
Direct images of relative pluricanonical bundles

Osamu Fujino

Abstract

We discuss the local freeness and the numerical semipositivity of direct images of rel-
ative pluricanonical bundles for surjective morphisms between smooth projective va-
rieties with connected fibers. We give a desirable semipositivity theorem under the
assumption that the geometric generic fiber has a good minimal model.

1. Introduction

By Griffiths’s theory of variations of Hodge structure (see [Gri70]), we have:

Theorem 1.1 (Griffiths). Let f : X → Y be a smooth morphism between smooth projective
varieties. Then f∗ωX/Y is a nef locally free sheaf.

Before we go further, let us recall the definition of nef (numerically semipositive) locally free
sheaves.

Definition 1.2 (Nef locally free sheaves). Let E be a locally free sheaf of finite rank on a
complete algebraic variety V . Then E is called nef if E = 0 or OPV (E)(1) is nef on PV (E). A nef
locally free sheaf E was originally called a (numerically) semipositive locally free sheaf in the
literature.

Precisely speaking, Griffiths proved that f∗ωX/Y is semipositive in the sense of Griffiths and
his result is sharper than Theorem 1.1. Moreover, Berndtsson proved that f∗ωX/Y is semipositive
in the sense of Nakano by L2 method (see [Ber09, Theorem 1.2]). Unfortunately, Theorem 1.1 is
not so useful for various geometric applications since we need the smoothness of f . In [Kaw81],
Kawamata proved Theorem 1.3, which is a natural generalization of Theorem 1.1, by using the
theory of variations of Hodge structure (see [Kaw81, Theorem 5]).

Theorem 1.3 (Fujita, Zucker, Kawamata, · · · ). Let f : X → Y be a surjective morphism
between smooth projective varieties with connected fibers. Then there exists a generically finite
morphism τ : Y ′ → Y from a smooth projective variety Y ′ with the following property. Let X ′

be any resolution of the main component of X ×Y Y
′. Then f ′∗ωX′/Y ′ is a nef locally free sheaf,

where f ′ : X ′ → X ×Y Y
′ → Y ′.
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For the details of Kawamata’s original approach and various generalizations, see [Fujin04,
Theorems 3.1, 3.4, and 3.9], [FF14, Theorem 1.1 and Theorem 1.3], and [FFS14, Corollary 2,
Theorem 2, and Theorem 3]. Theorem 1.3 has already played a crucial role in the study of
higher-dimensional algebraic varieties. For some geometric applications, we have to treat f∗ω

⊗m
X/Y

or f ′∗ω
⊗m
X′/Y ′ , where m is a positive integer. It is well known that Viehweg proved that f∗ω

⊗m
X/Y is

always weakly positive for every positive integerm in Theorem 1.3 (see [Vie83, Theorem III]). His
original proof of the weak positivity of f∗ω

⊗m
X/Y uses his mysterious covering trick and Theorem

1.3 (see [Vie83, § 5]).
By the way, Theorem 1.1 can be generalized as follows.

Theorem 1.4. Let f : X → Y be a smooth morphism between smooth projective varieties.
Then f∗ω

⊗m
X/Y is a nef locally free sheaf for every positive integer m.

We give a proof of Theorem 1.4 based on Siu’s invariance of plurigenera (see [Siu02, Corollary
0.2] and [Pău07, Theorem 1]) and the effective freeness in [PoS14] (see [PoS14, Theorem 1.4]).
Note that Siu’s invariance of plurigenera is not Hodge theoretic. It is a very clever application
of the Ohsawa–Takegoshi L2 extension theorem. We have no Hodge theoretic characterization of
f∗ω

⊗m
X/Y in Theorem 1.4 when m ⩾ 2. By Theorem 1.3 and Theorem 1.4, it is natural to consider:

Conjecture 1.5 (Semipositivity of direct images of relative pluricanonical bundles). Let f :
X → Y be a surjective morphism between smooth projective varieties with connected fibers.
Then there exists a generically finite morphism τ : Y ′ → Y from a smooth projective variety Y ′

with the following property. Let X ′ be any resolution of the main component of X ×Y Y
′ sitting

in the following commutative diagram:

X ′ //

f ′

��

X

f
��

Y ′
τ

// Y.

Then f ′∗ω
⊗m
X′/Y ′ is a nef locally free sheaf for every positive integer m.

