
VARIATION OF MIXED HODGE STRUCTURE AND ITS
APPLICATIONS

OSAMU FUJINO AND TARO FUJISAWA

Abstract. We treat generalizations of Kollár’s torsion-freeness, vanishing theorem, and
so on, for projective morphisms between complex analytic spaces as an application of
the theory of variations of mixed Hodge structure. The results will play a crucial role in
the theory of minimal models for projective morphisms of complex analytic spaces. In
this paper, we do not use Saito’s theory of mixed Hodge modules.
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1. Introduction

We will establish the following theorem, which is an analytic generalization of [FF1,
Theorems 7.1 and 7.3]. Note that f : (X,D) → Y is assumed to be algebraic in [FF1].
Our approach in this paper is slightly different from the one in [FF1] (see Remark 1.5
below). We also note that we do not use Saito’s theory of mixed Hodge modules (see
[Sa1], [Sa2], [Sa3], [Sa4], [FFS], and [Sa5]) in this paper.

Theorem 1.1 (Canonical extensions of Hodge bundles, see [FF1, Theorems 7.1 and
7.3]). Let (X,D) be an analytic simple normal crossing pair such that D is reduced and
let f : X → Y be a proper surjective morphism onto a smooth complex variety Y . Assume
that every stratum of (X,D) is dominant onto Y . Let Σ be a normal crossing divisor on
Y such that every stratum of (X,D) is smooth over Y ∗ := Y \Σ. We put X∗ := f−1(Y ∗),
D∗ := D|X∗, and d := dimX − dimY . If we assume that every stratum of (X,D) is a
Kähler manifold in addition, then we have:

(i) Rk(f |X∗\D∗)!RX∗\D∗ underlies a graded polarizable variation of R-mixed Hodge
structure on Y ∗ for every k.
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We put

VkY ∗ := Rk(f |X∗\D∗)!RX∗\D∗ ⊗OY ∗

for every k. The Hodge filtration and the weight filtration on VkY ∗ are denoted by F and
L respectively. Moreover the lower canonical extension of VkY ∗ is denoted by lVkY ∗. The
weight filtration L on VkY ∗ is extended to lVkY ∗ by Lm(

lVkY ∗) = lLm(VkY ∗) for every m. Then
we have the following:

(ii) There exists a unique finite decreasing filtration F on lVkY ∗ such that
• F p(lVkY ∗)|Y ∗ ≃ F p(VkY ∗), and
• GrpF GrLm(

lVkY ∗) is a locally free OY -module of finite rank
for every k,m, p.

(iii) Rd−if∗OX(−D) is isomorphic to

Gr0F (
lVd−iY ∗ ) = F 0(lVd−iY ∗ )/F 1(lVd−iY ∗ )

for every i. In particular, Rd−if∗OX(−D) is locally free for every i.
(iv) Rif∗ωX/Y (D) is isomorphic to(

Gr0F (
lVd−iY ∗ )

)∗
= HomOY

(Gr0F (
lVd−iY ∗ ),OY )

for every i. In particular, Rif∗ωX/Y (D) is locally free for every i.

For the precise definition of upper and lower canonical extensions in Theorem 1.1, see
[FF1, Remark 7.4]. In Theorem 1.1, X may be reducible, and we are mainly interested in
the case where X is reducible. By Theorem 1.1, we can use the Fujita–Zucker–Kawamata
semipositivity theorem in the complex analytic setting.

Theorem 1.2 (Semipositivity). In Theorem 1.1, we further assume that every local mon-
odromy on the local system Rd−i(f |X∗\D∗)!RX∗\D∗ around Σ is unipotent. Let φ : V → X
be any morphism from a projective variety V . Then φ∗Rif∗ωX/Y (D) is a nef locally free
sheaf on V .

In order to prove Theorem 1.1, we will establish:

Theorem 1.3 (Weight spectral sequence). Let (X,D) be an analytic simple normal cross-
ing pair such that D is reduced and let f : X → Y be a proper morphism between complex
analytic spaces. We assume that Y is a smooth complex variety and that there exists a
normal crossing divisor Σ on Y such that every stratum of (X,D) is dominant onto Y ,
and smooth over Y \ Σ. If we assume that every stratum of (X,D) is a Kähler manifold
in addition, then we have a spectral sequence:

Ep,q
1 =

⊕
S

Rqf∗OS ⇒ Rp+qf∗OX(−D),

where S runs through all (dimX−p)-dimensional strata of (X,D), such that it degenerates
at E2 and its E1-differential d1 splits.

By combining Theorem 1.3 with Takegoshi’s results (see [T]), we can prove:

Theorem 1.4 (Torsion-freeness and vanishing theorem). Let (X,D) be an analytic simple
normal crossing pair such that D is reduced and let f : X → Y be a projective morphism
between complex analytic spaces. We assume that Y is a complex variety and that every
stratum of (X,D) is dominant onto Y . Then we have the following properties.

(i) (Torsion-freeness). Rqf∗ωX(D) is a torsion-free sheaf for every q.
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(ii) (Vanishing theorem). Let π : Y → Z be a projective morphism between complex
analytic spaces and let A be a π-ample line bundle on Y . Then

Rpπ∗ (A⊗Rqf∗ωX(D)) = 0

holds for every p > 0 and every q.

Of course, Theorem 1.4 is a generalization of Kollár’s torsion-freeness and vanishing
theorem (see [Ko1]) for reducible complex analytic spaces. We make a remark on the
relationship between [FF1] and this paper.

Remark 1.5. In [FF1], we have already treated Theorems 1.1 and 1.4 when X and Y are
algebraic and f : X → Y is projective. Roughly speaking, in [FF1, §6], we first establish
Theorem 1.4 when X is quasi-projective and f : X → Y is algebraic. Then, by using it,
we prove Theorem 1.1 under the assumption that X and Y are algebraic and f : X → Y
is projective in [FF1, §7]. When X is quasi-projective, we can use the theory of mixed
Hodge structures. Hence we can obtain desired vanishing theorems and torsion-freeness
without using the theory of variations of mixed Hodge structure (for the details, see [Fn3,
Chapter 5]). In this paper, we will directly prove Theorems 1.1 and 1.3 with the aid of
some results established for Kähler manifolds (see [T]). Then, we will prove Theorem 1.4
as an application. Theorem 1.3 is new even when X and Y are algebraic and f : X → Y
is projective.

By using Theorem 1.4, we have:

Theorem 1.6 (see [Fn9, Theorem 3.1]). Let (X,D) be an analytic simple normal crossing
pair such that D is reduced and let f : X → Y be a projective morphism between complex
analytic spaces. Then we have the following properties.

(i) (Strict support condition). Every associated subvariety of Rqf∗ωX(D) is the f -
image of some stratum of (X,D) for every q.

(ii) (Vanishing theorem). Let π : Y → Z be a projective morphism between complex
analytic spaces and let A be a π-ample line bundle on Y . Then

Rpπ∗ (A⊗Rqf∗ωX(D)) = 0

holds for every p > 0 and every q.
(iii) (Injectivity theorem). Let L be an f -semiample line bundle on X. Let s be a

nonzero element of H0(X,L⊗k) for some nonnegative integer k such that the zero
locus of s does not contain any strata of (X,D). Then, for every q, the map

×s : Rqf∗
(
ωX(D)⊗ L⊗l) → Rqf∗

(
ωX(D)⊗ L⊗k+l)

induced by ⊗s is injective for every positive integer l.

Note that Theorem 1.6 was first obtained in [Fn9, Theorem 3.1] under a weaker as-
sumption that f : X → Y is Kähler by using Saito’s theory of mixed Hodge modules.
Theorems 1.7 and 1.8 are the main results of [Fn9]. Although they may look artificial
and technical, they are very useful and indispensable for the study of varieties and pairs
whose singularities are worse than kawamata log terminal (see [A], [Fn3, Chapter 6],
[Fn6], [Fn7], [Fn10], [Fn11], and so on). In [Fn9], we showed that Theorems 1.7 and 1.8
follow from Theorem 1.6 (i) and (ii). Note that Theorem 1.6 (iii) is an easy consequence
of Theorem 1.6 (i) and (ii). Hence this paper gives an approach to Theorems 1.7 and 1.8
without using Saito’s theory of mixed Hodge modules.
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Theorem 1.7 (see [Fn9, Theorem 1.1]). Let (X,∆) be an analytic simple normal crossing
pair such that ∆ is a boundary R-divisor on X. Let f : X → Y be a projective morphism
to a complex analytic space Y and let L be a line bundle on X. Let q be an arbitrary
nonnegative integer. Then we have the following properties.

(i) (Strict support condition). If L− (ωX +∆) is f -semiample, then every associated
subvariety of Rqf∗L is the f -image of some stratum of (X,∆).

(ii) (Vanishing theorem). If L − (ωX + ∆) ∼R f ∗H holds for some π-ample R-line
bundle H on Y , where π : Y → Z is a projective morphism to a complex analytic
space Z, then we have Rpπ∗R

qf∗L = 0 for every p > 0.

Theorem 1.8 (Vanishing theorem of Reid–Fukuda type, see [Fn9, Theorem 1.2]). Let
(X,∆) be an analytic simple normal crossing pair such that ∆ is a boundary R-divisor
on X. Let f : X → Y and π : Y → Z be projective morphisms between complex analytic
spaces and let L be a line bundle on X. If L − (ωX + ∆) ∼R f

∗H holds such that H is
an R-line bundle, which is nef and log big over Z with respect to f : (X,∆) → Y , on Y ,
then Rpπ∗R

qf∗L = 0 holds for every p > 0 and every q.

In this paper, we do not prove Theorems 1.7 and 1.8. For the details of Theorems 1.7
and 1.8, see [Fn9]. Although the motivation of the first author is obviously the minimal
model theory for projective morphisms between complex analytic spaces, we do not treat
the minimal model program in this paper. We recommend that the interested reader looks
at [Fn8], [Fn10], [Fn11], and so on. Theorems 1.7 and 1.8 have already played a crucial
role in [Fn10] and [Fn11], where we established the fundamental theorems of the theory of
minimal models for projective morphisms between complex analytic spaces. Anyway, by
this paper, [Fn10] and [Fn11] become free from Saito’s theory of mixed Hodge modules.
The relationship between [Fn9] and this paper is as follows.

