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Abstract. We discuss the cone theorem for quasi-log schemes and the Mori hyperbol-
icity. In particular, we establish that the log canonical divisor of a Mori hyperbolic
projective normal pair is nef if it is nef when restricted to the non-lc locus. This answers
Svaldi’s question completely. We also treat the uniruledness of the degenerate locus of an
extremal contraction morphism for quasi-log schemes. Furthermore, we prove that every
fiber of a relative quasi-log Fano scheme is rationally chain connected modulo the non-qlc
locus.
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1. Introduction

This paper gives not only new results around the cone theorem and Mori hyperbolic-
ity of quasi-log schemes but also a new framework and some techniques to treat higher-
dimensional complex algebraic varieties based on the theory of mixed Hodge structures. It
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also shows that the theory of quasi-log schemes is very powerful even for the study of log
canonical pairs. We note that this paper heavily depends on [F11, Chapter 6] and [F14].
In his epoch-making paper [Mo], Shigefumi Mori established the following cone theorem

for smooth projective varieties.

Theorem 1.1 (Cone theorem for smooth projective varieties). Let X be a smooth projec-
tive variety defined over an algebraically closed field.

(i) There are countably many (possibly singular) rational curves Cj ⊂ X such that

0 < −(Cj ·KX) ≤ dimX + 1

and
NE(X) = NE(X)KX≥0 +

∑
j

R≥0[Cj].

(ii) For any ε > 0 and any ample Cartier divisor H on X,

NE(X) = NE(X)(KX+εH)≥0 +
∑
finite

R≥0[Cj].

In particular, we have:

Theorem 1.2. Let X be a smooth projective variety defined over an algebraically closed
field. Assume that there are no rational curves on X. Then KX is nef.

Precisely speaking, Mori proved the existence of rational curves on X under the as-
sumption that KX is not nef (see Theorem 1.2) by his ingenious method of bend and break.
Then he obtained the above cone theorem for smooth projective varieties (see Theorem
1.1). For the details, see [Mo], [KM, Sections 1.1, 1.2, and 1.3], [D], [Ko1], [Ma, Chapter
10], and so on.

From now on, we will work over C, the complex number field. Our arguments in this
paper heavily depend on Hironaka’s resolution of singularities and its generalizations and
several Kodaira type vanishing theorems. Hence they do not work over a field of charac-
teristic p > 0. Let us recall the notion of Mori hyperbolicity following [LZ] and [S].

Definition 1.3 (Mori hyperbolicity). Let (X,∆) be a normal pair such that ∆ is effective.
This means that X is a normal variety and ∆ is an effective R-divisor on X such that
KX +∆ is R-Cartier. Let W be an lc stratum of (X,∆). We put

U := W \

{
(W ∩ Nlc(X,∆)) ∪

∪
W ′

W ′

}
,

where W ′ runs over lc centers of (X,∆) strictly contained in W and Nlc(X,∆) denotes
the non-lc locus of (X,∆), and call it the open lc stratum of (X,∆) associated to W . We
say that (X,∆) is Mori hyperbolic if there is no non-constant morphism

f : A1 −→ U

for any open lc stratum U of (X,∆).

The following theorem is a generalization of Theorem 1.2 for normal pairs and is an
answer to [S, Question 6.6].

Theorem 1.4. Let X be a normal projective variety and let ∆ be an effective R-divisor
on X such that KX + ∆ is R-Cartier. Assume that (X,∆) is Mori hyperbolic and that
KX +∆ is nef when restricted to Nlc(X,∆). Then KX +∆ is nef.

Theorem 1.4 follows from the following cone theorem for normal pairs. We can see it as
a generalization of Theorem 1.1 for normal pairs.
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Theorem 1.5 (Cone theorem for normal pairs). Let (X,∆) be a normal pair such that ∆
is effective and let π : X → S be a projective morphism between schemes.

(i) Then

NE(X/S) = NE(X/S)(KX+∆)≥0 +NE(X/S)−∞ +
∑
j

Rj

holds, where Rj’s are the (KX + ∆)-negative extremal rays of NE(X/S) that are
rational and relatively ample at infinity. In particular, each Rj is spanned by an
integral curve Cj on X such that π(Cj) is a point.

(ii) Let H be a π-ample R-divisor on X. Then

NE(X/S) = NE(X/S)(KX+∆+H)≥0 +NE(X/S)−∞ +
∑
finite

Rj

holds.
(iii) For each (KX + ∆)-negative extremal ray Rj of NE(X/S) that are rational and

relatively ample at infinity, there are an open lc stratum Uj of (X,∆) and a non-
constant morphism

fj : A1 −→ Uj

such that Cj, the closure of fj(A1) in X, spans Rj in N1(X/S) with

0 < −(KX +∆) · Cj ≤ 2 dimUj.

More generally, we establish the following cone theorem for quasi-log schemes. We note
that Theorem 1.5 is a very special case of Theorem 1.6.

Theorem 1.6 (Cone theorem for quasi-log schemes). Let [X,ω] be a quasi-log scheme and
let π : X → S be a projective morphism between schemes.

(i) Then

NE(X/S) = NE(X/S)ω≥0 +NE(X/S)−∞ +
∑
j

Rj

holds, where Rj’s are the ω-negative extremal rays of NE(X/S) that are rational
and relatively ample at infinity. In particular, each Rj is spanned by an integral
curve Cj on X such that π(Cj) is a point.

(ii) Let H be a π-ample R-line bundle on X. Then

NE(X/S) = NE(X/S)(ω+H)≥0 +NE(X/S)−∞ +
∑
finite

Rj

holds.
(iii) For each ω-negative extremal ray Rj of NE(X/S) that are rational and relatively

ample at infinity, there are an open qlc stratum Uj of [X,ω] and a non-constant
morphism

fj : A1 −→ Uj

such that Cj, the closure of fj(A1) in X, spans Rj in N1(X/S) with

0 < −ω · Cj ≤ 2 dimUj.

We make a remark on Uj in Theorem 1.6.

Remark 1.7. In Theorem 1.6 (iii), let φRj
be the extremal contraction morphism associ-

ated to Rj. Then the proof of Theorem 1.6 shows that Uj is any open qlc stratum of [X,ω]
such that φRj

: Uj → φRj
(Uj) is not finite and that φRj

: W † → φRj
(W †) is finite for every

qlc center W † of [X,ω] with W † ⊊ Uj, where Uj is the closure of Uj in X.

The main ingredients of the proof of Theorem 1.6 are the following three results.
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Theorem 1.8. Let X be a normal variety and let ∆ be an effective R-divisor on X such
that KX + ∆ is R-Cartier. Let π : X → S be a projective morphism onto a scheme S.
Assume that (KX +∆)|Nklt(X,∆) is nef over S, where Nklt(X,∆) denotes the non-klt locus
of (X,∆), and that KX +∆ is not nef over S. Then there exists a non-constant morphism

f : A1 −→ X \ Nklt(X,∆)

such that π◦f(A1) is a point and that the curve C, the closure of f(A1) in X, is a (possibly
singular) rational curve with

0 < −(KX +∆) · C ≤ 2 dimX.

We prove Theorem 1.8 with the aid of the minimal model theory for higher-dimensional
algebraic varieties mainly due to [BCHM]. Theorem 1.9 is a slight generalization of [FLh,
Theorem 1.1], where [X,ω] is a quasi-log canonical pair. In Theorem 1.9, [X,ω] is not
necessarily quasi-log canonical.

Theorem 1.9. Let [X,ω] be a quasi-log scheme such that X is irreducible. Let ν : Z → X
be the normalization. Then there exists a proper surjective morphism f ′ : (Y ′, BY ′) → Z
from a quasi-projective globally embedded simple normal crossing pair (Y ′, BY ′) such that
every stratum of Y ′ is dominant onto Z and that

(Z, ν∗ω, f ′ : (Y ′, BY ′) → Z)

naturally becomes a quasi-log scheme with Nqklt(Z, ν∗ω) = ν−1Nqklt(X,ω). More pre-
cisely, the following equality

ν∗INqklt(Z,ν∗ω) = INqklt(X,ω)

holds, where INqklt(X,ω) and INqklt(Z,ν∗ω) are the defining ideal sheaves of Nqklt(X,ω) and
Nqklt(Z, ν∗ω) respectively.

Theorem 1.10 is similar to [F15, Theorem 1.1]. The proof of Theorem 1.10 needs some
deep results on basic slc-trivial fibrations obtained in [F14] and [FFL]. Therefore, Theorem
1.10 depends on the theory of variations of mixed Hodge structure (see [FF] and [FFS]).

Theorem 1.10. Let [X,ω] be a quasi-log scheme such that X is a normal quasi-projective
variety. Let H be an ample R-divisor on X. Then there exists an effective R-divisor ∆ on
X such that

KX +∆ ∼R ω +H

and that
Nklt(X,∆) = Nqklt(X,ω)

holds set theoretically, where Nklt(X,∆) denotes the non-klt locus of (X,∆). Furthermore,
if [X,ω] has a Q-structure and H is an ample Q-divisor on X, then we can make ∆ a
Q-divisor on X such that

KX +∆ ∼Q ω +H

holds.
When X is a smooth curve, we can take an effective R-divisor ∆ on X such that

KX +∆ ∼R ω

and that
Nklt(X,∆) = Nqklt(X,ω)

holds set theoretically. Of course, if we further assume that [X,ω] has a Q-structure, then
we can make ∆ an effective Q-divisor on X such that

KX +∆ ∼Q ω

holds.
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Let us briefly explain the idea of the proof of Theorem 1.6 (iii), which is one of the
main results of this paper. We take an ω-negative extremal ray Rj of NE(X/S) that are
rational and relatively ample at infinity. Then, by the contraction theorem, there exists a
contraction morphism φ := φRj

: X → Y over S associated to Rj. We take a qlc stratumW

of [X,ω] such that φ : W → φ(W ) is not finite and that φ : W † → φ(W †) is finite for every
qlc center W † with W † ⊊ W . By adjunction, W ′ := W ∪Nqlc(X,ω) with ω|W ′ becomes a
quasi-log scheme. Hence we can replace [X,ω] with [W ′, ω|W ′ ]. By using Theorem 1.9, we
can reduce the problem to the case where X is a normal variety. By Theorem 1.10, we see
that it is sufficient to treat normal pairs. For normal pairs, by Theorem 1.8, we can find
a non-constant morphism

fj : A1 −→ X \ Nqklt(X,ω)
with the desired properties.

We also treat an ampleness criterion for Mori hyperbolic normal pairs. It is a general-
ization of [S, Theorem 7.5].

Theorem 1.11 (Ampleness criterion for Mori hyperbolic normal pairs). Let X be a normal
projective variety and let ∆ be an effective R-divisor on X such that KX +∆ is R-Cartier.
Assume that (X,∆) is Mori hyperbolic, (KX +∆)|Nlc(X,∆) is ample, and KX +∆ is log big
with respect to (X,∆). Then KX +∆ is ample.

Theorem 1.11 is a very special case of the ampleness criterion for quasi-log schemes
(see Theorem 11.1). We omit the precise statement of Theorem 11.1 here since it looks
technical. We note that KX + ∆ is nef by Theorem 1.4 since (X,∆) is Mori hyperbolic
and (KX + ∆)|Nlc(X,∆) is ample. Therefore, KX + ∆ is nef and log big with respect to
(X,∆) in Theorem 1.11. Hence we can see that KX +∆ is semi-ample with the aid of the
basepoint-free theorem of Reid–Fukuda type (see [F10]). Then we prove that KX + ∆ is
ample.

By using the method established for the proof of Theorem 1.6, we can prove the following
theorems. Note that Theorems 1.12, 1.13, and 1.14 are free from the theory of minimal
models. Theorem 1.12 is a generalization of Kawamata’s famous theorem (see [Ka]).

Theorem 1.12. Let [X,ω] be a quasi-log scheme and let φ : X → W be a projective
morphism between schemes such that −ω is φ-ample. Let P be an arbitrary closed point
of W . Let E be any positive-dimensional irreducible component of φ−1(P ) such that E ̸⊂
X−∞. Then E is covered by (possibly singular) rational curves ℓ with

0 < −ω · ℓ ≤ 2 dimE.

In particular, E is uniruled.

For the reader’s convenience, let us explain the idea of the proof of Theorem 1.12. We
take an effective R-Cartier divisor B on W passing through P such that E is a qlc stratum
of [X,ω+φ∗B]. Let ν : E → E be the normalization. By adjunction for quasi-log schemes,
Theorems 1.9, 1.10, and so on, for any ample R-divisor H on E, we obtain an effective
R-divisor ∆E,H on E such that

ν∗ω +H ∼R KE +∆E,H

holds. This implies that C · KE < 0 holds for any general curve C on E. Thus, it is
not difficult to see that E is covered by rational curves (see [MM]). Our approach is
different from Kawamata’s original one, which uses a relative Kawamata–Viehweg vanish-
ing theorem for projective bimeromorphic morphisms between complex analytic spaces.
Kawamata’s approach does not work for our setting.

As a direct consequence of Theorem 1.12, we have:
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Theorem 1.13 (Lengths of extremal rational curves). Let [X,ω] be a quasi-log scheme and
let π : X → S be a projective morphism between schemes. Let R be an ω-negative extremal
ray of NE(X/S) that are rational and relatively ample at infinity. Let φR : X → W be the
contraction morphism over S associated to R. We put

d = min
E

dimE,

where E runs over positive-dimensional irreducible components of φ−1
R (P ) for all P ∈ W .

Then R is spanned by a (possibly singular) rational curve ℓ with

0 < −ω · ℓ ≤ 2d.

If (X,∆) is a log canonical pair, then [X,KX+∆] naturally becomes a quasi-log canonical
pair. Hence we can apply Theorems 1.12 and 1.13 to log canonical pairs. Note that
Theorems 1.12 and 1.13 are new even for log canonical pairs (see also Corollary 12.3). We
can prove the following result on rationally chain connectedness for relative quasi-log Fano
schemes.

Theorem 1.14 (Rationally chain connectedness). Let [X,ω] be a quasi-log scheme and
let π : X → S be a projective morphism between schemes with π∗OX ≃ OS. Assume that
−ω is ample over S. Then π−1(P ) is rationally chain connected modulo π−1(P ) ∩ X−∞
for every closed point P ∈ S. In particular, if further π−1(P ) ∩ X−∞ = ∅ holds, that is,
[X,ω] is quasi-log canonical in a neighborhood of π−1(P ), then π−1(P ) is rationally chain
connected.

Let us see the idea of the proof of Theorem 1.14. We assume that π−1(P ) ∩X−∞ ̸= ∅
for simplicity. By using the framework of quasi-log schemes, we construct a good finite
increasing sequence of closed subschemes

Z−1 := Nqlc(X,ω) ⊂ Z0 ⊊ Z1 ⊊ · · · ⊊ Zk

of X such that π−1(P ) ⊂ Zk after shrinking X around π−1(P ). It is well known that
if (V,∆) is a projective normal pair such that ∆ is effective and that −(KV + ∆) is
ample then V is rationally chain connected modulo Nklt(V,∆) (see [HM] and [BP]). By
this fact, adjunction for quasi-log schemes, Theorems 1.9, 1.10, and so on, we prove that
Zi+1 ∩ π−1(P ) is rationally chain connected modulo Zi ∩ π−1(P ) for every −1 ≤ i ≤ k− 1.
Since Zk ∩ π−1(P ) = π−1(P ) and Z−1 ∩ π−1(P ) = π−1(P ) ∩X−∞, we obtain that π−1(P )
is rationally chain connected modulo π−1(P ) ∩X−∞.