Conjecture 1.5 can be seen as a correct formulation of Fujita’s very naive conjecture: [Fujit78,
Conjecture Wam]. Note that [Fujit78] contains 17 conjectures and that “Wa” means 13th in
[Fujit78].

The main purpose of this paper is to prove:

Theorem 1.6 (Main theorem). Let f : X → Y be a surjective morphism between smooth
projective varieties with connected fibers. Assume that the geometric generic fiber Xη of f :
X → Y has a good minimal model. Then there exists a generically finite morphism τ : Y ′ → Y
from a smooth projective variety Y ′ with the following property. Let X ′ be any resolution of the
main component of X ×Y Y

′ sitting in the following commutative diagram:

X ′ //

f ′

��

X

f
��

Y ′
τ

// Y.

Then f ′∗ω
⊗m
X′/Y ′ is a nef locally free sheaf for every positive integer m.
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We note that Xη has a good minimal model if dimXη − κ(Xη) ⩽ 3 (see [BCHM10], [Lai11],
and Theorem 3.8). In particular, Xη has a good minimal model if Xη is of general type. Theorem
1.6 reduces Conjecture 1.5 to the good minimal model conjecture for geometric generic fibers. Of
course, it is highly desirable to prove Conjecture 1.5 without any extra assumptions. Our proof
of Theorem 1.6 is geometric and does not use the theory of variations of Hodge structure. We do
not even use L2 methods in the proof of Theorem 1.6. Our proof of Theorem 1.6 in this paper is
minimal model theoretic. Anyway, Theorem 1.4 and Theorem 1.6 strongly support Conjecture
1.5.

Remark 1.7. If Y is a curve in Conjecture 1.5, then Kawamata proved that f∗ω
⊗m
X/Y is a nef

locally free sheaf for every positive integer m (see [Kaw82, Theorem 1]). We also note that
Viehweg’s weak positivity of f∗ω

⊗m
X/Y (see [Vie83, Theorem III]) implies that f∗ω

⊗m
X/Y is nef when

Y is a curve.

We sketch the proof of Theorem 1.6 for the reader’s convenience.

1.8 (Outline of the proof of Theorem 1.6). We take a weak semistable reduction f † : X† → Y ′ in
the sense of Abramovich–Karu. Then we take a good minimal model f̃ : X̃ → Y ′ of f † : X† → Y ′.
Let P be an arbitrary point of Y ′ and let C be a smooth curve on Y ′ such that P ∈ C and
that C = H1 ∩H2 ∩ · · · ∩HdimY ′−1, where Hi is a general very ample Cartier divisor for every
i. Then we can prove that X̃C = X̃ ×Y ′ C is a normal variety with only canonical singularities.
Therefore, we obtain that f̃ is flat and dimH0(X̃y,OX̃

(mK
X̃/Y ′)|X̃y

) is independent of y ∈ Y ′

for every positive integer m. This implies that f ′∗ω
⊗m
X′/Y ′ is locally free for every positive integer

m. Once we establish the local freeness of f ′∗ω
⊗m
X′/Y ′ , the nefness of f ′∗ω

⊗m
X′/Y ′ easily follows from

the effective freeness by Popa–Schnell and Viehweg’s fiber product trick. As explained above, a
key point of the proof of Theorem 1.6 is to construct a good minimal model f̃ : X̃ → Y ′ which
behaves well under the base change by C ↪→ Y ′. Our proof of Theorem 1.6 is not Hodge theoretic.

After the author circulated a preliminary version of this paper, Mihai Păun and Shigeharu
Takayama informed him of their new preprint [PăT14], where they prove various semipositivity
theorems by L2 methods. Their approach is completely different from ours. For the details, we
recommend the reader to see [PăT14] (see also Takayama’s more recent results in [Tak14]).

We summarize the contents of this paper. In Section 2, we collect some basic definitions and
results for the reader’s convenience. In Section 3, we discuss the relationship between relative
good minimal models and good minimal models of fibers. In Section 4, we prove the local freeness
of direct images of relative pluricanonical bundles in Theorem 1.6 after taking a weak semistable
reduction. In order to prove the local freeness, we take a relative good minimal model of the
weak semistable reduction. Therefore, we need the assumption that the geometric generic fiber
has a good minimal model. In Section 5, we prove the numerical semipositivity (nefness) in our
main theorem: Theorem 1.6. The proof is an easy application of the effective freeness obtained by
Popa–Schnell (see [PoS14, Theorem 1.4]) and Viehweg’s fiber product trick (see [Vie83, (3.4)]).

