CONE THEOREM AND MORI HYPERBOLICITY

OSAMU FUJINO

ABSTRACT. We discuss the cone theorem for quasi-log schemes and the Mori hyperbolicity. In particular,
we establish that the log canonical divisor of a Mori hyperbolic projective normal pair is nef if it is nef when
restricted to the non-lc locus. This answers Svaldi’s question completely. We also treat the uniruledness of
the degenerate locus of an extremal contraction morphism for quasi-log schemes. Furthermore, we prove
that every fiber of a relative quasi-log Fano scheme is rationally chain connected modulo the non-glc

locus.
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1. INTRODUCTION

This paper gives not only new results around the cone theorem and Mori hyperbolicity of quasi-log
schemes but also a new framework and some techniques to treat higher-dimensional complex algebraic
varieties based on the theory of mixed Hodge structures. It also shows that the theory of quasi-log schemes
is very powerful even for the study of log canonical pairs. We note that this paper heavily depends on
[ETT, Chapter 6] and [FT4].

In his epoch-making paper [Md], Shigefumi Mori established the following cone theorem for smooth
projective varieties.

Theorem 1.1 (Cone theorem for smooth projective varieties). Let X be a smooth projective variety defined
over an algebraically closed field.
(i) There are countably many (possibly singular) rational curves C; C X such that
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and

NE(X) = NE(X)ky >0 + Y Rs0[C)].

(ii) For any e > 0 and any ample Cartier divisor H on X,

NE(X) = NE(X) (kx +emnz0 + D, Rx0[C).

finite
In particular, we have:

Theorem 1.2. Let X be a smooth projective variety defined over an algebraically closed field. Assume
that there are no rational curves on X. Then Kx is nef.

Precisely speaking, Mori proved the existence of rational curves on X under the assumption that Kx
is not nef (see Theorem [2) by his ingenious method of bend and break. Then he obtained the above cone
theorem for smooth projective varieties (see Theorem [). For the details, see [Md], [KM, Sections 1.1,
1.2, and 1.3], [D], [KaT], [Ma, Chapter 10], and so on.

From now on, we will work over C, the complex number field. Our arguments in this paper heavily
depend on Hironaka’s resolution of singularities and its generalizations and several Kodaira type vanishing
theorems. Hence they do not work over a field of characteristic p > 0. Let us recall the notion of Mori
hyperbolicity following [LZ)] and [S].

Definition 1.3 (Mori hyperbolicity). Let (X, A) be a normal pair such that A is effective. This means
that X is a normal variety and A is an effective R-divisor on X such that Kx + A is R-Cartier. Let W
be an lc stratum of (X, A). This means that W is an lc center of (X, A) or W is X itself. We put

U:=W\ {(Wanc(X,A))uUW’},

W/
where W' runs over lc centers of (X, A) strictly contained in W and Nlc(X, A) denotes the non-lc locus of
(X, A), and call it the open lc stratum of (X, A) associated to W. We say that (X, A) is Mori hyperbolic
if there is no non-constant morphism
f:A' —U
for any open lc stratum U of (X, A).

The following theorem is a generalization of Theorem 32 for normal pairs and is an answer to [S,
Question 6.6].

Theorem 1.4. Let X be a normal projective variety and let A be an effective R-divisor on X such that
Kx + A is R-Cartier. Assume that (X, A) is Mori hyperbolic and that Kx + A is nef when restricted to
Nle(X,A). Then Kx + A is nef.

Theorem [ follows from the following cone theorem for normal pairs. We can see it as a generalization
of Theorem [ for normal pairs.

Theorem 1.5 (Cone theorem for normal pairs). Let (X, A) be a normal pair such that A is effective and
let m: X — S be a projective morphism between schemes.

(i) Then
NE(X/S) = NE(X/S)(xx+a)20 + NE(X/S) oo + > _R;
J

holds, where R;’s are the (Kx + A)-negative extremal rays of NE(X/S) that are rational and
relatively ample at infinity. In particular, each R; is spanned by an integral curve C; on X such
that w(C;) is a point. Note that an extremal ray R of NE(X/S) is rational and relatively ample at
infinitely if and only if there exists a m-nef Q-line bundle £ on X such that R = NE(X/S) N L+
and that Llniex,a) 5 T|Nie(x,a)-ample.

(ii) Let H be a m-ample R-divisor on X. Then

NE(X/S) = NE(X/S)(xx +atm)y>0 + NE(X/S) oo + Z R;
finite

holds.
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(iii) For each (Kx + A)-negative extremal ray R; of NE(X/S) that is rational and relatively ample at
infinity, there are an open lc stratum U; of (X, A) and a non-constant morphism

fj! Al — Uj
such that C;, the closure of fj(A') in X, spans R; in N1(X/S) with
0< *(KX +A) . Cj S 2d1mU]

More generally, we establish the following cone theorem for quasi-log schemes. We note that Theorem
3 is a very special case of Theorem [@. Since the precise definition of quasi-log schemes may look
technical and artificial, we omit it here. For the details, see Section B below. Here, we only explain
a typical example of quasi-log schemes. Let (V,A) be a log canonical pair which is not kawamata log
terminal. Then the non-klt locus X := Nklt(V,A) of (V,A) with w := (Ky + A)|x naturally has a
quasi-log scheme structure. In this case, the non-qlc locus X_ ., = Nqle(X,w) of [X,w] is empty and W is
a qlc stratum of [X,w] if and only if W is an lc center of (V; A). We can define open glc stratum of [ X, w]
similarly to Definition 3. In general, X is reducible and is not equidimensional.

Theorem 1.6 (Cone theorem for quasi-log schemes). Let [X,w] be a quasi-log scheme and let w: X — S
be a projective morphism between schemes.

(i) Then
NE(X/S) = NE(X/S)wz0 + NE(X/S) oo + Y _ R;
J
holds, where R;’s are the w-negative extremal rays of NE(X/S) that are rational and relatively
ample at infinity. In particular, each R; is spanned by an integral curve C; on X such that w(Cj)
is a point. Note that an extremal ray R of NE(X/S) is rational and relatively ample at infinitely
if and only if there exists a m-nef Q-line bundle L on X such that R = NE(X/S) N L and that
‘Cqulc(X,w) is 7T|quc(X7w)_ample'
(ii) Let H be a m-ample R-line bundle on X. Then
NE(X/S) = NE(X/S)wtmyz0 + NE(X/S) o+ Y R;
finite
holds.

(iii) For each w-negative extremal ray R; of NE(X/S) that is rational and relatively ample at infinity,
there are an open glc stratum U; of [X,w] and a non-constant morphism

fir Al —U;
such that C;, the closure of fj(A') in X, spans R; in N1(X/S) with
0<—-w-C; <2dimUj.
We make a remark on U; in Theorem LB.
Remark 1.7. In Theorem I8 (iii), let ¢ g, be the extremal contraction morphism associated to R;. Then
the proof of Theorem A shows that Uj is any open glc stratum of [X, w] such that pr,;: U;j — ¢g,(U;) is

not finite and that ¢r,: W1 — g, (WT) is finite for every qlc center W1 of [X,w] with WT C U;, where
Uj is the closure of U, in X.

The main ingredients of the proof of Theorem A are the following three results.

Theorem 1.8. Let X be a normal variety and let A be an effective R-divisor on X such that Kx + A is
R-Cartier. Let m: X — S be a projective morphism onto a scheme S. Assume that (Kx + A)|niie(x,a)
is nef over S, where NkIt(X, A) denotes the non-klt locus of (X,A), and that Kx + A is not nef over S.
Then there exists a non-constant morphism

frA' — X\ NKIt(X, A)

such that wo f(A') is a point and that the curve C, the closure of f(A') in X, is a (possibly singular)
rational curve with

0<—(Kx+A)-C<2dimX.

We prove Theorem X with the aid of the minimal model theory for higher-dimensional algebraic
varieties mainly due to [BCHMI]. Theorem [ is a slight generalization of [FLH, Theorem 1.1], where
[X,w] is a quasi-log canonical pair. In Theorem 9, [X,w] is not necessarily quasi-log canonical.
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Theorem 1.9. Let [X,w] be a quasi-log scheme such that X is irreducible. Let v: Z — X be the normal-
ization. Then there exists a proper surjective morphism f': (Y', By') = Z from a quasi-projective globally
embedded simple normal crossing pair (Y', By') such that every stratum of Y' is dominant onto Z and
that

(Zv'w, ' (Y, By/) = Z)
naturally becomes a quasi-log scheme with Naklt(Z, v*w) = v~ Nqklt(X,w). More precisely, the following
equality

ViINgklt(Z,v*w) = INgklt(X,w)
holds, where Inqiy(x,w) and Ingkit(z,v+w) are the defining ideal sheaves of Nqklt(X,w) and Noklt(Z, v*w)
respectively.

Theorem [M is similar to [FTH, Theorem 1.1]. The proof of Theorem [T needs some deep results on
basic slc-trivial fibrations obtained in [ET4] and [EFL]. Therefore, Theorem 10 depends on the theory of
variations of mixed Hodge structure (see [FH] and [FES]).

Theorem 1.10. Let [X,w] be a quasi-log scheme such that X is a normal quasi-projective variety. Let H
be an ample R-divisor on X. Then there exists an effective R-divisor A on X such that

Kx+A~pw+H

and that

Nklt(X, A) = Naklt(X, w)
holds set theoretically, where Nklt(X, A) denotes the non-kit locus of (X, A). Furthermore, if [X,w] has a
Q-structure and H is an ample Q-divisor on X, then we can make A a Q-divisor on X such that

KX—|—A~Qw+H

holds.
When X is a smooth curve, we can take an effective R-divisor A on X such that

Kxy+A~pw

and that
Nklt(X, A) = Ngklt(X, w)
holds set theoretically. Of course, if we further assume that [X,w| has a Q-structure, then we can make A
an effective Q-divisor on X such that
Kx +A ~Q W
holds.

Let us briefly explain the idea of the proof of Theorem A (iii), which is one of the main results of
this paper. We take an w-negative extremal ray R; of NE(X/S) that are rational and relatively ample at
infinity. Then, by the contraction theorem, there exists a contraction morphism ¢ := ¢g,;: X — Y over
S associated to R;. We take a glc stratum W of [X,w] such that ¢: W — (W) is not finite and that
o: W — (W) is finite for every qlc center W1 with W1 C W. By adjunction, W’ := W U Nqle(X, w)
with w|y becomes a quasi-log scheme. Hence we can replace [X,w] with [W’/,w|w-]. By using Theorem
9, we can reduce the problem to the case where X is a normal variety. By Theorem 10, we see that it is
sufficient to treat normal pairs. For normal pairs, by Theorem 8, we can find a non-constant morphism

fi A — X \ Naklt(X, w)
with the desired properties.

We also treat an ampleness criterion for Mori hyperbolic normal pairs. It is a generalization of [S,
Theorem 7.5].

Theorem 1.11 (Ampleness criterion for Mori hyperbolic normal pairs). Let X be a normal projective
variety and let A be an effective R-divisor on X such that Kx + A is R-Cartier. Assume that (X, A)
is Mori hyperbolic, (Kx + A)|nie(x,a) is ample, and Kx + A is log big with respect to (X,A), that is,
(Kx + A)|w is big for every lc stratum W of (X,A). Then Kx + A is ample.

Theorem [T is a very special case of the ampleness criterion for quasi-log schemes (see Theorem IT1).
We omit the precise statement of Theorem I here since it looks technical. We note that Kx + A is nef
by Theorem I since (X, A) is Mori hyperbolic and (Kx + A)|nie(x,a) is ample. Therefore, Kx + A is
nef and log big with respect to (X, A) in Theorem ITI. Hence we can see that Kx + A is semi-ample
with the aid of the basepoint-free theorem of Reid-Fukuda type (see [F10]). Then we prove that Kx + A
is ample.
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By using the method established for the proof of Theorem @, we can prove the following theorems.
Note that Theorems 12, 13, and 4 are free from the theory of minimal models. Theorem I3 is a
generalization of Kawamata’s famous theorem (see [Kal]).

Theorem 1.12. Let [X,w] be a quasi-log scheme and let p: X — W be a projective morphism between
schemes such that —w is p-ample. Let P be an arbitrary closed point of W. Let E be any positive-
dimensional irreducible component of ¢~ (P) such that E ¢ X_.,. Then E is covered by (possibly singular)
rational curves ¢ with

0<—w-£<L2dimE.

In particular, E is uniruled.

For the reader’s convenience, let us explain the idea of the proof of Theorem IT2. We take an effective
R-Cartier divisor B on W passing through P such that E is a glc stratum of [X,w +¢*B]. Let v: E — E
be the normalization. By adjunction for quasi-log schemes, Theorems T4, 10, and so on, for any ample
R-divisor H on E, we obtain an effective R-divisor Ag  on E such that

viw+ H ~p KEJ’_AE,H

holds. This implies that C'- K% < 0 holds for any general curve C on E. Thus, it is not difficult to see that
E is covered by rational curves (see [MM]). Our approach is different from Kawamata’s original one, which
uses a relative Kawamata—Viehweg vanishing theorem for projective bimeromorphic morphisms between
complex analytic spaces. Kawamata’s approach does not work for our setting.

As a direct consequence of Theorem T2, we have:

Theorem 1.13 (Lengths of extremal rational curves). Let [X,w] be a quasi-log scheme and let 7: X — S
be a projective morphism between schemes. Let R be an w-negative extremal ray of NE(X/S) that are
rational and relatively ample at infinity. Let or: X — W be the contraction morphism over S associated
to R. We put

d= mbin dim F,

where E runs over positive-dimensional irreducible components of L,OEI(P) for all P € W. Then R is
spanned by a (possibly singular) rational curve £ with

0<—w-¥f<2d.

If (X, A) is a log canonical pair, then [X, Kx + A] naturally becomes a quasi-log canonical pair. Hence
we can apply Theorems T2 and I3 to log canonical pairs. Note that Theorems T2 and [CI3 are new
even for log canonical pairs (see also Corollary [273). We can prove the following result on rational chain
connectedness for relative quasi-log Fano schemes.

Theorem 1.14 (Rational chain connectedness). Let [X,w] be a quasi-log scheme and let m: X — S be a
projective morphism between schemes with 1,0x ~ Og. Assume that —w is ample over S. Then 7~ 1(P)
is rationally chain connected modulo 7=1(P)N X_o for every closed point P € S. In particular, if further
7 Y (P)N X_o = 0 holds, that is, [X,w] is quasi-log canonical in a neighborhood of 7=1(P), then 7=*(P)
is rationally chain connected.

Let us see the idea of the proof of Theorem IId. We assume that 7= 1(P) N X _., # 0 for simplicity.
By using the framework of quasi-log schemes, we construct a good finite increasing sequence of closed
subschemes

Z_q1:= quc(X,w) C Zy - Z c---C Zy,
of X such that 7=1(P) C Zj, after shrinking X around 7—1(P). It is well known that if (V, A) is a projective
normal pair such that A is effective and that —(Ky + A) is ample then V is rationally chain connected
modulo Nklt(V, A) (see [HM] and [BP]). By this fact, adjunction for quasi-log schemes, Theorems 9,
10, and so on, we prove that Z; ;3 N7~ 1(P) is rationally chain connected modulo Z; N7 ~1(P) for every
—1<i<k—-1. Since ZyNm Y (P)=7r"YP)and Z_; N7 }(P) = 7 1(P)NX_, we obtain that 7~ 1(P)
is rationally chain connected modulo 7= (P) N X_ .

Theorems A, TTA, and T4 are closely related one another. Let us see these theorems for extremal
birational contraction morphisms of log canonical pairs. Let (X, A) be a projective log canonical pair
and let R be a (Kx + A)-negative extremal ray of NE(X). Assume that the contraction morphism
vr: X — W associated to R is birational. We take a closed point P of W such that dim wgl(P) > 0.
Then Theorem T4 says that Lp}}l(P) is rationally chain connected. However, Theorem [I4 gives no
information on degrees of rational curves on ¢5'(P) with respect to —(Kx + A). On the other hand,
Theorem T2 shows that every irreducible component of @1}1 (P) is covered by rational curves ¢ with
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0<—(Kx+A)-¢<2dim 4,0]}1(]3). In particular, every irreducible component of the exceptional locus
of ¢p is uniruled. Note that the rational chain connectedness of ¢ ~!(P) does not directly follow from
Theorem T2, Theorem IA (see also Theorem ) shows that there exist a rational curve C' on X and
an open lc stratum U of (X, A) such that ¢r(C) is a point and that the normalization of C NU contains
Al

We pose a conjecture related to [LZ, Theorem 3.1].

Conjecture 1.15. Let [X,w] be a quasi-log scheme and let m: X — S be a projective morphism between
schemes such that —w is m-ample and that
m: Naklt(X, w) — 7(Naklt(X, w))
is finite. Let P be a closed point of S such that there exists a curve CT C w~1(P) with Naklt(X, w)NCT # (.
Then there exists a non-constant morphism
frA' — (X \ Ngklt(X,w)) N7~ (P)
such that C, the closure of f(A) in X, satisfies C N Naklt(X,w) # 0 with
0<—w-C<1.
In this paper, we solve Conjecture I8 under the assumption that any sequence of klt flips terminates.

Theorem 1.16 (see Theorem I[272). Assume that any sequence of kit flips terminates after finitely many
steps. Then Conjecture TIA holds true.

For the precise statement of Theorem I8, see Theorem [Z. In a joint paper with Kenta Hashizume
(see [EHT]), we will prove the following theorem, which is a very special case of Conjecture I3, by using
some deep results in the theory of minimal models for log canonical pairs obtained in [H2].

Theorem 1.17 (see [EHIT, Theoreml.7]). Let X be a normal variety and let A be an effective R-divisor
on X such that Kx + A is R-Cartier. Let m: X — S be a projective morphism onto a scheme S such that
—(Kx + A) is m-ample. We assume that

m: Nklt(X, A) — n(Nklt(X, A))
is finite. Let P be a closed point of S such that there exists a curve CT C 771 (P) with Nklt(X, A)NCT # 0.
Then there exists a non-constant morphism
frAY — (X \NKIt(X,A)) N7 H(P)
such that the curve C, the closure of f(A') in X, is a (possibly singular) rational curve satisfying C N
Nklt(X, A) # 0 with
0<—(Kx+A4A)-C<1.

Although Theorem T4 looks very similar to Theorem [V, the proof of Theorem [CT4A is much harder.

By using Theorem T4, we will establish:

Theorem 1.18 (see [FHI, Theorem 1.8]). Conjecture I holds true.

As an application of Theorem IR, we will prove the following statement in [FHI], which supplements
Theorem I (iii).

Theorem 1.19 (see [EHI, Theorem 1.9]). Let [X,w] be a quasi-log scheme and let m: X — S be a

projective morphism between schemes. Let R; be an w-negative extremal ray of NE(X/S) that are rational
and relatively ample at infinity and let pg, be the contraction morphism associated to R;. Let U; be any

open qlc stratum of [X,w] such that pg,: U; — ¢r, (U;) is not finite and that or,: W1 — @ (W) is
finite for every qlc center W1 of [X,w] with W1 C U, where U; is the closure of Uj in X. Let P be a
closed point of pr,(Uy;). If there exists a curve CT such that ©R; (CYY =P, CT ¢ Uj, and Ct C Uj, then
there exists a non-constant morphism

. 1 . _1

fit A _>UJQ‘PRJ-(P)
such that C;, the closure of fj(A') in X, spans R; in N1(X/S) and satisfies C; ¢ U; with
0< —w- Cj <1.

We note that Theorem [IU is a generalization of [CZ, Theorem 3.1]. In this paper, we prove the
following simpler statement for dlt pairs for the reader’s convenience since Theorems T4, T8, and T4
are difficult. Theorem is much weaker than Theorem [CI9. However, it contains a generalization of
[CZ, Theorem 3.1].