Remark 1.9. In [FFS, Corollary 1 and 4.7. Remark] (see [Fn9, Theorem 2.6]), we con-
structed a weight spectral sequence of mixed Hodge modules. It is much more general
than Theorem 1.3 in some sense. By combining it with Takegoshi’s results (see [T]), we
proved Theorems 1.6, 1.7, 1.8, and so on, in [Fn9]. From the Hodge theoretic viewpoint,
one of the main ingredients of this paper is Steenbrink’s result obtained in [St1] and [St2].

We look at the organization of this paper. In Section 2, we will briefly explain basic
definitions and results necessary for this paper. In Subsection 2.1, we will explain some
useful lemmas on analytic simple normal crossing pairs. In Subsection 2.2, we will briefly
review Kollár’s package in the complex analytic setting. Section 3 is the main part of this
paper, where we will prove Theorems 1.1 and 1.3. We will also see that a generalization
of the Fujita–Zucker–Kawamata semipositivity theorem holds in the complex analytic
setting (see Theorem 1.2). In Section 4, we will prove Theorem 1.4. In Section 5, we will
prove Theorem 1.6. Section 6 is a supplementary section, where we will explain a new
construction of the rational structure for the cohomological Q-mixed Hodge complex in
[St2]. We hope that it will help the reader understand [St1] and [St2].

Acknowledgments. The authors thank Yuta Kusakabe very much for answering their
questions. The first author was partially supported by JSPS KAKENHI Grant Numbers
JP19H01787, JP20H00111, JP21H00974, JP21H04994. The second author was partially
supported by JSPS KAKENHI Grant Number JP20K03542.

In this paper, every complex analytic space is assumed to be Hausdorff and second-
countable. Note that an irreducible and reduced complex analytic space is called a complex
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variety. We will freely use the basic results on complex analytic geometry in [BS] and
[Fi].

2. Preliminaries

In this section, we will collect some basic definitions. Let us start with the definition
of analytic simple normal crossing pairs.

Definition 2.1 (Analytic simple normal crossing pairs). Let X be a simple normal cross-
ing divisor on a smooth complex analytic space M and let B be an R-divisor on M such
that the support of B +X is a simple normal crossing divisor on M and that B and X
have no common irreducible components. Then we put D := B|X and consider the pair
(X,D). We call (X,D) an analytic globally embedded simple normal crossing pair and
M the ambient space of (X,D). If the pair (X,D) is locally isomorphic to an analytic
globally embedded simple normal crossing pair at any point of X and the irreducible
components of X and D are all smooth, then (X,D) is called an analytic simple normal
crossing pair.

When (X,D) is an analytic simple normal crossing pair, X has an invertible dualizing
sheaf ωX . We usually use the symbol KX as a formal divisor class with an isomorphism
OX(KX) ≃ ωX if there is no danger of confusion. We note that we can not always define
KX globally with OX(KX) ≃ ωX . In general, it only exists locally on X.

The notion of strata plays a crucial role.

Definition 2.2 (Strata). Let (X,D) be an analytic simple normal crossing pair as in
Definition 2.1. Let ν : Xν → X be the normalization. We put

KXν +Θ = ν∗(KX +D).

This means that Θ is the union of ν−1
∗ D and the inverse image of the singular locus of X.

We note that Xν is smooth and the support of Θ is a simple normal crossing divisor on
Xν . If W is an irreducible component of X or the ν-image of some log canonical center
of (Xν ,Θ), then W is called a stratum of (X,D).

Remark 2.3. In this paper, D is always assumed to be reduced. Hence, Θ in Definition
2.2 is a reduced simple normal crossing divisor on Xν . We do not need Q-divisors nor
R-divisors in this paper.

We recall Siu’s theorem on complex analytic sheaves, which is a special case of [Si,
Theorem 4]. We need it for Theorem 1.6 (i) and Theorem 1.7 (i).

Theorem 2.4. Let F be a coherent sheaf on a complex analytic space X. Then there
exists a locally finite family {Yi}i∈I of complex analytic subvarieties of X such that

AssOX,x
(Fx) = {px,1, . . . , px,r(x)}

holds for every point x ∈ X, where px,1, . . . , px,r(x) are the prime ideals of OX,x associated
to the irreducible components of the germs Yi,x of Yi at x with x ∈ Yi. We note that each
Yi is called an associated subvariety of F .

Definition 2.5 (Relatively nef, ample, and big line bundles). Let f : X → Y be a pro-
jective morphism of complex analytic spaces and let L be a line bundle on X. Then we
say that

• L is f -nef if L · C ≥ 0 holds for every curve C on X such that f(C) is a point,
and
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• L is f -ample if L|f−1(y) is ample in the usual sense for every y ∈ Y .

We further assume that f : X → Y is a projective surjective morphism of complex vari-
eties. Then we say that

• L is f -big if there exists some positive real number c such that rank f∗L⊗m > c ·md

holds for m≫ 0, where d = dimX − dimY .

We need the notion of nef locally free sheaves in Theorem 1.2.

Definition 2.6 (Nef locally free sheaves). Let E be a locally free sheaf of finite rank on
a projective variety V . If OPV (E)(1) is nef, that is, OPV (E)(1) ·C ≥ 0 holds for every curve
C on PV (E), then E is called a nef locally free sheaf on V .

A nef locally free sheaf is sometimes called a semipositive vector bundle or a semipositive
locally free sheaf in the literature.

2.1. Lemmas on analytic simple normal crossing pairs. In this subsection, we will
collect some useful lemmas on analytic simple normal crossing pairs. We will repeatedly
use these lemmas in subsequent sections.

Lemma 2.7 (see [Fn9, Lemmas 2.13 and 2.15]). Let (X,D) and (X ′, D′) be simple normal
crossing pairs such that D and D′ are reduced. Let g : X ′ → X be a projective bimero-
morphic morphism. Assume that there exists a Zariski open subset U of X such that
g : U ′ := g−1(U) → U is an isomorphism and that U (resp. U ′) intersects every stratum of
(X,D) (resp. (X ′, D′)). Then Rig∗OX′ = 0 and Rig∗OX′(KX′ +D′) = 0 for every i > 0,
and g∗OX′ ≃ OX and g∗OX′(KX′ +D′) ≃ OX(KX +D) hold.

Proof. By [Fn9, Lemma 2.15], we have Rig∗OX′ = 0 for every i > 0 and g∗OX′ ≃ OX .
Since D and D′ are reduced, we can easily check that

(2.1) KX′ +D′ = g∗(KX +D) + E

holds for some effective g-exceptional Cartier divisor E on X ′ and that D′ = g−1
∗ D holds.

By (2.1), we have g∗OX′(KX′ +D′) ≃ OX(KX +D). By [Fn9, Lemma 2.13], we obtain
Rig∗OX′(KX′ +D′) = 0 for every i > 0. We finish the proof. □
Lemma 2.8 (see [Fn9, Lemma 5.1]). Let (X,D) be an analytic simple normal crossing
pair such that D is reduced and let f : X → Y be a projective morphism between complex
analytic spaces. Let L be a Cartier divisor on X. We take an arbitrary point P ∈ Y .
Then, after shrinking Y around P suitably, we can construct the following commutative
diagram:

Z

p

��

� � ι // M

q

��

X

f
��
Y � �

ιY
// ∆m

such that

(i) ιY : Y ↪→ ∆m is a closed embedding into a polydisc ∆m with ιY (P ) = 0 ∈ ∆m,
(ii) (Z,DZ) is an analytic globally embedded simple normal crossing pair such that DZ

is reduced,
(iii) M is the ambient space of (Z,DZ) and is projective over ∆m,
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(iv) there exists a Cartier divisor LZ on Z satisfying

LZ − (KZ +DZ) = p∗(L− (KX +D)),

p∗OZ(LZ) ≃ OX(L), and R
ip∗OZ(LZ) = 0 for every i > 0,

(v) p(W ) is a stratum of (X,D) for every stratum W of (Z,DZ),
(vi) there exists a Zariski open subset U of X, which intersects every stratum of X,

such that p is an isomorphism over U ,
(vii) p maps every stratum of Z bimeromorphically onto some stratum of X, and
(viii) for any stratum S of (X,D), there exists a stratum W of (Z,DZ) such that S =

p(W ).

Proof. The proof of [Fn9, Lemma 5.1], where we allow D to be a boundary R-divisor,
works without any modifications. □

Lemma 2.9 (see [Fn9, Lemma 2.17]). Let (X,D) be an analytic globally embedded simple
normal crossing pair such that D is reduced and let M be the ambient space of (X,D). Let
C be a stratum of (X,D), which is not an irreducible component of X. Let σ : M ′ → M
be the blow-up along C and let X ′ denote the reduced structure of the total transform of
X on M ′. We put

KX′ +D′ := g∗(KX +D),

where g := σ|X′. Then we have the following properties:

(i) (X ′, D′) is an analytic globally embedded simple normal crossing pair such that D′

is reduced,
(ii) M ′ is the ambient space of (X ′, D′),
(iii) g∗OX′ ≃ OX holds and Rig∗OX′ = 0 for every i > 0,
(iv) the strata of (X,D) are exactly the images of the strata of (X ′, D′), and
(v) σ−1(C) is a maximal (with respect to the inclusion) stratum of (X ′, D′), that is,

σ−1(C) is an irreducible component of X ′.

Proof. The proof of [Fn9, Lemma 2.17], where we allow D to be a boundary R-divisor,
works without any modifications. □

2.2. Complex analytic generalization of Kollár’s package. Here, let us briefly re-
view Kollár’s package (see [Ko1] and [Ko2]) in the complex analytic setting. We recom-
mend that the interested reader looks at [N3, Chapter V. 3.7. Theorem] and [T].
Theorem 2.10 is a variant of Takegoshi’s vanishing theorem (see [T, Theorem IV Rela-

tive vanishing Theorem]). We note that it is well known when f : X → Y is a projective
morphism of algebraic varieties.