We will work over C, the complex number field, throughout this paper. We will freely use
the standard notations and results of the minimal model program as in [KM98], [Fujin11] and
[Fujin14b]. We recommend the reader to see [Mor87, § 5] and [Fujin05, Section 5] for the details
of Theorem 1.3 and various related topics.
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2. Preliminaries

In this section, we collect some basic notations and results for the reader’s convenience. For the
details, see [KM98], [Fujin11], and [Fujin14b].

2.1 (Dualizing sheaves and canonical divisors). Let X be a normal quasi-projective variety. Then
we put ωX = H− dimX(ω•

X), where ω
•
X is the dualizing complex of X, and call ωX the dualizing

sheaf of X. We put ωX ≃ OX(KX) and call KX the canonical divisor of X. Note that KX is
a well-defined Weil divisor on X up to the linear equivalence. Let f : X → Y be a morphism
between Gorenstein varieties. Then we put ωX/Y = ωX⊗f∗ω⊗−1

Y and call it the relative canonical
bundle of f : X → Y .

2.2 (Singularities of pairs). Let X be a normal variety and let ∆ be an effective Q-divisor on X
such that KX +∆ is Q-Cartier. Let f : Y → X be a resolution of singularities. We write

KY = f∗(KX +∆) +
∑
i

aiEi

and a(Ei, X,∆) = ai. Note that the discrepancy a(E,X,∆) ∈ Q can be defined for every prime
divisor E over X. If a(E,X,∆) > −1 for every exceptional divisor E over X, then (X,∆) is
called a plt pair. If a(E,X,∆) > −1 for every divisor E over X, then (X,∆) is called a klt pair.
In this paper, if ∆ = 0 and a(E,X, 0) ⩾ 0 for every divisor E over X, then we say that X has
only canonical singularities.

Remark 2.3. Although R-divisors play crucial roles in the recent developments of the minimal
model program, we do not use R-divisors in this paper.

We need the following lemma in the proof of the local freeness in the main theorem: Theorem
1.6.

Lemma 2.4. Let X be a normal variety with only canonical singularities. Then OX(mKX) is
Cohen–Macaulay for every integer m.

Proof. We note that X has only rational singularities when X is canonical. Let r be the smallest
positive integer such that rKX is Cartier. Since the problem is local, we may assume that
rKX ∼ 0 by shrinking X. If r = 1, then OX(mKX) ≃ OX for every integer m. In this case,
OX(mKX) is Cohen–Macaulay for every integer m since X has only rational singularities. From
now on, we assume that r ⩾ 2. Let π : X̃ → X be the index one cover. Then we have

π∗OX̃
(K

X̃
) ≃

r⊕
i=1

OX(iKX).

Since X̃ has only canonical singularities and K
X̃

is Cartier, O
X̃
(K

X̃
) is Cohen–Macaulay. Since

π is finite, OX(iKX) is Cohen–Macaulay for 1 ⩽ i ⩽ r. By rKX ∼ 0, we obtain that OX(mKX)
is Cohen–Macaulay for every integer m.

3. Relative good minimal models

In this section, we discuss the relationship between relative good minimal models and good
minimal models of fibers for the reader’s convenience. The results in this section are more or less
known to the experts although they were not stated explicitly in the literature.

Let us recall the definition of sufficiently general fibers.
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Definition 3.1 (Sufficiently general fibers). Let f : X → Y be a morphism between algebraic
varieties. Then a sufficiently general fiber F of f : X → Y means that F = f−1(y) where y is
any point contained in a countable intersection of Zariski dense open subsets of Y .

A sufficiently general fiber is sometimes called a very general fiber in the literature.

