε,δ ≤ Dε,δ∥(βε,δi1 − βε,δi0 )∥2ε,δ holds

for some constant Dε,δ by Lemma 5.12. Of course Dε,δ is a constant such that limδ→0Dε,δ

(is finite and) is independent of ε. Hence we have

∥βε,δi0i1∥ε,δ ≤ D
1/2
ε,δ ∥(β

ε,δ
i1

− βε,δi0 )∥ε,δ ≤ 2C
1/2
ε,δ D

1/2
ε,δ ∥Uε,δ∥ε,δ ≤ 4C

1/2
ε,δ D

1/2
ε,δ ∥u∥h,ω

by (5.3). From now on, the notation Cε,δ denotes a (possibly different) constant such that

limδ→0Cε,δ can be bounded by a constant independent of ε. By repeating this process, we
have

∥βε,δi0...ik∥
2
ε,δ ≤ Cε,δ∥u∥2h,ω.

Moreover, by property (c), we have

αε,δ := fε,δ(Uε,δ) = µ{βε,δi0...iq−1
} ∈ Cq(U , KX ⊗ F ⊗ J (hε)) = Cq(U , KX ⊗ F ⊗ J (h)).

Claim. There exist subsequences {εk}∞k=1 and {δℓ}∞ℓ=1 with the following properties:

• αεk,δℓ → αεk,0 in Cq(U , KX ⊗ F ⊗ J (h)) as δℓ → 0.
• αεk,0 → α0,0 in Cq(U , KX ⊗ F ⊗ J (h)) as εk → 0.

Moreover, the limit α0,0 belongs to Bq(U , KX ⊗ F ⊗ J (h)) := Imµ.

Proof of Claim. By construction, the norm ∥aε,δ∥Bi0...iq
,ε,δ of a component aε,δ := αε,δi0...iq of

αε,δ = {αε,δi0...iq} can be bounded by a constant Cε,δ. Note that aε,δ can be regarded as a

holomorphic function on Bi0...iq \Zε with bounded L2-norm since it is a ∂-closed F -valued
(n, 0)-form such that ∥aε,δ∥Bi0...iq

,ε,δ < ∞ (see Lemma 2.4). Hence aε,δ can be extended

from Bi0...iq \ Zε to Bi0...iq by the Riemann extension theorem. The sup-norm supK |aε,δ|
is uniformly bounded with respect to δ for every K ⋐ Bi0...iq since the local sup-norm of
holomorphic functions can be bounded by the L2-norm. By Montel’s theorem, we can take
a subsequence {δℓ}∞ℓ=1 with the first property. This subsequence may depend on ε, but
we can take {δℓ}∞ℓ=1 independent of (countably many) ε. Then the norm of the limit aε,0
is uniformly bounded with respect to ε since limδ→0Cε,δ can be bounded by a constant
independent of ε (see Lemma 5.12). Therefore, by applying Montel’s theorem again, we
can take a subsequence {εk}∞k=1 with the second property. We remark that the convergence
with respect to the sup-norm implies the convergence with respect to the local L2-norm
pK(•) (see [MaS4, Lemma 5.2]).

It is easy to check the latter conclusion. Indeed, it follows that αε,δ = fε,δ(Uε,δ) ∈ Imµ

since Uε,δ ∈ Im ∂ ⊂ Ln,q(2)(F )ε,δ and fε,δ induces the de Rham–Weil isomorphism. By [MaS4,

Lemma 5.7], the subspace Imµ is closed. Therefore, we obtain the latter conclusion. □
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Now, we construct solutions γε,δ of the equation µγε,δ = αε,δ with suitable L2-norm.
For simplicity, we continue to use the same notation for the subsequences in Claim. By
the latter conclusion of the claim, there exists γ ∈ Cq−1(U , KX ⊗ F ⊗ J (h)) such that
µγ = α0,0. The coboundary operator