Theorems 1.6, 1.12, and 1.14 are closely related one another. Let us see these theorems
for extremal birational contraction morphisms of log canonical pairs. Let (X,∆) be a
projective log canonical pair and let R be a (KX + ∆)-negative extremal ray of NE(X).
Assume that the contraction morphism φR : X → W associated to R is birational. We take
a closed point P of W such that dimφ−1

R (P ) > 0. Then Theorem 1.14 says that φ−1
R (P )

is rationally chain connected. However, Theorem 1.14 gives no informations on degrees
of rational curves on φ−1

R (P ) with respect to −(KX + ∆). On the other hand, Theorem
1.12 shows that every irreducible component of φ−1

R (P ) is covered by rational curves ℓ
with 0 < −(KX + ∆) · ℓ ≤ 2 dimφ−1

R (P ). In particular, every irreducible component of
the exceptional locus of φR is uniruled. Note that the rationally chain connectedness of
φ−1(P ) does not directly follow from Theorem 1.12. Theorem 1.6 (see also Theorem 1.5)
shows that there exist a rational curve C on X and an open lc stratum U of (X,∆) such
that φR(C) is a point and that the normalization of C ∩ U contains A1.

We pose a conjecture related to [LZ, Theorem 3.1].
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Conjecture 1.15. Let [X,ω] be a quasi-log scheme and let π : X → S be a projective
morphism between schemes such that −ω is π-ample and that

π : Nqklt(X,ω) → π(Nqklt(X,ω))

is finite. Let P be a closed point of S such that there exists a curve C† ⊂ π−1(P ) with
Nqklt(X,ω) ∩ C† ̸= ∅. Then there exists a non-constant morphism

f : A1 −→ (X \ Nqklt(X,ω)) ∩ π−1(P )

such that C, the closure of f(A1) in X, satisfies C ∩ Nqklt(X,ω) ̸= ∅ with

0 < −ω · C ≤ 1.

In this paper, we solve Conjecture 1.15 under the assumption that any sequence of klt
flips terminates.

Theorem 1.16 (see Theorem 14.2). Assume that any sequence of klt flips terminates after
finitely many steps. Then Conjecture 1.15 holds true.

For the precise statement of Theorem 1.16, see Theorem 14.2. In a joint paper with
Kenta Hashizume (see [FH]), we will prove the following theorem, which is a very special
case of Conjecture 1.15, by using some deep results in the theory of minimal models for
log canonical pairs obtained in [H2].

Theorem 1.17 (see [FH]). Let X be a normal variety and let ∆ be an effective R-divisor
on X such that KX + ∆ is R-Cartier. Let π : X → S be a projective morphism onto a
scheme S such that −(KX +∆) is π-ample. We assume that

π : Nklt(X,∆) → π(Nklt(X,∆))

is finite. Let P be a closed point of S such that there exists a curve C† ⊂ π−1(P ) with
Nklt(X,∆) ∩ C† ̸= ∅. Then there exists a non-constant morphism

f : A1 −→ (X \ Nklt(X,∆)) ∩ π−1(P )

such that the curve C, the closure of f(A1) in X, is a (possibly singular) rational curve
satisfying C ∩ Nklt(X,∆) ̸= ∅ with

0 < −(KX +∆) · C ≤ 1.

Although Theorem 1.17 looks very similar to Theorem 1.8, the proof of Theorem 1.17
is much harder. By using Theorem 1.17, we will establish:

Theorem 1.18 (see [FH]). Conjecture 1.15 holds true.

As an application of Theorem 1.18, we will prove the following statement in [FH], which
supplements Theorem 1.6 (iii).

Theorem 1.19 (see [FH]). Let [X,ω] be a quasi-log scheme and let π : X → S be a
projective morphism between schemes. Let Rj be an ω-negative extremal ray of NE(X/S)
that are rational and relatively ample at infinity and let φRj

be the contraction morphism

associated to Rj. Let Uj be any open qlc stratum of [X,ω] such that φRj
: Uj → φRj

(Uj)

is not finite and that φRj
: W † → φRj

(W †) is finite for every qlc center W † of [X,ω] with

W † ⊊ Uj, where Uj is the closure of Uj in X. Let P be a closed point of φRj
(Uj). If

there exists a curve C† such that φRj
(C†) = P , C† ̸⊂ Uj, and C

† ⊂ Uj, then there exists a
non-constant morphism

fj : A1 −→ Uj ∩ φ−1
Rj
(P )

such that Cj, the closure of fj(A1) in X, spans Rj in N1(X/S) and satisfies Cj ̸⊂ Uj with

0 < −ω · Cj ≤ 1.
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We note that Theorem 1.19 is a generalization of [LZ, Theorem 3.1]. In this paper,
we prove the following simpler statement for dlt pairs for the reader’s convenience since
Theorems 1.17, 1.18, and 1.19 are difficult. Theorem 1.20 is much weaker than Theorem
1.19. However, it contains a generalization of [LZ, Theorem 3.1].

Theorem 1.20. Let (X,∆) be a dlt pair and let π : X → S be a projective morphism
between schemes. Let Rj be a (KX + ∆)-negative extremal ray of NE(X/S) and let φRj

be the contraction morphism associated to Rj. Let Uj be any open lc stratum of (X,∆)
such that φRj

: Uj → φRj
(Uj) is not finite and that φRj

: W † → φRj
(W †) is finite for every

lc center W † of (X,∆) with W † ⊊ Uj, where Uj is the closure of Uj in X. If there exists
a curve C† such that φRj

(C†) is a point, C† ̸⊂ Uj, and C† ⊂ Uj, then there exists a
non-constant morphism

fj : A1 −→ Uj

such that Cj, the closure of fj(A1) in X, spans Rj in N1(X/S) and satisfies Cj ̸⊂ Uj with

0 < −ω · Cj ≤ 1.

Although we need some deep results on the minimal model program for log canonical
pairs in [H1] in the proof of Theorem 1.20, the proof of Theorem 1.20 is much simpler than
that of Theorems 1.17, 1.18 and 1.19 in [FH] and will help the reader understand [FH].
Finally, we make a conjecture on lengths of extremal rational curves (see [Ma, Remark-

Question 10-3-6]).

Conjecture 1.21. If φRj
: Uj → φRj

(Uj) is proper in Theorem 1.6 (iii), where φRj
is

the contraction morphism associated to Rj, then there exists a (possibly singular) rational
curve Cj ⊂ Uj which spans Rj in N1(X/S) and satisfies

0 < −ω · Cj ≤ dj + 1

with
dj = min

E
dimE,

where E runs over positive-dimensional irreducible components of (φRj
|Uj

)−1(P ) for all
P ∈ φRj

(Uj).

The following remark on Conjecture 1.21 is obvious.

Remark 1.22. We use the same notation as in Conjecture 1.21. If φRj
: Uj → φRj

(Uj) is
proper in Theorem 1.6 (iii), we can make Cj satisfy

0 < −ω · Cj ≤ 2dj

by Theorem 1.12.

Of course, we hope that the following sharper estimate

0 < −ω · ℓ ≤ dimE + 1

should hold true in Theorem 1.12.

We briefly look at the organization of this paper. In Section 2, we recall some basic
definitions and results. Then we treat the notion of uniruledness, rationally connectedness,
and rationally chain connectedness. In Section 3, we treat some basic definitions and results
on normal pairs and then discuss dlt blow-ups for quasi-projective normal pairs. In Section
4, we briefly review the theory of quasi-log schemes and prepare some useful and important
lemmas. In Section 5, we give a detailed proof of Theorem 1.9. Theorem 1.9 plays a crucial
role since a quasi-log scheme is not necessarily normal even when it is a variety. In Section
6, we quickly explain basic slc-trivial fibrations. The results in [F14] make the theory of
quasi-log schemes very powerful. In Section 7, we prove a very important result on normal
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quasi-log schemes, which is a slight generalization of [F14, Theorem 1.7]. In Section 8, we
prove Theorem 1.10 by using the result explained in Section 7. Hence Theorem 1.10 heavily
depends on some deep results on the theory of variations of mixed Hodge structure. In
Section 9, we prove Theorem 1.8. Note that Theorem 1.8 was essentially obtained in [LZ]
and [S] under some extra assumptions. In Section 10, we prove Theorems 1.4, 1.5, and 1.6.
We note that Theorem 1.5 is a special case of Theorem 1.6. In Section 11, we discuss an
ampleness criterion for quasi-log schemes. As a very special case, we prove Theorem 1.11.
In Section 12, we treat Theorems 1.12 and 1.13. They are generalizations of Kawamata’s
famous result for quasi-log schemes. In Section 13, we prove Theorem 1.14, which is well
known for normal pairs. In Section 14, we discuss several results related to Conjecture
1.15.

Acknowledgments. The author was partially supported by JSPS KAKENHI Grant
Numbers JP16H03925, JP16H06337. He thanks Kenta Hashizume very much for many
useful comments and suggestions.

2. Preliminaries

We will work over C, the complex number field, throughout this paper. In this paper, a
schememeans a separated scheme of finite type over C. A varietymeans an integral scheme,
that is, an irreducible and reduced separated scheme of finite type over C. Note that Z, Q,
and R denote the set of integers, rational numbers, and real numbers, respectively. We also
note that Q>0 and R>0 are the set of positive rational numbers and positive real numbers,
respectively.

2.1. Basic definitions. We collect some basic definitions and several useful results. Let
us start with the definition of Q-line bundles and R-line bundles.

Definition 2.1 (Q-line bundles and R-line bundles). Let X be a scheme and let Pic(X) be
the group of line bundles on X, that is, the Picard group of X. An element of Pic(X)⊗ZR
(resp. Pic(X)⊗Z Q) is called an R-line bundle (resp. a Q-line bundle) on X.

In this paper, we write the group law of Pic(X)⊗ZR additively for simplicity of notation.
The notion of R-Cartier divisors and Q-Cartier divisors also plays a crucial role for the
study of higher-dimensional algebraic varieties.

Definition 2.2 (Q-Cartier divisors and R-Cartier divisors). Let X be a scheme and let
Div(X) be the group of Cartier divisors onX. An element of Div(X)⊗ZR (resp. Div(X)⊗Z
Q) is called an R-Cartier divisor (resp. a Q-Cartier divisor) on X. Let ∆1 and ∆2 be R-
Cartier (resp. Q-Cartier) divisors on X. Then ∆1 ∼R ∆2 (resp. ∆1 ∼Q ∆2) means that ∆1

is R-linearly (resp. Q-linearly) equivalent to ∆2. Let f : X → Y be a morphism between
schemes and let D be an R-Cartier divisor on X. Then D ∼R,f 0 means that there exists
an R-Cartier divisor G on Y such that D ∼R f

∗G.

The following remark is very important.

Remark 2.3 (see [F11, Remark 6.2.3]). Let X be a scheme. We have the following group
homomorphism

Div(X) → Pic(X)

given by A 7→ OX(A), where A is a Cartier divisor onX. Hence it induces a homomorphism

δX : Div(X)⊗Z R → Pic(X)⊗Z R.

Note that

Div(X) → Pic(X)
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is not always surjective. We write

A+ L ∼R B +M

for A,B ∈ Div(X)⊗Z R and L,M ∈ Pic(X)⊗Z R. This means that

δX(A) + L = δX(B) +M

holds in Pic(X)⊗ZR. We usually use this type of abuse of notation, that is, the confusion
of R-line bundles with R-Cartier divisors. In the theory of minimal models for higher-
dimensional algebraic varieties, we sometimes use R-Cartier divisors for ease of notation
even when they should be R-line bundles.

On normal varieties or equidimensional reduced schemes, we often treat R-divisors and
Q-divisors.

Definition 2.4 (Operations for Q-divisors and R-divisors). Let X be an equidimensional
reduced scheme. Note that X is not necessarily regular in codimension one. Let D be an
R-divisor (resp. a Q-divisor), that is, D is a finite formal sum

∑
i diDi, where Di is an

irreducible reduced closed subscheme of X of pure codimension one and di is a real number
(resp. a rational number) for every i such that Di ̸= Dj for i ̸= j. We put

D<c =
∑
di<c

diDi, D≤c =
∑
di≤c

diDi, D=1 =
∑
di=1

Di, and ⌈D⌉ =
∑
i

⌈di⌉Di,

where c is any real number and ⌈di⌉ is the integer defined by di ≤ ⌈di⌉ < di +1. Similarly,
we put

D>c =
∑
di>c

diDi and D≥c =
∑
di≥c

diDi

for any real number c. Moreover, we put ⌊D⌋ = −⌈−D⌉ and {D} = D − ⌊D⌋.
Let D be an R-divisor (resp. a Q-divisor) as above. We call D a subboundary R-divisor

(resp. Q-divisor) if D = D≤1 holds. When D is effective and D = D≤1 holds, we call D a
boundary R-divisor (resp. Q-divisor).

We further assume that f : X → Y is a surjective morphism onto a variety Y . Then we
put

Dv =
∑

f(Di)⊊Y

diDi and Dh = D −Dv,

and call Dv the vertical part and Dh the horizontal part of D with respect to f : X → Y ,
respectively.

Since we mainly treat highly singular schemes, we give an important remark.

Remark 2.5. In the theory of minimal models, we are mainly interested in normal quasi-
projective varieties. Let X be a normal variety. Then, for K = Z,Q, and R, the homo-
morphism

α : Div(X)⊗Z K → Pic(X)⊗Z K
is surjective and the homomorphism

β : Div(X)⊗Z K → Weil(X)⊗Z K

is injective, where Weil(X) is the abelian group generated by Weil divisors on X. We
usually use the surjection α and the injection β implicitly. In this paper, however, we
frequently treat highly singular schemes X. Hence we have to be careful when we consider
α : Div(X)⊗Z K → Pic(X)⊗Z K and β : Div(X)⊗Z K → Weil(X)⊗Z K.

Let us recall the following standard notation for the sake of completeness.
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Definition 2.6 (N1(X/S), N1(X/S), ρ(X/S), and so on). Let π : X → S be a proper
morphism between schemes. Let Z1(X/S) be the free abelian group generated by integral
complete curves which are mapped to points on S by π. Then we obtain a bilinear form

· : Pic(X)× Z1(X/S) → Z,
which is induced by the intersection pairing. We have the notion of numerical equivalence
both in Z1(X/S) and in Pic(X), which is denoted by ≡, and we obtain a perfect pairing

N1(X/S)×N1(X/S) → R,
where

N1(X/S) = {Pic(X)/ ≡} ⊗Z R and N1(X/S) = {Z1(X/S)/ ≡} ⊗Z R.
It is well known that

dimRN
1(X/S) = dimRN1(X/S) <∞.