CONE THEOREM AND MORI HYPERBOLICITY 7

Theorem 1.20. Let (X, A) be a dit pair and let m: X — S be a projective morphism between schemes. Let
Rj be a (Kx + A)-negative extremal ray of NE(X/S) and let pr; be the contraction morphism associated
to Rj. Let U; be any open lc stratum of (X,A) such that pr;: Uj — @r,;(Uj) is not finite and that
or,: WT — or, (W) is finite for every lc center W1 of (X, A) with W' C U;, where U; is the closure of
Uj; in X. If there exists a curve Ct such that PR, (CT) is a point, CT ¢ U;, and ctc @, then there exists
a non-constant morphism
fir Al —U;
such that C;, the closure of fj(A') in X, spans R; in N1(X/S) and satisfies C; ¢ U; with
0< —w- Cj <1.

Although we need some deep results on the minimal model program for log canonical pairs in [HI] in
the proof of Theorem 20, the proof of Theorem is much simpler than that of Theorems T4, T8
and M in [FHT] and will help the reader understand [FHT].

Finally, we make a conjecture on lengths of extremal rational curves (see [Ma, Remark-Question 10-3-6]).

Conjecture 1.21. If o, : U; — g, (U;) is proper in Theorem A (iii), where g, is the contraction
morphism associated to R;, then there exists a (possibly singular) rational curve C; C U; which spans R;
in N1(X/S) and satisfies
0<*W~Cj de+1
with
d; = mindim F,
E

where E runs over positive-dimensional irreducible components of (¢r,|u,) "' (P) for all P € g, (U;).
The following remark on Conjecture [ is obvious.

Remark 1.22. We use the same notation as in Conjecture TZI. If pr, : U; — ¢g,(U;) is proper in
Theorem [ (iii), we can make C; satisfy

0< —w-C; <2d;
by Theorem I—T2.
Of course, we hope that the following sharper estimate
0< —w-£<dimFE+1

should hold true in Theorem T2

In [EHZ], we will generalize the framework of basic sle-trivial fibrations for R-divisors and establish
adjunction and inversion of adjunction for log canonical centers of arbitrary codimension in full generality.
We strongly recommend the interested reader to see [EHI] and [FHY] after reading this paper.

We briefly look at the organization of this paper. In Section B, we recall some basic definitions and
results. Then we treat the notion of uniruledness, rational connectedness, and rational chain connectedness.
In Section B, we treat some basic definitions and results on normal pairs and then discuss dlt blow-ups for
quasi-projective normal pairs. In Section H, we briefly review the theory of quasi-log schemes and prepare
some useful and important lemmas. In Section B, we give a detailed proof of Theorem 9. Theorem Y
plays a crucial role since a quasi-log scheme is not necessarily normal even when it is a variety. In Section
B, we quickly explain basic sle-trivial fibrations. The results in [ET4] make the theory of quasi-log schemes
very powerful. In Section [d, we prove a very important result on normal quasi-log schemes, which is a slight
generalization of [ET4, Theorem 1.7]. In Section B, we prove Theorem [T by using the result explained in
Section [@. Hence Theorem T heavily depends on some deep results on the theory of variations of mixed
Hodge structure. In Section 8, we prove Theorem 8. Note that Theorem IS was essentially obtained
in [CZ] and [S] under some extra assumptions. In Section [0, we prove Theorems 4, I3, and IH. We
note that Theorem 3 is a special case of Theorem [@. In Section [, we discuss an ampleness criterion
for quasi-log schemes. As a very special case, we prove Theorem [CTI. In Section [, we treat Theorems
T2 and TT3. They are generalizations of Kawamata’s famous result for quasi-log schemes. In Section
3, we prove Theorem [T, which is well known for normal pairs. In Section [, we discuss several results
related to Conjecture [CI3.

Acknowledgments. The author was partially supported by JSPS KAKENHI Grant Numbers JP16H03925,
JP16H06337, JP19H01787, JP20H00111, JP21H00974. He thanks Kenta Hashizume very much for many
useful comments and suggestions. He also thanks the referees very much for many useful comments.
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2. PRELIMINARIES

We will work over C, the complex number field, throughout this paper. In this paper, a scheme means
a separated scheme of finite type over C. A wariety means an integral scheme, that is, an irreducible and
reduced separated scheme of finite type over C. Note that Z, Q, and R denote the set of integers, rational
numbers, and real numbers, respectively. We also note that Q¢ and Ry are the set of positive rational
numbers and positive real numbers, respectively.

2.1. Basic definitions. We collect some basic definitions and several useful results. Let us start with the
definition of Q-line bundles and R-line bundles.

Definition 2.1 (Q-line bundles and R-line bundles). Let X be a scheme and let Pic(X) be the group of
line bundles on X, that is, the Picard group of X. An element of Pic(X) ®z R (resp. Pic(X) ®z Q) is
called an R-line bundle (resp. a Q-line bundle) on X.

In this paper, we write the group law of Pic(X) ®z R additively for simplicity of notation. The notion
of R-Cartier divisors and Q-Cartier divisors also plays a crucial role for the study of higher-dimensional
algebraic varieties.

Definition 2.2 (Q-Cartier divisors and R-Cartier divisors). Let X be a scheme and let Div(X) be the
group of Cartier divisors on X. An element of Div(X) ®z R (resp. Div(X) ®z Q) is called an R-Cartier
divisor (resp. a Q-Cartier divisor) on X. Let A; and Ay be R-Cartier (resp. Q-Cartier) divisors on X.
Then Ay ~g Ay (resp. Ay ~g Ay) means that Ay is R-linearly (resp. Q-linearly) equivalent to Ag. Let
f+ X — Y be a morphism between schemes and let D be an R-Cartier divisor on X. Then D ~p ¢ 0
means that there exists an R-Cartier divisor G on Y such that D ~p f*G.

The following remark is very important.

Remark 2.3 (see [ETI, Remark 6.2.3]). Let X be a scheme. We have the following group homomorphism
Div(X) — Pic(X)
given by A — Ox(A), where A is a Cartier divisor on X. Hence it induces a homomorphism
Sx: Div(X) @z R = Pic(X) ®z R.
Note that
Div(X) — Pic(X)
is not always surjective. We write
A+ L~ B+ M
for A, B € Div(X) ®z R and £, M € Pic(X) ®z R. This means that

Sx(A)+ L = 6x(B) + M

holds in Pic(X)®zR. We usually use this type of abuse of notation, that is, the confusion of R-line bundles
with R-Cartier divisors. In the theory of minimal models for higher-dimensional algebraic varieties, we
sometimes use R-Cartier divisors for ease of notation even when they should be R-line bundles.

On normal varieties or equidimensional reduced schemes, we often treat R-divisors and Q-divisors.

Definition 2.4 (Operations for Q-divisors and R-divisors). Let X be an equidimensional reduced scheme.
Note that X is not necessarily regular in codimension one. Let D be an R-divisor (resp. a Q-divisor), that
is, D is a finite formal sum ), d;D;, where D, is an irreducible reduced closed subscheme of X of pure
codimension one and d; is a real number (resp. a rational number) for every i such that D; # D, for i # j.
We put
D<¢=)Y d;D;, D= d;D;, D~'=> D; and [D]=> [d]D;,
d;<c d;<c d;=1 i
where c¢ is any real number and [d;] is the integer defined by d; < [d;] < d; + 1. Similarly, we put
D>* =) "d;D; and D>*=Y d;D;
di>c d;>c

for any real number ¢. Moreover, we put |D| = —[—D]| and {D} =D — |D].

Let D be an R-divisor (resp. a Q-divisor) as above. We call D a subboundary R-divisor (resp. Q-

divisor) if D = D=! holds. When D is effective and D = D<! holds, we call D a boundary R-divisor
(resp. Q-divisor).
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We further assume that f: X — Y is a surjective morphism onto a variety Y. Then we put
DV = Z d;D; and D"=D - D",
F(Di)SY
and call DV the vertical part and D" the horizontal part of D with respect to f: X — Y, respectively.
Since we mainly treat highly singular schemes, we give an important remark.

Remark 2.5. In the theory of minimal models, we are mainly interested in normal quasi-projective
varieties. Let X be a normal variety. Then, for K = Z,Q, and R, the homomorphism

a: Div(X) ®z K — Pic(X) @z K
is surjective and the homomorphism

B: Div(X) ®z K — Weil(X) @z K

is injective, where Weil(X) is the abelian group generated by Weil divisors on X. We usually use the
surjection « and the injection S implicitly. In this paper, however, we frequently treat highly singu-
lar schemes X. Hence we have to be careful when we consider a:: Div(X) ®z K — Pic(X) ®z K and
B: Div(X) @z K — Weil(X) @7 K.

Let us recall the following standard notation for the sake of completeness.

Definition 2.6 (N'(X/S), N1(X/S), p(X/S), and so on). Let m: X — S be a proper morphism between
schemes. Let Z;(X/S) be the free abelian group generated by integral complete curves which are mapped
to points on S by w. Then we obtain a bilinear form

2 Pie(X) x Z1(X/S) — Z,
which is induced by the intersection pairing. We have the notion of numerical equivalence both in Z; (X/S5)
and in Pic(X), which is denoted by =, and we obtain a perfect pairing
NYX/S) x Ni(X/S) — R,
where
NY(X/S) = {Pic(X)/ =} ®zR and Ni(X/S)={Z:(X/S)/ =} @z R.
It is well known that
dimg N'(X/S) = dimg N;(X/S) < c0.
We write
p(X/S) = dimg N'(X/S) = dimg N, (X/S5)
and call it the relative Picard number of X over S. When S = Spec C, we usually drop /Spec C from the
notation, for example, we simply write N;(X) instead of N7 (X/SpecC).
We will freely use the following useful lemma without mentioning it explicitly in the subsequent sections.

Lemma 2.7 (Relative real Nakai-Moishezon ampleness criterion). Let m: X — S be a proper morphism
between schemes and let £ be an R-line bundle on X. Then L is w-ample if and only if LY™Z . Z > 0 for
every positive-dimensional closed integral subscheme Z C X such that w(Z) is a point.

For the details of Lemma 272, see [FM]. In the theory of quasi-log schemes, we mainly treat highly
singular reducible schemes. Hence Lemma P77 is very useful in order to check the ampleness of R-line
bundles.

2.2. Uniruledness, rational connectedness, and rational chain connectedness. In this subsection,
we quickly recall the notion of uniruledness, rational connectedness, rational chain connectedness, and so
on. We need it for Theorems T2, II3, and TId. For the details, see [Kal, Chapter IV.]. We note that
a scheme means a separated scheme of finite type over C in this paper. Let us start with the definition of
uniruled varieties.

Definition 2.8 (Uniruledness, see [Kall, Chapter IV. 1.1 Definition]). Let X be a variety. We say that
X is uniruled if there exist a variety Y of dimension dim X — 1 and a dominant rational map
P! xY --» X.

Although the notion of rational connectedness is dispensable for Theorem [T, we explain it for the
reader’s convenience.

Definition 2.9 (Rational connectedness, see [Kall, Chapter IV. 3.6 Proposition]). Let X be a projective
variety. We say that X is rationally connected if for general closed points x1,x2 € X there exists an
irreducible rational curve C which contains x; and .
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The following lemma is almost obvious by definition.

Lemma 2.10. Let X --» X’ be a generically finite dominant rational map between varieties. If X is
uniruled, then X' is also uniruled. Furthermore, we assume that X --+ X' is a birational map between
projective varieties. Then X is rationally connected if and only if X' is rationally connected.

Let us define rational chain connectedness for projective schemes.

Definition 2.11 (Rational chain connectedness, see [Kall, Chapter IV. 3.5 Corollary and 3.6 Proposition]).
Let X be a projective scheme. We say that X is rationally chain connected if for arbitrary closed points
1,22 € X there is a connected curve C' which contains x1 and x5 such that every irreducible component
of C' is rational.

Note that X may be reducible in Definition EI1. For projective varieties, we have:

Lemma 2.12. Let X be a projective variety. If X is rationally connected, then X is rationally chain
connected.

Proof. This follows from [Kol, Chapter IV. 3.6 Proposition]|. O
We need the following definition for Theorem [T4.

Definition 2.13 ([HM, Definition 1.1]). Let X be a projective scheme and let V' be any closed subset.
We say that X is rationally chain connected modulo V if

(1) either V =0 and X is rationally chain connected, or
(2) V # 0 and, for every P € X, there is a connected pointed curve 0,00 € C with rational irreducible
components and a morphism hp: C — X such that hp(0) = P and hp(o0) € V.

We close this subsection with a small remark.

Remark 2.14. Let X be a singular normal projective rationally chain connected variety. Then the
resolution of X is not always rationally chain connected. Hence the notion of rational chain connectedness
is more subtle than that of uniruledness and rational connectedness (see Lemma P27I0).

3. ON NORMAL PAIRS

In this section, we collect some basic definitions and then discuss dlt blow-ups for normal pairs. For
the details of normal pairs, see [BCHMI], [F6], and [ETH]. Let us start with the definition of normal pairs
in this paper.

Definition 3.1 (Normal pairs). A normal pair (X, A) consists of a normal variety X and an R-divisor A
on X such that Kx + A is R-Cartier. Here we do not always assume that A is effective.

We note the following definition of exceptional loci of birational morphisms between varieties.

Definition 3.2 (Exceptional loci). Let f: X — Y be a birational morphism between varieties. Then the
exceptional locus Exc(f) of f: X — Y is the set

{z € X | f is not biregular at x}.
3.1. Singularities of pairs. Let us explain singularities of pairs and some related definitions.

Definition 3.3. Let X be a variety and let E be a prime divisor on Y for some birational morphism
f:Y — X from a normal variety Y. Then F is called a divisor over X.

Definition 3.4 (Singularities of pairs). Let (X,A) be a normal pair and let f: Y — X be a projective
birational morphism from a normal variety Y. Then we can write

Ky = f*(Kx +A)+ Y _a(E,X,A)E
E

e (Za(E,X,A)E) = —A,
E

where F runs over prime divisors on Y. We call a(E, X, A) the discrepancy of E with respect to (X, A).
Note that we can define the discrepancy a(E, X, A) for any prime divisor E over X by taking a suitable
resolution of singularities of X. If a(E,X,A) > —1 (resp. > —1) for every prime divisor E over X,
then (X, A) is called sub log canonical (resp. sub kawamata log terminal). We further assume that A is
effective. Then (X, A) is called log canonical and kawamata log terminal (Ic and klt, for short) if it is sub
log canonical and sub kawamata log terminal, respectively.

with
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Let (X, A) be a log canonical pair. If there exists a projective birational morphism f: Y — X from a
smooth variety Y such that both Exc(f) and Exc(f)U Supp £, *A are simple normal crossing divisors on
Y and that a(F, X, A) > —1 holds for every f-exceptional divisor E on Y, then (X, A) is called divisorial
log terminal (dlt, for short).

Let (X, A) be a normal pair. If there exist a projective birational morphism f: Y — X from a normal
variety Y and a prime divisor E on Y such that (X, A) is sub log canonical in a neighborhood of the
generic point of f(E) and that a(E, X, A) = —1, then f(F) is called a log canonical center (an lc center,
for short) of (X, A). A closed subvariety W of X is called a log canonical stratum (an lc stratum, for short)
of (X,A) if W is a log canonical center of (X, A) or W is X itself.

Although it is well known, we recall the notion of multiplier ideal sheaves here for the reader’s conve-
nience.

Definition 3.5 (Multiplier ideal sheaves and non-lc ideal sheaves). Let X be a normal variety and let A
be an effective R-divisor on X such that Ky + A is R-Cartier. Let f: Y — X be a resolution with

Ky +Ay = f"(Kx +4)
such that Supp Ay is a simple normal crossing divisor on Y. We put
J(X,A) = f.Oy(=[Ay]).

Then J(X,A) is an ideal sheaf on X and is known as the multiplier ideal sheaf associated to the pair
(X,A). Tt is independent of the resolution f: Y — X. The closed subscheme Nklt(X,A) defined by
J(X,A) is called the non-kit locus of (X,A). Tt is obvious that (X, A) is kawamata log terminal if and
only if 7(X,A) = Ox. Similarly, we put

Ine(X,A) = £.Ox(—|Ay] + AT

and call it the non-lc ideal sheaf associated to the pair (X, A). We can check that it is independent of the
resolution f:Y — X. The closed subscheme Nlc(X, A) defined by Jnrc(X, A) is called the non-lc locus
of (X, A). Tt is obvious that (X, A) is log canonical if and only if Inpc(X,A) = Ox.

By definition, the natural inclusion

J(X,A) C Ine(X, A)

always holds. Therefore, we have
Nle(X, A) € Nklt(X, A).

For the details of J(X,A) and Jnrc(X, A), see [E4], [E6, Section 7], and [0, Chapter 9]. In this paper,
we need the notion of open lc strata.

Definition 3.6 (Open lc strata). Let (X,A) be a normal pair such that A is effective. Let W be an lc
stratum of (X, A). We put

U:=W\ {(Wanc(X,A)) U UW’} ,
W/
where W’ runs over lc centers of (X, A) strictly contained in W, and call it the open lc stratum of (X, A)
associated to W.

3.2. DIt blow-ups revisited. Let us discuss dlt blow-ups. We give a slight generalization of [ETI,
Theorem 4.4.21]. Here we use the theory of minimal models mainly due to [BCHM]. Let us start with the
definition of movable divisors.

Definition 3.7 (Movable divisors and movable cones, see [ETI, Definition 2.4.4]). Let f: X — Y be
a projective morphism from a normal variety X onto a variety Y. A Cartier divisor D on X is called
f-movable or movable over Y if f,Ox (D) # 0 and if the cokernel of the natural homomorphism

[ f:Ox (D) — Ox (D)

has a support of codimension > 2.
We define Mov(X/Y) as the closure of the convex cone in N'(X/Y') generated by the numerical equiv-
alence classes of f-movable Cartier divisors. We call Mov(X/Y") the movable cone of f: X — Y.

We prepare a negativity lemma.

Lemma 3.8 (Negativity lemma). Let f: X — Y be a projective birational morphism between normal
varieties such that X is Q-factorial. Let E be an R-Cartier R-divisor on X such that —f.FE is effective
and E € Mov(X/Y). Then —FE is effective.
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Proof. We can write £ = E, — E_ such that £y and E_ are effective R-divisors and have no common
irreducible components. We assume that E # 0. Since — f, F is effective, F; is f-exceptional. Without
loss of generality, we may assume that Y is affine by taking an affine open covering of Y. Let A be an
ample Cartier divisor on X. Then we can find an irreducible component Fy of E such that

Eo- (f*A)"-H" " 2. E<0
when dim X = n and codimy f(E;) = k. This is a contradiction. Note that
Eo-(frA)F-H" 2. E>0
always hold since E € Mov(X/Y). Therefore, —F is effective. O

By Lemma B8, we can prove the existence of dlt blow-ups for quasi-projective normal pairs. We note
that A is assumed to be a boundary R-divisor in [ET1, Theorem 4.4.21].

T

Theorem 3.9 (DIt blow-ups). Let X be a normal quasi-projective variety and let A =Y. d;A; be an
effective R-divisor on X such that Kx + A is R-Cartier. In this case, we can construct a projective
birational morphism f: Y — X from a normal quasi-projective variety Y with the following properties.

(i) Y is Q-factorial.
(ii) a(E,X,A) < —1 for every f-exceptional divisor E on'Y'.

(iii) We put
At = Z dif,:lAri-Zf*_lAi—f' Z E.

0<d; <1 d;>1 E: f-exceptional
Then (Y, A1) is dit and the following equality

Ky +AT=f*(Kx+A)+ > (a(E,X,A)+1)E
a(E,X,A)<—1

holds.

We only give a sketch of the proof of Theorem B since the proof of [ET1, Theorem 4.4.21] works by
Lemma BS.

Sketch of Proof of Theorem BA. Let g: Z — X be a resolution such that Exc(g) U Supp g; 1A is a simple
normal crossing divisor on X and g is projective. We write

Kz +A=g"(Kx+A)+F,

A= Z dig:lﬁi-i-zg*_lAri- Z E.