Definition 3.2 (Good minimal models). Let f : X → Y be a projective morphism between
normal quasi-projective varieties. Let ∆ be an effective Q-divisor on X such that (X,∆) is klt.
A pair (X ′,∆′) sitting in a diagram

X

f   @
@@

@@
@@

@
ϕ //_______ X ′

f ′~~}}
}}
}}
}}

Y

is called a minimal model of (X,∆) over Y if

(i) X ′ is Q-factorial,

(ii) f ′ is projective,

(iii) ϕ is birational and ϕ−1 has no exceptional divisors,

(iv) ϕ∗∆ = ∆′,

(v) KX′ +∆′ is f ′-nef, and

(vi) a(E,X,∆) < a(E,X ′,∆′) for every ϕ-exceptional divisor E ⊂ X.

Furthermore, if KX′+∆′ is f ′-semi-ample, then (X ′,∆′) is called a good minimal model of (X,∆)
over Y . When Y is a point, we usually omit “over Y ” in the above definitions. We sometimes
simply say that (X ′,∆′) is a relative (good) minimal model of (X,∆).

Although Theorem 3.3 holds for klt pairs, we state it for varieties with only canonical singu-
larities for simplicity. Theorem 3.3 is useful and sufficient for our application in this paper.

Theorem 3.3. Let f : X → Y be a projective surjective morphism from a normal quasi-
projective variety X with only canonical singularities to a normal quasi-projective variety Y
with connected fibers. Then the following conditions are equivalent.

(i) X has a good minimal model over Y .

(ii) Xη has a good minimal model, where Xη is the geometric generic fiber of f : X → Y .

(iii) F has a good minimal model, where F is a sufficiently general fiber of f : X → Y .

(iv) G has a good minimal model, where G is a general fiber of f : X → Y .

In order to understand Theorem 3.3, we give some supplementary results.

Theorem 3.4. Let (X,∆) be a projective klt pair such that ∆ is a Q-divisor. Then (X,∆) has a
good minimal model if and only if KX +∆ is pseudo-effective, equivalently, κσ(X,KX +∆) ⩾ 0,
and

κ(X,KX +∆) = κσ(X,KX +∆),

where κσ denotes Nakayama’s numerical Kodaira dimension and κ denotes Iitaka’s D-dimension.

Proof. For the proof, see [GL13, Theorem 4.3] or [DHP13, Remark 2.6].
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Corollary 3.5. Let V be a smooth projective variety and let V ′ be a normal projective variety
with only canonical singularities such that V is birationally equivalent to V ′. Then V has a good
minimal model if and only if V ′ has a good minimal model.

Proof. Note that κ(V,KV ) = κ(V ′,KV ′) and κσ(V,KV ) = κσ(V
′,KV ′) hold since V ′ has only

canonical singularities. Therefore, we see that κ(V,KV ) = κσ(V,KV ) if and only if κ(V ′,KV ′) =
κσ(V

′,KV ′). By Theorem 3.4, we have the desired statement.

Lemma 3.6. Let f : X → Y be a projective surjective morphism between normal varieties with
connected fibers and let ∆ be an effective Q-divisor on X such that (X,∆) is klt. Let Xη be the
geometric generic fiber of f : X → Y . We put ∆η = ∆|Xη . Then we have

κ(Xη,KXη +∆η) = κ(F,KF +∆|F )

and

κσ(Xη,KXη +∆η) = κσ(F,KF +∆|F )
where F is a sufficiently general fiber of f : X → Y .

Proof. This is obvious by the definitions of Iitaka’s D-dimension κ and Nakayama’s numerical
Kodaira dimension κσ. For the details, see [Nak04] and [Leh13].

By combining Theorem 3.4 with Lemma 3.6, we have:

Corollary 3.7. Let f : X → Y be a projective surjective morphism between normal varieties
and let ∆ be an effective Q-divisor on X such that (X,∆) is klt. Then (Xη,∆η) has a good
minimal model if and only if (F,∆|F ) has a good minimal model, where F is a sufficiently
general fiber of f : X → Y .

Proof. This statement is obvious by Theorem 3.4 and Lemma 3.6.

Let us give a proof of Theorem 3.3 for the reader’s convenience.

Proof of Theorem 3.3. We divide the proof into several steps.

Step 1 ((ii)⇐⇒(iii)). This step is a special case of Corollary 3.7.

Step 2 ((iv)=⇒(iii)). This is obvious since a sufficiently general fiber of f : X → Y is a general
fiber of f : X → Y .