Theorem 2.10 (Vanishing theorem). Let f : X → Y and π : Y → Z be projective surjec-
tive morphisms between complex varieties such that X is smooth. Let M be a line bundle
on Y . Assume that M is π-nef and π-big over Z. Then

(2.2) Rpπ∗ (M⊗Rqf∗ωX) = 0

holds for every p > 0 and every q. In particular, if further π is bimeromorphic, then

(2.3) Rpπ∗R
qf∗ωX = 0

holds for every p > 0 and every q.
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Proof. The vanishing theorem (2.2) is more or less well known to the experts. For the
details, see, for example, [Fn2, Corollary 1.5]. Note that (2.3) is a special case of (2.2).
This is because the trivial line bundle on Y is π-nef and π-big when π is bimeromorphic.

□

Lemma 2.11 is an easy consequence of Theorem 2.10.

Lemma 2.11. Let fi : Xi → Y be a projective surjective morphism of complex varieties
such that Xi is smooth for every 1 ≤ i ≤ k. Let π : Y → Z be a projective bimeromorphic
morphism between complex varieties. We put

F :=
k⊕
i=1

Rqifi∗ωXi
,

where qi is some nonnegative integer for every i. Let G be a coherent sheaf on Y . Assume
that G is a direct summand of F . Then Rpπ∗G = 0 holds for every p > 0. In particular,
π∗G is a direct summand of

π∗F =
k⊕
i=1

π∗R
qifi∗ωXi

≃
k⊕
i=1

Rqi(π ◦ fi)∗ωXi
.

Proof. It is sufficient to prove that Rpπ∗R
qifi∗ωXi

= 0 holds for every p > 0. Hence, this
lemma is an easy consequence of Theorem 2.10. □

Theorem 2.12 below is a special case of Takegoshi’s torsion-freeness (see [T, Theorem
II Torsion freeness Theorem]). When f : X → Y is a projective surjective morphism
between projective varieties, it is nothing but Kollár’s famous torsion-freeness (see [Ko1,
Theorem 2.1 (i)]).

Theorem 2.12 (Torsion-freeness). Let f : X → Y be a projective surjective morphism of
complex varieties such that X is smooth. Then Rqf∗ωX is torsion-free for every q.

When f : X → Y is algebraic, Theorem 2.13 below was first obtained independently by
Kollár (see [Ko2, Theorem 2.6]) and Nakayama (see [N2, Theorem 1]). When f : X → Y
is a projective morphism of smooth complex varieties, it was obtained by Moriwaki (see
[Mo, Theorem (2.4)]).

Theorem 2.13 (Hodge filtration, see [T, Theorem V Local freeness Theorem (ii)] and
[N3, Chapter V, 3.7. Theorem (4)]). Let f : X → Y be a proper surjective morphism
between smooth complex varieties and let Σ be a normal crossing divisor on Y such that
f is smooth over Y ∗ := Y \Σ. We assume that X is a Kähler manifold. Then Rqf∗ωX/Y
is locally free and is characterized as the upper canonical extension of the corresponding
bottom Hodge filtration on Y ∗ for every q.

We make a remark on the proof of Theorem 2.13.

Remark 2.14. One of the main ingredients of [N2] is Steenbrink’s result established in
[St1] and [St2] (see [N2, Theorem 3]). Although it was explicitly stated only for projective
morphisms, it also holds for proper morphisms from Kähler manifolds (see Remark 3.4
below). Hence the argument in [N2] works for Kähler manifolds with the aid of [T]. We
recommend that the interested reader looks at [N1, Conjectures 7.2 and 7.3] and [N2].
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3. On variations of mixed Hodge structure

In this section, we will prove Theorems 1.1, 1.2, and 1.3. Our approach to Theorem
1.1 (ii)–(iv) here is different from [FF1] (see also [Fn5, Section 13]) because we do not
assume that (X,D) is projective over Y in this section. We use the terminologies in [FF1,
Section 4].

Let us start with the proof of Theorem 1.1 (i).

Proof of Theorem 1.1 (i). The proof is almost the same as the proof of Theorem 4.15 of
[FF1]. Here we briefly recall several constructions and results in [FF1, Section 4], which
is necessary for the proof of Theorem 1.1 (ii)–(iv) and Theorem 1.3.

Let f : (X,D) → Y be as in Theorems 1.1 and 1.3. Let

X =
∪
i∈I

Xi and D =
∪
λ∈Λ

Dλ

be the irreducible decompositions of X and D, respectively. Fixing orders < on Λ and I,
we put

Dk ∩Xl =
⨿

λ0<λ1<···<λk
i0<i1<···<il

Dλ0 ∩Dλ1 ∩ · · · ∩Dλk ∩Xi0 ∩Xi1 ∩ · · · ∩Xil

for k, l ≥ 0 (see [FF1, 4.14]). Here we use the convention

Dk = Dk ∩X−1 =
⨿

λ0<λ1<···<λk

Dλ0 ∩Dλ1 ∩ · · · ∩Dλk

Xl = D−1 ∩Xl =
⨿

i0<i1<···<il

Xi0 ∩Xi1 ∩ · · · ∩Xil

for k, l ≥ 0. By setting

(X,D)n := (D ∩X)n \Dn =
⨿

k+l+1=n
l≥0

Dk ∩Xl,

we obtain an augmented semisimplicial variety ε : (X,D)• → X. Note that (X,D)n is
the disjoint union of all the strata of (X,D) of dimension dimX − n for all n ∈ Z≥0. We
set fn := fεn : (X,D)n → Y for every n. Then fn is smooth over Y ∗ = Y \ Σ. Then the
complex ε∗R(X,D)• is given by

(ε∗R(X,D)•)
n = (εn)∗R(X,D)n =

⊕
l≥0

RDn−l−1∩Xl

with the Čech type morphism δ as the differential. Note that this complex is the single
complex associated to the double complex obtained by deleting the first vertical column
of the double complex in [FF1, p.626, 4.14], and by replacing Q with R. Then we have
quasi-isomorphisms

i!RX\D
≃−→ (0 → RX → RD0

δ−→ RD1

δ−→ · · · ) ≃−→ ε∗R(X,D)•

from the double complex in [FF1] mentioned above, where i denotes the open immersion
X \D ↪→ X. By setting

Lm(ε∗R(X,D)•)
n =

{
0 n < −m
(εn)∗R(X,D)n n ≥ −m
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a finite increasing filtration L is defined on ε∗R(X,D)• . We have the relative de Rham
complex Ω(X,D)•/Y for the morphism fε : (X,D)• → Y . Then the complex ε∗Ω(X,D)•/Y is
given by

(ε∗Ω(X,D)•/Y )
n =

⊕
k≥0

(εk)∗Ω
n−k
(X,D)k/Y

with the differential δ+(−1)kd on (εk)∗Ω
n−k
(X,D)k/Y

, where δ denotes the Čech type morphism

for (X,D)• and d denotes the differential of the relative de Rham complex Ω(X,D)n/Y . By
setting

Lm(ε∗Ω(X,D)•/Y )
n =

⊕
k≥−m

(εk)∗Ω
n−k
(X,D)k/Y

F p(ε∗Ω(X,D)•/Y )
n =

⊕
0≤k≤n−p

(εk)∗Ω
n−k
(X,D)k/Y

,

a finite increasing filtration L and a finite decreasing filtration F on ε∗Ω(X,D)•/Y are
defined. The canonical morphism R(X,D)n → O(X,D)n induces a morphism of complexes
ι : ε∗R(X,D)• → ε∗Ω(X,D)•/Y .
By setting

K = ((KR, L), (KO, L, F ), α)

= ((Rf∗ε∗R(X,D)• , L), (Rf∗ε∗Ω(X,D)•/Y , L, F ), Rf∗ι)

(see [FF1, 4.1]), we obtain a triple K consisting of

• a complex of R-sheaves KR on Y equipped with a finite increasing filtration L,
• a complex of OY -modules KO on Y equipped with a finite increasing filtration L
and a finite decreasing filtration F ,

• a morphism of filtered complexes of R-sheaves α : (KR, L) → (KO, L)

satisfying the following:

(3.1.1) There exists a quasi-isomorphism R(f |X\D)!RX\D ≃ KR.

(3.1.2) There exists a quasi-isomorphism GrpF KO ≃ Rf∗ε∗Ω
p
(X,D)•/Y

[−p]. for every p.
In particular, Rf∗OX(−D) ≃ Gr0F KO.

(3.1.3) For every m ∈ Z,

GrLmK = (GrLmKR, (GrLmKO, F ),GrLm α)

≃
⊕
S

(R(fS)∗RS[m], (R(fS)∗ΩS/Y [m], F ), R(fS)∗ιS[m]),

where S runs through all (dimX +m)-dimensional strata of (X,D) and ιS is
the composite RS ↪→ CS → ΩS/Y .

We consider a triple, consisting of the spectral sequences and a morphism between them,

Ep,q
r (K,L) =(Ep,q

r (KR, L), (E
p,q
r (KO, L), F ), E

p,q
r (α))

⇒ Ep,q
∞ (K,L) = (Ep,q

∞ (KR, L), (E
p,q
∞ (KO, L), F ), E

p,q
∞ (α)),

(3.2)

where F on Ep,q
r (KO, L) denotes the inductive filtration (la filtration récurrente in [D1,

(1.3.11)]) and F on Ep,q
∞ (KO, L) is the filtration induced from F on Hp+q(KO) via the

isomorphism Ep,q
∞ (KO, L) ≃ GrL−pH

p+q(KO). The morphism of Er-terms is denoted by

dp,qr (K,L) = (dp,qr (KR, L), d
p,q
r (KO, L)) : E

p,q
r (K,L) → Ep+r,q−r+1

r (K,L).
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Since every stratum S is a Kähler manifold and fS is smooth over Y ∗, the isomorphism
in (3.1.3) implies the following:

(3.3.1) Ep,q
r (K,L)|Y ∗ is a polarizable variation of R-Hodge structure of weight q for all

p, q and r ≥ 1.