0<d; <1 d;>1 E: g-exceptional

where

We note that —g, F is effective by construction. Then we apply the same argument as in the proof of [ETT,
Theorem 4.4.21], that is, we run a suitable minimal model program with respect to (Z, A) over X. After

finitely many steps, we see that the effective part of F' is contracted. Note that all we have to do is to use
Lemma B instead of [ETI, Lemma 2.4.5]. O

When A is a boundary R-divisor, Lemma BT is nothing but [S, Theorem 3.4].

Lemma 3.10. Let X be a normal quasi-projective variety and let A be an effective R-divisor on X such
that Kx + A is R-Cartier. Then we can construct a projective birational morphism g: Y — X from a
normal Q-factorial variety Y with the following properties.

(i) Ky + Ay :=g*(Kx + A),

(i) the pair

YAy =Y diDi+ > D

di<1 di>1

is dit, where Ay =" d;D; is the irreducible decomposition of Ay,
(iii) every g-exzceptional prime divisor is a component of (A},)=1, and
(iv) g7t Nklt(X, A) coincides with NkIt(Y, Ay) and Nklt(Y, A%) set theoretically.

By Theorem B, the proof of [S, Theorem 3.4] works without any changes even when A is not a
boundary R-divisor. We give a proof for the sake of completeness.
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Proof of Lemma BID. There exists a dlt blow-up «: Z — X with Kz + Az := o*(Kx + A) satisfying (i),
(ii), and (iii) by Theorem B. Note that (Z, A3') is a Q-factorial kawamata log terminal pair. We take a
minimal model (Z’, A3}) of (Z,A5') over X by [BCHMI.

Then Kz + Al ~g —A%,l + o (Kx + A) is nef over X. Of course, we put Az = p.Az. We take
a dlt blow-up 8: Y — Z’ of (Z’,A;,1 + Supp A%,l) again by Theorem B (or [FTI, Theorem 4.4.21])
and put g := o’ o 3: Y — X. It is not difficult to see that this birational morphism g: ¥ — X with
Ky + Ay := g*(Kx + A) satisfies the desired properties. It is obvious that g—! Nklt(X, A) contains the
support of B*AZ}. Since —B*A%} is nef over X, we see that B*A%l coincides with g~! Nklt(X, A) set
theoretically. O

For the details of the proof of Lemma BT, see [S, Theorem 3.4]. In [FHI], Theorem B9 and Lemma
B0 will be generalized completely by using the minimal model program for log canonical pairs established
in [HZ)].

4. ON QUASI-LOG SCHEMES

In this section, we explain some basic definitions and results on quasi-log schemes. For the details of
the theory of quasi-log schemes, we recommend the reader to see [ETI, Chapter 6] and [E17)].

4.1. Definitions and basic properties of quasi-log schemes. The notion of quasi-log schemes was
first introduced by Florin Ambro (see [A]) in order to establish the cone and contraction theorem for
(X,A), where X is a normal variety and A is an effective R-divisor on X such that Kx + A is R-Cartier.
Here we use the formulation in [FTI, Chapter 6], which is slightly different from Ambro’s original one.
We recommend the interested reader to see [ET2, Appendix A] for the difference between our definition of
quasi-log schemes and Ambro’s one (see also [FT4, Section 8]).

In order to define quasi-log schemes, we use the notion of globally embedded simple normal crossing
pars.

Definition 4.1 (Globally embedded simple normal crossing pairs, see [F1l, Definition 6.2.1]). Let YV
be a simple normal crossing divisor on a smooth variety M and let B be an R-divisor on M such that
Supp(B +Y) is a simple normal crossing divisor on M and that B and Y have no common irreducible
components. We put By = Bly and consider the pair (Y, By ). We call (Y, By) a globally embedded simple
normal crossing pair and M the ambient space of (Y, By ). A stratum of (Y, By) is a log canonical center
of (M,Y + B) that is contained in Y.

Let us recall the definition of quasi-log schemes.

Definition 4.2 (Quasi-log schemes, see [FT1, Definition 6.2.2]). A quasi-log scheme is a scheme X endowed
with an R-Cartier divisor (or R-line bundle) w on X, a closed subscheme X_ ., € X, and a finite collection
{C7} of reduced and irreducible subschemes of X such that there is a proper morphism f: (Y, By) — X
from a globally embedded simple normal crossing pair satisfying the following properties:

(1) f*w ~R Ky + By.

(2) The natural map Ox — f.Oy ([—(Bs')]) induces an isomorphism

Ix_.. — LOy([=(B3h)] — |By)),

where Zx___ is the defining ideal sheaf of X_ .
(3) The collection of reduced and irreducible subschemes {C'} coincides with the images of the strata
of (Y, By) that are not included in X_ .

We simply write [X,w] to denote the above data
(Xawaf: (YvBY) - X)

if there is no risk of confusion. Note that a quasi-log scheme [X,w] is the union of {C} and X_. The
reduced and irreducible subschemes C' are called the glc strata of [X,w], X_o is called the non-glc locus
of [X,w], and f: (Y, By) — X is called a quasi-log resolution of [X,w]. We sometimes use Nglc(X,w) or

Nale(X,w, f: (Y,By) = X)
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to denote X_ . If a glc stratum C of [X,w] is not an irreducible component of X, then it is called a glc
center of [X,w].

We say that (X,w, f: (Y, By) — X) or [X,w] has a Q-structure if By is a Q-divisor, w is a Q-Cartier
divisor (or Q-line bundle), and f*w ~g Ky + By holds in the above definition.

In Definition B, we note that f: Y — X is not necessarily surjective and that Y may be reducible
even when X is irreducible. In this paper, the notion of open ¢lc strata is indispensable.

Definition 4.3 (Open glc strata). Let W be a glc stratum of a quasi-log scheme [X,w]. We put

U:=W\ {(Wﬂquc(X,w)) u UW’} :
b

where W’ runs over glc centers of [ X, w] strictly contained in W, and call it the open glc stratum of [X, w]
associated to W.

In Section [, we need the notion of log bigness. For the details of relatively big R-divisors, see [ET1,
Section 2.1].

Definition 4.4 (Log bigness). Let [X,w] be a quasi-log scheme and let 7: X — S be a proper morphism
between schemes. Let D be an R-Cartier divisor (or R-line bundle) on X. We say that D is log big over
S with respect to [X,w] if D|w is big over (W) for every qlc stratum W of [ X, w].

We collect some basic and important properties of quasi-log schemes for the reader’s convenience.

Theorem 4.5 ([E1I, Theorem 6.3.4]). In Definition -3, we may assume that the ambient space M of
the globally embedded simple normal crossing pair (Y, By ) is quasi-projective. In particular, Y is quasi-
projective and f:Y — X is projective.

For the details of Theorem EH, see the proof of [E1LH, Theorem 6.3.4]. In the theory of quasi-log schemes,
we sometimes need the projectivity of f in order to use the theory of variations of mixed Hodge structure
(see [ET14] and [EFD]). Hence Theorem B3 plays a crucial role. The most important result in the theory
of quasi-log schemes is as follows.

Theorem 4.6 ([FT11, Theorem 6.3.5]). Let [X,w] be a quasi-log scheme and let X' be the union of X_ o
with a (possibly empty) union of some glc strata of [X,w]. Then we have the following properties.
(i) (Adjunction). Assume that X' # X_.,. Then X' naturally becomes a quasi-log scheme with
w = w|x and X' = X_. Moreover, the glc strata of [X',w'] are exactly the ¢lc strata of
[X,w] that are included in X'.
(ii) (Vanishing theorem). Assume that w: X — S is a proper morphism between schemes. Let L be
a Cartier divisor on X such that L — w is nef and log big over S with respect to [X,w]. Then
Rim (Ix ® Ox (L)) =0 for every i > 0, where Ix: is the defining ideal sheaf of X' on X.

In this paper, we will repeatedly use adjunction for quasi-log schemes in Theorem B8 (i). We strongly
recommend the reader to see the proof of [FTH, Theorem 6.3.5]. Here, we only explain the main idea of
the proof of Theorem B8 (i) for the reader’s convenience.

Idea of Proof of Theorem g (i). By definition, X’ is the union of X_., with a union of some glc strata
of [X,w] set theoretically. We assume that X’ # X_, holds. By [FT1, Proposition 6.3.1], we may assume
that the union of all strata of (Y, By) mapped to X’ by f, which is denoted by Y’, is a union of some
irreducible components of Y. We note that Y is a simple normal crossing divisor on a smooth variety M
(see Definition Eﬂ) We put Y=Y — YI, Ky + Byr» = (KY +By)|y//, and Ky'+ By = (KY +By)|y/.
We set f”" = f|ly» and f" = f|ys. Then we claim that
(XI,UJ/, f/: (Y/ﬂ BY’) - X/)
becomes a quasi-log scheme satisfying the desired properties. Let us consider the following short exact
sequence:
0= Oyn([=(Byi)] = [Byr] = Y'lyn) = Oy ([=(B3')] = | By )

= Oy/([=(By))] = [By]) — 0,

which is induced by
00— OY”(_Y/|Y”) — OY — Oy/ — 0.
We take the associated long exact sequence:
0 — fLOyn([=(Byi)] = |Byn] = Y'lyn) — f.Oy([=(B3Y)] - [By'])

— [LOv([=(BsN] = [B3H]) -2 R fIOyu ([—(BSM)] — |BEh] = Y/|yn) — -
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Since
[=(Byn)] = [Byn] = Y'lyn = (Kyw + {Byn} + Byw = Y'lyn) = =(Ky» + Byn)
no associated prime of R /'Oy ([—(Bg+)] — | By4| — Y'|y~) is contained in X’ by [ETI, Theorem 5.6.2

()], which is a generalization of Kollar’s torsion-freeness based on the theory of mixed Hodge structures
on cohomology with compact support (see [F11, Chapter 5]). Then the connecting homomorphism

§: fLOy ([=(By) = By ]) = R Oyn([—(By))] = [ Byn] = Y'lyn)
is zero since f(Y') C X’. We put
I = fOyn([=(Bgi)] = [Byn] = Y'|yn),

which is an ideal sheaf on X since Zx: C Zx___, and define a scheme structure on X’ by Zx/. Then we

obtain the following big commutative diagram:

0 0

0 —— flOyn([—(B3i)] = |Byn] = Y'lyn) —=Ix:

00— LOy([—(BF)] - 1By ]) = Ix_. Ox Ox_,—0
0 ——= flOy([-(B3))] = [By/]) = Ix: Ox Ox: —0
0 0

by the above arguments. More precisely, by the above big commutative diagram,
Ix: = fiOv([—(By)] - |BY))
is an ideal sheaf on X’ such that Ox /Zx___ = OX’/IXLOQ~ Thus we obtain that
(X' o', f' (Y, By:) = X')
is a quasi-log scheme satisfying the desired properties. 0
As an obvious corollary, we have:

Corollary 4.7 ([ETI, Notation 6.3.10]). Let [X,w] be a quasi-log scheme. The union of X_ ., with all glc
centers of [X,w] is denoted by Nqklt(X,w), or, more precisely,

Naklt(X,w, f: (Y, By) — X).

If Ngklt(X,w) # X_ oo, then
[Nqklt (X, w), w|Ngkis(x w))
naturally becomes a quasi-log scheme by adjunction.

In the framework of quasi-log schemes, Ngklt(X,w) plays an important role by induction on dimension.
When Ngklt(X, w) = 0, we have the following lemma.

Lemma 4.8 ([FTH, Lemma 6.3.9]). Let [X,w] be a quasi-log scheme with X_o = (). Assume that every
qle stratum of [X,w] is an irreducible component of X, equivalently, Naklt(X,w) = 0. Then X is normal.

For the proof of Lemma B8, see [ETI, Lemma 6.3.9]. It is convenient to introduce the notion of quasi-log
canonical pairs.

Definition 4.9 (Quasi-log canonical pairs, see [ETH, Definition 6.2.9]). Let
(Xawaf: (KBY) — X)
be a quasi-log scheme. If X_ ., = (), then it is called a quasi-log canonical pair (gle pair, for short).

By using adjunction, we can prove:
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Theorem 4.10 ([ETH, Theorem 6.3.11 (i)]). Let [X,w]| be a quasi-log canonical pair. Then the intersection
of two qlc strata is a union of qlc strata.

The following example is very important. Example EZ10 shows that we can treat log canonical pairs as
quasi-log canonical pairs. In some sense, Ambro introduced the notion of quasi-log schemes in order to
treat the following example (see [A]]).

Example 4.11 ([F11, 6.4.1]). Let (X,A) be a normal pair such that A is effective. Let f: Y — X be a
resolution of singularities such that

Ky + By = f"(Kx + 4)

and that Supp By is a simple normal crossing divisor on Y. We put w := Kx +A. Then Ky + By ~r f*w
holds. Since A is effective, f—(B;lﬂ is effective and f-exceptional. Therefore, the natural map

Ox — [0y ([-(BFH)])
is an isomorphism. We put
Ix . = Inec(X,A) = LOy ([=(BsY)] - |BY)),

where InLc(X, A) is the non-lc ideal sheaf associated to (X, A) in Definition B3. We put M =Y x C
and D = By x C. Then (Y,By) ~ (Y x {0}, By x {0}) is a globally embedded simple normal crossing
pair. Thus

(Xawvf: (KBY) _>X)

becomes a quasi-log scheme. By construction, (X, A) is log canonical if and only if [X,w] is quasi-log
canonical. We note that C'is a log canonical center of (X, B) if and only if C' is a glc center of [X,w]. We
also note that X itself is a glc stratum of [X,w].

‘We make a useful remark.

Remark 4.12. Let Y be a smooth variety and let By be an R-divisor on Y such that Supp By is a simple
normal crossing divisor on Y. We put M’ :=Y x P! and

D':=Y x {0} +Y x {o0} + p* By,
where p: Y x P! — Y is the first projection. Then Ky + D' = p*(Ky + By) holds. We put
Z =Y x {0} +p* By

and Kz + Bz := (Kpy + D')|z. Then Kz + Bz = g*(Ky + By) holds, where g :=p|z: Z — Y. In this
case, (Z, Byz) is a globally embedded simple normal crossing pair. We can check that

9:0z([-(Bz")] = |BZ']) = Oy ([-(By')] = [By'))
holds since ¢g,.Oz ~ Oy and
By = (D' = Z)lz = (¥ x {o0})

* 1
p*BT,l +g Bzf s

where BZfl := By — By!. Hence, in Example E11, fog: (Z, Bz) — X gives another quasi-log resolution
of [X,w]. Although Z may be reducible, this quasi-log resolution is useful when we use adjunction (see
Theorem E@ (i) and [FTI, Theorem 6.3.5 (i)]).

Example 1T shows that [X, Kx + A] has a natural quasi-log scheme structure. In general, however,
[X, Kx + A] has many different quasi-log scheme structures.

Remark 4.13. In Example EZI1, we take an effective R-divisor A’ on X such that Ky + A ~g Kx + A’.
Let f': Y’ — X be a resolution of singularities such that

Ky + By = (f')"(Kx + A')
and that Supp By is a simple normal crossing divisor on Y’. Then
(X,w, f': (Y, By') = X)

is also a quasi-log scheme since Ky + By ~gr (f')*w. In this case, there is no correspondence between
qle strata of (X,w, f': (Y, By:) — X) and lc strata of (X, A).

By combining Theorem B0 with Example BT, we have:

Corollary 4.14 ([EG, Theorem 9.1 (2)]). Let (X, A) be a log canonical pair. Then the intersection of two
lc centers is a union of lc centers.



CONE THEOREM AND MORI HYPERBOLICITY 17

For the basic properties of quasi-log schemes, see [ETT, Chapter 6] and [ET7]. We also recommend the
reader to see [F5], which is a gentle introduction to the theory of quasi-log schemes. In [ER], we establish
that every quasi-projective semi-log canonical pair naturally becomes a quasi-log canonical pair. Hence
we can use the theory of quasi-log schemes for the study of semi-log canonical pairs. For the details, see
[ER].

4.2. Kleiman—Mori cones. In this subsection, we discuss basic definitions and results around Kleiman—
Mori cones of quasi-log schemes. Let us start with the definition of Kleiman—Mori cones.

Definition 4.15 (Kleiman-Mori cones). Let m: X — S be a proper morphism between schemes. Let
NE(X/S) be the convex cone in N1(X/S) generated by effective 1-cycles on X mapped to points by 7.
Let NE(X/S) be the closure of NE(X/S) in N1(X/S). We call it the Kleiman-Mori cone of m: X — S.
As usual, we drop /SpecC from the notation when S = SpecC.

Let us explain some basic definitions.

Definition 4.16 ([ETI, Definition 6.7.1]). Let [X,w] be a quasi-log scheme with the non-qlc locus X_ .
Let m: X — S be a projective morphism between schemes. We put

NE(X/S) s = Im (NE(X_o0/S) — NE(X/S)).

We sometimes use NE(X/S)nqie(x/s) to denote NE(X/S)_o. For an R-Cartier divisor (or R-line bundle)
D, we define

Dso={2€ N1(X/S)|D-z>0}.
Similarly, we can define D~q, D<g, and Dy. We also define

D+ ={z¢e Ny(X/S)|D-z=0}.
We use the following notation

NE(X/S)p>0 = NE(X/S) N Do,
and similarly for > 0, <0, and < 0.

In order to treat the cone and contraction theorem, we need the following definition.

Definition 4.17 ([ETI, Definition 6.7.2]). An extremal face of NE(X/S) is a non-zero subcone F C
NE(X/S) such that z, 2’ € NE(X/S) and z+2' € F imply that z, 2’ € F. Equivalently, F = NE(X/S)NH~*
for some m-nef R-divisor (or m-nef R-line bundle) H, which is called a support function of F. An extremal
ray is a one-dimensional extremal face.

(1) An extremal face F is called w-negative if F " NE(X/S),>0 = {0}.

(2) An extremal face F is called rational if we can choose a m-nef Q-divisor (or Q-line bundle) H as
a support function of F.

(3) An extremal face F is called relatively ample at infinity if F N NE(X/S)_. = {0}. Equivalently,
H|x__ is 7|x__-ample for any supporting function H of F'.

The contraction theorem for quasi-log schemes plays an important role in this paper.

Theorem 4.18 (Contraction theorem, see 11, Theorem 6.7.3]). Let [X,w] be a quasi-log scheme and let
7: X — S be a projective morphism between schemes. Let R be an w-negative extremal ray of NE(X/S)
that is rational and relatively ample at infinity. Then there exists a projective morphism pr: X =Y over
S with the following properties.

(i) Let C be an integral curve on X such that w(C) is a point. Then pr(C) is a point if and only if
[C] € R, where [C] denotes the numerical equivalence class of C in N1(X/5S).
(ii) Let L be a line bundle on X such that L-C =0 for every curve C with [C] € R. Then there is a
line bundle Ly on'Y such that L ~ oLy .

Proof. Since R is relatively ample at infinity, or: X oo — ©r(X_oo) is finite. Hence LZ™|x___ is pr|x__-
generated for every m > 0. Therefore, this theorem is a special case of [ET1, Theorem 6.7.3]. (]

Theorem B8 is a generalization of the famous Kawamata—Shokurov basepoint-free theorem.
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4.3. Lemmas on quasi-log schemes. In this subsection, we treat useful lemmas on quasi-log schemes.
The first two lemmas were already proved in [ET0]. We will repeatedly use Lemma throughout this
paper.
Lemma 4.19 ([FT0, Lemma 3.12]). Let (X,w, f: (Y,By) — X) be a quasi-log scheme. Then we can
construct a proper morphism f': (Y', By:) — X from a globally embedded simple normal crossing pair
(Y', By+) such that

(i) f': (Y',By/) — X gives the same quasi-log scheme structure as one given by f: (Y,By) — X

and
(ii) every irreducible component of Y is mapped by [’ to X \ X_oo, the closure of X \ X_o in X.

7

We give the proof for the sake of completeness.

