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1. Introduction

The following result is more or less well known to the experts (see [N, Chapter VI. §5. De-
formation of singularities]). Here we give a geometric proof based on the minimal model
program for projective morphisms between complex analytic spaces (see [F]). For a treat-
ment of this kind of problem by using extension theorems, we recommend that the inter-
ested reader looks at [K] and [N, Chapter VI] (see also Section 3 below). We note that
the survey article [K] is one of the triggers for the subsequent great development of the
theory of higher-dimensional complex algebraic varieties.

Theorem 1.1 (Deformations of terminal and canonial singularities). Let X be a complex
analytic space and let Y be a Cartier divisor on X. If Y has only terminal singularities
(resp. canonical singularities), then X has only terminal singularities (resp. canonical
singularities) in a neighborhood of Y .

Note that X is not necessarily an algebraic variety in Theorem 1.1. It is only a complex
analytic space. In this paper, we will freely use [F]. In Section 2, we will prove Theorem
1.1 by using [F]. In Section 3, we will show that Nakayama’s extension theorems, by
which he proved Theorem 1.1, easily follow from the minimal model program established
in [F].

2. Proof of Theorem 1.1

In this section, we will prove Theorem 1.1 by using [F].

Proof of Theorem 1.1. The problem is local. Hence we can take an arbitrary point P ∈ Y
and freely shrink X around P suitably throughout this proof. Therefore, we may assume
that X is Stein. From now on, we will sometimes shrink X around P without mentioning
it explicitly.

Step 1 (Q-Gorensteinness). In this step, we will prove that X is Q-Gorenstein, that is,
KX is Q-Cartier.

By assumption, Y has only canonical singularities. Therefore, Y is a Cohen–Macaulay
normal complex variety. Hence, by shrinkingX around P suitably, we may assume thatX
is also a Cohen–Macaulay normal complex variety. Since Y is Gorenstein in codimension
two, we can find a closed analytic subset Z of X such that X and Y are Gorenstein outside
Z, codimX Z ≥ 3, and codimY (Z ∩ Y ) ≥ 3 after shrinking X around P suitably again.
Here, we used the fact that canonical surface singularities are Gorenstein. Without loss
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of generality, we may further assume that Y = (s = 0) for some holomorphic function s
on X. We take a positive integer m such that mKY is Cartier. By adjunction,

0 −→ OUX
(m(KX + Y )− Y )

×s−→ OUX
(m(KX + Y )) −→ OUY

(mKY ) −→ 0

is exact, where UX := X \Z and UY := Y \ (Z ∩Y ). Let ι : UX ↪→ X be the natural open
immersion. Then we have a long exact sequence:

0 → ι∗OUX
(m(KX + Y )− Y ) → ι∗OUX

(m(KX + Y )) → ι∗OUY
(mKY )

→ R1ι∗OUX
(m(KX + Y )− Y ) → R1ι∗OUX

(m(KX + Y )) → R1ι∗OUY
(mKY )

→ · · · .
(2.1)

By [BS, Chapter II, Corollary 1.10] and [BS, Chapter II, Theorem 3.6], R1ι∗OUY
(mKY ) =

0 since OY (mKY ) is locally free and Y is Cohen–Macaulay. By [BS, Chapter II, Corollary
1.10] and [BS, Chapter II, Corollary 4.4], R1ι∗OUX

(m(KX + Y )) is coherent. By taking
⊗OX,P/mP in (2.1), we obtain

R1ι∗OUX
(m(KX + Y ))⊗OX,P/mP = 0,

where mP is the maximal ideal of OX,P . Hence, by Nakayama’s lemma,

R1ι∗OUX
(m(KX + Y )) = 0

holds in a neighborhood of P . Therefore,

R1ι∗OUX
(m(KX + Y )− Y ) = 0

in a neighborhood of P since

R1ι∗OUX
(m(KX + Y )− Y ) ≃ R1ι∗OUX

(m(KX + Y )).

Thus we obtain the following short exact sequence:

0 −→ OX(m(KX + Y )− Y )
×s−→ OX(m(KX + Y )) −→ OY (mKY ) −→ 0

by (2.1) over some open neighborhood of P . Note that OY (mKY ) is invertible by as-
sumption. This implies that OX(m(KX + Y )) is invertible on some open neighborhood
of P . This is what we wanted.