µ : Cq−1(U , KX ⊗ F ⊗ J (h)) → Bq(U , KX ⊗ F ⊗ J (h)) = Imµ

is a surjective bounded operator between Fréchet spaces (see [MaS4, Lemma 5.7]), and
thus it is an open map by the open mapping theorem. Therefore µ(∆K) is an open
neighborhood of the limit α0,0 in Imµ, where ∆K is the open bounded neighborhood of γ
in Cq−1(U , KX ⊗ F ⊗ J (h)) defined to be

∆K := {β ∈ Cq−1(U , KX ⊗ F ⊗ J (h)) | pKi0...iq−1
(β − γ) < 1}

for a family K := {Ki0...iq−1} of relatively compact sets Ki0...iq−1 ⋐ Bi0...iq−1 . We have
αε,δ ∈ µ(∆K) for sufficiently small ε, δ > 0 since αε,δ converges to α0,0. Since ∆K is
bounded, we can obtain γε,δ ∈ Cq−1(U , KX ⊗ F ⊗ J (h)) such that

µγε,δ = αε,δ and pKi0...iq−1
(γε,δ)

2 ≤ CK

for some positive constant CK . The above constant CK depends on the choice of K, γ,
but does not depend on ε, δ.

By the same argument as in [MaS4, Claim 5.11 and Claim 5.13], we can obtain F -valued
(n, q−1)-forms wε,δ with the desired properties. The strategy is as follows: The inverse map

gε,δ of fε,δ is explicitly constructed by using a partition of unity (see the proof of [MaS4,

Proposition 5.5] and [MaS4, Remark 5.6]). We can easily see that gε,δ(µγε,δ) = ∂vε,δ and

gε,δ(αε,δ) = Uε,δ + ∂ṽε,δ hold for some vε,δ and ṽε,δ by the de Rham–Weil isomorphism.

In particular, we have Uε,δ = ∂(vε,δ − ṽε,δ) by µγε,δ = αε,δ. The important point here is

that we can explicitly compute vε,δ and ṽε,δ by using the partition of unity, βε,δi0...ik , and
γε,δ. From this explicit expression, we obtain the L2-estimate for vε,δ and ṽε,δ. See [MaS4,
Claim 5.11 and 5.13] for the precise argument. □
Proposition 5.10. There exist F ⊗M-valued (n, q−1)-forms vε,δ on Yε with the following
properties:

• ∂vε,δ = suε,δ.

• limδ→0 ∥vε,δ∥hεhM ,ωε,δ
can be bounded by a constant independent of ε.

Proof of Proposition 5.10. Since the cohomology class of su is assumed to be zero in
Hq(X,KX ⊗ F ⊗ J (h) ⊗M), there exists an F ⊗M -valued (n, q − 1)-form v such that
∂v = su and ∥v∥h,ω <∞. For wε,δ satisfying the properties in Proposition 5.9, by putting

vε,δ := −swε,δ + v, we have ∂vε,δ = suε,δ. Furthermore, an easy computation yields

∥vε,δ∥hεhM ,ωε,δ
≤ ∥swε,δ∥hεhM ,ωε,δ

+ ∥v∥hεhM ,ωε,δ
≤ sup

X
|s|hM∥wε,δ∥ε,δ + ∥v∥hεhM ,ωε,δ

.

By Lemma 2.4, property (b), and property (B), we have ∥v∥hεhM ,ωε,δ
≤ ∥v∥h,ω < ∞. This

completes the proof. □
The following proposition completes the proof of Theorem 5.1 (see Proposition 5.7).

Proposition 5.11.

lim
ε→0

lim
δ→0

∥suε,δ∥hεhM ,ωε,δ
= 0.
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Proof of Proposition 5.11. For the solution vε,δ satisfying the properties in Proposition
5.10, it is easy to see

lim
ε→0

lim
δ→0

∥suε,δ∥2hεhM ,ωε,δ
= lim

ε→0
lim
δ→0

⟨⟨∂∗ε,δsuε,δ, vε,δ⟩⟩hεhM ,ωε,δ

≤ lim
ε→0

lim
δ→0

∥∂∗ε,δsuε,δ∥hεhM ,ωε,δ
∥vε,δ∥hεhM ,ωε,δ

.