We write
ρ(X/S) = dimRN

1(X/S) = dimRN1(X/S)

and call it the relative Picard number of X over S. When S = SpecC, we usually drop
/ SpecC from the notation, for example, we simply write N1(X) instead of N1(X/ SpecC).

We will freely use the following useful lemma without mentioning it explicitly in the
subsequent sections.

Lemma 2.7 (Relative real Nakai–Moishezon ampleness criterion). Let π : X → S be a
proper morphism between schemes and let L be an R-line bundle on X. Then L is π-ample
if and only if LdimZ ·Z > 0 for every positive-dimensional closed integral subscheme Z ⊂ X
such that π(Z) is a point.

For the details of Lemma 2.7, see [FM]. In the theory of quasi-log schemes, we mainly
treat highly singular reducible schemes. Hence Lemma 2.7 is very useful in order to check
the ampleness of R-line bundles.

2.2. Uniruledness, rationally connectedness, and rationally chain connected-
ness. In this subsection, we quickly recall the notion of uniruledness, rationally connect-
edness, rationally chain connectedness, and so on. We need it for Theorems 1.12, 1.13, and
1.14. For the details, see [Ko1, Chapter IV.]. We note that a scheme means a separated
scheme of finite type over C in this paper. Let us start with the definition of uniruled
varieties.

Definition 2.8 (Uniruledness, see [Ko1, Chapter IV. 1.1 Definition]). Let X be a variety.
We say that X is uniruled if there exist a variety Y of dimension dimX−1 and a dominant
rational map

P1 × Y 99K X.
Although the notion of rationally connectedness is dispensable for Theorem 1.14, we

explain it for the reader’s convenience.

Definition 2.9 (Rationally connectedness, see [Ko1, Chapter IV. 3.6 Proposition]). Let
X be a projective variety. We say that X is rationally connected if for general closed points
x1, x2 ∈ X there exists an irreducible rational curve C which contains x1 and x2.

The following lemma is almost obvious by definition.

Lemma 2.10. Let X 99K X ′ be a generically finite dominant rational map between vari-
eties. If X is uniruled, then X ′ is also uniruled. Furthermore, we assume that X 99K X ′ is
a birational map between projective varieties. Then X is rationally connected if and only
if X ′ is rationally connected.
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Let us define rationally chain connectedness for projective schemes.

Definition 2.11 (Rationally chain connectedness, see [Ko1, Chapter IV. 3.5 Corollary
and 3.6 Proposition]). Let X be a projective scheme. We say that X is rationally chain
connected if for arbitrary closed points x1, x2 ∈ X there is a connected curve C which
contains x1 and x2 such that every irreducible component of C is rational.

Note that X may be reducible in Definition 2.11. For projective varieties, we have:

Lemma 2.12. Let X be a projective variety. If X is rationally connected, then X is
rationally chain connected.

Proof. This follows from [Ko1, Chapter IV. 3.6 Proposition]. □
We need the following definition for Theorem 1.14.

Definition 2.13 ([HM, Definition 1.1]). Let X be a projective scheme and let V be any
closed subset. We say that X is rationally chain connected modulo V if

(1) either V = ∅ and X is rationally chain connected, or
(2) V ̸= ∅ and, for every P ∈ X, there is a connected pointed curve 0,∞ ∈ C with

rational irreducible components and a morphism hP : C → X such that hP (0) = P
and hP (∞) ∈ V .

We close this subsection with a small remark.

Remark 2.14. Let X be a singular normal projective rationally chain connected variety.
Then the resolution of X is not always rationally chain connected. Hence the notion of
rationally chain connectedness is more subtle than that of uniruledness and rationally
connectedness (see Lemma 2.10).

3. On normal pairs

In this section, we collect some basic definitions and then discuss dlt blow-ups for normal
pairs. Note that the results on dlt blow-ups discussed in Subsection 3.2 are new. For the
details of normal pairs, see [BCHM], [F6], and [F11]. Let us start with the definition of
normal pairs in this paper.

Definition 3.1 (Normal pairs). A normal pair (X,∆) consists of a normal variety X and
an R-divisor ∆ on X such that KX +∆ is R-Cartier. Here we do not always assume that
∆ is effective.

We note the following definition of exceptional loci of birational morphisms between
varieties.

Definition 3.2 (Exceptional loci). Let f : X → Y be a birational morphism between
varieties. Then the exceptional locus Exc(f) of f : X → Y is the set

{x ∈ X | f is not biregular at x}.

3.1. Singularities of pairs. Let us explain singularities of pairs and some related defini-
tions.

Definition 3.3. Let X be a variety and let E be a prime divisor on Y for some birational
morphism f : Y → X from a normal variety Y . Then E is called a divisor over X.

Definition 3.4 (Singularities of pairs). Let (X,∆) be a normal pair and let f : Y → X
be a projective birational morphism from a normal variety Y . Then we can write

KY = f ∗(KX +∆) +
∑
E

a(E,X,∆)E
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with

f∗

(∑
E

a(E,X,∆)E

)
= −∆,

where E runs over prime divisors on Y . We call a(E,X,∆) the discrepancy of E with
respect to (X,∆). Note that we can define the discrepancy a(E,X,∆) for any prime
divisor E over X by taking a suitable resolution of singularities of X. If a(E,X,∆) ≥ −1
(resp. > −1) for every prime divisor E over X, then (X,∆) is called sub log canonical
(resp. sub kawamata log terminal). We further assume that ∆ is effective. Then (X,∆)
is called log canonical and kawamata log terminal (lc and klt, for short) if it is sub log
canonical and sub kawamata log terminal, respectively.

Let (X,∆) be a log canonical pair. If there exists a projective birational morphism
f : Y → X from a smooth variety Y such that both Exc(f) and Exc(f) ∪ Supp f−1

∗ ∆
are simple normal crossing divisors on Y and that a(E,X,∆) > −1 holds for every f -
exceptional divisor E on Y , then (X,∆) is called divisorial log terminal (dlt, for short).

Let (X,∆) be a normal pair. If there exist a projective birational morphism f : Y → X
from a normal variety Y and a prime divisor E on Y such that (X,∆) is sub log canonical
in a neighborhood of the generic point of f(E) and that a(E,X,∆) = −1, then f(E) is
called a log canonical center (an lc center, for short) of (X,∆). A closed subvariety W
of X is called a log canonical stratum (an lc stratum, for short) of (X,∆) if W is a log
canonical center of (X,∆) or W is X itself.

Although it is well known, we recall the notion of multiplier ideal sheaves here for the
reader’s convenience.

Definition 3.5 (Multiplier ideal sheaves and non-lc ideal sheaves). Let X be a normal
variety and let ∆ be an effective R-divisor on X such that KX + ∆ is R-Cartier. Let
f : Y → X be a resolution with

KY +∆Y = f ∗(KX +∆)

such that Supp∆Y is a simple normal crossing divisor on Y . We put

J (X,∆) = f∗OY (−⌊∆Y ⌋).

Then J (X,∆) is an ideal sheaf on X and is known as the multiplier ideal sheaf associated
to the pair (X,∆). It is independent of the resolution f : Y → X. The closed subscheme
Nklt(X,∆) defined by J (X,∆) is called the non-klt locus of (X,∆). It is obvious that
(X,∆) is kawamata log terminal if and only if J (X,∆) = OX . Similarly, we put

JNLC(X,∆) = f∗OX(−⌊∆Y ⌋+∆=1
Y )

and call it the non-lc ideal sheaf associated to the pair (X,∆). We can check that it is
independent of the resolution f : Y → X. The closed subscheme Nlc(X,∆) defined by
JNLC(X,∆) is called the non-lc locus of (X,∆). It is obvious that (X,∆) is log canonical
if and only if JNLC(X,∆) = OX .

By definition, the natural inclusion

J (X,∆) ⊂ JNLC(X,∆)

always holds. Therefore, we have

Nlc(X,∆) ⊂ Nklt(X,∆).

For the details of J (X,∆) and JNLC(X,∆), see [F4], [F6, Section 7], and [L, Chapter
9]. In this paper, we need the notion of open lc strata.
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Definition 3.6 (Open lc strata). Let (X,∆) be a normal pair such that ∆ is effective.
Let W be an lc stratum of (X,∆). We put

U := W \

{
(W ∩ Nlc(X,∆)) ∪

∪
W ′

W ′

}
,

where W ′ runs over lc centers of (X,∆) strictly contained in W , and call it the open lc
stratum of (X,∆) associated to W .

3.2. Dlt blow-ups revisited. Let us discuss dlt blow-ups. We give a slight generalization
of [F11, Theorem 4.4.21]. Here we use the theory of minimal models mainly due to [BCHM].
Let us start with the definition of movable divisors.

Definition 3.7 (Movable divisors and movable cones, see [F11, Definition 2.4.4]). Let
f : X → Y be a projective morphism from a normal variety X onto a variety Y . A Cartier
divisor D on X is called f -movable or movable over Y if f∗OX(D) ̸= 0 and if the cokernel
of the natural homomorphism

f ∗f∗OX(D) → OX(D)

has a support of codimension ≥ 2.
We define Mov(X/Y ) as the closure of the convex cone in N1(X/Y ) generated by the nu-

merical equivalence classes of f -movable Cartier divisors. We call Mov(X/Y ) the movable
cone of f : X → Y .

The following lemma is a very minor generalization of [F11, Lemma 2.4.5].

Lemma 3.8 (Negativity lemma). Let f : X → Y be a projective birational morphism
between normal varieties. Let E be an R-Cartier R-divisor on X such that −f∗E is effective
and E ∈ Mov(X/Y ). Then −E is effective.

Proof. We take a resolution of singularities of X. Then we may assume that X is smooth.
We write E = E+−E− such that E+ and E− are effective R-divisors and have no common
irreducible components. By assumption, E+ is f -exceptional. Hence the proof of [F11,
Lemma 2.4.5] works without any changes. Therefore, we obtain that E+ = 0, equivalently,
−E is effective. □
By Lemma 3.8, we can prove the existence of dlt blow-ups for quasi-projective normal

pairs. We note that ∆ is assumed to be a boundary R-divisor in [F11, Theorem 4.4.21].

Theorem 3.9 (Dlt blow-ups). Let X be a normal quasi-projective variety and let ∆ =∑
i di∆i be an effective R-divisor on X such that KX + ∆ is R-Cartier. In this case, we

can construct a projective birational morphism f : Y → X from a normal quasi-projective
variety Y with the following properties.

(i) Y is Q-factorial.
(ii) a(E,X,∆) ≤ −1 for every f -exceptional divisor E on Y .
(iii) We put

∆† =
∑

0<di<1

dif
−1
∗ ∆i +

∑
di≥1

f−1
∗ ∆i +

∑
E: f-exceptional

E.

Then (Y,∆†) is dlt and the following equality

KY +∆† = f ∗(KX +∆) +
∑

a(E,X,∆)<−1

(a(E,X,∆) + 1)E

holds.

We only give a sketch of the proof of Theorem 3.9 since the proof of [F11, Theorem
4.4.21] works by Lemma 3.8.
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Sketch of Proof of Theorem 3.9. Let g : Z → X be a resolution such that Exc(g)∪Supp g−1
∗ ∆

is a simple normal crossing divisor on X and g is projective. We write

KZ + ∆̃ = g∗(KX +∆) + F,

where
∆̃ =

∑
0<di<1

dig
−1
∗ ∆i +

∑
di≥1

g−1
∗ ∆i +

∑
E: g-exceptional

E.

We note that −g∗F is effective by construction. Then we apply the same argument as in
the proof of [F11, Theorem 4.4.21], that is, we run a suitable minimal model program with

respect to (Z, ∆̃) over X. After finitely many steps, we see that the effective part of F
is contracted. Note that all we have to do is to use Lemma 3.8 instead of [F11, Lemma
2.4.5]. □
When ∆ is a boundary R-divisor, Lemma 3.10 is nothing but [S, Theorem 3.4].

Lemma 3.10. Let X be a normal quasi-projective variety and let ∆ be an effective R-
divisor on X such that KX+∆ is R-Cartier. Then we can construct a projective birational
morphism g : Y → X from a normal Q-factorial variety Y with the following properties.

(i) KY +∆Y := g∗(KX +∆),
(ii) the pair (

Y,∆′
Y :=

∑
di<1

diDi +
∑
di≥1

Di

)
is dlt, where ∆Y =

∑
i diDi is the irreducible decomposition of ∆Y ,

(iii) every g-exceptional prime divisor is a component of (∆′
Y )

=1, and
(iv) g−1Nklt(X,∆) coincides with Nklt(Y,∆Y ) and Nklt(Y,∆′

Y ) set theoretically.

By Theorem 3.9, the proof of [S, Theorem 3.4] works without any changes even when ∆
is not a boundary R-divisor. We give a proof for the sake of completeness.

Proof of Lemma 3.10. There exists a dlt blow-up α : Z → X with KZ+∆Z := α∗(KX+∆)
satisfying (i), (ii), and (iii) by Theorem 3.9. Note that (Z,∆<1

Z ) is a Q-factorial kawamata
log terminal pair. We take a minimal model (Z ′,∆<1

Z′ ) of (Z,∆<1
Z ) over X by [BCHM].

Z

α   @
@@

@@
@@

@
φ //_______ Z ′

α′
~~}}
}}
}}
}}

X

Then KZ′ +∆<1
Z′ ∼R −∆≥1

Z′ + α′∗(KX +∆) is nef over X. Of course, we put ∆Z′ = φ∗∆Z .

We take a dlt blow-up β : Y → Z ′ of (Z ′,∆<1
Z′ +Supp∆≥1

Z′ ) again by Theorem 3.9 (or [F11,
Theorem 4.4.21]) and put g := α′ ◦β : Y → X. It is not difficult to see that this birational
morphism g : Y → X with KY +∆Y := g∗(KX +∆) satisfies the desired properties. It is
obvious that g−1Nklt(X,∆) contains the support of β∗∆≥1

Z′ . Since −β∗∆≥1
Z′ is nef over X,

we see that β∗∆≥1
Z′ coincides with g−1Nklt(X,∆) set theoretically. □

For the details of the proof of Lemma 3.10, see [S, Theorem 3.4]. In [FH], Theorem 3.9
and Lemma 3.10 will be generalized completely by using the minimal model program for
log canonical pairs established in [H2].

4. On quasi-log schemes

In this section, we explain some basic definitions and results on quasi-log schemes. For
the details of the theory of quasi-log schemes, we recommend the reader to see [F11,
Chapter 6].
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4.1. Definitions and basic properties of quasi-log schemes. The notion of quasi-log
schemes was first introduced by Florin Ambro (see [A]) in order to establish the cone and
contraction theorem for (X,∆), where X is a normal variety and ∆ is an effective R-divisor
on X such that KX + ∆ is R-Cartier. Here we use the formulation in [F11, Chapter 6],
which is slightly different from Ambro’s original one. We recommend the interested reader
to see [F12, Appendix A] for the difference between our definition of quasi-log schemes and
Ambro’s one.

In order to define quasi-log schemes, we use the notion of globally embedded simple
normal crossing pairs.