Step 2 (Canonical singularities). In this step, we will prove that X has only canonical
singularities under the assumption that the singularities of Y are canonical. As mentioned
above, we will freely shrink X around P suitably without mentioning it explicitly.

Since X is Q-Gorenstein by Step 1, we can construct a projective bimeromorphic
morphism f : X ′ → X such that X ′ has only canonical singularities, KX′ is f -ample,
KX′ = f ∗KX−E, and E is an effective Q-Cartier Q-divisor on X ′ with SuppE = Exc(f),
where Exc(f) is the exceptional locus of f (see [F]). Since Y has only canonical singu-
larities, the pair (X,Y ) is purely log terminal in a neighborhood of Y by the well-known
inversion of adjunction. Let Y ′ be the strict transform of Y on X ′. Then we have

KX′ + f ∗Y + E = f ∗(KX + Y )

with f ∗Y ≥ Y ′. We note that (X ′, f ∗Y + E) is purely log terminal. Therefore, Y ′ is
normal. If f is not an isomorphism around Y ′, then we can easily get a contradiction by
Y ′ ∩ SuppE ̸= ∅. Hence f is an isomorphism in a neighborhood of Y ′. This implies that
X has only canonical singularities in a neighborhood of Y . This is what we wanted.
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Step 3 (Terminal singularities). In this step, we will prove that X has only terminal
singularities under the assumption that the singularities of Y are terminal. Note that we
will freely shrink X around P .

In Step 2, we have already proved that X has only canonical singularities. Therefore,
we can construct a small projective bimeromorphic morphism f : X ′ → X such that X ′

is Q-factorial over P (see [F]). Then KX′ = f ∗KX and KX′ + Y ′ = f ∗(KX + Y ) hold,
where Y ′ is the strict transform of Y on X ′. As in Step 2, we see that (X ′, Y ′) is purely
log terminal with the aid of the inversion of adjunction for (X,Y ). In particular, Y ′ is
normal. We note that Y ′ is Cartier and has only terminal singularities by construction.
It is sufficient to prove that X ′ has only terminal singularities. By [F, Theorem G], we
can construct a projective bimeromorphic morphism f ′ : X ′′ → X ′ such that X ′′ has only
terminal singularities, X ′′ is Q-factorial over P , and KX′′ = f ′∗KX′ holds. Let F be the
f ′-exceptional divisor on X ′′. Since X ′ is Q-factorial over P , SuppF = Exc(f ′) holds. By
construction,

a(Fi, X
′, 0) = a(Fi, X, 0) = 0

holds for every i, where F =
∑

i Fi is the irreducible decomposition of F . Let Y ′′ be the
strict transform of Y on X ′′. Then

(2.2) KX′′ + f ′∗Y ′ = f ′∗(KX′ + Y ′)

holds with f ′∗Y ′ ≥ Y ′′. Note that Y ′ has only terminal singularities, Exc(f ′) = F , and
X ′′ is Q-factorial over P . We also note that if a(Fi, X

′, Y ′) = 0 holds then we have
f ′(Fi) ̸⊂ Y ′. Hence, if a(Fi, X

′, Y ′) = 0 with Fi ∩ Y ′′ ̸= ∅, then Fi ∩ Y ′′ is a divisor which
is exceptional over Y ′. Thus, we see that Y ′′ ∩ F = ∅ by (2.2) since Y ′ has only terminal
singularities. This implies that X ′ has only terminal singularities in a neighborhood of Y ′.
Hence X has only terminal singularities in a neighborhood of P . Since P is an arbitrary
point of Y , X is terminal in a neighborhood of Y .

We finish the proof of Theorem 1.1. □

3. Extension theorems

In [N, Chapter VI. §5. Deformation of singularities], Nakayama uses the following ex-
tension theorem in order to prove Theorem 1.1 although he adopts a different formulation
(see [N, Chapter VI. 5.2. Theorem and 5.3. Corollary]).