Step 3 ((i)=⇒(iv)). We consider the following commutative diagram

X

f   @
@@

@@
@@

@
ϕ //_______ X ′

f ′~~}}
}}
}}
}}

Y

where f ′ : X ′ → Y is a good minimal model of X over Y . We take a general point y ∈ Y . Let us
consider the diagram

G

f ��?
??

??
??

?
ψ //______ G′

f ′��~~
~~
~~
~~

y
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where G = f−1(y), G′ = f ′−1(y), and ψ = ϕ|G. Since y ∈ Y is a general point, the above
diagram satisfies the conditions (ii), (iii), (iv), (v), and (vi) in Definition 3.2. Moreover, KG′ is
semi-ample because KX′ is f ′-semi-ample. If G′ is not Q-factorial, then we replace G′ with its
small projective Q-factorialization. Then G′ also satisfies the condition (i) in Definition 3.2 and
is a good minimal model of G.

Step 4 ((iii)=⇒(i)). This is a special case of [HX13, Theorem 2.12] (see also the proof of [Bir12,
Theorem 5.1]).

We have completed the proof of Theorem 3.3.

We close this section with a useful result, which follows from [Lai11, Theorem 4.4] (see also
[Bir12, Theorem 1.5] and [HX13, Theorem 2.12]).

Theorem 3.8. LetX be a smooth projective variety with non-negative Kodaira dimension. Then
X has a good minimal model if and only if the geometric generic fiber of the Iitaka fibration of
X has a good minimal model.

Proof. See [Lai11, Theorem 4.4], [Bir12, Theorem 5.1], and [HX13, Theorem 2.12].

By Theorem 3.8, we know that any smooth projective variety X with dimX − κ(X) ⩽ 3 has
a good minimal model.

Remark 3.9. In the proof of Theorem 3.8 and Step 4 in the proof of Theorem 3.3, we need the
finite generation of canonical rings for (relative) klt pairs, which is established in [BCHM10]. We
note that the final step of the proof of the finite generation of canonical rings for klt pairs needs
the canonical bundle formula due to Fujino–Mori (see [FM00]). We also note that the canonical
bundle formula treated in [FM00] depends on Theorem 1.3. Therefore, our proof of Theorem 1.6
in this paper implicitly uses Theorem 1.3.

4. Local freeness of f ′∗ω
⊗m
X′/Y ′

In this section, we prove the local freeness of f ′∗ω
⊗m
X′/Y ′ in Theorem 1.6 by using minimal model

theory and the weak semistable reduction theorem due to Abramovich–Karu (see [AbK00]).

Let us start with the proof of the local freeness of f∗ω
⊗m
X/Y in Theorem 1.4. It is a direct

consequence of Siu’s invariance of plurigenera (see [Siu02, Corollary 0.2] and [Pău07, Theorem
1]).

Proof of the local freeness of f∗ω
⊗m
X/Y in Theorem 1.4. By [Siu02, Corollary 0.2], we know that

dimH0(Xy,OXy(mKXy))

is independent of y ∈ Y for every positive integer m (see also [Pău07, Theorem 1]). By the base
change theorem (see [Har77, Chapter III, Corollary 12.9]), this implies that f∗ω

⊗m
X/Y is locally

free for every m ⩾ 1.

Let us recall the following well-known lemma, which is a special case of [Nak86, Corollary 3].

Lemma 4.1 (cf. [Nak86, Corollary 3]). Let g : V → C be a projective surjective morphism from
a normal quasi-projective variety V to a smooth quasi-projective curve C. Assume that V has
only canonical singularities and that KV is g-semi-ample. Then Rig∗OV (mKV ) is locally free for
every i and every positive integer m.
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Proof. Let h : V ′ → V be a resolution of singularities such that Exc(h) is a simple normal
crossing divisor on V ′. We write

KV ′ = h∗KV + E,

where E is an effective h-exceptional Q-divisor. Then we have

⌈mh∗KV + E⌉ − (KV ′ + {−(mh∗KV + E)}) = (m− 1)h∗KV .

We note that the right hand side is semi-ample over C. Therefore,

Ri(g ◦ h)∗OV ′(⌈mh∗KV + E⌉)

is locally free for every i and every positive integer m (see, for example, [Fujin11, Theorem 6.3
(i)]). On the other hand, we have

Rih∗OV ′(⌈mh∗KV + E⌉) = 0

for every i > 0 by the relative Kawamata–Viehweg vanishing theorem, and

h∗OV ′(⌈mh∗KV + E⌉) ≃ OV (mKV ).