Definition 4.1 (Globally embedded simple normal crossing pairs, see [F11, Definition
6.2.1]). Let Y be a simple normal crossing divisor on a smooth variety M and let B be
an R-divisor on M such that Supp(B + Y ) is a simple normal crossing divisor on M and
that B and Y have no common irreducible components. We put BY = B|Y and consider
the pair (Y,BY ). We call (Y,BY ) a globally embedded simple normal crossing pair and M
the ambient space of (Y,BY ). A stratum of (Y,BY ) is a log canonical center of (M,Y +B)
that is contained in Y .

Let us recall the definition of quasi-log schemes.

Definition 4.2 (Quasi-log schemes, see [F11, Definition 6.2.2]). A quasi-log scheme is a
schemeX endowed with an R-Cartier divisor (or R-line bundle) ω onX, a closed subscheme
X−∞ ⊊ X, and a finite collection {C} of reduced and irreducible subschemes of X such
that there is a proper morphism f : (Y,BY ) → X from a globally embedded simple normal
crossing pair satisfying the following properties:

(1) f ∗ω ∼R KY +BY .
(2) The natural map OX → f∗OY (⌈−(B<1

Y )⌉) induces an isomorphism

IX−∞
≃−→ f∗OY (⌈−(B<1

Y )⌉ − ⌊B>1
Y ⌋),

where IX−∞ is the defining ideal sheaf of X−∞.
(3) The collection of reduced and irreducible subschemes {C} coincides with the images

of the strata of (Y,BY ) that are not included in X−∞.

We simply write [X,ω] to denote the above data

(X,ω, f : (Y,BY ) → X)

if there is no risk of confusion. Note that a quasi-log scheme [X,ω] is the union of {C} and
X−∞. The reduced and irreducible subschemes C are called the qlc strata of [X,ω], X−∞
is called the non-qlc locus of [X,ω], and f : (Y,BY ) → X is called a quasi-log resolution of
[X,ω]. We sometimes use Nqlc(X,ω) or

Nqlc(X,ω, f : (Y,BY ) → X)

to denote X−∞. If a qlc stratum C of [X,ω] is not an irreducible component of X, then it
is called a qlc center of [X,ω].

We say that (X,ω, f : (Y,BY ) → X) or [X,ω] has a Q-structure if BY is a Q-divisor, ω is
a Q-Cartier divisor (or Q-line bundle), and f ∗ω ∼Q KY +BY holds in the above definition.

In this paper, the notion of open qlc strata is indispensable.

Definition 4.3 (Open qlc strata). Let W be a qlc stratum of a quasi-log scheme [X,ω].
We put

U := W \

{
(W ∩ Nqlc(X,ω)) ∪

∪
W ′

W ′

}
,
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where W ′ runs over qlc centers of [X,ω] strictly contained in W , and call it the open qlc
stratum of [X,ω] associated to W .

In Section 11, we need the notion of log bigness. For the details of relatively big R-
divisors, see [F11, Section 2.1].

Definition 4.4 (Log bigness). Let [X,ω] be a quasi-log scheme and let π : X → S be a
proper morphism between schemes. Let D be an R-Cartier divisor (or R-line bundle) on
X. We say that D is log big over S with respect to [X,ω] if D|W is big over π(W ) for every
qlc stratum W of [X,ω].

We collect some basic and important properties of quasi-log schemes for the reader’s
convenience.

Theorem 4.5 ([F11, Theorem 6.3.4]). In Definition 4.2, we may assume that the ambient
space M of the globally embedded simple normal crossing pair (Y,BY ) is quasi-projective.
In particular, Y is quasi-projective and f : Y → X is projective.

For the details of Theorem 4.5, see the proof of [F11, Theorem 6.3.4]. In the theory of
quasi-log schemes, we sometimes need the projectivity of f in order to use the theory of
variations of mixed Hodge structure (see [F14] and [FFL]). Hence Theorem 4.5 plays a
crucial role. The most important result in the theory of quasi-log schemes is as follows.

Theorem 4.6 ([F11, Theorem 6.3.5]). Let [X,ω] be a quasi-log scheme and let X ′ be the
union of X−∞ with a (possibly empty) union of some qlc strata of [X,ω]. Then we have
the following properties.

(i) (Adjunction). Assume that X ′ ̸= X−∞. Then X ′ naturally becomes a quasi-log
scheme with ω′ = ω|X′ and X ′

−∞ = X−∞. Moreover, the qlc strata of [X ′, ω′] are
exactly the qlc strata of [X,ω] that are included in X ′.

(ii) (Vanishing theorem). Assume that π : X → S is a proper morphism between schemes.
Let L be a Cartier divisor on X such that L − ω is nef and log big over S with
respect to [X,ω]. Then Riπ∗(IX′ ⊗ OX(L)) = 0 for every i > 0, where IX′ is the
defining ideal sheaf of X ′ on X.

In this paper, we will repeatedly use adjunction for quasi-log schemes in Theorem 4.6
(i). We strongly recommend the reader to see the proof of [F11, Theorem 6.3.5]. Here, we
only explain the main idea of the proof of Theorem 4.6 (i) for the reader’s convenience.

Idea of Proof of Theorem 4.6 (i). By definition, X ′ is the union of X−∞ with a union of
some qlc strata of [X,ω] set theoretically. We assume that X ′ ≠ X−∞ holds. By [F11,
Proposition 6.3.1], we may assume that the union of all strata of (Y,BY ) mapped to X ′

by f , which is denoted by Y ′, is a union of some irreducible components of Y . We put
Y ′′ = Y − Y ′, KY ′′ + BY ′′ = (KY + BY )|Y ′′ , and KY ′ + BY ′ = (KY + BY )|Y ′ . We set
f ′′ = f |Y ′′ and f ′ = f |Y ′ . Then we claim that

(X ′, ω′, f ′ : (Y ′, BY ′) → X ′)

becomes a quasi-log scheme satisfying the desired properties. Let us consider the following
short exact sequence:

0 → OY ′′(⌈−(B<1
Y ′′)⌉ − ⌊B>1

Y ′′⌋ − Y ′|Y ′′) → OY (⌈−(B<1
Y )⌉ − ⌊B>1

Y ⌋)
→ OY ′(⌈−(B<1

Y ′ )⌉ − ⌊B>1
Y ′ ⌋) → 0,

which is induced by

0 → OY ′′(−Y ′|Y ′′) → OY → OY ′ → 0.
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We take the associated long exact sequence. Then we can check that the connecting
homomorphism

δ : f ′
∗OY ′(⌈−(B<1

Y ′ )⌉ − ⌊B>1
Y ′ ⌋) → R1f ′′

∗OY ′′(⌈−(B<1
Y ′′)⌉ − ⌊B>1

Y ′′⌋ − Y ′|Y ′′)

is zero by using a generalization of Kollár’s torsion-freeness based on the theory of mixed
Hodge structures on cohomology with compact support (see [F11, Chapter 5]). We put

IX′ := f ′′
∗OY ′′(⌈−(B<1

Y ′′)⌉ − ⌊B>1
Y ′′⌋ − Y ′|Y ′′),

which is an ideal sheaf on X since IX′ ⊂ IX−∞ , and define a scheme structure on X ′ by
IX′ . Then we obtain the following big commutative diagram:

0

��

0

��
0 // f ′′

∗OY ′′(⌈−(B<1
Y ′′)⌉ − ⌊B>1

Y ′′⌋ − Y ′|Y ′′)
= //

��

IX′

��
0 // f∗OY (⌈−(B<1

Y )⌉ − ⌊B>1
Y ⌋) = IX−∞

//

��

OX

��

// OX−∞
// 0

0 // f ′
∗OY ′(⌈−(B<1

Y ′ )⌉ − ⌊B>1
Y ′ ⌋) = IX′

−∞

��

// OX′

��

// OX′
−∞

// 0

0 0

by the above arguments. More precisely, by the above big commutative diagram,

IX′
−∞

= f ′
∗OY ′(⌈−(B<1

Y ′ )⌉ − ⌊B>1
Y ′ ⌋)

is an ideal sheaf on X ′ such that OX/IX−∞ = OX′/IX′
−∞

. Thus we obtain that

(X ′, ω′, f ′ : (Y ′, BY ′) → X ′)

is a quasi-log scheme satisfying the desired properties. □

As an obvious corollary, we have:

Corollary 4.7 ([F11, Notation 6.3.10]). Let [X,ω] be a quasi-log scheme. The union of
X−∞ with all qlc centers of [X,ω] is denoted by Nqklt(X,ω), or, more precisely,

Nqklt(X,ω, f : (Y,BY ) → X).

If Nqklt(X,ω) ̸= X−∞, then

[Nqklt(X,ω), ω|Nqklt(X,ω)]

naturally becomes a quasi-log scheme by adjunction.

In the framework of quasi-log schemes, Nqklt(X,ω) plays an important role by induction
on dimension. When Nqklt(X,ω) = ∅, we have the following lemma.

Lemma 4.8 ([F11, Lemma 6.3.9]). Let [X,ω] be a quasi-log scheme with X−∞ = ∅.
Assume that every qlc stratum of [X,ω] is an irreducible component of X, equivalently,
Nqklt(X,ω) = ∅. Then X is normal.

For the proof of Lemma 4.8, see [F11, Lemma 6.3.9]. It is convenient to introduce the
notion of quasi-log canonical pairs.
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Definition 4.9 (Quasi-log canonical pairs, see [F11, Definition 6.2.9]). Let

(X,ω, f : (Y,BY ) → X)

be a quasi-log scheme. If X−∞ = ∅, then it is called a quasi-log canonical pair (qlc pair,
for short).

By using adjunction, we can prove:

Theorem 4.10 ([F11, Theorem 6.3.11 (i)]). Let [X,ω] be a quasi-log canonical pair. Then
the intersection of two qlc strata is a union of qlc strata.

The following example is very important. Example 4.11 shows that we can treat log
canonical pairs as quasi-log canonical pairs. In some sense, Ambro introduced the notion
of quasi-log schemes in order to treat the following example (see [A]).

Example 4.11 ([F11, 6.4.1]). Let (X,∆) be a normal pair such that ∆ is effective. Let
f : Y → X be a resolution of singularities such that

KY +BY = f ∗(KX +∆)

and that SuppBY is a simple normal crossing divisor on Y . We put ω = KX + ∆. Then
KY + BY ∼R f ∗ω holds. Since ∆ is effective, ⌈−(B<1

Y )⌉ is effective and f -exceptional.
Therefore, the natural map

OX → f∗OY (⌈−(B<1
Y )⌉)

is an isomorphism. We put

IX−∞ := JNLC(X,∆) = f∗OY (⌈−(B<1
Y )⌉ − ⌊B>1

Y ⌋),
where JNLC(X,∆) is the non-lc ideal sheaf associated to (X,∆) in Definition 3.5. We put
M = Y ×C and D = BY ×C. Then (Y,BY ) ≃ (Y ×{0}, BY ×{0}) is a globally embedded
simple normal crossing pair. Thus

(X,ω, f : (Y,BY ) → X)

becomes a quasi-log scheme. By construction, (X,∆) is log canonical if and only if [X,ω]
is quasi-log canonical. We note that C is a log canonical center of (X,B) if and only if C
is a qlc center of [X,ω]. We also note that X itself is a qlc stratum of [X,ω].

Example 4.11 shows that [X,KX + ∆] has a natural quasi-log scheme structure. In
general, however, [X,KX +∆] has many different quasi-log scheme structures.

Remark 4.12. In Example 4.11, we take an effective R-divisor ∆′ on X such that KX +
∆ ∼R KX +∆′. Let f ′ : Y ′ → X be a resolution of singularities such that

KY ′ +BY ′ = (f ′)∗(KX +∆′)

and that SuppBY ′ is a simple normal crossing divisor on Y ′. Then

(X,ω, f ′ : (Y ′, BY ′) → X)

is also a quasi-log scheme since KY ′ + BY ′ ∼R (f ′)∗ω. In this case, there is no correspon-
dence between qlc strata of (X,ω, f ′ : (Y ′, BY ′) → X) and lc strata of (X,∆).

By combining Theorem 4.10 with Example 4.11, we have:

Corollary 4.13 ([F6, Theorem 9.1 (2)]). Let (X,∆) be a log canonical pair. Then the
intersection of two lc centers is a union of lc centers.

For the basic properties of quasi-log schemes, see [F11, Chapter 6]. We also recommend
the reader to see [F5], which is a gentle introduction to the theory of quasi-log schemes.
In [F8], we establish that every quasi-projective semi-log canonical pair naturally becomes
a quasi-log canonical pair. Hence we can use the theory of quasi-log schemes for the study
of semi-log canonical pairs. For the details, see [F8].



20 OSAMU FUJINO

4.2. Kleiman–Mori cones. In this subsection, we discuss basic definitions and results
around Kleiman–Mori cones of quasi-log schemes. Let us start with the definition of
Kleiman–Mori cones.

Definition 4.14 (Kleiman–Mori cones). Let π : X → S be a proper morphism between
schemes. Let NE(X/S) be the convex cone in N1(X/S) generated by effective 1-cycles on
X mapped to points by π. Let NE(X/S) be the closure of NE(X/S) in N1(X/S). We
call it the Kleiman–Mori cone of π : X → S. As usual, we drop / SpecC from the notation
when S = SpecC.

Let us explain some basic definitions.

Definition 4.15 ([F11, Definition 6.7.1]). Let [X,ω] be a quasi-log scheme with the non-
qlc locus X−∞. Let π : X → S be a projective morphism between schemes. We put

NE(X/S)−∞ = Im
(
NE(X−∞/S) → NE(X/S)

)
.

We sometimes use NE(X/S)Nqlc(X/S) to denote NE(X/S)−∞. For an R-Cartier divisor
(or R-line bundle) D, we define

D≥0 = {z ∈ N1(X/S) |D · z ≥ 0}.
Similarly, we can define D>0, D≤0, and D<0. We also define

D⊥ = {z ∈ N1(X/S) |D · z = 0}.
We use the following notation

NE(X/S)D≥0 = NE(X/S) ∩D≥0,

and similarly for > 0, ≤ 0, and < 0.

In order to treat the cone and contraction theorem, we need the following definition.

Definition 4.16 ([F11, Definition 6.7.2]). An extremal face of NE(X/S) is a non-zero
subcone F ⊂ NE(X/S) such that z, z′ ∈ F and z + z′ ∈ F imply that z, z′ ∈ F . Equiva-
lently, F = NE(X/S)∩H⊥ for some π-nef R-divisor (or π-nef R-line bundle) H, which is
called a support function of F . An extremal ray is a one-dimensional extremal face.

(1) An extremal face F is called ω-negative if F ∩NE(X/S)ω≥0 = {0}.
(2) An extremal face F is called rational if we can choose a π-nef Q-divisor (or Q-line

bundle) H as a support function of F .
(3) An extremal face F is called relatively ample at infinity if F ∩NE(X/S)−∞ = {0}.

Equivalently, H|X−∞ is π|X−∞-ample for any supporting function H of F .

The contraction theorem for quasi-log schemes plays an important role in this paper.