(3.3.2) The spectral sequence (3.2) degenerates at E2-terms on Y ∗, in other words,
dp,qr (K,L)|Y ∗ = 0 for all p, q and r ≥ 2.

(3.3.3) (Ep,q
2 (KO, L), F )|Y ∗ ≃ (Ep,q

∞ (KO, L), F )|Y ∗ for all p, q.

(3.3.4) ((Hk(KR), L[k]), (H
k(KO), L[k], F ), H

k(α))|Y ∗ is a graded polarizable variation
of R-mixed Hodge structure on Y ∗ for all k.

(3.3.5) GraF H
k(KO)|Y ∗ ≃ Hk(GraF KO)|Y ∗ for all a, k.

(3.3.6) GraF E
p,q
r (KO, L)|Y ∗ ≃ Ep,q

r (GraF KO, L)|Y ∗ for all a, p, q and r ≥ 0.

The proof of these properties are left to the reader (cf. [D2, Scholie (8.1.9) and Proposition
(7.2.8)]).

By (3.1.1), we have Rk(f |X∗\D∗)!RX\D ≃ Hk(KR)|Y ∗ , which implies VkY ∗ ≃ Hk(KO)|Y ∗

for all k. By using these isomorphism, we introduce filtrations L on Rk(f |X∗\D∗)!RX\D
and VkY ∗ , F on VkY ∗ , and obtain a graded polarizable variation of R-mixed Hodge structure

((Rk(f |X∗\D∗)!RX\D, L[k]), (VkY ∗ , L[k], F ))

on Y ∗ as desired. Here we note that we have an isomorphism

(3.4) Gr0F VkY ∗ ≃ Rkf∗OX(−D)|Y ∗

for every k by (3.1.2) and (3.3.5). □

Next, we will prove Theorem 1.3.

Proof of Theorem 1.3. We use the notations and terminologies in the proof of Theorem
1.1 (i). We will prove that the spectral sequence

(3.5) Ep,q
r (Gr0F KO, L) ⇒ Ep+q(Gr0F KO, L)

associated to the filtered complex (Gr0F KO, L) satisfies the desired properties. The mor-
phisms of Er-terms are denoted by

dp,qr (Gr0F KO, L) : E
p,q
r (Gr0F KO, L) → Ep+r,q−r+1

r (Gr0F KO, L).

By (3.1.3), the spectral sequence (3.5) satisfies

Ep,q
1 (Gr0F KO, L) ≃ Hp+q(GrL−pGr0F KO)

≃ Hp+q(Gr0F GrL−pKO) ≃
⊕
S

Rq(fS)∗OS,
(3.6)

where S runs through all (dimX − p)-dimensional strata of (X,D), and

Ep+q(Gr0F KO, L) ≃ Hp+q(Gr0F KO) ≃ Rp+qf∗OX(−D).

Thus it suffices to prove that (3.5) degenerates at E2-terms and dp,q1 (Gr0F KO, L) split for
all p, q.

We consider the spectral sequence (3.2) again. Note that we have

(3.7) Gr0F d
p,q
r (KO, L)|Y ∗ = dp,qr (Gr0F KO, L)|Y ∗
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for all p, q, r under the isomorphism in (3.3.6). In the abelian category of the polarizable
variations of R-Hodge structure of weight q on Y ∗, we temporarily set

Ip,q = (Ip,qR , (Ip,qO , F ))

= Image(Ep,q
1 (K,L)|Y ∗ → Ep+1,q

1 (K,L)|Y ∗) ⊂ Ep+1,q
1 (K,L)|Y ∗

for p, q ∈ Z. Because the category of the polarizable variations of R-Hodge structure of
weight q is semisimple, we have a direct sum decomposition

Ep,q
1 (K,L)|Y ∗ ≃ Ep,q

2 (K,L)|Y ∗ ⊕ Ip−1,q ⊕ Ip,q

as polarizable variations of R-Hodge structure, under which dp,q1 (K,L)|Y ∗ is identified with
the composite of the natural morphisms Ep,q

1 (K,L)|Y ∗ → Ip,q and Ip,q ↪→ Ep+1,q
1 (K,L)|Y ∗

for all p, q. In particular, we have

(3.8) (Ep,q
1 (KO, L), F )|Y ∗ ≃ (Ep,q

2 (KO, L), F )|Y ∗ ⊕ (Ip−1,q
O , F )⊕ (Ip,qO , F )

as filtered OY ∗-modules. Moreover, we consider the lower canonical extensions of

Ep,q
1 (KO, L)|Y ∗ , Ip,qO , Ep,q

2 (KO, L)|Y ∗

for all p, q and denote them by
lEp,q

1 (KO, L)|Y ∗ , lIp,qO , lEp,q
2 (KO, L)|Y ∗

respectively. The filtrations F on Ep,q
1 (KO, L)|Y ∗ , Ip,qO , and Ep,q

2 (KO, L)|Y ∗ can be uniquely
extended to the filtrations on their lower canonical extensions by applying Schmid’s nilpo-
tent orbit theorem (see [Sc, (4.12)]). Here we emphasize that F on these lower canonical
extensions are the filtrations by subbundles. Then the isomorphism (3.8) is extended to
an isomorphism

(3.9) (lEp,q
1 (KO, L)|Y ∗ , F ) ≃ (lEp,q

2 (KO, L)|Y ∗ , F )⊕ (lIp−1,q
O , F )⊕ (lIp,qO , F )

by the uniqueness properties of the lower canonical extensions and of the filtrations by
subbundles (cf. [FF1, Corollary 5.2]). Under the identification (3.9), the composite of the
morphisms (lEp,q

1 (KO, L)|Y ∗ , F ) → (lIp,qO , F ) and (lIp,qO , F ) ↪→ (lEp+1,q
1 (KO, L)|Y ∗ , F ) gives

us the morphism

ldp,q1 : (lEp,q
1 (KO, L)|Y ∗ , F ) → (lEp+1,q

1 (KO, L)|Y ∗ , F )

with the property (ldp,q1 )|Y ∗ = dp,q1 (KO, L)|Y ∗ for all p, q.
By (3.6) and

Ep,q
1 (KO, L)|Y ∗ ≃

⊕
S

Rq(fS)∗ΩS/Y |Y ∗ ≃
⊕
S

(Rq(fS)∗RS)|Y ∗ ⊗OY ∗ ,

where S runs through all (dimX−p)-dimensional strata of (X,D) as before, we have the
isomorphism

(3.10) Gr0F (
lEp,q

1 (KO, L)|Y ∗) ≃ Ep,q
1 (Gr0F KO, L),

whose restriction to Y ∗ coincides with the canonical isomorphism in (3.3.6), by the dual
of Theorem 2.13. In particular, Ep,q

1 (Gr0F KO, L) is a locally free OY -module of finite rank
for all p, q. Under the identification (3.10), we have

(3.11) Gr0F (
ldp,q1 ) = dp,q1 (Gr0F KO, L)

by Lemma 3.1 below, because

Gr0F (
ldp,q1 )|Y ∗ = Gr0F d

p,q
1 (KO, L)|Y ∗ = dp,q1 (Gr0F KO, L)|Y ∗
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under the isomorphism in (3.3.6) by (3.7) and because

Ep,q
1 (Gr0F KO, L),Gr0F (

lEp,q
1 (KO, L)|Y ∗)

are locally free OY -modules of finite rank for all p, q. By (3.11), and the decomposition
(3.9), the morphism dp,q1 (Gr0F KO, L) splits and

Ep,q
2 (Gr0F KO, L) ≃ Gr0F (

lEp,q
2 (KO, L)|Y ∗)

for all p, q. In particular, Ep,q
2 (Gr0F KO, L) is a locally free OY -module of finite rank for

all p, q. Since
dp,qr (Gr0F KO, L)|Y ∗ = Gr0F d

p,q
r (KO, L)|Y ∗ = 0

for r ≥ 2 by (3.7) and (3.3.2), we inductively obtain

dp,qr (Gr0F KO, L) = 0

for r ≥ 2 by using Lemma 3.1 below. In other words, the spectral sequence (3.5) degen-
erates at E2-terms. □
The following elementary lemma, used in the proof above, will be constantly used in

this section.

Lemma 3.1. Let F and G be locally free OY -modules of finite rank on Y and φ, ψ : F → G
morphisms of OY -modules. If φ|Y ∗ = ψ|Y ∗, then φ = ψ. In particular, if φ|Y ∗ = 0 then
φ = 0.

Proof. It is obvious. □
In order to prove Theorem 1.1 (ii)–(iv), we recall results in [St1] and [St2] in a slightly

generalized form.

Definition 3.2. Let f : X → Y be a surjective morphism of smooth complex varieties
and Σ a simple normal crossing divisor on Y . We assume that E = (f ∗Σ)red is a simple
normal crossing divisor on X. For such f , we set

Ω1
X/Y (logE) = Coker(f ∗Ω1

Y (log Σ) → Ω1
X(logE))

and

Ωp
X/Y (logE) =

p∧
Ω1
X/Y (logE)

for every p. An f−1OY -differential d : Ω
p
X/Y (logE) → Ωp+1

X/Y (logE) can be uniquely defined

by the commutative diagram

Ωp
X(logE) −−−→ Ωp

X/Y (logE)

d

y yd
Ωp+1
X (logE) −−−→ Ωp+1

X/Y (logE),

where the horizontal arrows are the canonical surjections induced from the surjection
Ω1
X(logE) → Ω1

X/Y (logE). Thus we obtain a complex of f−1OY -modules ΩX/Y (logE),
which is called the relative log de Rham complex of f .

Lemma 3.3. Let f : X → Y be a proper surjective morphism from a Kähler manifold X
to a smooth complex variety Y . Assume that there exists a smooth divisor Σ on Y such
that

(3.12.1) f is smooth over Y ∗ = Y \ Σ,
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(3.12.2) E = (f ∗Σ)red is a simple normal crossing divisor on X having finitely many
irreducible components, and

(3.12.3) Ω1
X/Y (logE) is a locally free OX-module of finite rank.