Theorem 3.1. Let X be a normal complex variety and let S be a prime divisor on X.
Let π : Y → X be a projective bimeromorphic morphism from a smooth complex variety Y
such that the strict transform T of S on Y is smooth. Then the restriction homomorphism

(3.1) π∗OY (m(KY + T )) → π∗OT (mKT )

is surjective for every positive integer m. Furthermore, if A is a π-ample Cartier divisor
on Y , then

(3.2) π∗OY (m(KY + T ) + A) → π∗OT (mKT + A)

is surjective for every positive integer m.

Theorem 3.1 is a special case of [N, Chapter VI. 3.7. Theorem and 3.9. Theorem]. Here
we will show that Theorem 3.1 easily follows from the minimal model program discussed
in [F].



4 OSAMU FUJINO

Proof of Theorem 3.1. Since the problem is local, we take an arbitrary point P ∈ S
and will prove the restriction maps in (3.1) and (3.2) are surjective over some open
neighborhood of P . From now on, we will freely replace X with a relatively compact
Stein open neighborhood of P .

Step 1. In this step, we will prove that the restriction map in (3.1) is surjective.
We take a general π-ample Cartier divisorH on Y . Then we can find an effective Cartier

divisor B on Y such that H +B ∼ 0 and that SuppB ̸⊃ T since π is bimeromorphic. We
consider (Y, T + εH + εB) for some 0 < ε ≪ 1. Since 0 < ε ≪ 1, (Y, T + εH + εB) is
purely log terminal. By [F], after finitely many flips and divisorial contractions, we get a
good log terminal model of (Y, T + εH+ εB) over X. Since H+B ∼ 0, (Y, T ) has a good
log terminal model (Y ′, T ′) over X, where T ′ is the pushforward of T on Y ′. We note
that the pair (Y ′, T ′) has only canonical singularities since Y and T are both smooth.
In particular, (KY ′ + T ′)|T ′ = KT ′ holds by adjunction. By construction, we have the
following natural isomorphisms

π∗OY (m(KY + T )) ≃ π′
∗OY ′(m(KY ′ + T ′))

and

π∗OT (mKT ) ≃ π′
∗OT ′(mKT ′)

for every positive integer m, where π′ : Y ′ → X. Since m(KY ′ + T ′)− T ′ −KY ′ is nef and
big over X, R1π′

∗OY ′(m(KY ′ + T ′)− T ′) = 0 for every positive integer m by the relative
Kawamata–Viehweg vanishing theorem. This implies that the restriction map

π′
∗OY ′(m(KY ′ + T ′)) → π′

∗OT ′(mKT ′)

is surjective for every positive integer m. Thus we get the desired surjectivity of the
restriction map in (3.1).

Step 2. In this step, we will prove the surjectivity of the restriction map in (3.2).
Let H and B be as in Step 1. We can take an effective Q-divisor ∆ on Y such that

T + 1
m
A ∼Q ∆ and that (Y,∆ + εH + εB) is kawamata log terminal for 0 < ε ≪ 1. By

[F], after finitely many flips and divisorial contractions, we can obtain a good log terminal
model (Y ′,∆′) of (Y,∆) over X, where ∆′ is the pushforward of ∆ on Y ′. Let E be any
exceptional divisor over Y ′. Then, by construction, we have

a

(
E, Y, T +

1

m
A

)
≤ a

(
E, Y ′, T ′ +

1

m
A′
)

≤ a(E, Y ′, T ′),

where T ′ (resp. A′) is the pushforward of T (resp. A) on Y ′. Therefore, we see that

a(E, Y, T + C) ≤ a(E, Y ′, T ′)

holds for any effective Q-divisor C on Y with C ∼Q
1
m
A by the above argument. Hence

we obtain a(E, Y ′, T ′) ≥ 0. This implies that (Y ′, T ′) has only canonical singularities.
Therefore, (KY ′ + T ′)|T ′ = KT ′ holds. As in Step 1, we have the following natural
isomorphisms

π∗OY (m(KY + T ) + A) ≃ π′
∗OY ′(m(KY ′ + T ′) + A′)

and

π∗OT (mKT + A) ≃ π′
∗OT ′(mKT ′ + A′)

for every positive integer m, where π′ : Y ′ → X. We can take an effective Q-divisor C on
Y such that (Y, T + C) is purely log terminal with C ∼Q