Proof. Let Y be the union of all irreducible components of Y that are not mapped to X \ X_.,. We put
Y' =Y -Y" and Ky~ + By» = (Ky + By)|y~. Let M be the ambient space of (Y, By ). By taking some
blow-ups of M, we may assume that the union of all strata of (Y, By ) mapped to X \ X_oo N X_ is a
union of some irreducible components of Y (see [ETI, Proposition 6.3.1]). We consider the short exact
sequence
0— Oy//(*Y’) — Oy — Oy — 0.
We put A = [—(By')] and N = | By'|. By applying ®0y (A — N), we have
0— Oy//(A*N*Y/) — Oy(A*N) — Oy/(A*N) — 0.
By taking R'f,, we obtain
0— fiOyn(A=N-Y') = f.Oy(A—N) — f.Oy/(A—N)
— R'f.Oyn(A—N-Y') =
Note that
(A= N —Y"|yn — (Kyn 4+ {Byn} + Byt —Y'|yn) = —(Kyn + Byn)
~e —(fTw)lyr.
Hence, by [ETT, Theorem 5.6.2], no associated prime of R! f,Oy(A—N —Y") is contained in f(Y")NX_
Therefore, the connecting homomorphism
d: f*Oy/(A - N) — le*Oy//(A - N — Y/)
is zero. This implies that
0— f*OyN(A — N — Y/) — IX*OO — f*OyI(A — N) — 0

is exact. The ideal sheaf J = f.Oy»(A— N —Y") is zero when it is restricted to X _, because J C Tx___
On the other hand, J is zero on X \ X_, because f(Y") C X_,. Therefore, we obtain J = 0. Thus we
have Ix_oo = f. Oy (A — N) So f’ = f‘y/: (Y’,By/) — X, where Ky 4+ By = (Ky + By)|y/7 gives the
same quasi-log scheme structure as one given by f: (Y, By ) — X with the property (ii). O

By using Lemma BTY, we establish the following very useful lemma.

Lemma 4.20 ([ET0, Lemma 3.14]). Let [X,w] be a quasi-log scheme. Let us consider X7 = X \ X_., the
closure in X, with the reduced scheme structure. Then [XT,wT], where w' = w|x+, has a natural quasi-log
scheme structure induced by [X,w]. This means that

(i) C is a glc stratum of [X,w] if and only if C is a qlc stratum of [XT,w'], and
(i) Ingle(x,w) = INgle(X T wt) holds.
Moreover, we consider a set of some gle strata {C;}icr of [X,w]. We put

(x1)" = Nqle(x (U C; )

icl
and
X’ = Nqle(X (U C; >
i€l
Then [(XT)’,w”(XT)/] and [X',w|x'] naturally become quasi-log schemes by adjunction and L x+y = Ix
holds, where L x+y, and Ix: are the defining ideal sheaves of (XM and X' on X' and X, respectively. In
particular, Iqult(X’r,wT) = INqklt(X,w) holds.

We include the proof for the benefit of the reader.
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Proof. In this proof, we use the same notation as in the proof of Lemma BT9. Let Zx+ be the defining
ideal sheaf of X" on X. Let f': (Y, By:) — X be the quasi-log resolution constructed in the proof of
Lemma ET9. By construction, f': Y’ — X factors through XT. Note that

Ix_., = fiOy(A—=N) = f.Oy/(A=N) = f.Oy/(=N)
and that
FIN)=X_nfY)=X_nXT
set theoretically, where A = [—(Bs')] and N = | By!| (see [ETI, Remark 6.2.10]). Therefore, we obtain
IxiNIx  =IxtNf.Oy(A—N)C f.Oyr(A—N-Y")={0}.

Thus we can construct the following big commutative diagram.

0 0
[iOy/(A— N) == f.Oy/(A—N)
0 Tyt Ox Oxi 0
0—> Ty Ox .. Oyt ——0

0 0
Hence f': (Y',By:) — X gives the desired quasi-log scheme structure on [XT, wT].

We know that [(XT)/7U}T|(XT)/} and [X’,w|x/] naturally become quasi-log schemes by adjunction (see
Theorem B8 (i) and [ETT, Theorem 6.3.5 (i)]). Thus it is sufficient to prove the equality Z x+y = Zx.
As usual, by [ETT, Proposition 6.3.1], we may further assume that the union of all strata of (Y, By ) that
are mapped to X', which is denoted by Z, is a union of some irreducible components of Y. We note that
Z>Y". Weput Z/ =Y — Z. Then it is obvious that Z’ <Y” holds. By the proof of adjunction (see the
idea of the proof of Theorem E@ (i) and the proof of [FT1, Theorem 6.3.5 (i)]), we see that

Tty = fLOz(A= N = (Z=Y")|2) = flOz(A= N = Z|2) = Iz
holds. O

By Lemmas BT9 and B0, we can abandon unnecessary components from f: (Y, By) — X. The
following examples may help the reader understand Lemmas BT9 and E—211.

Example 4.21. Let L be a line on P3. We take general hyperplanes H; with L C H; for 1 <1i < 4. Let
Hj be a general hyperplane of P2. We put X :=P3 and

1 1 2 2
A:=Hy+-H +-Hy+ -Hs+ -H
0+2 1+2 2+3 3+3 4

and consider the normal pair (X, A). Then the pair [X,w := Kx + A] naturally becomes a quasi-log
scheme by Example E-T0. We can easily check that Nqle(X,w) = Nle(X,A) = L. Let p: X* — X be the
blow-up along L. Then we have

4
Kxv +p; ' A+ 3E=p"(Kx +4),

where E is the p-exceptional divisor on X”. By construction, the support of p;'A + F is a simple normal
crossing divisor on X°. We put X’ := Hy U L and w’ := w|xs. By adjunction (see Theorem EB (i) and
[ETH, Theorem 6.3.5 (i)]), [X’,w’] naturally has a quasi-log scheme structure induced by [X,w]. More
precisely, by using p: X? — X, we can construct a quasi-log scheme

(X' o', f: (Y,By) = X')
such that Y is irreducible (see also Remark ETI?). In this case, f: Y — X' is not surjective. Let
q: X* — X" be the blow-up along E N H}, where H is the strict transform of H; on X”. Then we have

4
Kx:+ (pog);'A+ gE” +F=(pog)*(Kx +A),
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where E* is the strict transform of E on X% and F is the g-exceptional divisor on X*. By construction,
the support of (po ¢);'A + Ef + F is a simple normal crossing divisor on X*. We can easily check that
poq(F) = L. By using poq: X* — X, we can construct another quasi-log resolution f: (?,By) — X'
of [X',w'] such that f:Y — X’ is surjective. In particular, Y is reducible and there exists an irreducible
component of ¥ which is dominant onto L.

Example 4.22. Let M be a smooth variety and let Dy and Ds be prime divisors on M such that D; + Do
is a simple normal crossing divisor with D; # Dy and D; N Dy # (. We consider the normal pair
(M, D1 4 2D5). Then the pair [M, K + D1 4+ 2D5] naturally becomes a quasi-log scheme as explained in
Example B11. We put X := D; +2D,. Then, by adjunction (see Theorem B (i) and [ETI, Theorem 6.3.5
(1)]), [X,w] is a quasi-log scheme, where w := (Kj; + D1 + 2D3)|x. More precisely, we put Y := D; and
consider Ky + By := (Kjy+D142Ds)|y. Then f: (Y, By) — X gives a natural quasi-log scheme structure
on [X,w] by adjunction, where f: Y — X is a natural closed embedding. We note that f: Y — X is not
surjective in this case. We put X := D; and consider w' := (Kj; + Dy + 2Ds)|x+. Then [XT,wf] has
a natural quasi-log scheme structure. We can see f’: (Y, By) — X1 as a quasi-log resolution of [XT, wT],
where f’ is the identity morphism of Y = Xt. We note that INgle(XT,wt) = INgle(X,w) Obviously holds.

Lemma B23 is almost obvious by definition.

Lemma 4.23. Let
(Xawaf: (YvBY) — X)

be a quasi-log scheme and let B be an effective R-Cartier divisor on X, that is, a finite Rsg-linear combi-
nation of effective Cartier divisors on X. Let X' be the union of Nqle(X,w) and all glc centers of [X, w]
contained in Supp B. Assume that the union of all strata of (Y, By) mapped to X' by f, which is denoted
by Y', is a union of some irreducible components of Y. We putY" =Y -Y', Kyv+By» = (Ky + By )|y,
and " = fly». We further assume that

(Y'//7 BY” _|_ (f//)*B>
is a globally embedded simple normal crossing pair. Then
(X,w + B, f”: (YN7 By/l + (f”>*B) — X)
is a quasi-log scheme.

PT’OOf. Since Ky + By ~g f*w, we have Ky» + Byn ~p (f”)*w. Therefore, Ky + By~ + (f”)*B ~R
(f")*(w + B) holds true. By the proof of adjunction (see the idea of the proof of Theorem ER (i) and the
proof of [FTI, Theorem 6.3.5 (i)]), we have

Ix: = fOxn([=(Byn)] = [Byn] = Y'|yn),
where Ty is the defining ideal sheaf of X’ on X. Note that the following key inequality
[—(By» + (f')"B)<"1 = LBy~ + (f")B)”'] < [(By)] = [Byn] = Y'lyn
holds. Therefore, we put
Ingie(xwt) = L Oyn([=(By» + (f')B)<'] = [(By» + (f")*B)”']) € Ix» € Ox
and define the closed subscheme Nqlc(X,w + B) of X by Zngie(x,w+5)- Then
(X,w+ B, f": (Y Byn+ (f")*B) = X)

is a quasi-log scheme. Let W be a reduced and irreducible subscheme of X. As usual, we say that
W is a gle stratum of [X,w + B] when W is not contained in Nqle(X,w + B) and is the f”-image
of a stratum of (Y”, By~ + (f”)*B). By construction, we have X’ C Nqlc(X,w + B). We note that
(X,w+ B, f": (Y",By» + (f")*B) — X) coincides with (X,w, f: (Y, By) — X) outside Supp B. O

By using Lemma B—23, we can prove the following lemma.

Lemma 4.24. Let [X,w] be a quasi-log scheme and let G be an effective R-Cartier divisor on X, that is,
a finite Rsq-linear combination of effective Cartier divisors on X. Then, for every 0 < ¢ < 1, [X,w+eG]
naturally becomes a quasi-log scheme such that Naklt(X,w + eG) = Ngklt(X,w) holds. More precisely,

INgklt(X,wteG) = INgklt(X,w) holds.

Note that Lemma is almost obvious for normal pairs by the definition of multiplier ideal sheaves.
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Proof of Lemma 23. Let f: (Y,By) — X be a proper morphism from a globally embedded simple
normal crossing pair (Y, By ) as in Definition 2. Let X’ be the union of Ngle(X,w) and all glc centers of
[X,w] contained in Supp G. By [ETI, Proposition 6.3.1] and [Kao2, Theorem 3.35], we may assume that the
union of all strata of (Y, By ) mapped to X’ by f, which is denoted by Y”| is a union of some irreducible
components of Y. By [ELD, Proposition 6.3.1] and [Ko2, Theorem 3.35] again, we may further assume
that the union of all strata of (Y, By) mapped to Ngklt(X,w) by f, which is denoted by Z’, is a union
of some irreducible components of Y. By construction, Y’ < Z’ obviously holds. As in Lemma E23, we
put YN =Y — Y’, Ky// =+ BYI/ = (Ky + By)|y//, and f// = f‘y/l. By [F”7 PI‘OpOSitiOH 631] and [KO'),
Theorem 3.35], we further assume that (Y, (f”)*G + Supp By ) is a globally embedded simple normal
crossing pair. By Lemma 23, we know that

(X, w+eQG, f”: (Y'N7 By + €(f”)*G) — X)

is a quasi-log scheme for every e > 0. We put 2"/ =Y — 7', Kz + Bz» = (Ky + By)|z», and h = f|zn.
Thus, by the proof of adjunction (see the idea of the proof of Theorem BB (i) and the proof of [FTI,
Theorem 6.3.5 (i)]), we have

Inguite(xw) = heOz0 ([=(Bgs)] = | BZin| = Z'| 1)
We note that
[—(Bz)] — |Bz+) = Z'|z0 = | Bz
holds by definition. On the other hand, by the proof of adjunction again (see the idea of the proof of
Theorem E@ (i) and the proof of [ETH, Theorem 6.3.5 (i)]),
Inguite(X wteG) = h:Oz0([—(Bzr + eh* Q)< — [(Bzn +eh*G)™t ] = (Z' = Y')|20)

for every 0 < € < 1. By direct calculation, for 0 < ¢ < 1,

[—(Bzn +eh*G)<Y] — [(Bzr +eh*G)> Y| —(Z' = Y")|zn

— —|By]

= [=(Bz:)] = |Bzi] = Z'|z».
Hence we obtain

INgKlt(X,wteG) = INqklt(X,w)-
This means that
(X,w+eG, f": (Y Byr +e(f")*G) — X)
is a quasi-log scheme with
Naklt(X,w + eG) = Naklt(X,w)

for 0 < ¢ <« 1. We finish the proof of Lemma E=24. O

We need the following lemma in order to reduce some problems to the case where quasi-log schemes
have Q-structures.

Lemma 4.25. Let (X,w, f: (Y,By) — X) be a quasi-log scheme. Then we obtain a Q-divisor D; on'Y,
a Q-line bundle w; on X, and a positive real number r; for 1 <i <k such that
. k
(i) Dy ri=1,
(ii) Supp D; = Supp By, Di' = By', D7) = [ By, and [~(D5)] = [—(B31)] for every i,
(iil) w= Zle r;w; and By = Zle r;D;, and
(iv) (X,w;, f: (Y,D;) — X) is a quasi-log scheme with Ky + D; ~q f*w; for every i.
We note that
Nale(X, w;) = Nqle(X,w)
holds for every i. We also note that W is a qlc stratum of [X,w] if and only if W is a qlc stratum of
[X,w;] for every i.

Proof. Without loss of generality, we may assume that w is an R-line bundle. We put By = ) j b; Bj,
where B; is a simple normal crossing divisor on Y for every j, b;, # b;, for ji # jo, and Supp B;, and
Supp Bj, have no common irreducible components for j; # jo. We may assume that b; € R\ Q for
1<j<landb; € Qfor j >1+1. Weputw= Z;nzl apwp, where a, € R and w), is a line bundle on X
for every p. We can write

Ky + By = Zapf*wp

p=1
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in Pic(Y) ®z R. We consider the following linear map
Y RA™ — Pic(Y) @z R
defined by

m l
V(w1 Tigm) = Z To f W — Z Tm4pBg.
a=1 B=1

We note that v is defined over Q. By construction,

AI: w—l Ky+ Z b]B]
jzi+1
is a nonempty affine subspace of R*™ defined over Q. We put
P .= (al,...,am,bl,...,bl) e A
We can take Py,..., P, € ANQ™ and 71, ...,7 € Ry such that Zle r; = 1 and Zle P, = Pin A.
Note that we can make P; arbitrary close to P for every i. So we may assume that P; is sufficiently close
to P for every i. For each P;, we obtain

(41) Ky + Dl ~Q f*wi
which satisfies (ii) by using 1. By construction, (i) and (iii) hold. By (E00) and (ii),
(X7wiuf: (KD’L) — X)

is a quasi-log scheme with the desired properties for every i. Therefore, we get (iv). O

5. PROOF OF THEOREM 19

In this section, we prove Theorem Y. In some sense, Theorem 9 is a generalization of [FLH, Theorem
1.1].

Proof of Theorem . Let f: (Y,By) — X be a proper surjective morphism from a quasi-projective
globally embedded simple normal crossing pair (Y, By ) as in Definition B2 (see Theorem BH). By [ETI,
Proposition 6.3.1], we may assume that Y is quasi-projective and that the union of all strata of (Y, By)
mapped to Ngklt(X,w), which is denoted by Y, is a union of some irreducible components of Y. We put
Y=Y —Y"” and Ky + By = (Ky + By)|y’. Then we obtain the following commutative diagram:

vty
f 'i if
1% — X
where ¢: Y’ — Y is a natural closed immersion and
v Loy _Pox

is the Stein factorization of for: Y’ — X. By construction, ¢: Y/ — Y is an isomorphism over the generic
point of X. By construction again, the natural map Oy — f.Oy is an isomorphism and every stratum
of Y’ is dominant onto V. Therefore, p is birational.

Claim 1. V is normal.

Proof of Claim 0. Let w: V™ — V be the normalization. Since every stratum of Y’ is dominant onto V,
there exists a closed subset ¥ of Y’ such that codimy- X > 2 and that 7 Lo f:Y'--» V" is a morphism
on Y\ ¥. Let Y be the graph of 7=*o f’: Y’ -~-» V™, Then we have the following commutative diagram:

y_ 2. vy
fl lf’

where ¢ and fare natural projections. Note that ¢: Y — Y'isan isomorphism over Y\ ¥ by construction.
Since Y is a simple normal crossing divisor on a smooth variety, Y satisfies Serre’s So condition. Hence,
by codimy- ¥ > 2, the natural map Oy — ¢.Oy is an isomorphism. Therefore, the composition

Oy = mOpn — W*};Of, = fiq*Of/ ~ Oy
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is an isomorphism. Thus we have Oy ~ 7,0Oy~. This implies that V' is normal. O

Therefore, p: V' — X is nothing but the normalization v: Z — X. So we have the following commuta-
tive diagram.
Y
|

—X

Yy’

vl
VA

a: Oz = fLOy([=(BF)])
is an isomorphism outside v~ Nqle(X,w).

Claim 2. The natural map

Proof of Claim B. Note that v: Z — X is an isomorphism over X \ Nqklt(X,w) by Lemma E8. Moreover,
f': Y — Zis nothing but f: Y — X over Z\v~! Ngklt(X,w) by construction. Therefore, « is an isomor-
phism outside v~ Ngklt(X,w). By replacing X with X \ Nglc(X,w), we may assume that Nalc(X,w) = 0.
Hence the natural map Ox — f.Oy([—(Bs')]) is an isomorphism. Therefore, we have f.Oy ~ Ox.
Since Z is normal and f/Oy/([—(By!)]) is torsion-free, it is sufficient to see that a is an isomorphism in
codimension one. Let P be any prime divisor on Z such that P C v~! Nqklt(X,w). We note that every
fiber of f is connected by f.Oy ~ Ox. Then, by construction, there exists an irreducible component of
By} which maps onto P. Therefore, the effective divisor [—(Bs)] does not contain the whole fiber of f’
over the generic point of P. Thus, « is an isomorphism at the generic point of P. This means that « is
an isomorphism. O

We put S := f.Oy/([—(Bs})] — | By} | = Y"|y/). Then we have:
Claim 3. S is an ideal sheaf on Z.
Proof of Claim B. By definition, S is a torsion-free coherent sheaf on Z. By the proof of [FTI, Theorem
6.3.5 (1)] (see also the idea of the proof of Theorem B (i)), we have

S = [0y ([—(B5)] = B3] = Y"|y1) = Inguit(x.w) C Ox-
Since v is finite,
v'v,S — S

is surjective. This implies that S is an ideal sheaf on Z. ]

We put 7 := f.O0y([—(Bs})] — | By ]). Then we have:
Claim 4. T is an ideal sheaf on Z.

Proof of Claim [. Outside v~! Nqle(X,w), it is obvious that 7 = f.Oy/([—(Bs})]) holds. Therefore,
we obtain 7 = Oy outside v~! Nqle(X,w) by Claim B. Since 7 is torsion-free and Z is normal, it is
sufficient to show that 7 is an ideal sheaf in codimension one. Let @) be any prime divisor on X such that
@ C Ndle(X,w). We take a prime divisor P on Z such that v(P) = Q.