Then we have

Rkf∗ΩX/Y (logE) ≃ l(Rkf∗ΩX/Y (logE)|Y ∗) ≃ l(OY ∗ ⊗ (Rkf∗CX)|Y ∗)

for all k, where l(·) stands for the lower canonical extension as before. In particu-
lar, Rkf∗ΩX/Y (logE) is a locally free OY -module of finite rank for all k. Moreover,
Rkf∗Ω

p
X/Y (logE) is also a locally free OY -module of finite rank, and the stupid filtration

(filtration bête in [D1, (1.4.7)]) F on ΩX/Y (logE) induces the natural exact sequence

(3.13) 0 → Rkf∗F
p+1ΩX/Y (logE) → Rkf∗F

pΩX/Y (logE) → Rkf∗Ω
p
X/Y (logE) → 0

for all k, p.

Proof. We may assume Y = ∆k with the coordinates t1, . . . , tk and Σ = {t1 = 0}. For
any x ∈ E, we can take local coordinates x1, . . . , xn centered at x on X with

f ∗t1 = xa11 · · · xall
for some a1, . . . , al ∈ Z>0 by (3.12.2). We set fi = f ∗ti for i = 2, . . . , k. On the other
hand, we have the canonical exact sequence

(3.14) 0 → f ∗Ω1
Y (log Σ)x ⊗ C(x) → Ω1

X(logE)x ⊗ C(x) → Ω1
X/Y (logE)x ⊗ C(x) → 0,

where C(x) denotes the residue field at x, because Ω1
X/Y (logE) is a locally free OX-module

of rank dimX − dimY by (3.12.1) and (3.12.3). Under the isomorphisms

Ω1
Y (log Σ) ≃ OY

dt1
t1

⊕ (
k⊕
i=2

OY dti),

Ω1
X(logE) ≃ (

l⊕
i=1

OX
dxi
xi

)⊕ (
n⊕

i=l+1

OXdxi)

the morphism f ∗Ω1
Y (log Σ)x ⊗ C(x) → Ω1

X(logE)x ⊗ C(x) is represented by the matrix

(3.15)


a1 . . . al 0 . . . 0
0 . . . 0
...

. . .
...

∂fi
∂xj

(0)

0 . . . 0


where i and j run through 2, . . . , k and l + 1, . . . , n respectively. The exactness of (3.14)
implies that the matrix (3.15) is of rank k, and then we may assume

rank

(
∂fi
∂xj

(0)

)
2≤i≤k,l+1≤j≤l+k−1

= k − 1

by changing the order of xl+1, . . . , xn. Replacing xl+1, . . . , xl+k−1 by f2, . . . , fk, we obtain
a new local coordinates (x1, . . . , xn) at x, under which the morphism f is given in the
form

(3.16) t1 = xa11 · · ·xall , t2 = xl+1, . . . , tk = xl+k−1
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around x. We set fs : Xs → ∆ = ∆× {s} by the Cartesian square

Xs −−−→ X

fs

y yf
∆ −−−→ Y

for any s = (t2, . . . , tk) ∈ ∆k−1. Then Xs is smooth, fs is smooth over ∆∗ = ∆ \ {0}
and Supp f−1

s (0) is a simple normal crossing divisor on Xs by the local description (3.16).
Hence Rk(fs)∗ΩXs/∆(log(E∩Xs)) and R

k(fs)∗Ω
p
Xs/∆

(log(E∩Xs)) are locally free of finite

rank for every k, p by [St1, (2.18) Theorem] and by [St2, (2.11) Theorem]. Therefore
Rkf∗ΩX/Y (logE) and R

kf∗Ω
p
X/Y (logE) are locally free OY -modules of finite rank for all

k, p by the base change theorem. Once we know that Rkf∗ΩX/Y (logE) is locally free, it is
the lower canonical extension of its restriction to Y ∗ = Y \Σ by [St1, (2.20) Proposition].
Next, we consider the spectral sequence

(3.17) Ep,q
r (Rf∗ΩX/Y (logE), F ) ⇒ Ep+q(Rf∗ΩX/Y (logE)) = Rp+qf∗ΩX/Y (logE)

and denote the morphism of Er-terms by

dp,qr : Ep,q
r (Rf∗ΩX/Y (logE), F ) → Ep+r,q−r+1

r (Rf∗ΩX/Y (logE), F )

for a while. Then dp,qr |Y ∗ = 0 for all p, q and r ≥ 1 because the restriction of this spectral
sequence to Y ∗ degenerates at E1-terms. Since

Ep,q
1 (Rf∗ΩX/Y (logE), F ) ≃ Rqf∗Ω

p
X/Y (logE)

is a locally free OY -module of finite rank for all p, q, we have dp,q1 = 0 for all p, q by Lemma
3.1. This implies that

Ep,q
2 (Rf∗ΩX/Y (logE), F ) ≃ Ep,q

1 (Rf∗ΩX/Y (logE), F )

is locally free for all p, q and that dp,q2 = 0 for all p, q by Lemma 3.1 again. Inductively,
we obtain dp,qr = 0 for all p, q and r ≥ 1. Thus the spectral sequence (3.17) degenerates
at E1-terms, or equivalently, (3.13) is exact. □
Remark 3.4. In [St2], fs is assumed to be a projective morphism. However, we can
check that the proof of (2.11) Theorem in [St2] is also valid to a proper morphism from
a Kähler manifold by using results in [PS, I.2.5 Almost Kähler V -manifolds]. See also
Theorem 6.9 below.

Corollary 3.5. In the situation of Lemma 3.3, we have the canonical isomorphisms

Rkf∗F
pΩX/Y (logE) ≃ F pRkf∗ΩX/Y (logE),

Rkf∗Ω
p
X/Y (logE) ≃ GrpF R

kf∗ΩX/Y (logE)

for all k, p. In particular, F pRkf∗ΩX/Y (logE) is a subbundle of Rkf∗ΩX/Y (logE).

Lemma 3.6. Let f : X → Y be a proper surjective morphism between smooth complex
varieties. Assume that there exists a smooth divisor Σ such that

• f is smooth over Y ∗ = Y \ Σ, and
• E = (f ∗Σ)red is a simple normal crossing divisor on X having finitely many irre-
ducible components.

Then there exists a closed analytic subset Σ0 ⊂ Σ with dimΣ0 ≤ dimY − 2, such that
Ω1
X/Y (logE) is locally free on f−1(Y \ Σ0).
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Proof. We may assume that Σ is irreducible. Let E =
∑N

i=1Ei be the irreducible decom-
position of E. For a nonempty subset I ⊂ {1, . . . , N}, we set EI =

∩
i∈I Ei, which is

a smooth closed subvariety of X. If f(EI) ̸= Σ, we set ΣI = f(EI), which is a closed
analytic subset of Σ. If f(EI) = Σ, then there exists a closed analytic subset ΣI ⊊ Σ such
that f |EI

: EI → Σ is smooth over Σ \ΣI . We are going to check that the closed analytic
subset

Σ0 :=
∪

∅≠I⊂{1,...,N}

ΣI

satisfies the desired property. We have Σ0 ̸= Σ, by definition. Therefore dimΣ0 ≤
dimY − 2 because Σ is irreducible. Then, it suffices to prove that Ω1

X/Y (logE) is locally

free on f−1(Y \Σ0). A point x ∈ E∩f−1(Y \Σ0) defines a nonempty subset I ⊂ {1, . . . , l}
by I = {i | x ∈ Ei}. Then x ∈ EI and f(EI) = Σ. Take local coordinates x1, . . . , xn
and t1, . . . , tk centered at x and f(x) on X and Y respectively, satisfying the following
conditions:

• Σ = {t1 = 0} on Y , and
• f ∗t1 = xa11 · · ·xall for some a1, . . . , al ∈ Z>0.

We set fi = f ∗ti for i = 2, . . . , k. Then EI = {x1 = · · · = xl = 0} and the morphism
(f |EI

)∗Ω1
Σ → Ω1

EI
is represented by the matrix(

∂fi
∂xj

(0, . . . , 0, xl+1, . . . , xn)

)
2≤i≤k,l+1≤j≤n

via the isomorphisms (f |EI
)∗Ω1

Σ ≃
⊕k

j=2 OEI
f ∗dtj and Ω1

EI
≃

⊕n
i=l+1OEI

dxi. Since

x ∈ f−1(Σ \ ΣI), the morphism f |EI
is smooth at x. Then

rank

(
∂fi
∂xj

(0)

)
2≤i≤k,l+1≤j≤n

= k − 1,

which implies that the matrix (3.15) in the proof of Lemma 3.3 is of rank k. Therefore
the canonical morphism f ∗Ω1

Y (log Σ)x⊗C(x) → Ω1
X(logE)x⊗C(x) is injective, by which

we conclude that Ω1
X/Y (logE) is locally free around x. □

3.7. For the moment, we assume that there exist another semisimplicial variety Z• and
a morphism of semisimplicial varieties σ : Z• → (X,D)• satisfying the conditions

• Zn is smooth and Kähler,
• σn : Zn → (X,D)n is a projective surjective morphism,
• for gn := fnσn = fεnσn : Zn → Y , the divisor En := (g∗nΣ)red is a simple normal
crossing divisor on Zn having finitely many irreducible components, and

• σn : Zn → (X,D)n is isomorphic over Y ∗

for every n ∈ Z≥0. We obtain an augmentation η : Z• → X by setting η = εσ. The relative
log de Rham complex of Zn over Y is denoted by ΩZn/Y (logEn). Then {ΩZn/Y (logEn)}n∈Z≥0

forms a complex on the semisimplicial variety Z•.
For an augmentation of a semisimplicial variety, we can define the direct image functor

as in [FF1, 4.1, 4.2] (for the detail, see e.g. [D2, 5.1, 5.2], [PS, 5.1.2]). The complex
Rε∗Ω(X,D)• is isomorphic to ε∗Ω(X,D)• defined in the proof of Theorem 1.1 (i) in the
derived category because εn : (X,D)n → X is a finite morphism for all n. On the other
hand, we obtain a complex Rη∗ΩZ•/Y (logE•) on X. Here, we briefly recall the definitions
of this complex, of the finite increasing filtration L, and of the finite decreasing filtration F
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on it. First, the complex Rη∗ΩZ•/Y (logE•) is given as the total single complex associated
to the double complex

...
...y y

· · · −−−→ (R(ηp)∗ΩZp/Y (logEp))
q δ−−−→ (R(ηp+1)∗ΩZp+1/Y (logEp+1))

q −−−→ · · ·

(−1)pd

y y(−1)p+1d

· · · −−−→ (R(ηp)∗ΩZp/Y (logEp))
q+1 δ−−−→ (R(ηp+1)∗ΩZp+1/Y (logEp+1))

q+1 −−−→ · · ·y y
...