Therefore, we obtain that

Rig∗OV (mKV )

is locally free for every i and every positive integer m.

Proof of the local freeness of f ′∗ω
⊗m
X′/Y ′ in Theorem 1.6. Let us divide the proof into several steps.

Step 1 (Weak semistable reduction). By [AbK00, Definition 0.1 and Theorem 0.3], there exist
a generically finite morphism τ : Y ′ → Y from a smooth projective variety Y ′ and f † : X† → Y ′

with the following properties.

(i) X† is a normal projective Gorenstein (see [AbK00, Lemma 6.1]) variety which is birationally
equivalent to X ×Y Y

′.

(ii) (UX† ⊂ X†) and (UY ′ ⊂ Y ′) are toroidal embeddings without self-intersection, with UX† =
(f †)−1(UY ′).

(iii) f † : (UX† ⊂ X†) → (UY ′ ⊂ Y ′) is toroidal and equidimensional.

(iv) all the fibers of the morphism f † are reduced.

In [AbK00], f † : X† → Y ′ is said to be weakly semistable and is called a weak semistable
reduction of f : X → Y . For the details of toroidal embeddings and morphisms, see [AbK00,
Section 1]. We may further assume that X† is Q-factorial (see [AbK00, Remark 4.3]). Note
that X† has only rational singularities since X† is toroidal. Therefore, X† has only canonical
Gorenstein singularities and is Cohen–Macaulay. Thus, we have

f †∗OX†(mKX†/Y ′) ≃ f ′∗ω
⊗m
X′/Y ′

for every positive integer m. Therefore, it is sufficient to prove that f †∗OX†(mKX†/Y ′) is locally

free for every positive integer m. We also note that f † is flat since Y ′ is smooth, X† is Cohen–
Macaulay, and f † is equidimensional (see [Har77, Chapter III, Exercise 10.9] and [AlK70, Chapter
V, Proposition (3.5)]).

Remark 4.2. We may assume that f † is smooth over UY ′ although we do not need this property
in this paper. For the details, see the construction of weak semistable reductions in [AbK00].
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Step 2 (Relative good minimal models). By the assumption of Theorem 1.6 and Corollary 3.5,
the geometric generic fiber of f † : X† → Y ′ has a good minimal model. Therefore, f † : X† → Y ′

has a relative good minimal model f̃ : X̃ → Y ′ by Theorem 3.3. Note that

f †∗OX†(mKX†/Y ′) ≃ f̃∗OX̃
(mK

X̃/Y ′)

for every positive integer m. Therefore, it is sufficient to prove that f̃∗OX̃
(mK

X̃/Y ′) is locally

free for every positive integer m.

Step 3 (Local freeness via the flat base change theorem). We take an arbitrary point P ∈ Y ′.
We take general very ample Cartier divisors H1,H2, · · · ,Hn−1, where n = dimY , such that
C = H1 ∩H2 ∩ · · · ∩Hn−1 is a smooth projective curve passing through P . By [AbK00, Lemma

6.2], we see that X†
C = X† ×Y ′ C → C is weakly semistable. In particular, X†

C has only rational

Gorenstein singularities (see [AbK00, Lemma 6.1]). By adjunction, we see that X̃C = X̃ ×Y ′ C

is normal and has only canonical singularities. More precisely, (f †)∗H1 = X† ×Y ′ H1 = X†
H1

has only rational Gorenstein singularities since X†
H1

→ H1 is weakly semistable by [AbK00,

Lemma 6.1 and Lemma 6.2]. In particular, (f †)∗H1 has only canonical singularities. Therefore,
(X†, (f †)∗H1) is plt by the inversion of adjunction (see [KM98, Theorem 5.50]). So we have that
(X̃, f̃∗H1) is plt by the negativity lemma (see, for example, [KM98, Proposition 3.51]). Thus,
X̃H1 = X̃ ×Y ′ H1 = f̃∗H1 is normal (see [KM98, Proposition 5.51]). By adjunction and the
negativity lemma again, we obtain that X̃H1 has only canonical singularities. By repeating this
process (n − 1)-times, we obtain that X̃C has only canonical singularities. Note that X̃C → C
is equidimensional. Therefore, we see that f̃ : X̃ → Y ′ is equidimensional by the choice of
C. Since X̃ is Cohen–Macaulay and Y ′ is smooth, f̃ is flat (see [Har77, Chapter III, Exercise
10.9] and [AlK70, Chapter V, Proposition (3.5)]). Moreover, O