If [—(B5))] does not contain the whole fiber of f” over the generic point of P, then the natural map

a: Oz — fLOy/([-(Bs))])
is an isomorphism at the generic point of P since the natural map Oz — f.Oy is an isomorphism by
construction. Then f/Oy([—(Bs#)] — | Byt |) is an ideal sheaf at the generic point of P.
If [—(By))] contains the whole fiber of f’ over the generic point of P, then & = T holds over the
generic point of P because [—(Bsy/)] and Y|y have no common irreducible components. Therefore, T

is an ideal sheaf at the generic point of P by Claim B
Hence T is an ideal sheaf on Z. This is what we wanted. O

By construction,
Ky 4+ By: ~p f*v*w

obviously holds. We can define Nqlc(Z, v*w) by the ideal sheaf f.Oy/([—(Bs}!)] — | Byt ]) (see Claim @).
Hence

(Z, u*w, fl: (Y’, By/) — Z)
naturally becomes a quasi-log scheme. By Claim B and its proof and [FT1, Propositions 6.3.1 and 6.3.2],

Inguit(zw) = [LOy ([=(By!)] = Byt = Y"|y)

satisfies

ViINgki6(Z,v*w) = INgklt(X,w) -
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Hence
(Z, V*w, f/: (Y/, By/) — Z)
is a quasi-log scheme with the desired properties. O

6. ON BASIC SLC-TRIVIAL FIBRATIONS

In this section, we quickly explain basic sle-trivial fibrations. For the details, see [FT4] and [FET]. Let
us start with the definition of potentially nef divisors.

Definition 6.1 (Potentially nef divisors, see [FT4, Definition 2.5]). Let X be a normal variety and let
D be a divisor on X. If there exist a completion XT of X, that is, X' is a complete normal variety and
contains X as a dense Zariski open set, and a nef divisor DT on XT such that D = DT|x, then D is called a
potentially nef divisor on X. A finite Qs ¢-linear (resp. R-linear) combination of potentially nef divisors
is called a potentially nef Q-divisor (resp. R-divisor).

It is convenient to use b-divisors to explain several results on basic slc-trivial fibrations. Here we do not
repeat the definition of b-divisors. For the details, see [, 2.3.2 b-divisors] and [FT4, Section 2].

Definition 6.2 (Canonical b-divisors). Let X be a normal variety and let w be a top rational differential
form of X. Then (w) defines a b-divisor K. We call K the canonical b-divisor of X.

Definition 6.3 (Q-Cartier ilosures). The Q-Cartier closure of a Q-Cartier Q-divisor D on a normal
variety X is the Q-b-divisor D with trace -
Dy = f*D,
where f: Y — X is a proper birational morphism from a normal variety Y.
We use the following definition in order to state the main result of [FT4].

Definition 6.4 ([ET4, Definition 2.12]). Let X be a normal variety. A Q-b-divisor D of X is b-potentially
nef (resp. b-semi-ample) if there exists a proper birational morphism X’ — X from a normal variety X’
such that D = Dy, that is, D is the Q-Cartier closure of Dy, and that D x- is potentially nef (resp. semi-
ample). A Q-b-divisor D of X is Q-b-Cartier if there is a proper birational morphism X’ — X from a
normal variety X’ such that D = Dx-.

Roughly speaking, a basic slc-trivial fibration is a canonical bundle formula for simple normal crossing
pairs.

Definition 6.5 (Simple normal crossing pairs). We say that the pair (X, B) is a simple normal crossing
pair if (X, B) is Zariski locally a globally embedded simple normal crossing pair at any point € X. Let
(X, B) be a simple normal crossing pair and let v: X” — X be the normalization. We define © by

Kxv»+0 =v"(Kx + B),
that is, © is the sum of the inverse images of B and the singular locus of X. Then a stratum of (X, B) is

an irreducible component of X or the v-image of some log canonical center of (X", ©).

We note that a globally embedded simple normal crossing pair is obviously a simple normal crossing
pair by definition. We also note that the definition of strata of (X, B) in Definition B3 coincides with the
one in Definition B0 when (X, B) is a globally embedded simple normal crossing pair.

Remark 6.6. Let (X, B) be a simple normal crossing pair. A stratum of X means a stratum of (X,0).
Let X = |J;c; Xi be the irreducible decomposition of X. Then we can easily check that W is a stratum
of X if and only if W is an irreducible component of X;, N---N X;, for some {41,...,45} C I.

‘We introduce the notion of basic sle-trivial fibrations.

Definition 6.7 (Basic sle-trivial fibrations, see [F14, Definition 4.1]). A pre-basic sle-trivial fibration
f+ (X, B) =Y counsists of a projective surjective morphism f: X — Y and a simple normal crossing pair
(X, B) satisfying the following properties:

Y is a normal variety,

(1)

(2) every stratum of X is dominant onto Y and f.Ox ~ Oy,

(3) B is a Q-divisor such that B = B<! holds over the generic point of Y, and
(4) there exists a Q-Cartier Q-divisor D on Y such that

KX+BNQ f*D

If a pre-basic sle-trivial fibration f: (X, B) — Y also satisfies
(5) rank £.Ox([~(B<)]) = 1,
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then it is called a basic slc-trivial fibration.

If X is irreducible and (X, B) is sub kawamata log terminal (resp. sub log canonical) over the generic
point of Y in Definition 624, then it is a klt-trivial fibration (resp. an lc-trivial fibration). For the details
of le-trivial fibrations, see [F4], [FGZ], and so on.

In order to define discriminant Q-b-divisors and moduli Q-b-divisors for basic slc-trivial fibrations, we
need the notion of induced (pre-)basic sle-trivial fibrations.

Definition 6.8 (Induced (pre-)basic sle-trivial fibrations, see [ET4, 4.3]). Let f: (X, B) — Y be a (pre-
)basic sle-trivial fibration and let o: Y/ — Y be a generically finite surjective morphism from a normal
variety Y’. Then we have an induced (pre-)basic slc-trivial fibration f': (X', Bx/) — Y’, where Bx/ is
defined by p*(Kx + B) = Kx/ + B/, with the following commutative diagram:

(X', Bx/) = (X, B)

)

Y’ Y,

)

where X’ coincides with X xy Y’ over a nonempty Zariski open set of Y’. More precisely, (X', Bx) is
a simple normal crossing pair with a morphism X’ — X Xy Y’ that is an isomorphism over a nonempty
Zariski open set of Y’ such that X’ is projective over Y’ and that every stratum of X’ is dominant onto
Y’

Now we are ready to define discriminant Q-b-divisors and moduli Q-b-divisors for basic slc-trivial
fibrations.

Definition 6.9 (Discriminant and moduli Q-b-divisors, see [ET4, 4.5]). Let f: (X,B) — Y be a (pre-
)basic sle-trivial fibration as in Definition 622. Let P be a prime divisor on Y. By shrinking Y around the
generic point of P, we assume that P is Cartier. We set

(X”,0 + tv* f*P) is sub log canonical }

bp = max {t €Q over the generic point of P

where v: X¥ — X is the normalization and Kx» + 0 = v*(Kx + B), that is, © is the sum of the inverse
images of B and the singular locus of X, and set

By =Y (1—-bp)P,
P
where P runs over prime divisors on Y. Then it is easy to see that By is a well-defined Q-divisor on Y
and is called the discriminant Q-divisor of f: (X,B) — Y. We set
My =D — Ky — By
and call My the moduli Q-divisor of f: (X, B) — Y. By definition, we have
Kx + B ~q f*(Ky + By + My).

Let 0: Y’ — Y be a proper birational morphism from a normal variety Y’ and let f’: (X', Bx/) — Y’
be an induced (pre-)basic sle-trivial fibration by o: Y/ — Y. We can define By, Ky and My such that
c*D = KY/ -I-By/ +Myl, O'*By/ = By, O'*Ky/ = Ky and O'*My/ = My. We note that By/ is independent
of the choice of (X', Bx), that is, By~ is well defined. Hence there exist a unique Q-b-divisor B such that
By = By for every o: Y’ — Y and a unique Q-b-divisor M such that My, = My for every o: Y’ = Y.

Note that B is called the discriminant Q-b-divisor and that M is called the moduli Q-b-divisor associated
to f: (X,B) — Y. We sometimes simply say that M is the moduli part of f: (X,B) —» Y.

Let us see the main result of [ET4].

Theorem 6.10 ([F14, Theorem 1.2]). Let f: (X, B) = Y be a basic slc-trivial fibration and let B and M
be the induced discriminant and moduli Q-b-divisors associated to f: (X, B) — Y respectively. Then we
have the following properties:
(i) K + B is Q-b-Cartier, where K is the canonical b-divisor of Y, and
(ii) M is b-potentially nef, that is, there exists a proper birational morphism o: Y’ =Y from a normal
variety Y' such that My is a potentially nef Q-divisor on Y' and that M = My~ .

When dimY =1 in Theorem 611, we have:

Theorem 6.11 ([FET], Corollary 1.4]). In Theorem GBI, we further assume that dimY = 1. Then the
moduli Q-divisor My of f: (X, B) =Y is semi-ample.



26 OSAMU FUJINO

The proof of Theorems 610 and G0 heavily depends on the theory of variations of mixed Hodge
structure discussed in [FH| (see also [FFS]). For some related topics, see [EZ], [F9], [FG2], and so on.

In [FH?], we will generalize the framework of basic sle-trivial fibrations for R-divisors and establish a
generalization of Theorem B0 for R-divisors.

7. ON NORMAL QUASI-LOG SCHEMES

In this section, we treat the following deep result on the structure of normal quasi-log schemes. It is a
generalization of [ET4, Theorem 1.7]. The proof of Theorem [T uses Theorems B0 and B

Theorem 7.1. Let [X,w] be a quasi-log scheme such that X is a normal variety. Then there exists a
projective birational morphism p: X' — X from a smooth quasi-projective variety X' such that
Kx' + Bx' + Mx: = p*w,

where Bx: is an R-divisor such that Supp Bx: is a simple normal crossing divisor and that Bf(/o s p-
exceptional, and Mx is a potentially nef R-divisor on X'. Furthermore, we can make Bx. satisfy p(B)Z(,l) =
Naklt(X,w) set theoretically. When X is a curve, we can make My semi-ample in the above statement.

We further assume that [X,w] has a Q-structure. Then we can make Bx: and Mx, Q-divisors in the
above statement.

Let us prove Theorem [
Proof of Theorem [7. We divide the proof into several steps.

Step 1. Although this step is essentially the same as the proof of Theorem 9, we explain it again with
some remarks on Ngle(X,w) for the reader’s convenience. Let f: (Y, By) — X be a proper surjective
morphism from a quasi-projective globally embedded simple normal crossing pair (Y, By ) as in Definition
B2 (see Theorem B3). By [ETIH, Proposition 6.3.1], we may assume that the union of all strata of (Y, By)
mapped to Nqklt(X,w), which is denoted by Y, is a union of some irreducible components of Y. We put
Y' =Y —Y"” and Ky + By = (Ky + By)|y'. By the proof of Theorem IT9, we obtain the following
commutative diagram:

vty
f’ if
X—X

where ¢: Y/ — Y is a natural closed immersion such that the natural map Ox — f.Oy~ is an isomorphism
and that every stratum of Y’ is dominant onto X. By Theorem [ and its proof,

(X,w, f'+ (Y, By') = X)
is a quasi-log scheme with
Iqult(X,w,f’: (Y',By1)—=X) = Iqult(X,w,f: (Y,By)—X):

We note that if
(X,w, f: (Y, By) = X)
has a Q-structure then it is obvious that
(X,w,f’: (Y’,By/) — X)
also has a Q-structure by construction. Therefore, by replacing f: (Y, By) — X with f: (Y’, By’) = X,
we may assume that every stratum of Y is mapped onto X by f. By construction, we can easily see that
Nqle(X,w, f: (Y, By/) = X) C Nqle(X,w, f: (Y, By) = X)
holds set theoretically. However, the relationship between Nqle(X, w, f: (Y, By:) — X ) and Nqle(X, w, f: (Y, By) —
X) is not clear. We note that all we need in this proof is the fact that
Naklt(X,w, f: (Y, By:) = X) = Ngklt(X, w, f: (Y, By) — X)
holds set theoretically.

Step 2. By Step 0, we may assume that f: (Y, By) — X is a projective surjective morphism from a
simple normal crossing pair (Y, By) such that every stratum of Y is dominant onto X. By taking some
more blow-ups, we may further assume that (B)=! is Cartier and that every stratum of (Y, (B%)=!) is
dominant onto X (see, for example, [BVF, Theorem 1.4 and Section 8] and [ET3, Lemma 2.11]).
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Step 3. In this step, we treat the case where [X,w] has a Q-structure. We note that
Ox = [0y ([-(BFH)])

is an isomorphism outside Nqlc(X,w). Hence rank f.Oy ([—(Bs')]) = 1 holds. Therefore, we can check
that f: (Y,By) — X is a basic slc-trivial fibration (see Definition 64). Let B be the discriminant Q-
b-divisor and let M be the moduli Q-b-divisor associated to f: (Y, By) — X. By [ET4, Lemma 11.2],
we obtain that By is an effective Q-divisor on X. By definition, we have f((BY)=!) = Nqklt(X,w).
We take a projective birational morphism p: X’ — X from a smooth quasi-projective variety X’. Let
' (Y, By:) = X’ be an induced basic sle-trivial fibration with the following commutative diagram.

(Y, By) =—— (Y', By")

L

X<p—X’

By Theorem G0, we may assume that there exists a simple normal crossing divisor X x, on X’ such that
M = My, SuppMyx and Supp Bx: are contained in Yx/, and that every stratum of (Y’,Supp Bf,)
is smooth over X'\ Xx/. Of course, we may assume that Mx, := My is potentially nef by Theorem
BI0. When X is a curve, we may further assume that Mx/ is semi-ample by Theorem BII. We may
assume that every irreducible component of ¢, * ((B;’,)Zl) is mapped onto a prime divisor in Xxs with
the aid of the flattening theorem (see [RG, Théoreme (5.2.2)]). We put By := Bx-. In the above setup,
f(¢-1(BY)ZY) € B%) by the definition of B. Thus, we get Nqklt(X,w) C p(B5/). On the other hand,
we can easily see that p(B)Z(,l) C Ngklt(X,w) by definition. Therefore, p(B)Z(,l) = Ngklt(X,w) holds.
Since p.Bx' = Bx and By is effective, Bf(,o is p-exceptional. Hence, Byxs and M satisfy the desired
properties. We note that By, and Mx. are obviously Q-divisors by construction.

Step 4. In this step, we treat the general case. We first use Lemma BZ3 and get positive real numbers
r; and (X, wy, f: (Y, D;) — X) for 1 < 4 < k with the properties in Lemma BE23. Then we apply the
argument in Step B to

(X,wi, [ (Y, D;) = X)

for every i. By Theorem 60, we can take a projective birational morphism p: X’ — X from a smooth
quasi-projective variety X’ which works for

(Xawiaf: (}/’Dl) %X)

for every i. By summing them up with weight r;, we get R-divisors Bxs and Mx, with the desired
properties.

We finish the proof of Theorem . O

8. PROOF OF THEOREM [I1

In this section, we prove Theorem I as an application of Theorem . Then, by using Theorem I,
we prove Corollary B2 and Lemma B3, which will play an important role in Section B. Let us start with
the following elementary lemma for the proof of Theorem [I0.

Lemma 8.1. Let X be a quasi-projective variety and let H be an ample R-divisor on X. Let p: X' — X
be a projective birational morphism from a smooth quasi-projective variety X' and let F be an effective
p-exceptional Cartier divisor on X' such that —F is p-ample. Let M’ be a potentially nef R-divisor on X'.
Then p*H — eF + M’ is ample for any 0 < e < 1.

Proof. We can write H = Zf:o a;H; such that a; is a positive real number and H; is an ample Cartier
divisor on X for every i. If 0 < ¢ < 1, then we can take ¢; such that p*H; — ¢;F is ample for every 1
with Zf:() a;e; = €. Since M’ is a potentially nef R-divisor on X’, we can construct a smooth projective
completion XT of X’ and a nef R-divisor MT on X' such that M|y, = X’. By taking a suitable
birational modification of XT, we may further assume that there is an ample R-divisor A on XT such that
A|lx» = p*Hy — eoF holds. Hence agp*Hy — apegF'+ M’ is ample. Therefore, p* H — eF + M’ is ample for
any 0 < ¢ < 1. This is what we wanted. (]

Let us start the proof of Theorem 1.
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Proof of Theorem TID0. By Theorem [, there is a projective birational morphism p: X’ — X from a
smooth quasi-projective variety X’ such that

Kx' 4+ Bx: + Mx: = p*w,

where By is an R-divisor on X’ whose support is a simple normal crossing divisor, B;Q is p-exceptional,

My is a potentially nef R-divisor on X', and p(B ) = Ngklt(X,w). By taking some more blow-ups,
we may further assume that there is an effectlve p-exceptional Cartier divisor F' on X’ such that —F
is p-ample and that Supp F' U Supp Bx- is contained in a simple normal crossing divisor on X’. Then
p*H —eF + My is ample for any 0 < ¢ < 1 by Lemma B1l. We take a general effective R-divisor G on X’
such that G ~g p*H — ¢F + Mx: with 0 < ¢ < 1, Supp G U Supp Bx’ U Supp F' is contained in a simple
normal crossing divisor on X', and (By: +eF + G)2! = B)Z(,1 holds set theoretically. Then we have

Kx' + Bx + Mx: +p*H:KX/ + Bx: -‘rEF—l—p*H—EF—l—MX/
~r Kx'+ Bx: +eF + G.
We put A :=p.(Bx: +¢F + G). By construction, Kx + A ~g w4+ H. By construction again, we have

NKIH(X, A) = p (B +eF +G)*') =p (B3} ) = Naklt(X, w)

set theoretically.

When [X,w] has a Q-structure, we can make By and My, Q-divisors by Theorem 1. Then it is easy
to see that we can make A a Q-divisor on X such that Kx + A ~g w + H when H is an ample Q-divisor
and [X,w] has a Q-structure by the above construction of A.

Finally, if X is a curve in the above argument, then p: X’ — X is an isomorphism and My is semi-
ample (see Theorem [1). Hence we can take A such that

Kx+A~pw
with the desired properties. O

For some related results, see [EGI], [EL5], and so on. By applying Theorem II0 to normal pairs, we
have the following useful result.

Corollary 8.2. Let X be a normal variety and let A be an effective R-divisor on X such that Kx + A is
R-Cartier. Let C be a log canonical center of (X, A) such that C is a smooth curve. Then
(Kx +A)lc ~r Ko+ Ac

holds for some effective R-divisor A¢ such that

SuppA =CnNn [ Ne(X,A)uU U W,
cew

where W runs over lc centers of (X, A) which do not contain C, holds set theoretically. When Kx + A is
Q-Cartier, we can make Ac a Q-divisor such that

(Kx +A)|c ~o Ko + Ac
in the above statement.

Proof. As we saw in Example BT, [X, Kx + A] naturally becomes a quasi-log scheme. By construction,
Nale(X, Kx + A) = Nle(X, A), W is a glc center of [X, Kx + A] if and only if W is a log canonical center
of (X,A). Hence we can see that C is a glc center of [X, Kx + A]. Therefore, by adjunction (see Theorem
B3 (i) and [ETH, Theorem 6.3.5 (1)]), [C', (Kx + A)|¢/] is a quasi-log scheme, where C' = C'U Nle(X, A).
By Lemma B0, we see that [C, (Kx + A)|¢] is also a quasi-log scheme such that

Nqklt(C, (Kx + A)|c) = Ngklt(C', (Kx + A)|cr) N C

holds set theoretically. By construction, we can easily see that

Naklt(C', (Kx + A)|e) N C=Cn | Nle(X,A)u | J W],
CcCgw

where W runs over lc centers of (X, A) which do not contain C, holds set theoretically (see Theorem B—10
and Corollary B14). By applying Theorem 10 to [C, (Kx + A)|¢], we can find an effective R-divisor Ax
on C' such that

(Kx +A)lc ~r Kc + Ac
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with
Supp AZ' = Naklt(C, (Kx + A)l¢) = Cn | Nle(X,A)u | J W
cgw
Of course, if Kx + A is Q-Cartier, then we can make A¢ a Q-divisor such that
(Kx +A)le ~q Ko + Ac
in the above statement. O
We will use the following lemma in Section .