...

that is,

(Rη∗ΩZ•/Y (logE•))
n =

⊕
p

(R(ηp)∗ΩZp/Y (logEp))
n−p,

where R(ηp)∗ΩZp/Y (logEp) is regarded as a genuine complex on X by using the Godement
resolutions (cf. [FF1, 4.1]). The filtrations L and F are defined by

Lm(Rη∗ΩZ•/Y (logE•))
n =

⊕
p≥−m

(R(ηp)∗ΩZp/Y (logEp))
n−p,

F r(Rη∗ΩZ•/Y (logE•))
n =

⊕
p

F r(R(ηp)∗ΩZp/Y (logEp))
n−p

for all m,n, r. Therefore we have

(3.18) (GrLmRη∗ΩZ•/Y (logE•), F ) ≃ (R(η−m)∗ΩZ−m/Y (logE−m)[m], F )

in the derived category. Similarly, we have a filtered complex (Rη∗RZ• , L) on X. The
composite of the canonical morphisms RZ• → CZ• → ΩZ•/Y (logE•) induces a morphism
of filtered complexes (Rη∗RZ• , L) → (Rη∗ΩZ•/Y (logE•), L), which is denoted by ι.
From the morphism σ : Z• → (X,D)•, we obtain a morphism of bifiltered complexes

(ε∗Ω(X,D)•/Y , L, F ) → (Rη∗ΩZ•/Y (logE•), L, F ),

which induces a morphism

GrLmGr0F ε∗Ω(X,D)•/Y ≃ (ε−m)∗O(X,D)−m

→ R(η−m)∗OZ−m ≃ GrLmGr0F Rη∗ΩZ•/Y (logE•)
(3.19)

for all m. Because σn induces the isomorphism O(X,D)n
≃−→ R(σn)∗OZn for all n, we have

the isomorphisms

(ε−m)∗O(X,D)−m ≃ R(ε−m)∗O(X,D)−m ≃ R(ε−m)∗R(σ−m)∗OZ−m ≃ R(η−m)∗OZ−m

for all m. Therefore the morphism (3.19) is an isomorphism for all m in the derived
category, which implies

(3.20) (Gr0F ε∗Ω(X,D)•/Y , L) ≃ (Gr0F Rη∗ΩZ•/Y (logE•), L)

in the filtered derived category.

Now, we complete the proof of Theorem 1.1.



18 OSAMU FUJINO AND TARO FUJISAWA

Proof of Theorem 1.1 (ii)–(iv). First, we prove (ii). The uniqueness of the filtration F on
lVkY ∗ follows from [FF1, Corollary 5.2]. Therefore we may work locally on Y . Then after
shrinking Y to a relatively compact open subset, we can take Z• and σ• : Z• → (X,D)•
in 3.7 by the theorem of resolution of singularities (see [BM, Section 13]). By Lemma 3.6,
there exists a closed analytic subset Σ0 ⊂ Σ with dimΣ0 ≤ dimY − 2 such that Σ \Σ0 is
a smooth divisor in Y \Σ0, and that Ω1

Zn/Y
(logEn) is locally free over g−1

n (Y \Σ0) for all

n ∈ Z≥0. By setting Y0 := Y \ Σ0, we trivially have Y ∗ ⊂ Y0 ⊂ Y .
Now we set

K(log) = Rf∗Rη∗ΩZ•/Y (logE•)

equipped with the induced filtrations L and F . Then we have

(3.21) (K(log), L, F )|Y ∗ ≃ (KO, L, F )|Y ∗

because σ• is isomorphic over Y ∗. We consider the spectral sequence

Ep,q
r (K(log), L) ⇒ Ep+q(K(log), L)

equipped with the inductive filtration F on Ep,q
r (K(log), L) and denote the morphisms of

Er-terms by dp,qr (K(log), L). Then dp,qr (K(log), L)|Y ∗ = 0 for all p, q and r ≥ 2 by (3.21)
and (3.3.2).

By the exactness of (3.13) over Y0, the morphism dp,q0 (K(log), L)|Y0 is strictly compatible
with the filtration F on Ep,q

0 (K(log), L)|Y0 for all p, q. We have

(Ep,q
1 (K(log), L), F ) ≃ (Rq(gp)∗ΩZp/Y (logEp), F )

by (3.18), and then

(Ep,q
1 (K(log), L), F )|Y0 ≃ (lEp,q

1 (K(log), L)|Y ∗ , F )|Y0 ≃ (lEp,q
1 (KO, L)|Y ∗ , F )|Y0

by (3.21), Lemma 3.3, and the uniqueness of the filtrations in [FF1, Corollary 5.2]. Under
these isomorphisms,

dp,q1 (K(log), L)|Y0 = (ldp,q1 )|Y0
by Lemma 3.1 because

dp,q1 (K(log), L)|Y ∗ = dp,q1 (KO, L)|Y ∗ = (ldp,q1 )|Y ∗

by (3.21). Therefore dp,q1 (K(log), L)|Y0 is strictly compatible with F and

(3.22) (Ep,q
2 (K(log), L), F )|Y0 ≃ (lEp,q

2 (KO, L)|Y ∗ , F )|Y0
for all p, q by the decomposition (3.9). Because dp,qr (K(log), L)|Y ∗ = 0 for r ≥ 2, we
obtain dp,qr (K(log), L)|Y0 = 0 for r ≥ 2 inductively by using Lemma 3.1 as before. Thus
dp,qr (K(log), L)|Y0 is strictly compatible with F for all r ≥ 0. Then the lemma on two
filtrations (see e.g. [D2, 7.2], [PS, Theorem 3.12]) implies

(Ep,q
2 (K(log), L), F )|Y0 ≃ (GrL−pH

p+q(K(log)), F )|Y0(3.23)

Hk(GrrF K(log))|Y0 ≃ GrrF H
k(K(log))|Y0(3.24)

for all k, p, q, r. Hence GrpF GrLmH
k(K(log))|Y0 is a locally free OY0-module of fintie rank

and GrLmH
k(K(log))|Y0 is the lower canonical extension of

GrLmH
k(K(log))|Y ∗ ≃ GrLmH

k(KO)|Y ∗ ≃ GrLm VkY ∗
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for all k,m, p by (3.22) and (3.23). Therefore Hk(K(log))|Y0 is the lower canonical exten-
sion of

Hk(K(log))|Y ∗ ≃ Hk(KO)|Y ∗ ≃ VkY ∗

for all k. Thus we obtain

(3.25) (Hk(K(log)), L)|Y0 ≃ (lVkY ∗ , L)|Y0
as filtered OY0-modules by the uniqueness of the lower canonical extensions and of the
filtrations by subbundles. Via the isomorphism above, we obtain a filtration F on lVkY ∗|Y0
satisfying the two conditions in Theorem 1.1 (ii) on Y0. Then Lemma 1.11.2 in [Ka]
together with Schmid’s nilpotent orbit theorem (see [Sc, (4.12)]) for each GrLm VkY ∗ implies
the conclusion of Theorem 1.1 (ii) on the whole Y .

Next, we will prove (iii). We return to the spectral sequence (3.5). As already mentioned
in the proof of Theorem 1.3, Ep,q

2 (Gr0F KO, L) is a locally free OY -module of finite rank
for all p, q. Because the spectral sequence (3.5) degenerate at E2-terms by Theorem 1.3,
we have

GrLmR
kf∗OX(−D) ≃ E−m,k+m

∞ (Gr0F KO, L) ≃ E−m,k+m
2 (Gr0F KO, L)

for all m, k. Thus GrLmR
kf∗OX(−D) is locally free of finite rank for all k,m, and then so

is Rkf∗OX(−D). Now it suffices to prove that the isomorphism (3.4) can be extended to
an isomorphism

(3.26) Gr0F (
lVkY ∗) ≃ Rkf∗OX(−D)

for every k. The extension above is unique by Lemma 3.1 because Gr0F (
lVkY ∗) is also a

locally free OY -module of finite rank by Theorem 1.1 (ii). Therefore we may work in the
situation 3.7 as above. Then we already have the isomorphisms

(3.27) Gr0F (
lVkY ∗)|Y0 ≃ Gr0F H

k(K(log))|Y0 ≃ Hk(Gr0F K(log))|Y0
by (3.24) and (3.25). On the other hand,

(3.28) Gr0F K(log) ≃ Rf∗Gr0F Rη∗ΩZ•/Y (logE•) ≃ Rf∗Gr0F ε∗Ω(X,D)•/Y ≃ Gr0F KO

by (3.20). Therefore we have

(3.29) Gr0F (
lVkY ∗)|Y0 ≃ Rkf∗OX(−D)|Y0

by (3.27), (3.28) and (3.1.2), which gives an extension of the isomorphism (3.4) over Y0.
Then the isomorphism (3.29) can be extended to the desired isomorphism (3.26) on the
whole Y because dimΣ0 ≤ dimY − 2 and because the both sides of (3.26) are locally free
of finite rank on Y .

By Grothendieck duality (see [RRV]), we obtain (iv) from (iii). □

The following theorem is an easy consequence of the proof of Theorem 1.3. We will use
it in the proof of Theorem 1.4.

Theorem 3.8. In Theorem 1.1, for every i, there exists a finite filtration of locally free
sheaves

0 = E i0 ⊂ E i1 ⊂ · · · ⊂ E ili = Rif∗ωX/Y (D)

such that

E ij+1/E ij
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is isomorphic to a direct summand of⊕
finite

Rαf∗ωSβ/Y ,

where α is a nonnegative integer and Sβ is a stratum of (X,D), for every j.