Proposition 5.8 and Proposition 5.10 assert that the right-hand side is zero. □

We close this step with the following lemma:

Lemma 5.12 (cf. [D1, 4.1Théorème]). Assume that B is a Stein open set in X such
that ωε,δ =

√
−1∂∂(Ψ + δΨε) on a neighborhood of B. Then for an arbitrary α ∈

Ker ∂ ⊂ Ln,q(2)(B \ Zε, F )ε,δ, there exist β ∈ Ln,q−1
(2) (B \ Zε, F )ε,δ and a positive constant

Cε,δ (independent of α) such that

• ∂β = α and ∥β∥2ε,δ ≤ Cε,δ∥α∥2ε,δ,
• lim
δ→0

Cε,δ (is finite and) is independent of ε.

Proof of Lemma 5.12. We may assume ε < 1/2 since 0 < ε≪ 1. For the singular Hermit-
ian metric Hε,δ on F defined by Hε,δ := hεe

−(Ψ+δΨε), the curvature satisfies

√
−1ΘHε,δ

(F ) =
√
−1Θhε(F ) +

√
−1∂∂(Ψ + δΨε) ≥ −εω + ωε,δ ≥ (1− ε)ωε,δ ≥

1

2
ωε,δ

by property (B) and
√
−1Θhε(F ) ≥ −εω. The L2-norm ∥α∥Hε,δ,ωε,δ

with respect to Hε,δ

and ωε,δ is finite since the function Ψ + δΨε is bounded and ∥α∥ε,δ is finite. Therefore,

from the standard L2-method for the ∂-equation (for example see [D1, 4.1Théorème]), we
obtain a solution β of the ∂-equation ∂β = α with

∥β∥2Hε,δ,ωε,δ
≤ 2

q
∥α∥2Hε,δ,ωε,δ

.

Then we can easily see that

∥β∥2ε,δ ≤
2

q

supB e
−(Ψ+δΨε)

infB e−(Ψ+δΨε)
∥α∥2ε,δ.

This completes the proof by property (B). □

Remark 5.13. In Lemma 5.12, we take a solution β0 ∈ Ln,q−1
(2) (B\Zε, F )ε,δ of the equation

∂β = α. Then β0 is uniquely decomposed as follows:

β0 = β1 + β2 for β1 ∈ Ker ∂ and β2 ∈ (Ker ∂)⊥.

We can easily check that β2 is a unique solution of ∂β = α whose norm is the minimum
among all the solutions.

Thus we finish the proof of Theorem 5.1. □
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6. Twists by Nakano semipositive vector bundles

We have already known that some results for KX can be generalized for KX ⊗E, where
E is a Nakano semipositive vector bundle on X (see, for example, [Ta], [Mo], and [Fs]).
Let us recall the definition of Nakano semipositive vector bundles.

Definition 6.1 (Nakano semipositive vector bundles). Let E be a holomorphic vector
bundle on a complex manifold X. If E admits a smooth Hermitian metric hE such that
the curvature form

√
−1ΘhE(E) defines a positive semi-definite Hermitian form on each

fiber of the vector bundle E⊗TX , where TX is the holomorphic tangent bundle of X, then
E is called a Nakano semipositive vector bundle.

Example 6.2 (Unitary flat vector bundles). Let E be a holomorphic vector bundle on a
complex manifold X. If E admits a smooth Hermitian metric hE such that (E, hE) is flat,
that is,

√
−1ΘhE(E) = 0, then E is Nakano semipositive.

For the proof of Theorem 1.12, we need the following lemmas on Nakano semiposi-
tive vector bundles. However, these lemmas easily follow from the definition of Nakano
semipositive vector bundles, and thus, we omit the proof.

Lemma 6.3. Let E be a Nakano semipositive vector bundle on a complex manifold X. Let
H be a smooth divisor on X. Then E|H is a Nakano semipositive vector bundle on H.

Lemma 6.4. Let q : Z → X be an étale morphism between complex manifolds. Let (E, hE)
be a Nakano semipositive vector bundle on X. Then (q∗E, q∗hE) is a Nakano semipositive
vector bundle on Z.