Lemma 8.3. Let p: X — Y be a proper surjective morphism between normal varieties such that R'p,Ox =
0 and that dim ¢ ~*(y) < 1 holds for every closed point y € Y. Let C be a projective curve on X such that
©(C) is a point. Then
C ~ P
Let A be an effective R-divisor on X such that Kx + A is R-Cartier. If C ¢ Nle(X, A) and

Cn(Ne(x,Au | J W] #0,
Ccgw

where W runs over le centers of (X, A) which do not contain C, then the following inequality
holds.

Proof. In Step 0, we will prove that C' ~ P! holds. In Step B, we will prove that —(Kx + A)-C <1 by
Corollary B2

Step 1. Although the argument in this step is well known, we will explain it in detail for the reader’s
convenience. Let us consider the following short exact sequence

0—>Zc > 0x — Oc — 0,

where Z¢ is the defining ideal sheaf of C' on X. Since dimp~!(y) < 1 for every y € Y by assumption,
R?p,Tc = 0 holds. Therefore, we get the following surjection

ngo*OX — le*Oc — 0.
By assumption, R'¢,Ox = 0. Hence R'¢.Oc = 0 holds. Since ¢(C) is a point by assumption,
H'(C,0¢) = 0 holds. This means that C ~ P

Step 2. By shrinking Y around ¢(C), we may assume that Y is quasi-projective. Let By,...,B,y1 be
general very ample Cartier divisors on Y passing through ¢(C) with n = dim X. Then it is well known

that
n+1
(X, A+ @*Bi>

i=1
is not log canonical at any point of C' (see, for example, [F8, Lemma 13.2]) such that

n+1
Nklt (X, At+(1-2)) gp*Bi) = Nklt(X, A)

i=1
holds outside =1 (p(C)) for every 0 < & < 1. Hence we can take 0 < ¢ < 1 such that C' is a log canonical
center of (X, A 4 ¢*B), where B = CZ?:JT B;. Since B is effective, we see that

CN(Ne(X,A+¢*B)u | W] #0,
cgw

where W runs over lc centers of (X, A + ¢*B) which do not contain C. By Corollary B2, we can take an
effective R-divisor A¢ on C such that

(Kx +A)|lc ~r (Kx + A+ ¢"B)|c ~r Ko + Ac
and that

SuppAZ' =Cn [ Nle(X,A+¢*B)U | W | #0
cgw
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holds. This implies that
—(KX —|—A) -C = —deg(Kc —|—Ac) =2 —degAC <1
We finish the proof of Lemma B33. (]

9. PROOF OF THEOREM 3

In this section, we prove Theorem 8. Let us start with the following proposition, which is a consequence
of the cone and contraction theorem for normal pairs (see [FG, Theorem 1.1]) with the aid of Lemma E33.
This is essentially due to [S, Proposition 5.2].

Proposition 9.1 ([, Proposition 5.2] and [ETH, Proposition 7.1]). Let 7: X — S be a projective morphism
from a normal Q-factorial variety X onto a scheme S. Let A =Y. d;A; be an effective R-divisor on X,
where the A;’s are the distinct prime components of A for all i, such that

X,A/ = Z d;A\; + Z A;

d; <1 d;>1

is dlt. Assume that (Kx + A)|nag(x,a) is nef over S. Then Kx + A is nef over S or there exists a
non-constant morphism

fr A" — X\ NKIt(X, A)
such that o f(A') is a point. More precisely, the curve C, the closure of f(Al) in X, is a (possibly
singular) rational curve with
0<—(Kx+A)-C<2dimX.
Moreover, if C N NKIt(X, A) # (), then we can make C satisfy a sharper estimate
0<—(Kx+A4)-C<1.

Proof. We note that Nklt(X,A) coincides with (A")=! = [A’], AZ! and |A] set theoretically because
(X, A) is dlt by assumption. It is sufficient to construct a non-constant morphism

frA' — X\ NKIt(X, A)

such that 7o f(A!) is a point with the desired properties when Kx + A is not nef over S. When (X, A)
is kawamata log terminal, that is, |A| = 0, the statement is well known (see, for example, [E6, Theorem
1.1}, Theorem T3, or Corollary I2Z3 below). Therefore, we may assume that (X, A) is not kawamata
log terminal. By shrinking S suitably, we may assume that S and X are both quasi-projective. By the
cone and contraction theorem for normal pairs (see [E6, Theorem 1.1]), we can take a (Kx + A)-negative
extremal ray R of NE(X/S) and the associated extremal contraction morphism ¢ := pr: X — Y over
S since (Kx 4+ A)|ng(x,a) is nef over S. Note that (Kx + A<!). R < 0 and (Kx + A’)- R < 0 hold
because (Kx + A)|nuie(x,a) 18 nef over S. Since (X, A<!) is kawamata log terminal and —(Kx + A<!) is
p-ample, we get R'p.Ox = 0 for every i > 0 by the relative Kawamata—Viehweg vanishing theorem (see
[ETH, Corollary 5.7.7]). By construction, ¢: Nklt(X,A) — o(Nklt(X, A)) is finite. We have the following
short exact sequence

0— Ox(—LA/J) - O0Ox — OLA'J — 0.
Since —|A'|—(Kx+{A’}) = —(Kx+A') is p-ample and (X, {A’}) is kawamata log terminal, R, Ox(—|A']) =

0 holds for every ¢ > 0 by the relative Kawamata—Viehweg vanishing theorem again (see [ET1, Corollary
5.7.7]). Therefore,

0— (p*Ox(—LAIJ) — Oy — @*OLA@ —0
is exact. This implies that Supp|A’| = Supp A=! is connected in a neighborhood of any fiber of .

Case 1. Assume that ¢ is a Fano contraction, that is, dimY < dim X. Then we see that AZ! is p-ample
and that dimY = dim X — 1. Note that Supp AZ! is finite over Y since no curves in Supp AZ! are
contracted by ¢.

Assume that there exists a closed subvariety ¥ on X with dim ¥ > 2 such that ¢(X) is a point. Then

dim (E N Supp AZI) >1

holds since AZ! is p-ample. This is a contradiction because Supp AZ! is finite over Y. Hence we obtain
that dim ¢ ~!(y) = 1 for every closed point y € Y.
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Let C be any projective curve on X such that ¢(C) is a point. Then (X, A) is log canonical at the
generic point of C, equivalently, C' ¢ Nlc(X, A), since Supp A=! is finite over Y. More precisely, since
Supp AZ! = Nklt(X, A) is finite over Y, C' ¢ Nklt(X, A) and

Supp AZ! = NkIt(X,A) = | Nle(X, A)u | W
lol’a’

holds, where W runs over lc centers of (X, A) which do not contain C. On the other hand,
C N Supp A= £ ()

because AZ! is p-ample. Hence, by Lemma B3, we obtain that C' ~ P! and that —(Kx + A)-C < 1.
By the connectedness of Supp A=! discussed above, C'N Supp AZ! is a point. Therefore, we can find a
non-constant morphism
frA' — X\ NKIt(X, A)
such that 7o f(Al) is a point and that 0 < —(Kx + A) - C < 1 holds, where C is the closure of f(A!) in
X.

Case 2. Assume that ¢ is a birational contraction and that the exceptional locus Exc(p) of ¢ is disjoint
from NkIt(X, A). In this situation, we can find a rational curve C' in a fiber of ¢ with 0 < —(Kx+A)-C <
2dim X by the cone theorem for kawamata log terminal pairs (see [F6, Theorem 1.1], Theorem I3, or
Corollary T23 below). It is obviously disjoint from Nklt(X, A). Therefore, we can take a non-constant
morphism

frA' — X\ NKIt(X, A)
such that the closure of f(Al)is C.

Case 3. Assume that ¢ is a birational contraction and that Exc(¢) N Nklt(X, A) # (. In this situation,
as in Case 0, we see that AZ! is p-ample and that dimp~!(y) < 1 for every y € Y. Let C be any
projective curve C' on X such that ¢(C) is a point. Then, C'N Supp A=! # ) holds since A=! is p-ample,
and C N Supp AZ! is a point by the connectedness of Supp AZ! discussed above. In particular, we obtain
C ¢ Nklt(X,A) and

C N Supp A=t £,
and

Supp AZ' = NkIt(X,A) = [ Nle(X, A)u | W],
cgw
where W runs over lc centers of (X,A) which do not contain C. Hence, by Lemma B3, C' ~ P! with
—(Kx + A)-C < 1. Since C'N Supp A=! is a point, we get a non-constant morphism
frA' — X\ NKIt(X, A)
such that f(A') = C'N (X \ Nklt(X, A)).
Therefore, we get the desired statement. O

Let us prove Theorem T3 as an application of Proposition B

Proof of Theorem 8. By shrinking S suitably, we may assume that X and S are both quasi-projective.
By Lemma B0, we can construct a projective birational morphism ¢g: ¥ — X from a normal Q-factorial
variety Y satisfying (i), (ii), and (iv) in Lemma BT0. Let us consider mog: Y — S. Note that Ky + Ay
is not nef over S since Ky + Ay = g*(Kx + A) holds. It is obvious that (Ky + Ay )|nui(v,ay) is nef
over S by (iv) because so is (Kx + A)|niit(x,a). Therefore, by Proposition B, we have a non-constant
morphism
h: A" — Y \ NKkIt(Y, Ay)
such that (7o g) o h(Al) is a point and that
0< —(Ky + Ay) -Cy <2dimY =2dim X

holds, where Cy is the closure of h(A!) in Y. Since Ky + Ay = h*(Kx + A) holds, g does not contract
Cy to a pont. This implies that

f:=goh: A' — X \ Nklt(X,A)
is a desired non-constant morphism such that 7o f(A!) is a point by (iv). O

For the proof of Theorem A, we prepare the following somewhat artificial statement as an application
of Theorem .
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Theorem 9.2. Let w: X — S be a proper surjective morphism from a normal quasi-projective variety X
onto a scheme S. Let P be an R-Cartier divisor on X and let H be an ample Cartier divisor on X. Let
Y be a closed subset of X. Assume that 7 is not finite, —P is w-ample, and 7: X — w(X) is finite. We
further assume

o {&;}2, is a set of positive real numbers with €; \, 0 for i / oo, and
e for every i, there exists an effective R-divisor A; on X such that

P+eH~r Kx + A

and that
¥ = NkIt(X, A;)

holds set theoretically.

Then there exists a non-constant morphism
frA — X\X
such that wo f(A') is a point and that the curve C, the closure of f(A') in X, is a rational curve with
0<—-P-C<2dimX.

Proof. We take an ample Q-divisor A on X such that —(P + A) is w-ample. Without loss of generality,
we may assume that —(P + A + ¢;H) is m-ample for every i because ; \, 0 for i / co. By assumption,

P+eH ~p Kx + A

with

Nklt(X,A;) =%
for every i. Hence, by Theorem 3, there is a non-constant morphism

fir A — X\ 2
such that 7o f;(A!) is a point and that

0<—(Kx+A;) - Ci=—(P+eH) C;<2dimX,
where C; is the closure of f;(A!) in X. We note that
0<A-Ci=((P4+eH+A) —(P+e;H)) -C; <2dimX.

It follows that the curves C; belong to a bounded family. Thus, possibly passing to a subsequence, we
may assume that f; and C; are constant, that is, there is a non-constant morphism

frA' — X\X
such that C; = C for every i, where C is the closure of f(A!) in X. Therefore, we get
0<—-P-C=lim —(P+¢H) - C=lim —(P+¢H) C; <2dimX.
1— 00 1— 00

We finish the proof of Theorem 2. O

10. PrROOF OF THEOREMS A, 4, AND [CH

In this section, we prove Theorems I, I3 and IB. Since Theorem [ is an easy consequence of
Theorem 3 and Theorem I3 can be seen as a very special case of Theorem @ by Example B, it is
sufficient to prove Theorem 8. Let us start with the proof of Theorem 8.

Proof of Theorem [@. We note that (i) and (ii) were already established in [FT1, Theorem 6.7.4]. There-
fore, it is sufficient to prove (iii). From Step [ to Step B, we will reduce the problem to the case where X
is a normal variety. Then, in Step B, we will obtain a desired non-constant morphism from A' by Theorem
2.

Step 1. Let pg,: X — Y be the extremal contraction associated to R; (see Theorem ETS and [ETT,
Theorems 6.7.3 and 6.7.4]). We note that

¢r;: Ndle(X,w) — ¢g, (Nale(X, w))

is finite. By replacing m: X — S with pg;: X — Y, we may assume that —w is 7m-ample and that
NE(X/S) o = {0}.
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Step 2. We take a glc stratum W of [ X, w] such that 7: W — 7(W) is not finite and that 7: W1 — x(WT)
is finite for every qlc center W1 of [X,w] with W1 C W. We put W/ = WUNqle(X,w). Then, by adjunction
(see Theorem B8 (i) and [ETH, Theorem 6.3.5 (i)]), [W’,w|w-] naturally becomes a quasi-log scheme. By
replacing [X, w] with [W’, w|w-], we may further assume that X \ X_. is irreducible and that

m: Naklt(X, w) — 7 (Ngklt (X, w))
is finite.
Step 3. By Lemma B0, we may replace X with X \ X_., and assume that X is a variety. We note that
the finiteness of

m: Naklt(X, w) — 7 (Ngklt(X, w))
still holds.
Step 4. Let v: Z — X be the normalization. Then [Z, v*w] naturally becomes a quasi-log scheme by

Theorem 9. Since Ngklt(Z, v*w) = v~ ! Nqklt(X,w) by Theorem 9, we may assume that X is normal
by replacing [X,w] with [Z, v*w].
Step 5. By shrinking .S suitably, we may further assume that X and .S are both quasi-projective. Hence
we have the following properties:

(a) m: X — S is a projective morphism from a normal quasi-projective variety X to a scheme S,

(b) —w is m-ample, and

(¢) m: ¥ — w(X) is finite, where ¥ := Ngklt(X, w).
Let H be an ample Cartier divisor on X and let {£;}52; be a set of positive real numbers such that g; \, 0
for i / oco. Then, by Theorem 10, we have:

(d) there exists an effective R-divisor A; on X such that
Kx +Aj~pw+eH

with
Nklt(X,A;) =%

for every 1.
Thus, by Theorem B2, we have a desired non-constant morphism

f: A' — X\ Ngklt(X, w).
We finish the proof of Theorem M[A. O
As we already mentioned above, Theorem 3 is a very special case of Theorem .

Proof of Theorem . By Example B0, [X, Kx + A] naturally becomes a quasi-log scheme. Then, by
Theorem [, the desired cone theorem holds for (X, A). O

Theorem I easily follows from Theorem 3.

Proof of Theorem [[4. Since (X,A) is Mori hyperbolic by assumption, there is no (Kx + A)-negative
extremal ray of NE(X) that is rational and relatively ample at infinity (see Theorem [C3). By assumption,
(Kx +A)|Nie(x,a) is nef. Hence the subcone NE(X) o is included in NE(X) (g, +a)>0- This implies that

NE(X) = NE(X) (xy+a)>0
holds by Theorem 3. Thus Kx + A is nef. O

The author thinks that the proof of Theorems [, T3 and A shows that the framework of quasi-log
schemes established in [ET1, Chapter 6] and [ET4] is very powerful and useful even for the study of normal
pairs.

11. AMPLENESS CRITERION FOR QUASI-LOG SCHEMES

The main purpose of this section is to establish the following ampleness criterion for quasi-log schemes.
Then we will see that Theorem [T is a very special case of Theorem [T

Theorem 11.1 (Ampleness criterion for quasi-log schemes). Let [X,w]| be a quasi-log scheme and let
m: X — S be a projective morphism between schemes. Assume that w|ngie(x,w) 8 ample over S and that
w s log big over S with respect to [X,w]. We further assume that there is no non-constant morphism

fiAl—U

such that o f(Al) is a point, where U is any open glc stratum of [X,w]. Then w is ample over S.
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Let us treat a special case of Theorem 1.

Theorem 11.2. Let [X,w]| be a quasi-log scheme such that X is a normal variety. Let m: X — S be
a projective morphism onto a scheme S. Assume that w|Ngx(x,w) 95 ample over S and that there is no
non-constant morphism

f:A' — X\ Ngklt(X,w)

such that wo f(AY) is a point. We further assume that w is big over S. Then w is ample over S.
Proof. We divide the proof into several small steps.
Step 1. By Lemma 23, we can obtain quasi-log schemes
(X,wi, f: (Y, D;) = X)
for 1 <4 < k with the following properties:

(a) [X,w;] has a Q-structure for every i,

(b) Ngle(X, w;) = Ngle(X,w) holds for every i,

(¢) W is a glc stratum of [X,w] if and only if W is a glc stratum of [X, w;] for every 4, and

(d) there exist positive real numbers r; for 1 <14 < k such that w = Zle riw; with Zle r; =1
By construction, we can make w; sufficiently close to w (see the proof of Lemma BEZH). Therefore, we
may assume that w;|nqkie(x,w,) 15 ample over S for every i by (b) and (c). Thus [X,w;] satisfies all the
assumptions for [X,w] in Theorem IT2. Hence, by replacing [X,w] with [X,w;], it is sufficient to prove
the ampleness of w under the extra assumption that [X,w] has a Q-structure by (a) and (d).

Step 2. By assumption and Theorem [@ (iii), w is nef over S. Since w|ngkit(x,w) is ample over S by
assumption, w is nef and log big over S with respect to [X,w]. Therefore, by [FI0, Theorem 1.1], we
obtain that w is semi-ample over S. Hence mw gives a birational contraction morphism ®: X — Y
between normal varieties over S, where m is a sufficiently large and divisible positive integer.

Step 3. In this step, we will get a contradiction under the assumption that ® is not an isomorphism.
By shrinking S, we may assume that S, X, and Y are quasi-projective. By construction,

O Naklt(X,w) — &(Naklt(X, w))

is finite. Since @ is birational and Y is quasi-projective, we can take an effective Cartier divisor G on X
such that —G is ®-ample. By Lemma B4, for 0 < ¢ < 1, [X,w + £G] is a quasi-log scheme such that

Naklt(X, w 4+ eG) = Naklt(X, w)
holds. By the cone theorem (see Theorem [ (iii)), we can find a non-constant morphism
A — X\ Naklt(X,w + ¢G) = X \ Naklt(X,w)

such that wo f(A') is a point and that 0 < —(w+¢eG)-C < 2dim X holds, where C is the closure of f(A'!)
in X. This is a contradiction.

Hence ® is an isomorphism. Therefore, we obtain that w is ample over S. This is what we wanted. O
Once we know Theorem II2, it is not difficult to prove Theorem [II.

Proof of Theorem II. By Theorem I8 (iii), w is nef and log big over S with respect to [X,w]. We put
[Xo,wo] := [X, w]
and
[Xit1,wig1] := [Naklt(Xy, wi), wilNgris(x, w)]
for ¢ > 0. Then there exists &k > 0 such that
Naklt(Xg, wi) = Nale(Xg, wi) = Nale(X, w).

We note that Ngle(X,w) may be empty. By assumption, wk|qu1t( Xu,wp,) 18 ample over S. We want to show
by inverse induction on i that w; is ample over S. Therefore, it is sufficient to prove the following claim.

Claim. Let [X,w] be a quasi-log scheme and let m: X — S be a projective morphism between schemes
such that w|nquie(x,w) 8 ample over S and that w is nef and log big over S with respect to [X,w]. Assume
that there is no non-constant morphism

f: A' — X\ Ngklt(X,w)
such that wo f(Al) is a point. Then w is ample over S.
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Proof of Claim. By adjunction (see Theorem @ (i) and [ETI, Theorem 6.3.5 (i)]), we may assume that
X\ X_ isirreducible. By Lemma B220, we may further assume that X is irreducible. Then, by Theorem
9, we can reduce the problem to the case where X is a normal variety. Hence w is ample over S by
Theorem ITA. O

As we have already mentioned above, by applying Claim inductively, we obtain the desired relative
ampleness of w = wy. O

We close this section with the proof of Theorem I[TTI.