Theorem 4.17 (Contraction theorem, see [F11, Theorem 6.7.3]). Let [X,ω] be a quasi-log
scheme and let π : X → S be a projective morphism between schemes. Let R be an ω-
negative extremal ray of NE(X/S) that is rational and relatively ample at infinity. Then
there exists a projective morphism φR : X → Y over S with the following properties.

(i) Let C be an integral curve on X such that π(C) is a point. Then φR(C) is a point
if and only if [C] ∈ R, where [C] denotes the numerical equivalence class of C in
N1(X/S).

(ii) OY ≃ (φR)∗OX .
(iii) Let L be a line bundle on X such that L · C = 0 for every curve C with [C] ∈ R.

Then there is a line bundle LY on Y such that L ≃ φ∗
RLY .

Proof. Since R is relatively ample at infinity, φR : X−∞ → φR(X−∞) is finite. Hence
L⊗m|X−∞ is φR|X−∞-generated for every m ≥ 0. Therefore, this theorem is a special case
of [F11, Theorem 6.7.3]. □
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Theorem 4.17 is a generalization of the famous Kawamata–Shokurov basepoint-free the-
orem.

4.3. Lemmas on quasi-log schemes. In this subsection, we treat useful lemmas on
quasi-log schemes. The first two lemmas were already proved in [F10]. We will repeatedly
use Lemma 4.19 throughout this paper.

Lemma 4.18 ([F10, Lemma 3.12]). Let (X,ω, f : (Y,BY ) → X) be a quasi-log scheme.
Then we can construct a proper morphism f ′ : (Y ′, BY ′) → X from a globally embedded
simple normal crossing pair (Y ′, BY ′) such that

(i) f ′ : (Y ′, BY ′) → X gives the same quasi-log scheme structure as one given by
f : (Y,BY ) → X, and

(ii) every irreducible component of Y ′ is mapped by f ′ to X \X−∞, the closure of
X \X−∞ in X.

We give the proof for the sake of completeness.

Proof. Let M be the ambient space of (Y,BY ). By taking some blow-ups of M , we may

assume that the union of all strata of (Y,BY ) that are not mapped to X \X−∞, which
is denoted by Y ′′, is a union of some irreducible components of Y (see [F11, Proposition
6.3.1]). We put Y ′ = Y −Y ′′ and KY ′′+BY ′′ = (KY +BY )|Y ′′ . We may further assume that

the union of all strata of (Y,BY ) mapped to X \X−∞∩X−∞ is a union of some irreducible
components of Y by [F11, Proposition 6.3.1]. We consider the short exact sequence

0 → OY ′′(−Y ′) → OY → OY ′ → 0.

We put A = ⌈−(B<1
Y )⌉ and N = ⌊B>1

Y ⌋. By applying ⊗OY (A−N), we have

0 → OY ′′(A−N − Y ′) → OY (A−N) → OY ′(A−N) → 0.

By taking Rif∗, we obtain

0 → f∗OY ′′(A−N − Y ′) → f∗OY (A−N) → f∗OY ′(A−N)

→ R1f∗OY ′′(A−N − Y ′) → · · · .

By [F11, Theorem 5.6.2], no associated prime of R1f∗OY ′′(A − N − Y ′) is contained in
f(Y ′) ∩X−∞. Note that

(A−N − Y ′)|Y ′′ − (KY ′′ + {BY ′′}+B=1
Y ′′ − Y ′|Y ′′) = −(KY ′′ +BY ′′)

∼R −(f ∗ω)|Y ′′ .

Therefore, the connecting homomorphism

δ : f∗OY ′(A−N) → R1f∗OY ′′(A−N − Y ′)

is zero. This implies that

0 → f∗OY ′′(A−N − Y ′) → IX−∞ → f∗OY ′(A−N) → 0

is exact. The ideal sheaf J = f∗OY ′′(A−N − Y ′) is zero when it is restricted to X−∞ be-
cause J ⊂ IX−∞ . On the other hand, J is zero on X \X−∞ because f(Y ′′) ⊂ X−∞. There-
fore, we obtain J = 0. Thus we have IX−∞ = f∗OY ′(A−N). So f ′ = f |Y ′ : (Y ′, BY ′) → X,
where KY ′ +BY ′ = (KY +BY )|Y ′ , gives the same quasi-log scheme structure as one given
by f : (Y,BY ) → X with the property (ii). □

By using Lemma 4.18, we establish the following very useful lemma.

Lemma 4.19 ([F10, Lemma 3.14]). Let [X,ω] be a quasi-log scheme. Let us consider

X† = X \X−∞, the closure in X, with the reduced scheme structure. Then [X†, ω†], where
ω† = ω|X†, has a natural quasi-log scheme structure induced by [X,ω]. This means that
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(i) C is a qlc stratum of [X,ω] if and only if C is a qlc stratum of [X†, ω†], and
(ii) INqlc(X,ω) = INqlc(X†,ω†) holds.

We include the proof for the benefit of the reader.

Proof. Let IX† be the defining ideal sheaf of X† on X. Let f ′ : (Y ′, BY ′) → X be the
quasi-log resolution constructed in the proof of Lemma 4.18. By construction, f ′ : Y ′ → X
factors through X†. Note that

IX−∞ ≃ f ′
∗OY ′(A−N) ≃ f ′

∗OY ′(−N)

and that
f ′(N) = X−∞ ∩ f ′(Y ′) = X−∞ ∩X†

set theoretically, where A = ⌈−(B<1
Y ′ )⌉ and N = ⌊B>1

Y ′ ⌋ (see [F11, Remark 6.2.10]). There-
fore, we obtain

IX† ∩ IX−∞ = IX† ∩ f ′
∗OY ′(−N ′) = {0}.

Thus we can construct the following big commutative diagram.

0

��

0

��
f ′
∗OY ′(A−N)

��

f ′
∗OY ′(A−N)

��
0 // IX† // OX

//

��

OX† //

��

0

0 // IX† // OX−∞
//

��

OX†
−∞

��

// 0

0 0

Hence f ′ : (Y ′, BY ′) → X† gives the desired quasi-log scheme structure on [X†, ω†]. □
By Lemmas 4.18 and 4.19, we can abandon unnecessary components from f : (Y,BY ) →

X. Lemma 4.20 is almost obvious by definition.

Lemma 4.20. Let
(X,ω, f : (Y,BY ) → X)

be a quasi-log scheme and let B be an effective R-Cartier divisor on X, that is, a finite R>0-
linear combination of effective Cartier divisors on X. Let X ′ be the union of Nqlc(X,ω)
and all qlc centers of [X,ω] contained in SuppB. Assume that the union of all strata
of (Y,BY ) mapped to X ′ by f , which is denoted by Y ′, is a union of some irreducible
components of Y . We put Y ′′ = Y − Y ′, KY ′′ +BY ′′ = (KY +BY )|Y ′′, and f ′′ = f |Y ′′. We
further assume that

(Y ′′, BY ′′ + (f ′′)∗B)

is a globally embedded simple normal crossing pair. Then

(X,ω +B, f ′′ : (Y ′′, BY ′′ + (f ′′)∗B) → X)

is a quasi-log scheme.

Proof. Since KY + BY ∼R f
∗ω, we have KY ′′ + BY ′′ ∼R (f ′′)∗ω. Therefore, KY ′′ + BY ′′ +

(f ′′)∗B ∼R (f ′′)∗(ω + B) holds true. By the proof of adjunction (see the idea of the proof
of Theorem 4.6 (i) and the proof of [F11, Theorem 6.3.5 (i)]), we have

IX′ = f ′′
∗OX′′(⌈−(B<1

Y ′′)⌉ − ⌊B>1
Y ′′⌋ − Y ′|Y ′′),
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where IX′ is the defining ideal sheaf of X ′ on X. Note that the following key inequality

⌈−(BY ′′ + (f ′′)∗B)<1⌉ − ⌊(BY ′′ + (f ′′)∗B)>1⌋ ≤ ⌈−(B<1
Y ′′)⌉ − ⌊B>1

Y ′′⌋ − Y ′|Y ′′

holds. Therefore, we put

INqlc(X,ω+B) := f ′′
∗OY ′′(⌈−(BY ′′ + (f ′′)∗B)<1⌉ − ⌊(BY ′′ + (f ′′)∗B)>1⌋) ⊂ IX′ ⊂ OX

and define the closed subscheme Nqlc(X,ω +B) of X by INqlc(X,ω+B). Then

(X,ω +B, f ′′ : (Y ′′, BY ′′ + (f ′′)∗B) → X)

is a quasi-log scheme. Let W be a reduced and irreducible subscheme of X. As usual, we
say that W is a qlc stratum of [X,ω + B] when W is not contained in Nqlc(X,ω + B)
and is the f ′′-image of a stratum of (Y ′′, BY ′′ + (f ′′)∗B). By construction, we have X ′ ⊂
Nqlc(X,ω + B). We note that (X,ω +B, f ′′ : (Y ′′, BY ′′ + (f ′′)∗B) → X) coincides with
(X,ω, f : (Y,BY ) → X) outside SuppB. □
By using Lemma 4.20, we can prove the following lemma.

Lemma 4.21. Let [X,ω] be a quasi-log scheme and let G be an effective R-Cartier divisor
on X, that is, a finite R>0-linear combination of effective Cartier divisors on X. Then, for
every 0 < ε≪ 1, [X,ω+ εG] naturally becomes a quasi-log scheme such that Nqklt(X,ω+
εG) = Nqklt(X,ω) holds. More precisely, INqklt(X,ω+εG) = INqklt(X,ω) holds.

Note that Lemma 4.21 is almost obvious for normal pairs by the definition of multiplier
ideal sheaves.

Proof of Lemma 4.21. Let f : (Y,BY ) → X be a proper morphism from a globally em-
bedded simple normal crossing pair (Y,BY ) as in Definition 4.2. Let X ′ be the union of
Nqlc(X,ω) and all qlc centers of [X,ω] contained in SuppG. By [F11, Proposition 6.3.1]
and [Ko2, Theorem 3.35], we may assume that the union of all strata of (Y,BY ) mapped to
X ′ by f , which is denoted by Y ′, is a union of some irreducible components of Y . By [F11,
Proposition 6.3.1] and [Ko2, Theorem 3.35] again, we may further assume that the union of
all strata of (Y,BY ) mapped to Nqklt(X,ω) by f , which is denoted by Z ′, is a union of some
irreducible components of Y . By construction, Y ′ ≤ Z ′ obviously holds. As in Lemma
4.20, we put Y ′′ = Y − Y ′, KY ′′ +BY ′′ = (KY +BY )|Y ′′ , and f ′′ = f |Y ′′ . By [F11, Propo-
sition 6.3.1] and [Ko2, Theorem 3.35], we further assume that (Y ′′, (f ′′)∗G+ SuppBY ′′) is
a globally embedded simple normal crossing pair. By Lemma 4.20, we know that

(X,ω + εG, f ′′ : (Y ′′, BY ′′ + ε(f ′′)∗G) → X)

is a quasi-log scheme for every ε > 0. We put Z ′′ = Y − Z ′, KZ′′ + BZ′′ = (KY + BY )|Z′′ ,
and h = f |Z′′ . Thus, by the proof of adjunction (see the idea of the proof of Theorem 4.6
(i) and the proof of [F11, Theorem 6.3.5 (i)]), we have

INqklt(X,ω) = h∗OZ′′(⌈−(B<1
Z′′)⌉ − ⌊B>1

Z′′⌋ − Z ′|Z′′).

We note that
⌈−(B<1

Z′′)⌉ − ⌊B>1
Z′′⌋ − Z ′|Z′′ = ⌊BZ′′⌋

holds by definition. On the other hand, by the proof of adjunction again (see the idea of
the proof of Theorem 4.6 (i) and the proof of [F11, Theorem 6.3.5 (i)]),

INqklt(X,ω+εG) = h∗OZ′′(⌈−(BZ′′ + εh∗G)<1⌉ − ⌊(BZ′′ + εh∗G)>1⌋ − (Z ′ − Y ′)|Z′′)

for every 0 < ε≪ 1. By direct calculation, for 0 < ε≪ 1,

⌈−(BZ′′ + εh∗G)<1⌉ − ⌊(BZ′′ + εh∗G)>1⌋ − (Z ′ − Y ′)|Z′′

= −⌊BZ′′⌋
= ⌈−(B<1

Z′′)⌉ − ⌊B>1
Z′′⌋ − Z ′|Z′′ .
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Hence we obtain
INqklt(X,ω+εG) = INqklt(X,ω).

This means that
(X,ω + εG, f ′′ : (Y ′′, BY ′′ + ε(f ′′)∗G) → X)

is a quasi-log scheme with

Nqklt(X,ω + εG) = Nqklt(X,ω)

for 0 < ε≪ 1. We finish the proof of Lemma 4.21. □
We need the following lemma in order to reduce some problems to the case where quasi-

log schemes have Q-structures.

Lemma 4.22. Let (X,ω, f : (Y,BY ) → X) be a quasi-log scheme. Then we obtain a Q-
divisor Di on Y , a Q-line bundle ωi on X, and a positive real number ri for 1 ≤ i ≤ k
such that

(i)
∑k

i=1 ri = 1,
(ii) SuppDi = SuppBY , D

=1
i = B=1

Y , ⌊D>1
i ⌋ = ⌊B>1

Y ⌋, and ⌈−(D<1
i )⌉ = ⌈−(B<1

Y )⌉ for
every i,

(iii) ω =
∑k

i=1 riωi and BY =
∑k

i=1 riDi, and
(iv) (X,ωi, f : (Y,Di) → X) is a quasi-log scheme with KY +Di ∼Q f

∗ωi for every i.

We note that
Nqlc(X,ωi) = Nqlc(X,ω)

holds for every i. We also note that W is a qlc stratum of [X,ω] if and only if W is a qlc
stratum of [X,ωi] for every i.

Proof. Without loss of generality, we may assume that ω is an R-line bundle. We put
BY =

∑
j bjBj, where Bj is a simple normal crossing divisor on Y for every j, bj1 ̸= bj2 for

j1 ̸= j2, and SuppBj1 and SuppBj2 have no common irreducible components for j1 ̸= j2.
We may assume that bj ∈ R \ Q for 1 ≤ j ≤ l and bj ∈ Q for j ≥ l + 1. We put
ω =

∑m
p=1 apωp, where ap ∈ R and ωp is a line bundle on X for every p. We can write

KY +BY =
m∑
p=1

apf
∗ωp

in Pic(Y )⊗Z R. We consider the following linear map

ψ : Rl+m −→ Pic(Y )⊗Z R
defined by

ψ(x1, . . . , xl+m) =
m∑

α=1

xαf
∗ωα −

l∑
β=1

xm+βBβ.