1
m
A because A is π-ample. In
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this case, (Y ′, T ′ + C ′) is also purely log terminal, where C ′ is the pushforward of C on
Y ′. Thus (Y ′, C ′) has only kawamata log terminal singularities. Note that

m(KY ′ + T ′) + A′ − T ′ − (KY ′ + C ′) ∼Q (m− 1)(KY ′ +∆′)

is nef and big over X. Thus we have

R1π′
∗OY ′(m(KY ′ + T ′) + A′ − T ′) = 0

by the relative Kawamata–Viehweg vanishing theorem. This implies the surjectivity of
the restriction map

π′
∗OY ′(m(KY ′ + T ′) + A′) → π′

∗OT ′(mKT ′ + A′).

This is what we wanted.

We finish the proof of Theorem 3.1. □
We recommend that the reader who is interested in the way how to use Theorem 3.1

looks [N, Chapter VI. §5. Deformation of singularities].

Remark 3.2. In the proof of the existence of flips, we used some more sophisticated
extension theorems. Hence it does not look a correct way to prove Theorem 3.1 by using
the minimal model program established in [F]. However, it seems to be important to
point out that Theorem 3.1 easily follows from the minimal model program for projective
bimeromorphic morphisms of complex analytic spaces in [F].

Here we prove the following theorem as an application of Theorem 3.1.

Theorem 3.3 (Deformations of terminal and canonical singularities). Let X be a complex
analytic space and let S be a Cartier divisor on X. If S has only canonical singularities,
then the pair (X,S) has only canonical singularities in a neighborhood of S. In partic-
ular, X has only canonical singularities. If we further assume that S has only terminal
singularities, then X has only terminal singularities in a neighborhood of S.

Proof. By Step 1 in the proof of Theorem 1.1, we may assume that X is a normal Q-
Gorenstein complex variety by shrinking X around S suitably. As usual, we will freely
shrinkX suitably without mentioning it explicitly throughout this proof since the problem
is local.

We take a projective bimeromorphic morphism π : Y → X from a smooth complex vari-
ety Y such that π is an isomorphism over the smooth locus of X and that the exceptional
locus Exc(π) of π is a simple normal crossing divisor on Y . Let T be the strict transform
of S on Y . We may assume that the union of Exc(π) and T is a simple normal crossing
divisor on Y and that there exists an effective π-exceptional divisor E on Y such that
−E is π-ample with SuppE = Exc(π).

We take a positive integer m such that m(KX + S) and mKS are both Cartier. Since
S has only canonical singularities, we have π∗OT (mKT ) ≃ OS(mKS). By Theorem 3.1,
we have the following commutative diagram:

π∗OY (m(KY + T ))

����

� � // OX(m(KX + S))

����
π∗OT (mKT )

∼ OS(mKS),

where the vertical homomorphisms are surjective. Hence the natural inclusion

π∗OY (m(KY + T )) ⊂ OX(m(KX + S))
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is an isomorphism on some open neighborhood of S. This implies that

m(KY + T ) ≥ π∗(m(KX + S))

holds. Therefore, the pair (X,S) has only canonical singularities.
From now on, we will prove thatX has only terminal singularities under the assumption

that S is terminal. We note that S is smooth in codimension two. Hence X is smooth
in codimension three since S is Cartier. Therefore, by construction, ET := E|T is πT -
exceptional, where πT := π|T : T → S. Let m be a sufficiently large and divisible positive
integer. Then m(KX+S) and mKS are Cartier and π∗OT (mKT −ET ) ≃ OS(mKS) holds.
By Theorem 3.1, the restriction map

π∗OY (m(KY + T )− E) → π∗OT (mKT − ET )

is surjective. This implies that π∗OY (m(KY + T ) − E) ≃ OX(m(KX + S)) holds in a
neighborhood of S as in the above argument. Hence we can check that m(KY +T )−E ≥
π∗(m(KX + S)) holds. Thus, we obtain

KY ≥ π∗KX + (π∗S − T ) +
1

m
E.

Therefore, X has only terminal singularities. We finish the proof. □
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