Proof of Theorem . By Example BT, [X, Kx + A] naturally becomes a quasi-log scheme. We apply
Theorem I to [X, Kx + A]. Then we obtain that Kx + A is ample. This is what we wanted. O

The author knows no proof of Theorem I that does not use the framework of quasi-log schemes.
Note that a similar result for dlt pairs was already established in [E7, Theorem 5.1], whose proof is much
easier than that of Theorem [T and depends on the basepoint-free theorem of Reid—Fukuda type for dlt
pairs (see [ET, Theorem 0.1]). We recommend the interested reader to see [E7d, Theorem 5.1] and [ET,
Theorem 0.1].

12. PROOF OF THEOREMS T2 AND I3

In this section, we prove Theorems T2 and I3, and explain an application for normal pairs. For the
basic properties of uniruled varieties, see [Kol, Chapter IV. 1]. Let us start with the following lemma,
which is a generalization of [Kd, Lemmal].

Lemma 12.1. Let [X,w] be a quasi-log scheme and let ¢: X — W be a projective morphism between
schemes. Let P be an arbitrary closed point of W. Let E be a positive-dimensional irreducible component
of " Y(P) such that E ¢ X_o, and let v: E — E be the normalization. Then, for every ample R-divisor
H on E, there exists an effective R-divisor AEH on E such that

V*w +H ~R KE+ AE,H
holds. Therefore, '
AdimEfl cw-E > (V*A)dlmE—l . KE
holds for every w-ample line bundle A on X.

In the above statement, if [X,w] has a Q-structure and H is an ample Q-divisor on E, then we can
make Ag ; an effective Q-divisor on E with

V*w + H ~Q KE+ AE,H’
Proof. Our approach is different from Kawamata’s in [Kd]. A key ingredient of this proof is Theorem [T0.
Step 1. If E is a glc stratum of [X,w], then we put B = 0 and go to Step B.

Step 2. By Step [0, we may assume that F is not a qlc stratum of [X,w]. Without loss of generality,
we may assume that W is quasi-projective by shrinking W around P. Let Bj,..., B,41 be general very
ample Cartier divisors on W passing through P with n = dim X. Let f: (Y,By) — X be a proper
morphism from a globally embedded simple normal crossing pair (Y, By ) as in Definition E2. Let X’ be
the union of X_,, = Ngle(X,w) and all qle strata of [X,w] mapped to P by ¢. By [ELl, Proposition
6.3.1] and [Ko2, Theorem 3.35], we may assume that the union of all strata of (Y, By ) mapped to X’ by f,
which is denoted by Y”, is a union of some irreducible components of Y. As usual, we put Y/ =Y — Y/,
Ky + By = (KY —|—By)|y//, and f” = f|y//. By [l“‘ll, Proposition 631] and [K,O2, Theorem 335] again,
we may further assume that

=1

n+1
(Y”, (") Z B, + Supp By,,>

is a globally embedded simple normal crossing pair. By [FT1, Lemma 6.3.13], we can take 0 < ¢ < 1 such
that

n+1 >1
f <By,, +e(f) e > Bi) 3 E
i=1
and that there exists an irreducible component G of

n+1 =1
(BY” +C(f”)*(,0* ZBZ>

i=1
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with f”(G) = E. By Lemma B=Z3, we obtain that
(X,w+ B, f": (Y, By + (f")*B) — X),

where B = ¢* (c Z?:ll B)7 is a quasi-log scheme such that F is a glc stratum of this quasi-log scheme.

Step 3. We put E/ = EUNqle(X,w + B). Then, by adjunction (see Theorem B (i) and [ETT, Theorem
6.3.5 ()]), [E’, (w+ B)| ] is a quasi-log scheme. By Lemma E20, [E, (w+ B)|g]| is also a quasi-log scheme.
We note that (w+ B)|g ~r w|g since ¢(E) = P. Hence [E,w|g] is a quasi-log scheme. By Theorem I,

[E, v*w] naturally becomes a quasi-log scheme. By Theorem [T, there exists an effective R-divisor Ag 5
on F such that
viw+ H ~p KE—F AE,H'
This implies that
(V*A)dimE—l A (u*w + H) E _ (V*A)dimE_l(KE-l- AEJ—[) 2 (I/*A)dimE_l A KF

Since the above inequality holds for every ample R-divisor H on E, we obtain

dim E—1 x (\dimE—1 & = 7= % A\dim E—1

A ‘we B =AM V'w- E > (VAN - K.

This is what we wanted. By the above proof, it is easy to see that we can make AE y an effective Q-divisor
on E if [X,w] has a Q-structure and H is an ample Q-divisor on E.

We finish the proof of Lemma 2. O

Remark 12.2. In the proof of [Kd, Lemmal], Kawamata uses a relative Kawamata—Viehweg vanishing
theorem for projective bimeromorphic morphisms between complex analytic spaces. His argument does
not work for quasi-log schemes.

Let us prove Theorem [T2.
Proof of Theorem II3. In this proof, we will freely use the notation of Lemma 2.

Case 1. We will treat the case where dim F' = 1.
We take an ample Q-divisor H on E such that —(v*w + H) is still ample. Then, by Lemma 2T, — K
is ample since A f is effective. This means that E ~ P'. By Lemma [ again, we have

0< —w-FE < —deg K& =2.

Case 2. We will treat the case where dim £ > 2.

We take a g-ample line bundle A such that v*A is very ample. We put C = D1 NN Dgim g—1, where
D; is a general member of [v*A| for every i. Then C' is a smooth irreducible curve on E such that C lies
in the smooth locus of E. By Lemma [Z1, we obtain

C Kz <AM™E-1.w. . E<0
because —w is p-ample. We note that
0>v'w-C=v'w- (VAIME-LE
—w .AdimEfl . E

Z (V*A)dimEfl . KE

=C K3
Therefore, for any given point = € C, there exists a rational curve I' on E passing through z with
— —Vw-C
0< —V*w-F§2dimE~L
—Kg-C

<2dimE.

This is essentially due to Miyaoka—Mori (see [MM]). We note that E is not always smooth but it is smooth
in a neighborhood of C. Hence we can use the argument of [MM]. For the details, see [Kol, Chapter
II. 5.8 Theorem]. Thus, E is covered by rational curves ¢ := v, I" with

0<—w-f{<2dimE.

Hence, by [Kall, Chapter IV. 1.4 Proposition—Definition|, F is uniruled. We finish the proof of Theorem
12. O

We prove Theorem [T3.
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Proof of Theorem [II3. Since pp is the contraction morphism associated to R,
vr: Nale(X,w) = pr(Nqle(X,w))
is finite. We apply Theorem T2 to wr: X — W, we can take a rational curve ¢ on X such that pr(¢) is
a point with
0< —w-¥£<2d.
We finish the proof of Theorem [CT3. O

We explain an application of Theorems T2 and I3 for normal pairs, which is a generalization of [Ka,
Theorem 1].

Corollary 12.3. Let X be a normal variety and let A be an effective R-divisor on X such that Kx + A
is R-Cartier. Let w: X — S be a projective morphism between schemes. Let R be a (Kx 4+ A)-negative
extremal ray of NE(X/S) that are rational and relatively ample at infinity. Let or: X — W be the
contraction morphism over S associated to R. We put

d = mindim F,
E

where E runs over positive-dimensional irreducible components of ap}}l(P) for all P € W. Then R is
spanned by a (possibly singular) rational curve £ with

0<—(Kx+A)-£<2d

Furthermore, if pr s birational and (X, A) is kawamata log terminal, then R is spanned by a (possibly
singular) rational curve £ with

0<—(Kx+A) -£<2d.

Let V' be an irreducible component of the degenerate locus
{z € X |¢Rr is not an isomorphism at x}
of or. Then V is uniruled.
Proof. We divide the proof into three small steps.

Step 1. By Example BT, [X, Kx + A] naturally becomes a quasi-log scheme. By applying Theorem I3
to [X, Kx + A], we see that R is spanned by a rational curve ¢ with

0<—(Kx+A) - £<2d

Step 2. When (X, A) is kawamata log terminal and ¢ is a birational contraction, we take a d-dimensional
irreducible component E of gal_%l(P) for some P € W. By shrinking W around P, we may assume that
W is affine. Since g is birational, there exists an effective Q-divisor G on X such that (X,A + G) is
kawamata log terminal and that —G is g r-ample. By applying Theorem T2 to [X, Kx + A + G|, we see
that E is covered by rational curves ¢ with

0<—-(Kx+A+G)-£<2d.
Since —G is ¢r-ample, we have
0<—(Kx+A)-£<2d
This implies that R is spanned by a rational curve ¢ with
0<—(Kx+A)-ft<2d
when (X, A) is kawamata log terminal and ¢p is birational.

Step 3. From now on, we will check that V' is uniruled. We shrink W around the generic point of g (V)
and assume that W is quasi-projective. Then we take a sufficiently ample Cartier divisor H on W such
that —(Kx + A) + @& H is ample. By Theorem [CI2, V N ' (P) is covered by rational curves ¢ of
— ((Kx + A) + ¢ H)-degree at most 2dim V' for every P € pr(V) C W. We take a suitable projective
completion X of X and apply [Kal, Chapter IV. 1.4 Proposition-Definition]. Then we obtain that V is
uniruled.

We finish the proof of Corollary [2Z3. O
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13. PROOF OF THEOREM 14

In this section, we prove Theorem [CT4. Let us start with the following definition.

Definition 13.1 ([F1I, Definition 6.8.1]). Let [X,w] be a quasi-log scheme and let 7: X — S be a
projective morphism between schemes. If —w is ample over S, then [X,w] is called a relative quasi-log
Fano scheme over S. When S is a point, we simply say that [X,w] is a quasi-log Fano scheme.

We recall an easy consequence of the vanishing theorem (see Theorem B8 (ii)), which is missing in [ETT,
Section 6.8].

Lemma 13.2. Let [X,w] be a quasi-log scheme and let w: X — S be a proper morphism between schemes
with m,Ox ~ Og. Assume that —w is nef and log big over S with respect to [X,w]. Then X_ N7 *(P)
is connected for every closed point P € S.

Proof. By Theorem E® (ii), R'm,.Zx__ = 0. Therefore, the restriction map
OS ~ 7T*OX — W*OX,OO
is surjective. This implies that X ., N7 ~!(P) is connected for every closed point P € S. (]

Lemma [33 should have been stated in [FTI, Lemma 6.8.3], which plays an important role in this
section. The main ingredient of the proof of Theorem 14 is the following theorem.

Theorem 13.3 ([, Theorem 1], [HM], and [BP, Corollary 1.4]). Let X be a normal projective variety
and let A be an effective R-divisor on X such that Kx + A is R-Cartier. Assume that —(Kx + A) is
ample. Then X is rationally chain connected modulo Nklt(X, A).

Proof. We take an effective Q-divisor A’ on X such that Kx + A’ is Q-Cartier, —(Kx + A’) is ample,
and Nklt(X,A’) = Nklt(X,A) holds. If Nklt(X,A’) = @, that is, (X,A’) is kawamata log terminal,
then X is rationally connected by [4, Theorem 1]. In particular, X is rationally chain connected by
Lemma T2, When Nklt(X, A’) # 0, by applying [BP, Corollary 1.4] to (X, A’), we obtain that for any
general point z of X there exists a rational curve R, passing through z and intersecting Nklt(X, A’).
By [Kall, Chapter II. 2.4 Corollary], for every € X, we can find a chain of rational curves R, such
that z € R, and R, N Nklt(X,A’) # 0. Hence X is rationally chain connected modulo Nklt(X,A).
We note that if —(Kx + A) is an ample Q-divisor then the proof of [BP, Theorem 1.2 and Corollary
1.4] becomes much simpler than the general case. Hence we obtain that X is rationally chain connected
modulo Nklt(X, A). O

We prepare one useful lemma.

Lemma 13.4. Let [X,w] be a projective quasi-log canonical pair such that Naklt(X,w) = 0, —w is ample,
and X is connected. Then X 1is rationally connected. Hence X is rationally chain connected.

Proof. By Lemma B and [ETH, Theorem 6.3.11 (i)], X is a normal variety. By Theorem 10, we can find
an effective R-divisor A on X such that —(Kx + A) is ample with Nklt(X, A) = (). Hence X is rationally
connected by [2, Theorem 1] (see the proof of Theorem [373). g

By the framework of quasi-log schemes, we can prove the following lemma as a generalization of Theorem
333 without any difficulties. We note that if Nqle(X,w) = ) in Lemma [33 then it is nothing but [F15,
Theorem 1.7]. For semi-log canonical Fano pairs, we recommend the reader to see [FLwi].

Lemma 13.5. Let [X,w] be a projective quasi-log scheme such that X is connected. Assume that —w is
ample. Then X is rationally chain connected modulo X _ .

Proof. As in the proof of Theorem I, we put
[X(),L‘JO] = [Xa w]
and
[(Xiy1, wiv1] = [Naklt(X;, wi), wilNqrie(x, w))
for ¢ > 0. Then there exists k¥ > 0 such that
Naklt(Xg, wk) = Nale(Xg, wi) = Nale(X,w) = X_ .
We note that if X ., = ), that is, [X,w] is quasi-log canonical, then X} is the unique minimal glc
stratum of [X,w] by [ETD, Theorem 6.8.3 (ii)]. By applying Lemma I34 to [Xj,wy], we obtain that
X}, is rationally connected when X_,, = (). We want to show by inverse induction on 7 that X, 1 is
rationally chain connected modulo X_., = Nqle(X,w). Note that we want to show that X is rationally

chain connected modulo X; when X_., = (). We also note that X; is connected by Lemma 32 and [FTT,
Theorem 6.8.3]. Hence it is sufficient to prove the following claim.
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Claim. Let [X,w| be a quasi-log scheme such that X is connected, Naklt(X,w) # 0, and —w is ample.
Then X is rationally chain connected modulo Ngklt(X,w).

Proof of Claim. By adjunction (see Theorem B (i) and [FT1, Theorem 6.3.5 (i)]) and [FTI, Theorem
6.8.3], we may assume that X \ X_ is irreducible. We note that every qlc stratum of [X,w] intersects
with Ngklt(X,w) (see [ELH, Theorem 6.8.3]). By Lemma B0, we may further assume that X itself is
irreducible. Then, by Theorem 9, we can further reduce the problem to the case where X is a normal
variety. Then, by Theorem I[I0, we can take an ample R-divisor H on X such that —(w+ H) is still ample
and that
Kx+A~pw+H
holds for some effective R-divisor A on X with
Nklt(X, A) = Naklt(X, w).

By applying Theorem [33 to (X, A), we obtain that X is rationally chain connected modulo Ngklt(X,w).
We finish the proof of Claim. O

By using Claim inductively, we can check that X is rationally chain connected modulo X_,, =
Ngle(X, w). O

Let us prove Theorem [—T4.

Proof of Theorem [LT4. When 7~ 1(P)NX_,, = 0, we may assume that X_., = () by shrinking X around
7~ 1(P). We divide the proof into several steps.

Step 1. Let X be the union of X_., and all glc strata of [X,w] contained in 7=!(P). By Lemma [32
and [ETI, Theorem 6.8.3], Xo N7~ 1(P) is connected.

Case 1. If Xy # X_, then [Xg,wp], where wy = w|x,, is a quasi-log scheme by adjunction (see Theorem

g8 (i) and [E1I, Theorem 6.3.5 (i)]). Let us consider X; = X, \ Nqle(Xo,wo). Then [X{,w]], where

wg = wl|yt, is a quasi-log scheme by Lemma EZ20. By construction, fwg is ample since 7(X}) = P.
0

Therefore, by Lemma 33, Xg is rationally chain connected modulo quc(Xg ,wg). This means that
Xo N7~ 1(P) is rationally chain connected modulo 7= (P) N X_ ..

Case 2. If Xg = X_, that is, there is no qlc stratum of [X,w] contained in 7=1(P), then Xoq N7~ (P)
is obviously rationally chain connected modulo 7=!(P) N X_., because Xo N7 1 (P) = 771 (P) N X_.
Note that Xy = X_,, = () may happen.

Hence 7~ 1(P) is rationally chain connected modulo 7=1(P) N X_. when 7=1(P) C Xo. Thus, from
now on, we may assume that 7—*(P) ¢ Xo.

Step 2. Without loss of generality, we may assume that S is quasi-projective by shrinking S around
P. We take general very ample Cartier divisors Bj, ..., B,41 passing through P with n = dim X. Let
f: (Y, By) — X be a proper morphism from a globally embedded simple normal crossing pair (Y, By) as
in Definition B2. By [ETI, Proposition 6.3.1] and [Ka2, Theorem 3.35], we may assume that the union of
all strata of (Y, By ) mapped to Xy by f, which is denoted by Y”, is a union of some irreducible components
of Y. Asusual, we put Y’ =Y - Y’ Ky~ + By» = (Ky + By)|y~, and f” = f|y~. By [ELL, Proposition
6.3.1] and [Ko2, Theorem 3.35] again, we may further assume that

n+1
(Y”, (f")y " Z B; + Supp By//>
i=1

is a globally embedded simple normal crossing pair. By [ETD, Lemma 6.3.13], we can take 0 < ¢; < 1 such
that

n+1 >1
(s $a) ) -
i=1

holds set theoretically and that there exists an irreducible component G of

n+1 =1
(BY” -+ Cl(f//)*ﬂ'* Z BZ)

i=1
with f”(G) ¢ X. By Lemma B23,
(Xvw +a B, fﬂ: (YllvBY” + Cl(f//)*B) - X) )
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where B = 7* (Z:jll B), is a quasi-log scheme.

Let X; be the union of Nqle(X,w + ¢;B) and all gle strata of [X,w + c; B] contained in 7=1(P). By
construction, Nqle(X,w + ¢; B) = X holds set theoretically. Therefore, by Case I in Step I, X; N7~ !(P)
is rationally chain connected modulo XoN7~1(P). We note that by Step M XoNm~!(P) is rationally chain
connected modulo 771(P) N X_.,. This means that X; N7~ !(P) is rationally chain connected modulo
7Y PN X _w.

Step 3. By repeating the argument in Step B, we can construct a finite increasing sequence of positive
real numbers
O<a<-<e <1
and closed subschemes
X1 G & Xp
of X with the following properties:

(a) [X;,w;] is a quasi-log scheme, where w; = (w + ¢; B)|x,, for every i,

(b) Nqle(X;41,wir1) = X; holds set theoretically for every 4,

(c) #=1(P) C X}, holds, and

(d) X;t1 N7 1(P) is rationally chain connected modulo X; N7~ !(P) for every i.

Hence we obtain that 7= (P) = 7#~(P) N X is rationally chain connected modulo 7=*(P) N X_ .

We finish the proof of Theorem [I4. O

14. TowARDS CONJECTURE I3

In this final section, we treat several results related to Conjecture IH. This section needs some deep
results on the theory of minimal models for higher-dimensional algebraic varieties. Let us start with the
following special case of the flip conjecture II.

Conjecture 14.1 (Termination of flips). Let (X,A) be a Q-factorial kit pair and let 7: X — S be a
projective surjective morphism between normal quasi-projective varieties such that Kx 4+ A is not pseudo-
effective over S. Let

(X, A) =: (Xo,Ao) -—> (Xl,Al) Itk S it 4 (X“Al) —— -
be a sequence of flips over S starting from (X, A). Then it terminates after finitely many steps.
In this section, we establish the following theorem, which is a precise version of Theorem [I4.

Theorem 14.2 (see Theorem [IH). Assume that Conjecture [Z-1 holds true in dimension at most
dim 7~ Y(P). Then Conjecture IIA holds true.