We note that ψ is defined over Q. By construction,

A := ψ−1

(
KY +

∑
j≥l+1

bjBj

)
is a nonempty affine subspace of Rl+m defined over Q. We put

P := (a1, . . . , am, b1, . . . , bl) ∈ A.
We can take P1, . . . , Pk ∈ A ∩ Ql+m and r1, . . . , rk ∈ R>0 such that

∑k
i=1 ri = 1 and∑k

i=1 riPi = P in A. Note that we can make Pi arbitrary close to P for every i. So we
may assume that Pi is sufficiently close to P for every i. For each Pi, we obtain

(4.1) KY +Di ∼Q f
∗ωi
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which satisfies (ii) by using ψ. By construction, (i) and (iii) hold. By (4.1) and (ii),

(X,ωi, f : (Y,Di) → X)

is a quasi-log scheme with the desired properties for every i. Therefore, we get (iv). □

5. Proof of Theorem 1.9

In this section, we prove Theorem 1.9. In some sense, Theorem 1.9 is a generalization
of [FLh, Theorem 1.1].

Proof of Theorem 1.9. Let f : (Y,BY ) → X be a proper surjective morphism from a quasi-
projective globally embedded simple normal crossing pair (Y,BY ) as in Definition 4.2 (see
Theorem 4.5). By [F11, Proposition 6.3.1], we may assume that Y is quasi-projective
and that the union of all strata of (Y,BY ) mapped to Nqklt(X,ω), which is denoted
by Y ′′, is a union of some irreducible components of Y . We put Y ′ = Y − Y ′′ and
KY ′ +BY ′ = (KY +BY )|Y ′ . Then we obtain the following commutative diagram:

Y ′

f ′

��

� � ι // Y

f
��

V p
// X

where ι : Y ′ → Y is a natural closed immersion and

Y ′ f ′
// V

p // X

is the Stein factorization of f ◦ ι : Y ′ → X. By construction, ι : Y ′ → Y is an isomorphism
over the generic point of X. By construction again, the natural map OV → f ′

∗OY ′ is an
isomorphism and every stratum of Y ′ is dominant onto V . Therefore, p is birational.

Claim 1. V is normal.

Proof of Claim 1. Let π : V n → V be the normalization. Since every stratum of Y ′ is
dominant onto V , there exists a closed subset Σ of Y ′ such that codimY ′ Σ ≥ 2 and that

π−1 ◦ f ′ : Y ′ 99K V n is a morphism on Y ′ \ Σ. Let Ỹ be the graph of π−1 ◦ f ′ : Y ′ 99K V n.
Then we have the following commutative diagram:

Ỹ

f̃
��

q // Y ′

f ′

��
V n

π
// V

where q and f̃ are natural projections. Note that q : Ỹ → Y ′ is an isomorphism over
Y \ Σ by construction. Since Y ′ is a simple normal crossing divisor on a smooth variety
and codimY ′ Σ ≥ 2, the natural map OY ′ → q∗OỸ is an isomorphism. Therefore, the
composition

OV → π∗OV n → π∗f̃∗OỸ = f ′
∗q∗OỸ ≃ OV

is an isomorphism. Thus we have OV ≃ π∗OV n . This implies that V is normal. □
Therefore, p : V → X is nothing but the normalization ν : Z → X. So we have the

following commutative diagram.

Y ′

f ′

��

� � ι // Y

f
��

Z ν
// X
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Claim 2. The natural map

α : OZ → f ′
∗OY ′(⌈−(B<1

Y ′ )⌉)
is an isomorphism outside ν−1Nqlc(X,ω).

Proof of Claim 2. Note that ν : Z → X is an isomorphism over X \Nqklt(X,ω) by Lemma
4.8. Moreover, f ′ : Y ′ → Z is nothing but f : Y → X over Z \ ν−1Nqklt(X,ω) by
construction. Therefore, α is an isomorphism outside ν−1Nqklt(X,ω). By replacing
X with X \ Nqlc(X,ω), we may assume that Nqlc(X,ω) = ∅. Hence the natural map
OX → f∗OY (⌈−(B<1

Y )⌉) is an isomorphism. Therefore, we have f∗OY ≃ OX . Since Z is
normal and f ′

∗OY ′(⌈−(B<1
Y ′ )⌉) is torsion-free, it is sufficient to see that α is an isomorphism

in codimension one. Let P be any prime divisor on Z such that P ⊂ ν−1Nqklt(X,ω).
We note that every fiber of f is connected by f∗OY ≃ OX . Then, by construction, there
exists an irreducible component of B=1

Y ′ which maps onto P . Therefore, the effective divisor
⌈−(B<1

Y ′ )⌉ does not contain the whole fiber of f ′ over the generic point of P . Thus, α is an
isomorphism at the generic point of P . This means that α is an isomorphism. □
We put S := f ′

∗OY ′(⌈−(B<1
Y ′ )⌉ − ⌊B>1

Y ′ ⌋ − Y ′′|Y ′). Then we have:

Claim 3. S is an ideal sheaf on Z.

Proof of Claim 3. By definition, S is a torsion-free coherent sheaf on Z. By the proof of
[F11, Theorem 6.3.5 (i)] (see also the idea of the proof of Theorem 4.6 (i)), we have

ν∗S = f∗OY ′(⌈−(B<1
Y ′ )⌉ − ⌊B>1

Y ′ ⌋ − Y ′′|Y ′) = INqklt(X,ω) ⊂ OX .

Since ν is finite,

ν∗ν∗S → S
is surjective. This implies that S is an ideal sheaf on Z. □

We put T := f ′
∗OY ′(⌈−(B<1

Y ′ )⌉ − ⌊B>1
Y ′ ⌋). Then we have:

Claim 4. T is an ideal sheaf on Z.

Proof of Claim 4. Outside ν−1Nqlc(X,ω), it is obvious that T = f ′
∗OY ′(⌈−(B<1

Y ′ )⌉) holds.
Therefore, we obtain T = OZ outside ν−1Nqlc(X,ω) by Claim 2. Since T is torsion-free
and Z is normal, it is sufficient to show that T is an ideal sheaf in codimension one. Let
Q be any prime divisor on X such that Q ⊂ Nqlc(X,ω). We take a prime divisor P on Z
such that ν(P ) = Q.

If ⌈−(B<1
Y ′ )⌉ does not contain the whole fiber of f ′ over the generic point of P , then the

natural map

α : OZ → f ′
∗OY ′(⌈−(B<1

Y ′ )⌉)
is an isomorphism at the generic point of P since the natural map OZ → f ′

∗OY ′ is an
isomorphism by construction. Then f ′

∗OY ′(⌈−(B<1
Y ′ )⌉ − ⌊B>1

Y ′ ⌋) is an ideal sheaf at the
generic point of P .

If ⌈−(B<1
Y ′ )⌉ contains the whole fiber of f ′ over the generic point of P , then S = T holds

over the generic point of P because ⌈−(B<1
Y ′ )⌉ and Y ′′|Y ′ have no common irreducible

components. Therefore, T is an ideal sheaf at the generic point of P by Claim 3
Hence T is an ideal sheaf on Z. This is what we wanted. □
By construction,

KY ′ +BY ′ ∼R f
′∗ν∗ω

obviously holds. We can define Nqlc(Z, ν∗ω) by the ideal sheaf f ′
∗OY ′(⌈−(B<1

Y ′ )⌉ − ⌊B>1
Y ′ ⌋)

(see Claim 4). Hence

(Z, ν∗ω, f ′ : (Y ′, BY ′) → Z)
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naturally becomes a quasi-log scheme. By Claim 3 and its proof and [F11, Propositions
6.3.1 and 6.3.2],

INqklt(Z,ν∗ω) = f ′
∗OY ′(⌈−(B<1

Y ′ )⌉ − ⌊B>1
Y ′ ⌋ − Y ′′|Y ′)

satisfies

ν∗INqklt(Z,ν∗ω) = INqklt(X,ω).

Hence

(Z, ν∗ω, f ′ : (Y ′, BY ′) → Z)

is a quasi-log scheme with the desired properties. □

6. On basic slc-trivial fibrations

In this section, we quickly explain basic slc-trivial fibrations. For the details, see [F14]
and [FFL]. Let us start with the definition of potentially nef divisors.

Definition 6.1 (Potentially nef divisors, see [F14, Definition 2.5]). Let X be a normal
variety and let D be a divisor on X. If there exist a completion X† of X, that is, X† is
a complete normal variety and contains X as a dense Zariski open set, and a nef divisor
D† on X† such that D = D†|X , then D is called a potentially nef divisor on X. A finite
Q>0-linear (resp. R>0-linear) combination of potentially nef divisors is called a potentially
nef Q-divisor (resp. R-divisor).

It is convenient to use b-divisors to explain several results on basic slc-trivial fibrations.
Here we do not repeat the definition of b-divisors. For the details, see [C, 2.3.2 b-divisors]
and [F14, Section 2].

Definition 6.2 (Canonical b-divisors). Let X be a normal variety and let ω be a top
rational differential form of X. Then (ω) defines a b-divisor K. We call K the canonical
b-divisor of X.

Definition 6.3 (Q-Cartier closures). The Q-Cartier closure of a Q-Cartier Q-divisor D
on a normal variety X is the Q-b-divisor D with trace

DY = f ∗D,

where f : Y → X is a proper birational morphism from a normal variety Y .

We use the following definition in order to state the main result of [F14].

Definition 6.4 ([F14, Definition 2.12]). Let X be a normal variety. A Q-b-divisor D of
X is b-potentially nef (resp. b-semi-ample) if there exists a proper birational morphism
X ′ → X from a normal variety X ′ such that D = DX′ , that is, D is the Q-Cartier closure
of DX′ , and that DX′ is potentially nef (resp. semi-ample). A Q-b-divisor D of X is Q-b-
Cartier if there is a proper birational morphism X ′ → X from a normal variety X ′ such
that D = DX′ .

Roughly speaking, a basic slc-trivial fibration is a canonical bundle formula for simple
normal crossing pairs.

Definition 6.5 (Simple normal crossing pairs). We say that the pair (X,B) is a simple
normal crossing pair if (X,B) is Zariski locally a globally embedded simple normal crossing
pair at any point x ∈ X.

We note that a globally embedded simple normal crossing pair is obviously a simple
normal crossing pair by definition. We introduce the notion of basic slc-trivial fibrations.
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Definition 6.6 (Basic slc-trivial fibrations, see [F14, Definition 4.1]). A pre-basic slc-
trivial fibration f : (X,B) → Y consists of a projective surjective morphism f : X → Y
and a simple normal crossing pair (X,B) satisfying the following properties:

(1) Y is a normal variety,
(2) every stratum of X is dominant onto Y and f∗OX ≃ OY ,
(3) B is a Q-divisor such that B = B≤1 holds over the generic point of Y , and
(4) there exists a Q-Cartier Q-divisor D on Y such that

KX +B ∼Q f
∗D.

If a pre-basic slc-trivial fibration f : (X,B) → Y also satisfies

(5) rank f∗OX(⌈−B<1⌉) = 1,

then it is called a basic slc-trivial fibration.

If X is irreducible and (X,B) is sub kawamata log terminal (resp. sub log canonical)
over the generic point of Y in Definition 6.6, then it is a klt-trivial fibration (resp. an
lc-trivial fibration). For the details of lc-trivial fibrations, see [F9], [FG2], and so on.

In order to define discriminant Q-b-divisors and moduli Q-b-divisors for basic slc-trivial
fibrations, we need the notion of induced (pre-)basic slc-trivial fibrations.

Definition 6.7 (Induced (pre-)basic slc-trivial fibrations, see [F14, 4.3]). Let f : (X,B) →
Y be a (pre-)basic slc-trivial fibration and let σ : Y ′ → Y be a generically finite surjec-
tive morphism from a normal variety Y ′. Then we have an induced (pre-)basic slc-trivial
fibration f ′ : (X ′, BX′) → Y ′, where BX′ is defined by µ∗(KX +B) = KX′ +BX′ , with the
following commutative diagram:

(X ′, BX′)
µ //

f ′

��

(X,B)

f

��
Y ′

σ
// Y,

where X ′ coincides with X ×Y Y
′ over a nonempty Zariski open set of Y ′. More precisely,

(X ′, BX′) is a simple normal crossing pair with a morphism X ′ → X ×Y Y ′ that is an
isomorphism over a nonempty Zariski open set of Y ′ such that X ′ is projective over Y ′ and
that every stratum of X ′ is dominant onto Y ′.

Now we are ready to define discriminant Q-b-divisors and moduli Q-b-divisors for basic
slc-trivial fibrations.

Definition 6.8 (Discriminant and moduliQ-b-divisors, see [F14, 4.5]). Let f : (X,B) → Y
be a (pre-)basic slc-trivial fibration as in Definition 6.6. Let P be a prime divisor on Y .
By shrinking Y around the generic point of P , we assume that P is Cartier. We set

bP = max

{
t ∈ Q

∣∣∣∣ (Xν ,Θ+ tν∗f ∗P ) is sub log canonical
over the generic point of P

}
,

where ν : Xν → X is the normalization and KXν +Θ = ν∗(KX +B), that is, Θ is the sum
of the inverse images of B and the singular locus of X, and set

BY =
∑
P

(1− bP )P,

where P runs over prime divisors on Y . Then it is easy to see that BY is a well-defined
Q-divisor on Y and is called the discriminant Q-divisor of f : (X,B) → Y . We set

MY = D −KY −BY
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and call MY the moduli Q-divisor of f : (X,B) → Y . By definition, we have

KX +B ∼Q f
∗(KY +BY +MY ).

Let σ : Y ′ → Y be a proper birational morphism from a normal variety Y ′ and let
f ′ : (X ′, BX′) → Y ′ be an induced (pre-)basic slc-trivial fibration by σ : Y ′ → Y . We can
define BY ′ , KY ′ and MY ′ such that σ∗D = KY ′ + BY ′ +MY ′ , σ∗BY ′ = BY , σ∗KY ′ = KY

and σ∗MY ′ =MY . We note that BY ′ is independent of the choice of (X ′, BX′), that is, BY ′

is well defined. Hence there exist a unique Q-b-divisor B such that BY ′ = BY ′ for every
σ : Y ′ → Y and a unique Q-b-divisor M such that MY ′ =MY ′ for every σ : Y ′ → Y . Note
that B is called the discriminant Q-b-divisor and that M is called the moduli Q-b-divisor
associated to f : (X,B) → Y . We sometimes simply say that M is the moduli part of
f : (X,B) → Y .

Let us see the main result of [F14].

Theorem 6.9 ([F14, Theorem 1.2]). Let f : (X,B) → Y be a basic slc-trivial fibration and
let B and M be the induced discriminant and moduli Q-b-divisors of Y respectively. Then
we have the following properties:

(i) K+B is Q-b-Cartier, where K is the canonical b-divisor of Y , and
(ii) M is b-potentially nef, that is, there exists a proper birational morphism σ : Y ′ → Y

from a normal variety Y ′ such that MY ′ is a potentially nef Q-divisor on Y ′ and
that M = MY ′.

When dimY = 1 in Theorem 6.9, we have:

Theorem 6.10 ([FFL, Corollary 1.4]). In Theorem 6.9, we further assume that dimY = 1.
Then the moduli Q-divisor MY of f : (X,B) → Y is semi-ample.

The proof of Theorems 6.9 and 6.10 heavily depends on the theory of variations of mixed
Hodge structure discussed in [FF] (see also [FFS]). For some related topics, see [F2], [F9],
[FG2], and so on.