X̃
(mK

X̃
) is flat over Y ′ for every

integer m since O
X̃
(mK

X̃
) is Cohen–Macaulay by Lemma 2.4 and f̃ is equidimensional (see

[AlK70, Chapter V, Proposition (3.5)]). By applying Lemma 4.1 and the base change theorem
(see [Har77, Chapter III, Theorem 12.11]) to X̃C → C, we obtain that

dimH0(X̃y,OX̃
(mK

X̃/Y ′)|X̃y
)

is independent of y ∈ Y ′ for every positive integer m. By the base change theorem (see [Har77,
Chapter III, Corollary 12.9]), we obtain that f ′∗ω

⊗m
X′/Y ′ ≃ f̃∗OX̃

(mK
X̃/Y ′) is locally free for every

positive integer m.

We have completed the proof of the local freeness of f ′∗ω
⊗m
X′/Y ′ .

Remark 4.3. In general, X̃y may be non-normal. However, we see that the canonical divisorK
X̃y

is well-defined, X̃y has only semi log canonical singularities, and O
X̃
(mK

X̃/Y ′)|X̃y
≃ O

X̃y
(mK

X̃y
)

for every positive integer m, by adjunction. For the details of semi log canonical singularities and
pairs, see [Fujin14a].

In Step 3 in the proof of the local freeness of f ′∗ω
⊗m
X′/Y ′ in Theorem 1.6, we have proved:

Theorem 4.4. Let π : V → W be a projective surjective morphism between quasi-projective
varieties with connected fibers. Assume the following conditions:

(i) W is smooth,

(ii) (UV ⊂ V ) and (UW ⊂ W ) are toroidal embeddings without self-intersection, with UV =
π−1(UW ),

9
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(iii) f : (UV ⊂ V ) → (UW ⊂W ) is toroidal and equidimensional, and

(iv) all the fibers of the morphism π are reduced.

In this case, π : V → W is said to be weakly semistable. We know that V has only rational
Gorenstein singularities. Let V ′ be a minimal model of V overW sitting in the following diagram.

V

π   A
AA

AA
AA

A
ϕ //_______ V ′

π′~~||
||
||
||

W

Let P ∈ W be an arbitrary point and let C be a smooth curve such that P ∈ C and that
C = H1 ∩ H2 ∩ · · · ∩ HdimW−1, where Hi is a general smooth Cartier divisor on W for every
i. Then VC = V ×W C → C is weakly semistable and V ′

C = V ′ ×W C is normal and has only
canonical singularities. This implies that π′ : V ′ →W is equidimensional. In particular, π′ is flat.

Theorem 4.4 seems to be useful for various geometric applications. So we wrote it separately
for the reader’s convenience. Note that Theorem 4.4 (see also Step 3 in the proof of the local
freeness of f ′∗ω

⊗m
X′/Y ′ in Theorem 1.6) is a key point of this paper.

5. Nefness of f ′∗ω
⊗m
X′/Y ′

In this section, we prove that f ′∗ω
⊗m
X′/Y ′ in Theorem 1.6 is nef (numerically semipositive) by using

[PoS14]. We do not use the theory of variations of Hodge structure. Theorem 5.1, which is a key
ingredient of this section, follows from [PoS14, Theorem 1.4].

Theorem 5.1. Let f : X → Y be a surjective morphism between smooth projective varieties
with connected fibers. Let L be an ample and globally generated line bundle on Y and let k be
a positive integer. Then

f∗ω
⊗k
X ⊗ L⊗l ≃ f∗ω

⊗k
X/Y ⊗ ω⊗k

Y ⊗ L⊗l

is generated by global sections for l ⩾ k(dimY + 1).

Proof. See [PoS14, Section 2].

Remark 5.2. Theorem 5.1 holds under the weaker assumption that X is a normal projective
variety with only rational Gorenstein singularities. Note that X has only rational Gorenstein
singularities if and only if X has only canonical Gorenstein singularities.