Proposition 6.5. Proposition 1.9 holds even when KX is replaced with KX ⊗E, where E
is a Nakano semipositive vector bundle on X.

Proof. By Lemma 6.3 and Lemma 6.4, the proof of Proposition 1.9 in Section 4 works for
KX ⊗ E. □
Therefore, by Proposition 6.5 and the proof of Theorem 1.4 and Corollary 1.7 in Section

4, it is sufficient to prove the following theorem for Theorem 1.12.

Theorem 6.6 (Theorem A twisted by Nakano semipositive vector bundles). Let E be a
Nakano semipositive vector bundle on a compact Kähler manifold X. Let F (resp. M) be
a line bundle on a compact Kähler manifold X with a singular Hermitian metric h (resp. a
smooth Hermitian metric hM) satisfying

√
−1ΘhM (M) ≥ 0 and

√
−1Θh(F )− b

√
−1ΘhM (M) ≥ 0 for some b > 0.

Then for a (nonzero) section s ∈ H0(X,M), the multiplication map induced by ⊗s

×s : Hq(X,KX ⊗ E ⊗ F ⊗ J (h))
⊗s−−−−−→ Hq(X,KX ⊗ E ⊗ F ⊗ J (h)⊗M)

is injective for every q. Here KX is the canonical bundle of X and J (h) is the multiplier
ideal sheaf of h.

We will explain how to modify the proof of Theorem 5.1 for Theorem 6.6.

Proof. We replace (F, hε) with (E⊗F, hEhε) in the proof of Theorem 5.1, where {hε}1≫ε>0

is a family of singular Hermitian metrics on F (constructed in Step 1) and hE is a smooth
Hermitian metric on E such that

√
−1ΘhE(E) is Nakano semipositive. Then it is easy to
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see that essentially the same proof as in Theorem 5.1 works for Theorem 6.6 thanks to the
assumption on the curvature of E. For the reader’s convenience, we give several remarks
on the differences with the proof of Theorem 5.1.

There is no problem when we construct hε and ωε,δ. In Step 4 in the proof of Theorem
5.1, we used the de Rham–Weil isomorphism (see (5.7) and [MaS4, Proposition 5.5]), which
was constructed by using Lemma 5.12. Since [D1, 4.1 Théorème] (which yields Lemma
5.12) is formulated for holomorphic vector bundles, Lemma 5.12 can be generalized to
(E⊗F, hEhε). From this generalization, we can construct the de Rham–Weil isomorphism
for E ⊗ F

fε,δ :
Ker ∂

Im ∂
of Ln,q(2)(E ⊗ F )hEhε,ωε,δ

∼=−−−−→ Kerµ

Imµ
of Cq(U , KX ⊗ E ⊗ F ⊗ J (hε)).

In Step 1, we used the orthogonal decomposition of Ln,q(2)(F )ε,δ, which was obtained from

the fact that Im ∂ ⊂ Ln,q(2)(F )ε,δ is closed. To obtain the same conclusion for Ln,q(2)(E ⊗
F )hEhε,ωε,δ

, it is sufficient to show that Cq(U , KX ⊗E⊗F ⊗J (hε)) is a Fréchet space (see
[MaS4, Proposition 5.8]). We can easily check it by using the same argument as in [MaS4,
Theorem 5.3] for CrankE-valued holomorphic functions.

The argument of Step 2 works even if we consider (E ⊗ F, hEhε). In Step 3, we need to
prove (5.6), but it is easy to see

−εq|uε,δ|2hEhε,ωε,δ
≤ ⟨

√
−1Θhε(F )Λωε,δ

uε,δ, uε,δ⟩hEhε,ωε,δ

≤ ⟨
√
−1ΘhEhε(E ⊗ F )Λωε,δ

uε,δ, uε,δ⟩hEhε,ωε,δ

since
√
−1ΘhE(E) is Nakano semipositive. □

When E is Nakano semipositive and is not flat, there seems to be no Hodge theoretic
approach to Theorem 6.6 even if h is smooth.
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