For the proof of Theorem I, we prepare a variant of Theorem 8. We need the termination of flips
in this theorem.

Theorem 14.3. Let X be a normal variety and let A be an effective R-divisor on X such that Kx + A
is R-Cartier. Assume that Conjecture [Z1 holds true in dim X. Let m: X — S be a projective morphism
onto a scheme S such that —(Kx + A) is m-ample with dim S < dim X. We assume that NkIt(X, A) is
not empty such that
m: Nklt(X, A) = m(Nklt(X, A))
is finite. Then there exists a non-constant morphism
f: A — X\ Nklt(X, A)

such that wo f(Al) is a point and that the curve C, the closure of f(A') in X, is a (possibly singular)
rational curve satisfying C N NkIt(X, A) # 0 with

0<—(Kx+A4)-C<1.

Proof. By shrinking S suitably, we may assume that X and S are both quasi-projective. By Lemma B0,
we can construct a projective birational morphism ¢g: Y — X from a normal Q-factorial variety satisfying
(i), (i), and (iv) in Lemma BT0. Since Ky + Ay = g*(Kx + A), (Ky + Ay)|nue(v,ay) is nef over S by
Lemma B0 (iv). Let us consider mog: Y — S. By construction, (Y, A$!') is a Q-factorial kit pair. Since
—(Kx + A) is m-ample by assumption, Ky + Ay is not pseudo-effective over S. Hence Ky + Af,l is not
pseudo-effective over S. Since (Ky + Ay )|nkit(v,ay) is nef over S, the cone theorem

NE(Y/S) = NE(Y/S)(xy +ay)>0 + ZRJ'
J
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holds by [EG, Theorem 1.1] (see also Theorem I3 (i)). Since Ky + Ay is not pseudo-effective over S,
Ky + Ay is not nef over S. Hence we have a (Ky + Ay )-negative extremal ray R of NE(Y/S). Then
we consider the contraction morphism ¢r: Y — W over S associated to R (see [E, Theorem 1.1] and
Theorem BI8). We note that —(Ky + A$') - R > 0 since (Ky + Ay)|Nuie(v,ay) is nef over S. If pp is an
isomorphism in a neighborhood of Nklt(Y, Ay ), then we can run a minimal model program with respect
to Ky + Ay over S by [BCHM]. Thus we run a minimal model program with respect to Ky + Ay over
S. Then we have a sequence of flips and divisorial contractions

Y=V - Py m U Py,

over S. As usual, we put (Yp, Ay, ) := (Y, Ay) and Ay,

i1

= ¢;, Ay, for every i.

Case 1. We assume that ¢; is an isomorphism in a neighborhood of Nklt(Y;, Ay,) for every i. Then this
minimal model program is a minimal model program with respect to Ky + Af/l. Hence, by Conjecture
[, we finally get the following diagram

LYYy, Y ...f':;yk

\ p
where ¢; is a flip or a divisorial contraction for every i and p: Yy — Z is a Fano contraction over S. We note
that (Ky, + Ayk)|Nk1t(yk’AYk) is nef over S. By Case [ in the proof of Proposition B, we can find a curve

Cy, ~ P! on Y}, such that p(Cy, ) is a point, Cy, NNklt(Yy, Ay, ) is a point, and 0 < —(Ky, + Ay, )-Cy, <1
holds. By using the negativity lemma, we can check that
—(Ky +Ay) - Cy < —(Ky, +Ay,)-Cy, <1

holds, where Cy is the strict transform of Cy, on Y. Note that Cy NNklt(Y, Ay) is a point since ¢; is an
isomorphism in a neighborhood of Nklt(Y;, Ay,) for every i. Therefore, C = g(Cy) is a curve on X such
that C N Nklt(X, A) is a point by Lemma B0 (iv) with 0 < —(Kx + A) - C < 1. Hence we can construct
a morphism

frAY — X\ NKit(X, A)
such that f(A!) = C N (X \ Nkit(X,A)). This is a desired morphism.
Case 2. We assume that there exists ¢o such that ¢; is an isomorphism in a neighborhood of Nklt(Y;, Ay,)

for 0 <i < ip and ¢;, is not an isomorphism in a neighborhood of Nklt(Y;,, Ay, ) Then, by using Case B
in the proof of Proposition El, we can find a curve Cy, =~ P! on Y;, such that Cy NNkt (Y;,, Ay, ) is a

109
point, Cy; is mapped to a point on S, and 0 < —(Kyi0 + Ayio) Cy;, <1 holds. By the same argument
as in Case [ above, we get a desired morphism

fr A' — X\ NKlt(X, A).
We finish the proof of Theorem [2=3. (]
By Theorem 3, we have:
Theorem 14.4. In Theorem @3, we further assume that dim S < dim X and that X # (. If Conjecture

[[Z3 holds true in dim X, then there exists a non-constant morphism

frA' — X\X
such that wo f(A) is a point and that the curve C, the closure of f(Al) in X, is a rational curve satisfying
CNY #0D with

0<-P.-C<1L

Proof. We use Theorem 23 instead of Theorem 8. Then the proof of Theorem B2 implies the existence
of

frA' — X\X
with the desired properties. ]

For the proof of Theorem 272, we establish the following somewhat technical lemma.
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Lemma 14.5. Letw: X — S be a projective surjective morphism between normal quasi-projective varieties
with 1,0x ~ Og and dim S > 0 and let [X,w] be a quasi-log scheme such that

m: Naklt(X, w) — m(Ngklt(X, w))

is finite. Let P be a closed point of S such that dim7~1(P) > 0. Then there exists an effective R-Cartier
divisor B on S such that [X,w + 7* B] is a quasi-log scheme with the following properties:

(i) Naklt(X,w) C Naklt(X,w + 7*B),

(i) Nqklt(X,w) = Naklt(X,w + 7*B) holds outside 71 (P),

(iii) 7: Nale(X,w + 7*B) — n(Nqle(X,w + 7*B)) is finite, and

(iv) there exists a positive-dimensional qlc center of [X,w + 7*B] in 7= 1(P).
We further assume that —w is w-ample. Let W be a positive-dimensional qlc center of [X,w + m* B] with
(W) = P. Let v: WY — W be the normalization. Then WY, v*w| naturally becomes a quasi-log Fano
scheme such that

v~ (Ngklt(X,w) N~ (P)) C Ngklt(W”, v*w)

holds set theoretically.

Proof. Let By,...,Byy1 be general very ample Cartier divisors on S passing through P with n = dim X.
Let f: (Y, By) — X be a proper morphism from a globally embedded simple normal crossing pair (Y, By )
as in Definition B2. Let X’ be the union of Nqle(X,w) and all gle centers of [X,w] mapped to P by 7. By
[ETH, Proposition 6.3.1] and [Kao2, Theorem 3.35], we may assume that the union of all strata of (Y, By)
mapped to X’ by f, which is denoted by Y”, is a union of some irreducible components of Y. As usual, we
put Y =Y —-Y', Ky + Byn = (Ky + By )|y, and = fly». By [Fll, Proposition 631] and [KOZ,
Theorem 3.35] again, we may further assume that

n+1
(Y”, (f"ym* Z B; + Supp Byu>

=1

is a globally embedded simple normal crossing pair. By [ETI, Lemma 6.3.13], we can take 0 < ¢ < 1 such
that

(a) we have

n+1 >1
f” (Bw e(f)y Ty BZ) Na Y (P)=10

i=1
or
n+1 >1
dirn f” (Byu +C(f”)*ﬂ'* ZBZ> ﬂ?Tl(P)) = 0,
i=1
and

(b) the following inequality

n4+1 =1
dim | f” (By// +c(f")y ZB’> N W_l(P)) >1
i=1

holds.
By Lemma B23, we obtain that

(X,w+7*B, f": (Y, Byr + (f)*7*B) = X),

where B = 02?311 B;, is a quasi-log scheme. By construction, we see that (i) holds true and Ngklt(X, w +
7* B) coincides with Nqklt(X,w) outside 7= (P) since By, ..., B, are general very ample Cartier divisors
on S. Hence we have (ii). Therefore, (iii) and (iv) follow from (a) and (b), respectively.

From now on, we further assume that —w is m-ample. As usual, we put

W' =W UNdqle(X,w + 7*B).

By adjunction (see Theorem B (i) and [FT1, Theorem 6.3.5 (i)]), [W’, (w+7*B)|w] is a quasi-log scheme.
By Lemma 8220, [W, (w+7* B)|w ] naturally becomes a quasi-log scheme. We note that (7*B)|w ~g 0 since
w(W) = P. Therefore, by replacing (w + 7*B)|w with w|w, we see that [W,w|w] is a quasi-log scheme.
By Theorem 9, [IW¥, v*w| becomes a quasi-log scheme. Note that —v*w is ample since 7o v(W") = P.
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Claim. We have

Nqklt(X,w) N7~ (P)

C Naklt(W’, (w + 7*B)|w+) N7~ (P)

= Ngklt(W, (w + 7*B)|w)

= Naklt(W, w|w)
set theoretically.
Proof of Claim. We divide the proof into several steps.
Step 1. By (iii) and Lemma 3732, Nqle(X, w+7*B)N7~!(P) is empty or a point. By [ETH, Theorem 6.8.3
(i)], every qle center of [X,w + 7*B] in 7~ 1(P) contains Nqle(X,w + 7*B) N 7~ }(P) when Nale(X,w +
7*B) N7~ 1(P) # (. When Nqle(X,w + 7*B) N7~ (P) = 0, the set of all qlc centers intersecting 7 *(P)
has a unique minimal element with respect to the inclusion by [ETI, Theorem 6.8.3 (ii)].
Step 2. In this step, we will check that

Nqklt(X,w) N7~ (P) € Naklt(W’, (w4 7*B)|w) N7~ 1(P)

holds set theoretically.

If Ngklt(X,w) N7~ (P) = 0, then it is obvious. Hence we may assume that Ngklt(X,w) N7 (P) # 0.
By assumption, Naklt(X,w) N7~ 1(P) is zero-dimensional. We take Q € Naklt(X,w) N7~ 1(P). If Q is a
qle center of [X,w] or @ € Nqle(X,w), then @ € Nqle(X,w + 7*B) by the construction of the quasi-log
scheme structure of [X,w + 7*B]. Then we have

Q € Nqle(W', (w + 7*B)|w) C Ngklt(W', (w + 7*B)|w).
Therefore, we have
Q € Ngklt (W', (w + 7* B)|w+) N7~ 1(P).

From now on, we assume that ) is not a glc center of [X,w] and that @ ¢ Nqle(X,w). Then, there exists a
positive-dimensional qlc center V of [X,w] such that Q@ € V N7~ !(P). Since Naklt(X,w) = Nqklt(X,w +
7* B) holds outside 771 (P) (see (ii)), V is also a qlc center of [ X, w+n*B]. If Nqle(X, w+r*B)N7~1(P) # 0,
then Nale(X,w+7*B)Nm~1(P) is a point by (iii) and Lemma [32. In this case, by [ET1, Theorem 6.8.3 (i)],
we have Q € VNr—1(P)NNqle(X,w+7*B). Hence Q € Nale(W’, (w+7*B)|w)N7~1(P). This implies that
Q € Naklt(W’, (w + 7*B)|w+) N 7~ 1(P). Thus we further assume that Nqle(X,w + 7*B) N7~ 1(P) = 0.
By shrinking X around 7~!(P), we may assume that [X,w + 7*B] is quasi-log canonical. Then @ €
VNW N7~ 1(P) by Step O (see also [ET1, Theorem 6.8.3 (ii)]). Hence Q € Naklt(W’, (w+7*B)|w+)N7~1(P)
by [ETH, Theorem 6.3.11 (i)]. More precisely, Q is a glc center of [W’, (w + 7*B)|w~].

In any case, we obtain

Naklt(X,w) N7~ (P) € Naklt(W’, (w + 7*B)|w) N7~ (P)
set theoretically.
Step 3. By Step 0 and Lemma B0,
Naklt(W’, (w + 7* B)|w) N1 (P) = Naklt(W, (w + 7* B)|w)
holds set theoretically. By the definition of the quasi-log scheme structure of [W,w|w],
Naklt(W, (w + 7" B)|w) = Naklt(W, w|w)
obviously holds.
We finish the proof of Lemma [Z73. O

Hence by Claim
v~ (Ngklt(X,w) N~ (P)) C Ngklt(W”, v*w)
holds set theoretically since v~ (Ngklt(W, w|w)) = Ngklt(W", v*w) by Theorem . O
Let us prove Theorem @3, which is stronger than Theorem 3.

Proof of Theorem [[Z-3. We first use the reduction as in Steps B, B, and 8 in the proof of Theorem [A. Let
us explain it more precisely for the reader’s convenience.

Step 1. We take an irreducible component W of X such that CT ¢ W. We put X’ = W U Nqlc(X,w).
Then, by adjunction (see Theorem BB (i) and [FTI, Theorem 6.3.5 (i)]), [X',w’' = w|x/] is a quasi-log
scheme. By replacing [X,w] with [X’,w'], we may assume that X \ X_, is irreducible. By Lemma B0,
we may replace X with X \ X_. and assume that X is a variety. Then, by taking the normalization, we
may further assume that X is a normal variety (see Theorem [9).
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Step 2. By taking the Stein factorization, we may further assume that 7.0Ox ~ Og. We put X =
Naklt(X, w). It is sufficient to find a non-constant morphism

frA' — (X\Z)na Y(P)

such that the curve C, the closure of f(A!) in X, is a (possibly singular) rational curve satisfying CNY # ()
with
0< —w-C<1.

Without loss of generality, we may assume that X and S are quasi-projective by shrinking S suitably.

Step 3. By assumption, dim7~!(P) > 0 and 7~ *(P)NY # (. When dim S > 0, by Lemma [Z3, we take
an effective R-Cartier divisor B on S such that [X,w+ 7*B] is a quasi-log scheme satisfying the properties
(i), (ii), (iil), and (iv) in Lemma [ZH. Then we take a positive-dimensional glc center W of [X,w + 7*B]
in 771 (P) such that there is no positive-dimensional qlc center W C W of [X,w + 7*B]. By Lemma 23,
[W¥ v*w] naturally becomes a quasi-log Fano scheme, where v: W¥ — W is the normalization. When
dim S = 0, it is sufficient to put B = 0 and W = X. By construction, Ngklt(W?", v*w) is finite. On the
other hand, Ngklt(W",v*w) is connected (see Lemma I3 and [ETH, Theorem 6.8.3]). By Lemma [273,
we obtain
0#v—" (N7 '(P)) C Ngklt(W", v*w).

Hence Ngklt(W",v*w) is a point such that v=! (S N7~!(P)) = Ngklt(W", v*w) holds set theoretically.
By applying Theorems I and T4 to [W",v*w] as in Step B in the proof of Theorem A, we obtain a
non-constant morphism

h: AY — WY\ Ngklt(W", v*w)
such that C”, the closure of h(A') in WY, is a (possibly singular) rational curve satisfying C’N\Nqklt(W", v*w) #
0 with 0 < —v*w - C’ < 1. Then

fi=tovoh: A' — (X\Z)nn Y(P),
where ¢: W — X is a natural inclusion, is a desired morphism.

We finish the proof of Theorem IZ72. O

For the proof of Theorem 20, we prepare the following theorem. The proof of Theorem IZM uses a
deep result on the existence problem of minimal models in [IHT].

Theorem 14.6. Let (X,A) be a dlt pair and let 7: X — S be a projective morphism between nor-
mal varieties such that —(Kx + A) is m-ample. We assume that NKIt(X,A) is not empty such that
7 Nklt(X, A) — m(Nklt(X, A)) is finite and that there exists a curve CT on X such that m(C1) is a point
with CT N NKIt(X, A) # (. Then there exists a non-constant morphism

f:A' — X\ NKIt(X, A)

such that wo f(A') is a point and that the curve C, the closure of f(A') in X, is a (possibly singular)
rational curve satisfying C N Nklt(X, A) # O with

0<—(Kx+A)-C<1.

Proof. By shrinking S suitably, we may assume that X and S are both quasi-projective. By Lemma BT,
we can construct a projective birational morphism ¢g: Y — X from a normal Q-factorial variety satisfying
(i), (ii), and (iv) in Lemma BT0. Since Ky + Ay = g*(Kx + A), (Ky + Ay)|nkit(v,a,) is nef over S by
Lemma BT (iv). Let us consider mo g: Y — S. By construction, (Y, Ay) is a Q-factorial dlt pair.

If dim S = dim X, then Ky + Ay is pseudo-effective over S. In this case, we can take an effective
R-divisor A on Y such that Ky + Ay + A ~g rog 0 and that (Y, Ay + A) is dlt since —(Ky + Ay) =
—g*(Kx + A) is (7 o g)-semi-ample. Hence (Y, Ay) has a good minimal model over S by [HI, Theorem
1.1] and any (Ky + Ay )-minimal model program over S with scaling of an ample divisor terminates (see
[HT, Theorem 2.11]).

If dimS < dim X, then Ky + Ay is not pseudo-effective over S since —(Kx + A) is ample over S.
In this case, we have a (Ky + Ay )-minimal model program which terminates at a Mori fiber space by
[BCHM]|.

Therefore, we have a finite sequence of flips and divisorial contractions

Y = yo_‘@>y1_@>..._¢El>m_dﬁ>..._¢’tl>yk
starting from (Yp, Ay, ) := (Y, Ay) over S such that (Y}, Ay, ) is a good minimal model of (Y, Ay) over S

or p: Y — Z is a Mori fiber space with respect to Ky, + Ay, over S, where Ay, , = ¢;,Ay, for every i.
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By assumption, we can take a curve C’ on Y such that —(Ky + Ay) - C’ > 0 with C" N NkIt(Y, Ay) # 0.
If ¢; is an isomorphism in a neighborhood of Nklt(Y;, Ay,) for 0 <4 < I, then
(14.1) O<—(Ky+Ay)~C/S—(Kyl +AY[)'O§G

holds by the negativity lemma, where C’{,l is the strict transform of C’ on Y;.

Case 1. We assume that ¢; is an isomorphism in a neighborhood of Nklt(Y;, Ay,) for every i. Then,
by (IZ0), the final model Y; has a Mori fiber space structure p: Y, — Z over S. We note that (Ky, +
Ay, Nkt (v, Ay,) 18 nef over S. Hence the argument in Case [ in the proof of Theorem M3 works without
any changes. Then we get a non-constant morphism

frA' — X\ NKIt(X, A)
with the desired properties.

Case 2. By Case [, we may assume that there exists ig such that ¢; is an isomorphism in a neighborhood
of Nklt(Y;, Ay;) for 0 < i < ip and ¢;, is not an isomorphism in a neighborhood of Nklt(Y;,, Ay, ). The
argument in Case B in the proof of Theorem I3 works without any changes. Then we get a non-constant
morphism

fr A — X\ NKIt(X, A)
with the desired properties.

We finish the proof of Theorem 2. O

We close this section with the proof of Theorem IZZ0. Since adjunction works well for dlt pairs, Theorem
directly follows from Theorem 2.

Proof of Theorem T2Z0. We put W = U;. Then W is an lc stratum of (X, A). By adjunction, it is well
known that we have
(Kx +A)lw = Kw + Aw
such that (W, Ay ) is dlt and that the lc centers of (W, Ay) are exactly the lc centers of (X, A) that are
strictly included in W (see, for example, [F3, Proposition 3.9.2]). By replacing 7: X — S with the Stein
factorization of pr,: W — g, (W), we may assume that 7: Nklt(X,A) — 7(Nklt(X,A)) is finite and
that there exists a curve C'T on X such that 7(CT) is a point with CTNNklt(X, A) # (). By Theorem [Z,
we obtain a desired non-constant morphism
f: A — X\ Nkit(X, A)
with the desired properties. O

As we have already mentioned, we will completely prove Conjecture I3 in a joint paper with Kenta
Hashizume (see [FHT]), where we use some deep results on the minimal model program for log canonical
pairs. We strongly recommend the interested reader to see [FHI].
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