Proof. By Theorem 1.3, there exists a finite filtration of locally free sheaves

0 = Fd−i
0 ⊂ Fd−i

1 ⊂ · · · ⊂ Fd−i
li

= Rd−if∗OX(−D)

such that

Fd−i
j+1/Fd−i

j

is isomorphic to a direct summand of⊕
finite

Rd−if∗OSβ
,

where Sβ is a stratum of (X,D), for every j. We put

E ij := HomOY
(OY /Fd−i

li−j,OY )

for every j. Then, by Grothendieck duality (see [RRV]), we obtain a desired filtration of
Rif∗ωX/Y (D). □
We close this section with the proof of Theorem 1.2.

Proof of Theorem 1.2. This theorem is obvious by Theorem 1.1 (iv) and the Fujita–
Zucker–Kawamata semipositivity theorem. For the details of the Fujita–Zucker–Kawamata
semipositivity theorem, see, for example, [FF1, Section 5], [FFS, Corollary 2], [FF2], and
so on. □
We note that Theorems 1.1 and 1.2 have already played a crucial role when f : (X,D) →

Y is algebraic. We recommend that the interested reader looks at [Fn4], [Fn5], [Fn6],
[Fn7], [FFL], [FH], and so on.

4. Proof of Theorem 1.4

In this section, we will prove Theorem 1.4 by using Theorem 3.8. In Section 5, we will
see that Theorem 1.6 follows from Theorem 1.4.

Proof of Theorem 1.4. In Step 1 and Step 2, we will prove (i) and (ii), respectively.

Step 1. In this step, we will prove (i).
We take an arbitrary point P ∈ Y . It is sufficient to prove (i) around P . By Lemma

2.8, we may assume that (X,D) is an analytic globally embedded simple normal crossing
pair and that there exists the following commutative diagram:

X

f

��

� � // M

qM

��
Y � �

ιY
// ∆m,

where M is the ambient space of (X,D), such that qM is projective and ιY (P ) = 0 ∈ ∆m.
By taking a suitable resolution of singularities of Y (see [BM, Sections 12 and 13]), there
exist a projective bimeromorphic morphism ψ : Y ′ → Y from a smooth complex variety
Y ′ and a simple normal crossing divisor Σ′ on Y ′ such that every stratum of (X,D) is
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smooth over Y \ ψ(Σ′). Then, by taking a suitable resolution of singularities of M (see
[BM, Sections 12 and 13]) and applying Lemma 2.7, we may assume that

f ′ : X
f−→ Y

ψ−1

99K Y ′

is a projective morphism. Hence we have the following commutative diagram:

X

f ′

��

X

f

��
Y ′

ψ
// Y

such that every stratum of (X,D) is smooth over Y ′ \Σ′. By Theorem 3.8, Rqf ′
∗ωX/Y ′(D)

is locally free and has a finite filtration as in Theorem 3.8. By Lemma 2.11, we see that
Rqf∗ωX(D) = ψ∗R

qf ′
∗ωX(D) is torsion-free. This is what we wanted.

Step 2. In this step, we will prove (ii).
We take an arbitrary point P ∈ Z. It is sufficient to prove (ii) around P . As in Step 1,

after shrinking Z suitably, by Lemma 2.8, a suitable resolution of singularities (see [BM,
Sections 12 and 13]), and Lemma 2.7, we may assume that there exists the following
commutative diagram:

X

f ′

��

X

f

��

� � // M

qM

��

Y ′
ψ

// Y

π

��
Z � �

ιZ
// ∆m

such that ιZ(P ) = 0 ∈ ∆m. By Theorem 3.8 and Lemma 2.11, we can reduce the problem
to the case where X is smooth and D = 0. In that case, the desired vanishing theorem
follows from Theorem 2.10.

We finish the proof of Theorem 1.4. □

Remark 4.1. By the above proof, we see that Theorem 1.4 (ii) holds under a weaker
assumption that A is π-nef and π-big over Z (see Theorem 2.10).

5. Proof of Theorem 1.6

In this section, we will prove Theorem 1.6 by using Theorem 1.4. As we mentioned
before, Theorem 1.6 (iii) is an easy consequence of Theorem 1.6 (i) and (ii).

Proof of Theorem 1.6. In Step 1, we will prove Theorem 1.6 (i). Then, in Steps 2 and 3,
we will prove Theorem 1.6 (ii) and (iii), respectively.

Step 1. In this step, we will prove Theorem 1.6 (i).
By replacing Y with f(X), we may assume that f(X) = Y . Let P ∈ Y be an arbitrary

point. It is sufficient to prove the statement after shrinking Y around P suitably. By
Lemma 2.8, we may assume that (X,D) is an analytic globally embedded simple normal
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crossing pair and that there exists the following commutative diagram:

X

f

��

� � // M

qM

��
Y � �

ιY
// ∆m,

where M is the ambient space of (X,D), such that qM is projective and ιY (P ) = 0 ∈ ∆m.
By using Lemma 2.9 finitely many times, we can decompose X = X ′ +X ′′ as follows: X ′

is the union of all strata of (X,D) that are not mapped onto irreducible components of
Y = f(X) and X ′′ = X −X ′. We put

KX′ +DX′ := (KX +D)|X′

and

KX′′ +DX′′ := (KX +D)|X′′ −X ′|X′′ .

We note that (X ′′, DX′′) is an analytic globally embedded simple normal crossing pair
such that DX′′ is reduced and that every stratum of (X ′′, DX′′) is mapped onto some
irreducible component of Y . We consider the following short exact sequence:

0 → OX′′(KX′′ +DX′′) → OX(KX +D) → OX′(KX′ +DX′) → 0.

By Theorem 1.4 (i), every associated subvariety of Rqf∗OX′′(KX′′ +DX′′) is an irreducible
component of Y for every q. Note that every associated subvariety of Rqf∗OX′(KX′+DX′)
is contained in f(X ′) for every q. Thus, the connecting homomorphisms

δ : Rqf∗OX′(KX′ +DX′) → Rq+1f∗OX′′(KX′′ +DX′′)

are zero for all q. Hence we obtain the following short exact sequence

(5.1) 0 → Rqf∗OX′′(KX′′ +DX′′) → Rqf∗OX(KX +D) → Rqf∗OX′(KX′ +DX′) → 0

for every q. By induction on dim f(X), every associated subvariety of Rqf∗OX′(KX′+DX′)
is the f -image of some stratum of (X ′, DX′) for every q. Therefore, every associated
subvariety of Rqf∗OX(KX +D) is the f -image of some stratum of (X,D) for every q by
(5.1).

Step 2. In this step, we will prove Theorem 1.6 (ii).
We may assume that f(X) = Y and π ◦f(X) = Z. Let P ∈ Z be an arbitrary point. It

is sufficient to prove the desired vanishing theorem after shrinking Z around P suitably.
As in Step 1, by Lemma 2.8, we have the following commutative diagram:

X

π◦f
��

� � // M

qM

��
Z � �

ιZ
// ∆m,

where M is the ambient space of (X,D), such that qM is projective and ιZ(P ) = 0 ∈ ∆m.
By the same argument as in Step 1, we obtain

0 → Rqf∗OX′′(KX′′ +DX′′) → Rqf∗OX(KX +D) → Rqf∗OX′(KX′ +DX′) → 0

for every q. By applying Theorem 1.4 (ii) to every connected component of X ′′, we see
that

Rpπ∗ (A⊗Rqf∗OX′′(KX′′ +DX′′)) = 0
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holds for every p > 0. By induction on dim f(X), we obtain

Rpπ∗ (A⊗Rqf∗OX′(KX′ +DX′)) = 0

for every p > 0. This implies

Rpπ∗ (A⊗Rqf∗OX(KX +D)) = 0

for every p > 0. This is what we wanted.

Step 3. In this step, we will prove Theorem 1.6 (iii).
Since we have already proved the strict support condition (see (i)) and the vanishing

theorem (see (ii)) in Steps 1 and 2, respectively, the proof of [Fn9, Theorem 3.1 (iii)]
works. Hence we obtain the desired injectivity in (iii).

We finish the proof of Theorem 1.6. □
Remark 5.1. Theorem 1.6 (ii) holds under a weaker assumption that A is nef and log
big over Z with respect to f : (X,D) → Y . We can easily check it by the above proof
of Theorem 1.6 (ii) and Remark 4.1. We do not discuss the details here because we have
already known a more general statement, that is, the vanishing theorem of Reid–Fukuda
type (see Theorem 1.8).

6. Supplement to [St2]

In this section, we give a remark on the construction of the cohomological Q-mixed
Hodge complex ((AQ,W ), (AC,W, F )) in [St2, p.536]. More precisely, we will present a
new construction of (AQ,W ) here. In the context of log geometry, such a construction is
originated in [St3] and used in other articles (e.g. [FN], [Fs2] and so on). For the case
of a semistable reduction, a new construction of (AQ,W ), which is similar to [St3], is
given in [PS, 11.2.6 The Rational Structure]. (For the case of a semistable morphism over
the polydisc, see e.g. [Fs1].) Here we will see that the construction in [Fs2] works in the
situation of [St2].

6.1. Let f : X → ∆ be a proper surjective morphism from a smooth complex variety X
to the unit disc ∆ satisfying the conditions

• f is smooth over ∆∗ = ∆ \ {0}, and
• Supp f−1(0) is a simple normal crossing divisor on X

as in [St2, (2.1) Notations]. Note that f−1(0) is not assumed to be reduced. We fix
N ∈ Z>0, which is a multiple of all the multiplicities of the irreducible components of

Supp f−1(0), and consider the morphism σ : ∆ → ∆ given by σ(t) = tN . We define X̃, π

and f̃ by the commutative diagram

X̃
ν

##H
HH

HH
HH

HH
H π

%%

f̃

��

X ×∆ ∆ //

��

X

f

��
∆ σ

// ∆

where ν is the normalization. We set E = Supp f̃−1(0), which is an effective Cartier

divisor on X̃. The irreducible decomposition of E is written in E =
∪l
i=1Ei. The closed

immersion Ei ↪→ X̃ is denoted by ai.
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6.2. We recall the local description of X̃ and f̃ given in the proof of [St2, (2.2) Lemma].