7. On normal quasi-log schemes

In this section, we treat the following deep result on the structure of normal quasi-log
schemes. It is a generalization of [F14, Theorem 1.7]. The proof of Theorem 7.1 uses
Theorems 6.9 and 6.10.

Theorem 7.1. Let [X,ω] be a quasi-log scheme such that X is a normal variety. Then
there exists a projective birational morphism p : X ′ → X from a smooth quasi-projective
variety X ′ such that

KX′ +BX′ +MX′ = p∗ω,

where BX′ is an R-divisor such that SuppBX′ is a simple normal crossing divisor and that
B<0

X′ is p-exceptional, and MX′ is a potentially nef R-divisor on X ′. Furthermore, we can

make BX′ satisfy p(B≥1
X′ ) = Nqklt(X,ω) set theoretically. When X is a curve, we can make

MX′ semi-ample in the above statement.
We further assume that [X,ω] has a Q-structure. Then we can make BX′ and MX′

Q-divisors in the above statement.

Let us prove Theorem 7.1.

Proof of Theorem 7.1. We divide the proof into several steps.

Step 1. Although this step is essentially the same as the proof of Theorem 1.9, we explain it
again with some remarks on Nqlc(X,ω) for the reader’s convenience. Let f : (Y,BY ) → X
be a proper surjective morphism from a quasi-projective globally embedded simple normal
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crossing pair (Y,BY ) as in Definition 4.2 (see Theorem 4.5). By [F11, Proposition 6.3.1],
we may assume that the union of all strata of (Y,BY ) mapped to Nqklt(X,ω), which is
denoted by Y ′′, is a union of some irreducible components of Y . We put Y ′ = Y − Y ′′

and KY ′ + BY ′ = (KY + BY )|Y ′ . By the proof of Theorem 1.9, we obtain the following
commutative diagram:

Y ′

f ′

��

� � ι // Y

f
��

X X

where ι : Y ′ → Y is a natural closed immersion such that the natural map OV → f ′
∗OY ′ is

an isomorphism and that every stratum of Y ′ is dominant onto X. By Theorem 1.9 and
its proof,

(X,ω, f ′ : (Y ′, BY ′) → X)

is a quasi-log scheme with

INqklt(X,ω,f ′ : (Y ′,BY ′ )→X) = INqklt(X,ω,f : (Y,BY )→X).

We note that if

(X,ω, f : (Y,BY ) → X)

has a Q-structure then it is obvious that

(X,ω, f ′ : (Y ′, BY ′) → X)

also has a Q-structure by construction. Therefore, by replacing f : (Y,BY ) → X with
f ′ : (Y ′, BY ′) → X, we may assume that every stratum of Y is mapped onto X by f . By
construction, we can easily see that

Nqlc(X,ω, f : (Y ′, BY ′) → X) ⊂ Nqlc(X,ω, f : (Y,BY ) → X)

holds set theoretically. However, the relationship between Nqlc(X,ω, f : (Y ′, BY ′) → X)
and Nqlc(X,ω, f : (Y,BY ) → X) is not clear. We note that all we need in this proof is the
fact that

Nqklt(X,ω, f : (Y ′, BY ′) → X) = Nqklt(X,ω, f : (Y,BY ) → X)

holds set theoretically.

Step 2. By Step 1, we may assume that f : (Y,BY ) → X is a projective surjective mor-
phism from a simple normal crossing pair (Y,BY ) such that every stratum of Y is dominant
onto X. By taking some more blow-ups, we may further assume that (Bh

Y )
=1 is Cartier and

that every stratum of (Y, (Bh
Y )

=1) is dominant onto X (see, for example, [BVP, Theorem
1.4 and Section 8] and [F13, Lemma 2.11]).

Step 3. In this step, we treat the case where [X,ω] has a Q-structure. We note that

OX → f∗OY (⌈−(B<1
Y )⌉)

is an isomorphism outside Nqlc(X,ω). Hence rank f∗OY (⌈−(B<1
Y )⌉) = 1 holds. There-

fore, we can check that f : (Y,BY ) → X is a basic slc-trivial fibration (see Definition
6.6). Let B be the discriminant Q-b-divisor and let M be the moduli Q-b-divisor as-
sociated to f : (Y,BY ) → X. By Lemma [F14, Lemma 11.2], we obtain that BX is an
effective Q-divisor on X. By definition, we have f((Bv

Y )
≥1) = Nqklt(X,ω). We take a pro-

jective birational morphism p : X ′ → X from a smooth quasi-projective variety X ′. Let
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f ′ : (Y ′, BY ′) → X ′ be an induced basic slc-trivial fibration with the following commutative
diagram.

(Y,BY )

f
��

(Y ′, BY ′)

f ′

��

qoo

X X ′
p

oo

By Theorem 6.9, we may assume that there exists a simple normal crossing divisor ΣX′

on X ′ such that M = MX′ , SuppMX′ and SuppBX′ are contained in ΣX′ , and that every
stratum of (Y ′, SuppBh

Y ′) is smooth over X ′ \ΣX′ . Of course, we may assume thatMX′ :=
MX′ is potentially nef by Theorem 6.9. When X is a curve, we may further assume that
MX′ is semi-ample by Theorem 6.10. We may assume that every irreducible component of
q−1
∗
(
(Bv

Y )
≥1
)
is mapped onto a prime divisor in ΣX′ with the aid of the flattening theorem

(see [RG, Théorème (5.2.2)]). We put BX′ := BX′ . In the above setup, f ′(q−1
∗ (Bv

Y )
≥1) ⊂

B≥1
X′ by the definition of B. Thus, we get Nqklt(X,ω) ⊂ p(B≥1

X′ ). On the other hand, we

can easily see that p(B≥1
X′ ) ⊂ Nqklt(X,ω) by definition. Therefore, p(B≥1

X′ ) = Nqklt(X,ω)
holds. Since p∗BX′ = BX and BX is effective, B<0

X′ is p-exceptional. Hence, BX′ and MX′

satisfy the desired properties. We note that BX′ and MX′ are obviously Q-divisors by
construction.

Step 4. In this step, we treat the general case. We first use Lemma 4.22 and get positive
real numbers ri and (X,ωi, f : (Y,Di) → X) for 1 ≤ i ≤ k with the properties in Lemma
4.22. Then we apply the argument in Step 3 to

(X,ωi, f : (Y,Di) → X)

for every i. By Theorem 6.9, we can take a projective birational morphism p : X ′ → X
from a smooth quasi-projective variety X ′ which works for

(X,ωi, f : (Y,Di) → X)

for every i. By summing them up with weight ri, we get R-divisors BX′ and MX′ with the
desired properties.

We finish the proof of Theorem 7.1. □

8. Proof of Theorem 1.10

In this section, we prove Theorem 1.10 as an application of Theorem 7.1. Then, by using
Theorem 1.10, we prove Corollary 8.1 and Lemma 8.2, which will play an important role
in Section 9. Let us start the proof of Theorem 1.10.

Proof of Theorem 1.10. By Theorem 7.1, there is a projective birational morphism p : X ′ →
X from a smooth quasi-projective variety X ′ such that

KX′ +BX′ +MX′ = p∗ω,

where BX′ is an R-divisor on X ′ whose support is a simple normal crossing divisor, B<0
X′

is p-exceptional, MX′ is a potentially nef R-divisor on X ′, and p(B≥1
X′ ) = Nqklt(X,ω). By

taking some more blow-ups, we may further assume that there is an effective p-exceptional
divisor F on X ′ such that −F is p-ample and that SuppF ∪ SuppBX′ is contained in
a simple normal crossing divisor on X ′. Then p∗H − εF + MX′ is semi-ample for any
0 < ε≪ 1. We take a general effective R-divisor G on X ′ such that G ∼R p

∗H−εF +MX′

with 0 < ε ≪ 1, SuppG ∪ SuppBX′ ∪ SuppF is contained in a simple normal crossing
divisor on X ′, and (BX′ + εF +G)≥1 = B≥1

X′ holds set theoretically. Then we have

KX′ +BX′ +MX′ + p∗H = KX′ +BX′ + εF + p∗H − εF +MX′

∼R KX′ +BX′ + εF +G.
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We put ∆ := p∗(BX′ + εF + G). By construction, KX + ∆ ∼R ω + H. By construction
again, we have

Nklt(X,∆) = p
(
(BX′ + εF +G)≥1

)
= p

(
B≥1

X′

)
= Nqklt(X,ω)

set theoretically.
When [X,ω] has a Q-structure, we can make BX′ and MX′ Q-divisors by Theorem 7.1.

Then it is easy to see that we can make ∆ a Q-divisor on X such that KX +∆ ∼Q ω +H
when H is an ample Q-divisor and [X,ω] has a Q-structure by the above construction of
∆.

Finally, if X is a curve in the above argument, then p : X ′ → X is an isomorphism and
MX′ is semi-ample (see Theorem 7.1). Hence we can take ∆ such that

KX +∆ ∼R ω

with the desired properties. □
For some related results, see [FG1], [F15], and so on. By applying Theorem 1.10 to

normal pairs, we have the following useful result.

Corollary 8.1. Let X be a normal variety and let ∆ be an effective R-divisor on X such
that KX + ∆ is R-Cartier. Let C be a log canonical center of (X,∆) such that C is a
smooth curve. Then

(KX +∆)|C ∼R KC +∆C

holds for some effective R-divisor ∆C such that

Supp∆≥1
C = C ∩

(
Nlc(X,∆) ∪

∪
C ̸⊂W

W

)
,

where W runs over lc centers of (X,∆) which do not contain C, holds set theoretically.
When KX +∆ is Q-Cartier, we can make ∆C a Q-divisor such that

(KX +∆)|C ∼Q KC +∆C

in the above statement.

Proof. As we saw in Example 4.11, [X,KX + ∆] naturally becomes a quasi-log scheme.
By construction, Nqlc(X,KX +∆) = Nlc(X,∆), W is a qlc center of [X,KX +∆] if and
only if W is a log canonical center of (X,∆). Hence we can see that C is a qlc center of
[X,KX +∆]. Therefore, by adjunction (see Theorem 4.6 (i) and [F11, Theorem 6.3.5 (i)]),
[C ′, (KX + ∆)|C′ ] is a quasi-log scheme, where C ′ = C ∪ Nlc(X,∆). By Lemma 4.19, we
see that [C, (KX +∆)|C ] is also a quasi-log scheme such that

Nqklt(C, (KX +∆)|C) = Nqklt(C ′, (KX +∆)|C′) ∩ C
holds set theoretically. By construction, we can easily see that

Nqklt(C ′, (KX +∆)|C′) ∩ C = C ∩

(
Nlc(X,∆) ∪

∪
C ̸⊂W

W

)
,

where W runs over lc centers of (X,∆) which do not contain C, holds set theoretically
(see Theorem 4.10 and Corollary 4.13). By applying Theorem 1.10 to [C, (KX +∆)|C ], we
can find an effective R-divisor ∆C on C such that

(KX +∆)|C ∼R KC +∆C

with

Supp∆≥1
C = Nqklt(C, (KX +∆)|C) = C ∩

(
Nlc(X,∆) ∪

∪
C ̸⊂W

W

)
.
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Of course, if KX +∆ is Q-Cartier, then we can make ∆C a Q-divisor such that

(KX +∆)|C ∼Q KC +∆C

in the above statement. □

We will use the following lemma in Section 9.

Lemma 8.2. Let φ : X → Y be a proper surjective morphism between normal varieties
such that R1φ∗OX = 0 and that dimφ−1(y) ≤ 1 holds for every closed point y ∈ Y . Let C
be a projective curve on X such that φ(C) is a point. Then

C ≃ P1.

Let ∆ be an effective R-divisor on X such that KX +∆ is R-Cartier. If C ̸⊂ Nlc(X,∆)
and

C ∩

(
Nlc(X,∆) ∪

∪
C ̸⊂W

W

)
̸= ∅,

where W runs over lc centers of (X,∆) which do not contain C, then the following in-
equality

−(KX +∆) · C ≤ 1

holds.

Proof. In Step 1, we will prove that C ≃ P1 holds. In Step 2, we will prove that −(KX +
∆) · C ≤ 1 by Corollary 8.1.

Step 1. Although the argument in this step is well known, we will explain it in detail for
the reader’s convenience. Let us consider the following short exact sequence

0 → IC → OX → OC → 0,

where IC is the defining ideal sheaf of C on X. Since dimφ−1(y) ≤ 1 for every y ∈ Y by
assumption, R2φ∗IC = 0 holds. Therefore, we get the following surjection

R1φ∗OX → R1φ∗OC → 0.

By assumption, R1φ∗OX = 0. Hence R1φ∗OC = 0 holds. Since φ(C) is a point by
assumption, H1(C,OC) = 0 holds. This means that C ≃ P1.

Step 2. By shrinking Y around φ(C), we may assume that Y is quasi-projective. Let
B1, . . . , Bn+1 be general very ample Cartier divisors on Y passing through φ(C) with
n = dimX. Then it is well known that(

X,∆+
n+1∑
i=1

φ∗Bi

)
is not log canonical at any point of C (see, for example, [F6, Lemma 13.2]) such that

Nklt

(
X,∆+ (1− ε)

n+1∑
i=1

φ∗Bi

)
= Nklt(X,∆)

holds outside φ−1(φ(C)) for every 0 < ε ≤ 1. Hence we can take 0 ≤ c < 1 such that C is
a log canonical center of (X,∆+ φ∗B), where B = c

∑n+1
i=1 Bi. Since B is effective, we see

that

C ∩

(
Nlc(X,∆+ φ∗B) ∪

∪
C ̸⊂W

W

)
̸= ∅,
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where W runs over lc centers of (X,∆+ φ∗B) which do not contain C. By Corollary 8.1,
we can take an effective R-divisor ∆C on C such that

(KX +∆)|C ∼R (KX +∆+ φ∗B)|C ∼R KC +∆C

and that

Supp∆≥1
C = C ∩

(
Nlc(X,∆+ φ∗B) ∪

∪
C ̸⊂W

W

)
̸= ∅

holds. This implies that

−(KX +∆) · C = − deg(KC +∆C) = 2− deg∆C ≤ 1.

We finish the proof of Lemma 8.2. □

9. Proof of Theorem 1.8

In this section, we prove Theorem 1.8. Let us start with the following proposition, which
is a consequence of the cone and contraction theorem for normal pairs (see [F6, Theorem
1.1]) with the aid of Lemma 8.2. This is essentially due to [S, Proposition 5.2].

Proposition 9.1 ([S, Proposition 5.2] and [F15, Proposition 7.1]). Let π : X → S be a
projective morphism from a normal Q-factorial variety X onto a scheme S. Let ∆ =∑

i di∆i be an effective R-divisor on X, where the ∆i’s are the distinct prime components
of ∆ for all i, such that (

X,∆′ :=
∑
di<1

di∆i +
∑
di≥1

∆i

)
is dlt. Assume that (KX +∆)|Nklt(X,∆) is nef over S. Then KX +∆ is nef over S or there
exists a non-constant morphism

f : A1 −→ X \ Nklt(X,∆)

such that π ◦ f(A1) is a point. More precisely, the curve C, the closure of f(A1) in X, is
a (possibly singular) rational curve with

0 < −(KX +∆) · C ≤ 2 dimX.