Lemma 5.3. Let E be a non-zero locally free sheaf of finite rank on a smooth projective variety
V . Assume that there exists a line bundle M such that E⊗s⊗M is generated by global sections
for every positive integer s. Then E is nef.

Proof. We put π : W = PV (E) → V and OW (1) = OPV (E)(1). Since E⊗s ⊗ M is generated by
global sections, SymsE ⊗M is also generated by global sections for every positive integer s. This
implies that OW (s)⊗ π∗M is generated by global sections for every positive integer s. Thus, we
obtain that OW (1) is nef, equivalently, E is nef.

Let us prove the nefness of f∗ω
⊗m
X/Y in Theorem 1.4.

Proof of the nefness of f∗ω
⊗m
X/Y in Theorem 1.4. We take the s-fold fiber product

fs : Xs = X ×Y X ×Y · · · ×Y X → Y.

10
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Since f is smooth, Xs is a smooth projective variety and f s is smooth. We will check

fs∗ω
⊗m
Xs/Y ≃

s⊗
f∗ω

⊗m
X/Y

for every positive integer m by induction on s. We consider the following commutative diagram:

Xs p //

q

��

Xs−1

fs−1

��
X

f
// Y.

By base change, we have ωXs/X ≃ p∗ωXs−1/Y . Thus we have

ωXs/Y ≃ ωXs/X ⊗ q∗ωX/Y

≃ p∗ωXs−1/Y ⊗ q∗ωX/Y .

Therefore, by the flat base change theorem (see [Har77, Chapter III, Proposition 9.3]) and the
projection formula, we obtain

fs∗ω
⊗m
Xs/Y ≃ f s−1

∗ p∗(p
∗ω⊗m

Xs−1/Y
⊗ q∗ω⊗m

X/Y )

≃ f s−1
∗ (ω⊗m

Xs−1/Y
⊗ p∗q

∗ω⊗m
X/Y )

≃ f s−1
∗ (ω⊗m

Xs−1/Y
⊗ (f s−1)∗f∗ω

⊗m
X/Y )

≃ f∗ω
⊗m
X/Y ⊗ f s−1

∗ ω⊗m
Xs−1/Y

≃
s⊗
f∗ω

⊗m
X/Y

for every positive integer m and every positive integer s by induction on s. Note that f∗ω
⊗m
X/Y

is locally free for every positive integer m (see Section 4). We put M = ω⊗m
Y ⊗ L⊗m(dimY+1),

where L is an ample and globally generated line bundle on Y . By Theorem 5.1, we obtain that

f s∗ω
⊗m
Xs/Y ⊗M

is generated by global sections for every positive integer s. This means that

s⊗
f∗ω

⊗m
X/Y ⊗M

is generated by global sections for every positive integer s. By Lemma 5.3, we obtain that f∗ω
⊗m
X/Y

is nef.

In Section 4, we have already proved that f ′∗ω
⊗m
X′/Y ′ is locally free in Theorem 1.6. From now

on, we prove the nefness of f ′∗ω
⊗m
X′/Y ′ in Theorem 1.6.

Proof of the nefness of f ′∗ω
⊗m
X′/Y ′ in Theorem 1.6. By the proof of the local freeness of f ′∗ω

⊗m
X′/Y ′

in Section 4, we may assume that f ′ : X ′ → Y ′ is weakly semistable. For simplicity, we denote
f ′ : X ′ → Y ′ by f : X → Y in this proof. We take the s-fold fiber product

f s : Xs = X ×Y X ×Y · · · ×Y X → Y.

Then we see that Xs is normal and Gorenstein (cf. [Vie83, Lemma 3.5]). Moreover, Xs has only
rational singularities because Xs is local analytically isomorphic to a toric variety. Therefore, Xs

11
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has only canonical singularities. By the same argument as in the proof of the nefness of f∗ω
⊗m
X/Y

in Theorem 1.4, we obtain

f s∗ω
⊗m
Xs/Y ≃

s⊗
f∗ω

⊗m
X/Y

for every positive integer s and every positive integer m. By Theorem 5.1 (see also Remark 5.2)
and Lemma 5.3, we obtain that the locally free sheaf f∗ω

⊗m
X/Y is nef for every positive integer m.

This is the same as the proof of the nefness of f∗ω
⊗m
X/Y in Theorem 1.4. Anyway, we obtain the

desired nefness.
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