For any point of X̃, there exist an open neighborhood Ũ in X̃, d1, . . . , dk ∈ Z>0 with

gcd(d1, . . . , dk) = 1, and e ∈ Z>0 ∩ (
∩k
i=1 diZ) with N ∈ eZ such that Ũ and f̃ |Ũ are de-

scribed by using d1, . . . , dk, e as follows. By setting ci := e/di ∈ Z>0 and G :=
⊕k

i=1 Z/ciZ,
the kernel of the morphism

G =
k⊕
i=1

Z/ciZ ∋ (b1, . . . , bk) 7→
k∑
i=1

dibi ∈ Z/eZ

is denoted by H. The finite abelian group G acts on the polydisc ∆n by

(b1, . . . , bk) · yi =

{
exp(2π

√
−1bi/ci)yi for 1 ≤ i ≤ k

yi for k + 1 ≤ i ≤ n,

where (y1, . . . , yn) is the coordinate of ∆n. Then Ũ ≃ ∆n/H and f̃ ∗t = y1 · · · yk, where
t is the coordinate of ∆. Note that y1 · · · yk is H-invariant. Moreover, U = π(Ũ) is
an open subset of X, and we also have U ≃ ∆n/G and f ∗t = (y1 · · · yk)N . Here
we note that (y1 · · · yk)N is G-invariant because N ∈ eZ. The G-invariant functions
yc11 , . . . , y

ck
k , yk+1, . . . , yn give us a coordinate on U .

From the local description above, X̃ is trivially a V -manifold. We can easily see that
Ei is a reduced Cartier divisor on X \

∪
j ̸=iEj. Moreover, Ei is locally irreducible at any

point because π(Ei) is an irreducible component of Supp f−1(0) and because Supp f−1(0)
is a simple normal crossing divisor on X.

6.3. In the situation 6.1, the log structure on X̃ associated to the effective divisor E is
denoted by M, that is,

M := OX̃ ∩ j∗O∗
X̃\E

in j∗OX̃\E, where j denotes the open immersion X̃ \E ↪→ X̃. The abelian sheaf associated
to the monoid sheaf M is denoted by Mgp. By using the fact that Ei is locally irreducible,
a morphism of monoid sheaves M → (ai)∗NEi

can be defined by

(6.1) M = OX̃ ∩ j∗O∗
X̃\E ∋ a 7→ ordEi

(a) ∈ (ai)∗NEi

for any i, where ordEi
denotes the vanishing order of a holomorphic function on X̃ along

the divisor Ei. The direct sum of the morphisms (6.1) for all i induces a morphism

(6.2) Mgp →
l⊕

i=1

(ai)∗ZEi
,

which fits in an exact sequence

(6.3) 0 → O∗
X̃
→ Mgp →

l⊕
i=1

(ai)∗ZEi

by definition.

The following is a key lemma for the construction of (AQ,W ).
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Lemma 6.4. We obtain the exact sequence

0 → O∗
X̃
⊗Z Q → Mgp ⊗Z Q →

l⊕
i=1

(ai)∗QEi
→ 0

by tensoring Q to (6.3).

Proof. We may work in the local situation described in 6.2. Since ycii is H-invariant,

it gives us a holomorphic function on Ũ for i = 1, . . . , k. We may assume that Ei =

Supp{yci = 0} for 1 ≤ i ≤ k and Ei ∩ Ũ = ∅ for k + 1 ≤ i ≤ l by changing the

indices. Because Ei is the zero set of f̃ ∗t = y1 · · · yk on Ũ \
∪
j ̸=i(Ej ∩ Ũ), the image of

ycii ∈ M ⊂ Mgp by the morphism (6.2) is (0, . . . , 0, ci, 0 . . . , 0) ∈
⊕l

j=1(aj)∗ZEj
, where ci

is on the i-th entry. Thus we obtain the conclusion. □
6.5. We briefly recall the constructions of the Koszul complexes and related objects in
[Fs2]. For the detail, see [Fs2, Sections 1 and 2] (cf. [I], [St3] and so on).

A morphism of abelian sheaves e : OX̃ → Mgp is defined as the composite of the
exponential map

OX̃ ∋ a 7→ e2π
√
−1a ∈ O∗

X̃

and the inclusion O∗
X̃
↪→ Mgp. From the morphism e⊗ id : OX̃ ≃ OX̃ ⊗Q → Mgp ⊗Q,

1 ∈ Γ(X,Q) which is a global section of the kernel of e ⊗ id, and a subsheaf O∗
X̃
⊗ Q ⊂

Mgp ⊗Q, we obtain a complex of Q-sheaves on X̃

Kos(M) := Kos(e⊗ id;∞; 1)

equipped with a finite increasing filtration W := W (O∗
X̃
⊗Q) as in [Fs2, Definition 1.8].

By replacing Mgp by O∗
X̃
, we obtain a complex, denoted by Kos(O∗

X̃
), by the same way

as above. The global section f̃ ∗t ∈ Γ(X̃,M) defines a morphism of complexes

(f̃ ∗t)∧ : Kos(M) → Kos(M)[1],

which sends WmKos(M)n to Wm+1Kos(M)n+1 as in [Fs2, (1.11) and (1.12)].
On the other hand, we have a morphism of complexes of Q-sheaves

ψ : Kos(M) → Ω̃X̃(logE)

as in [Fs2, (2.4)], which preserves the filtration W on the both sides. Moreover, it can be
checked easily from the definition that the diagram

(6.4)

Kos(M)
ψ−−−→ Ω̃X̃(logE)

(f̃∗t)∧

y yθ∧
Kos(M)[1] −−−−−−→

(2π
√
−1)ψ

Ω̃X̃(logE)[1]

is commutative, where θ = f̃ ∗(dt/t) ∈ Ω̃1
X̃
(logE).

For Kos(M) and ψ above, we have the following lemmas.

Lemma 6.6. In the situation above, we set

E(k) =
⨿

1≤i1<···<ik≤l

Ei1 ∩ · · · ∩ Eik
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for k ∈ Z>0. Moreover, we set E(0) = X̃. The natural morphism E(k) → X̃ is denoted by
a(k) for k ∈ Z≥0. Then we have an isomorphism

(a(m))∗QE(m) [−m] ≃ GrWm Kos(M)

for all m ∈ Z.

Proof. We have an isomorphism

m∧
(Mgp ⊗Q/O∗

X̃
⊗Q)⊗Kos(O∗

X̃
)[−m] ≃ GrWm Kos(M)

by [Fs2, Proposition 1.10], and a quasi-isomorphism QX̃ → Kos(O∗
X̃
) by [Fs2, Corollary

1.15]. Therefore we obtain the conclusion by Lemma 6.4. □

Lemma 6.7. In the situation above, we have the commutative diagram

(6.5)

(a(m))∗QE(m) [−m]
(2π

√
−1)−mι−−−−−−−→ (a(m))∗Ω̃E(m) [−m]

≃
y y≃

GrWm Kos(M) −−−−→
GrWm ψ

GrWm Ω̃X̃(logE)

where ι is the natural morphism induced from the inclusion Q → OE(m), the left verti-
cal arrow is the isomorphism in Lemma 6.6, and the right vertical arrow is the residue
isomorphism in [St2, (1.18) Definition and (1.19) Lemma]. In particular, the morphism

Kos(M)⊗ C → Ω̃X̃(logE)

induced by ψ is a filtered quasi-isomorphism with respect to W on the both sides.

Proof. The commutativity of the diagram (6.5) can be checked by the direct computation
from the definition of ψ (cf. [Fs2, (2.4)]). Then the latter conclusion follows from [St2,
(1.9) Corollary]. □

Once we obtain these two lemmas, it is more or less clear that the construction, parallel
to AC in [St1, (4.14) and (4.17)] and [St2, (2.8)], works for AQ.

Definition 6.8. In the situation 6.1, a filtered complex of Q-sheaves (AQ,W ) on X̃ is
defined by

AnQ :=
⊕
q≥0

Kos(M)n+1/Wq Kos(M)n+1

WmA
n
Q :=

⊕
q≥0

Wm+2q+1Kos(M)n+1/Wq Kos(M)n+1

with the differential −d−(f̃ ∗t)∧, where d denotes the differential of the complex Kos(M).
The direct sum of the morphisms of Q-sheaves

(2π
√
−1)q+1ψ : Kos(M)n+1/Wq Kos(M)n+1 → Ω̃n+1

X̃
(logE)/WqΩ̃

n+1

X̃
(logE)

gives us a morphism of Q-sheaves

AnQ =
⊕
q≥0

Kos(M)n+1/Wq Kos(M)n+1 →
⊕
q≥0

Ω̃n+1

X̃
(logE)/WqΩ̃

n+1

X̃
(logE) = AnC
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which is compatible with the differentials by the commutativity of the diagram (6.4).
Thus we obtain a morphism of filtered complexes of Q-sheaves α : (AQ,W ) → (AC,W ).
The Hodge filtration F on AC is defined by

F pAnC :=
⊕

0≤q≤n−p

Ω̃n+1

X̃
(logE)/WqΩ̃

n+1

X̃
(logE)

as in [St1, (4.17)].

Theorem 6.9 (cf. [St2, (2.8)]). Let f : X → ∆ be as in 6.1. If we assume that X is
Kähler, then ((AQ,W ), (AC,W, F ), α) is a cohomological Q-mixed Hodge complex on E.

Proof. By Lemmas 6.6 and 6.7, (GrWm AQ, (GrWm AC, F ),GrWm α) is identified with the direct
sum of the direct images of

(Q(−m− q)[−m− 2q], (Ω̃E(m+2q+1) [−m− 2q], F [−m− q]))

by the finite morphism a(m+2q+1) for all q ≥ max(0,−m). Since X̃ is an almost Kähler V -
manifold as in [PS, I.2.5] by the assumption for X being Kähler, we obtain the conclusion
by Theorem 2.43 of [PS]. □
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