Moreover, if C ∩ Nklt(X,∆) ̸= ∅, then we can make C satisfy a sharper estimate

0 < −(KX +∆) · C ≤ 1.

Proof. We note that Nklt(X,∆) coincides with (∆′)=1 = ⌊∆′⌋, ∆≥1, and ⌊∆⌋ set theoret-
ically because (X,∆′) is dlt by assumption. It is sufficient to construct a non-constant
morphism

f : A1 −→ X \ Nklt(X,∆)

such that π ◦ f(A1) is a point with the desired properties when KX +∆ is not nef over S.
When (X,∆) is kawamata log terminal, that is, ⌊∆⌋ = 0, the statement is well known (see,
for example, [F6, Theorem 1.1], Theorem 1.12, or Corollary 12.3 below). Therefore, we
may assume that (X,∆) is not kawamata log terminal. By shrinking S suitably, we may
assume that S and X are both quasi-projective. By the cone and contraction theorem for
normal pairs (see [F6, Theorem 1.1]), we can take a (KX + ∆)-negative extremal ray R
of NE(X/S) and the associated extremal contraction morphism φ := φR : X → Y over S
since (KX +∆)|Nklt(X,∆) is nef over S. Note that (KX +∆<1) ·R < 0 and (KX +∆′) ·R < 0
hold because (KX+∆)|Nklt(X,∆) is nef over S. Since (X,∆

<1) is kawamata log terminal and
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−(KX +∆<1) is φ-ample, we get Riφ∗OX = 0 for every i > 0 by the relative Kawamata–
Viehweg vanishing theorem (see [F11, Corollary 5.7.7]). By construction, φ : Nklt(X,∆) →
φ(Nklt(X,∆)) is finite. We have the following short exact sequence

0 → OX(−⌊∆′⌋) → OX → O⌊∆′⌋ → 0.

Since −⌊∆′⌋ − (KX + {∆′}) = −(KX + ∆′) is φ-ample and (X, {∆′}) is kawamata log
terminal, Riφ∗OX(−⌊∆′⌋) = 0 holds for every i > 0 by the relative Kawamata–Viehweg
vanishing theorem again (see [F11, Corollary 5.7.7]). Therefore,

0 → φ∗OX(−⌊∆′⌋) → OY → φ∗O⌊∆′⌋ → 0

is exact. This implies that Supp⌊∆′⌋ = Supp∆≥1 is connected in a neighborhood of any
fiber of φ.

Case 1. Assume that φ is a Fano contraction, that is, dimY < dimX. Then we see that
∆≥1 is φ-ample and that dimY = dimX − 1. Note that Supp∆≥1 is finite over Y since
no curves in Supp∆≥1 are contracted by φ.

Assume that there exists a closed subvariety Σ on X with dimΣ ≥ 2 such that φ(Σ) is
a point. Then

dim
(
Σ ∩ Supp∆≥1

)
≥ 1

holds since ∆≥1 is φ-ample. This is a contradiction because Supp∆≥1 is finite over Y .
Hence we obtain that dimφ−1(y) = 1 for every closed point y ∈ Y .

Let C be any projective curve on X such that φ(C) is a point. Then (X,∆) is log
canonical at the generic point of C, equivalently, C ̸⊂ Nlc(X,∆), since Supp∆≥1 is finite
over Y . More precisely, since Supp∆≥1 = Nklt(X,∆) is finite over Y , C ̸⊂ Nklt(X,∆)
and

Supp∆≥1 = Nklt(X,∆) =

(
Nlc(X,∆) ∪

∪
C ̸⊂W

W

)
holds, where W runs over lc centers of (X,∆) which do not contain C. On the other hand,

C ∩ Supp∆≥1 ̸= ∅

because ∆≥1 is φ-ample. Hence, by Lemma 8.2, we obtain that C ≃ P1 and that −(KX +
∆) · C ≤ 1.

By the connectedness of Supp∆≥1 discussed above, C ∩Supp∆≥1 is a point. Therefore,
we can find a non-constant morphism

f : A1 −→ X \ Nklt(X,∆)

such that π ◦ f(A1) is a point and that 0 < −(KX + ∆) · C ≤ 1 holds, where C is the
closure of f(A1) in X.

Case 2. Assume that φ is a birational contraction and that the exceptional locus Exc(φ) of
φ is disjoint from Nklt(X,∆). In this situation, we can find a rational curve C in a fiber of
φ with 0 < −(KX +∆) ·C ≤ 2 dimX by the cone theorem for kawamata log terminal pairs
(see [F6, Theorem 1.1], Theorem 1.12, or Corollary 12.3 below). It is obviously disjoint
from Nklt(X,∆). Therefore, we can take a non-constant morphism

f : A1 −→ X \ Nklt(X,∆)

such that the closure of f(A1) is C.

Case 3. Assume that φ is a birational contraction and that Exc(φ) ∩ Nklt(X,∆) ̸= ∅.
In this situation, as in Case 1, we see that ∆≥1 is φ-ample and that dimφ−1(y) ≤ 1 for
every y ∈ Y . Let C be any projective curve C on X such that φ(C) is a point. Then,
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C ∩ Supp∆≥1 ̸= ∅ holds since ∆≥1 is φ-ample, and C ∩ Supp∆≥1 is a point by the
connectedness of Supp∆≥1 discussed above. In particular, we obtain C ̸⊂ Nklt(X,∆) and

C ∩ Supp∆≥1 ̸= ∅,
and

Supp∆≥1 = Nklt(X,∆) =

(
Nlc(X,∆) ∪

∪
C ̸⊂W

W

)
,

where W runs over lc centers of (X,∆) which do not contain C. Hence, by Lemma 8.2,
C ≃ P1 with −(KX + ∆) · C ≤ 1. Since C ∩ Supp∆≥1 is a point, we get a non-constant
morphism

f : A1 −→ X \ Nklt(X,∆)

such that f(A1) = C ∩ (X \ Nklt(X,∆)).

Therefore, we get the desired statement. □
Let us prove Theorem 1.8 as an application of Proposition 9.1.

Proof of Theorem 1.8. By shrinking S suitably, we may assume that X and S are both
quasi-projective. By Lemma 3.10, we can construct a projective birational morphism
g : Y → X from a normal Q-factorial variety Y satisfying (i), (ii), and (iv) in Lemma 3.10.
Let us consider π ◦ g : Y → S. Note that KY + ∆Y is not nef over S since KY + ∆Y =
g∗(KX +∆) holds. It is obvious that (KY +∆Y )|Nklt(Y,∆Y ) is nef over S by (iv) because so
is (KX +∆)|Nklt(X,∆). Therefore, by Proposition 9.1, we have a non-constant morphism

h : A1 −→ Y \ Nklt(Y,∆Y )

such that (π ◦ g) ◦ h(A1) is a point and that

0 < −(KY +∆Y ) · CY ≤ 2 dimY = 2dimX

holds, where CY is the closure of h(A1) in Y . Since KY +∆Y = h∗(KX +∆) holds, g does
not contract CY to a pont. This implies that

f := g ◦ h : A1 −→ X \ Nklt(X,∆)

is a desired non-constant morphism such that π ◦ f(A1) is a point by (iv). □
For the proof of Theorem 1.6, we prepare the following somewhat artificial statement as

an application of Theorem 1.8.

Theorem 9.2. Let π : X → S be a proper surjective morphism from a normal quasi-
projective variety X onto a scheme S. Let P be an R-Cartier divisor on X and let H be
an ample Cartier divisor on X. Let Σ be a closed subset of X. Assume that π is not finite,
−P is π-ample, and π : Σ → π(Σ) is finite. We further assume

• {εi}∞i=1 is a set of positive real numbers with εi ↘ 0 for i↗ ∞, and
• for every i, there exists an effective R-divisor ∆i on X such that

P + εiH ∼R KX +∆i

and that
Σ = Nklt(X,∆i)

holds set theoretically.

Then there exists a non-constant morphism

f : A1 −→ X \ Σ
such that π ◦f(A1) is a point and that the curve C, the closure of f(A1) in X, is a rational
curve with

0 < −P · C ≤ 2 dimX.
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Proof. We take an ample Q-divisor A on X such that −(P +A) is π-ample. Without loss
of generality, we may assume that −(P + A+ εiH) is π-ample for every i because εi ↘ 0
for i↗ ∞. By assumption,

P + εiH ∼R KX +∆i

with

Nklt(X,∆i) = Σ

for every i. Hence, by Theorem 1.8, there is a non-constant morphism

fi : A1 −→ X \ Σ

such that π ◦ fi(A1) is a point and that

0 < −(KX +∆i) · Ci = −(P + εiH) · Ci ≤ 2 dimX,

where Ci is the closure of fi(A1) in X. We note that

0 < A · Ci = ((P + εiH + A)− (P + εiH)) < 2 dimX.

It follows that the curves Ci belong to a bounded family. Thus, possibly passing to a
subsequence, we may assume that fi and Ci are constant, that is, there is a non-constant
morphism

f : A1 −→ X \ Σ
such that Ci = C for every i, where C is the closure of f(A1) in X. Therefore, we get

0 < −P · C = lim
i→∞

−(P + εiH) · C = lim
i→∞

−(P + εiH) · Ci ≤ 2 dimX.

We finish the proof of Theorem 9.2. □

10. Proof of Theorems 1.4, 1.5, and 1.6

In this section, we prove Theorems 1.4, 1.5 and 1.6. Since Theorem 1.4 is an easy
consequence of Theorem 1.5 and Theorem 1.5 can be seen as a very special case of Theorem
1.6 by Example 4.11, it is sufficient to prove Theorem 1.6. Let us start with the proof of
Theorem 1.6.

Proof of Theorem 1.6. We note that (i) and (ii) were already established in [F11, Theorem
6.7.4]. Therefore, it is sufficient to prove (iii). From Step 1 to Step 4, we will reduce the
problem to the case where X is a normal variety. Then, in Step 5, we will obtain a desired
non-constant morphism from A1 by Theorem 9.2.

Step 1. Let φRj
: X → Y be the extremal contraction associated to Rj (see Theorem 4.17

and [F11, Theorems 6.7.3 and 6.7.4]). We note that

φRj
: Nqlc(X,ω) → φRj

(Nqlc(X,ω))

is finite. By replacing π : X → S with φRj
: X → Y , we may assume that −ω is π-ample

and that NE(X/S)−∞ = ∅.

Step 2. We take a qlc stratum W of [X,ω] such that π : W → π(W ) is not finite and
that π : W † → π(W †) is finite for every qlc center W † of [X,ω] with W † ⊊ W . We put
W ′ = W ∪Nqlc(X,ω). Then, by adjunction (see Theorem 4.6 (i) and [F11, Theorem 6.3.5
(i)]), [W ′, ω|W ′ ] naturally becomes a quasi-log scheme. By replacing [X,ω] with [W ′, ω|W ′ ],
we may further assume that X \X−∞ is irreducible and that

π : Nqklt(X,ω) → π (Nqklt(X,ω))

is finite.
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Step 3. By Lemma 4.19, we may replace X with X \X−∞ and assume that X is a variety.
We note that the finiteness of

π : Nqklt(X,ω) → π (Nqklt(X,ω))

still holds.

Step 4. Let ν : Z → X be the normalization. Then [Z, ν∗ω] naturally becomes a quasi-log
scheme by Theorem 1.9. Since Nqklt(Z, ν∗ω) = ν−1Nqklt(X,ω) by Theorem 1.9, we may
assume that X is normal by replacing [X,ω] with [Z, ν∗ω].

Step 5. By shrinking S suitably, we may further assume that X and S are both quasi-
projective. Hence we have the following properties:

(a) π : X → S is a projective morphism from a normal quasi-projective variety X to a
scheme S,

(b) −ω is π-ample, and
(c) π : Σ → π(Σ) is finite, where Σ := Nqklt(X,ω).

Let H be an ample Cartier divisor on X and let {εi}∞i=1 be a set of positive real numbers
such that εi ↘ 0 for i↗ ∞. Then, by Theorem 1.10, we have:

(d) there exists an effective R-divisor ∆i on X such that

KX +∆i ∼R ω + εiH

with

Nklt(X,∆i) = Σ

for every i.

Thus, by Theorem 9.2, we have a desired non-constant morphism

f : A1 −→ X \ Nqklt(X,ω).

We finish the proof of Theorem 1.6. □

As we already mentioned above, Theorem 1.5 is a very special case of Theorem 1.6.

Proof of Theorem 1.5. By Example 4.11, [X,KX+∆] naturally becomes a quasi-log scheme.
Then, by Theorem 1.6, the desired cone theorem holds for (X,∆). □

Theorem 1.4 easily follows from Theorem 1.5.

Proof of Theorem 1.4. Since (X,∆) is Mori hyperbolic by assumption, there is no (KX +
∆)-negative extremal ray of NE(X) that is rational and relatively ample at infinity (see
Theorem 1.5). By assumption, (KX +∆)|Nlc(X,∆) is nef. Hence the subcone NE(X)−∞ is

included in NE(X)(KX+∆)≥0. This implies that

NE(X) = NE(X)(KX+∆)≥0

holds by Theorem 1.5. Thus KX +∆ is nef. □

The author thinks that the proof of Theorems 1.4, 1.5 and 1.6 shows that the framework
of quasi-log schemes established in [F11, Chapter 6] and [F14] is very powerful and useful
even for the study of normal pairs.
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11. Ampleness criterion for quasi-log schemes

The main purpose of this section is to establish the following ampleness criterion for
quasi-log schemes. Then we will see that Theorem 1.11 is a very special case of Theorem
11.1.

Theorem 11.1 (Ampleness criterion for quasi-log schemes). Let [X,ω] be a quasi-log
scheme and let π : X → S be a projective morphism between schemes. Assume that
ω|Nqlc(X,ω) is ample over S and that ω is log big over S with respect to [X,ω]. We further
assume that there is no non-constant morphism

f : A1 −→ U

such that π ◦ f(A1) is a point, where U is any open qlc stratum of [X,ω]. Then ω is ample
over S.

Let us treat a special case of Theorem 11.1.

Theorem 11.2. Let [X,ω] be a quasi-log scheme such that X is a normal variety. Let
π : X → S be a projective morphism onto a scheme S. Assume that ω|Nqklt(X,ω) is ample
over S and that there is no non-constant morphism

f : A1 −→ X \ Nqklt(X,ω)

such that π ◦ f(A1) is a point. We further assume that ω is big over S. Then ω is ample
over S.

Proof. We divide the proof into several small steps.

Step 1. By Lemma 4.22, we can obtain quasi-log schemes

(X,ωi, f : (Y,Di) → X)

for 1 ≤ i ≤ k with the following properties:

(a) [X,ωi] has a Q-structure for every i,
(b) Nqlc(X,ωi) = Nqlc(X,ω) holds for every i,
(c) W is an qlc stratum of [X,ω] if and only if W is a qlc stratum of [X,ωi] for every

i, and
(d) there exist positive real numbers ri for 1 ≤ i ≤ k such that ω =

∑k
i=1 riωi with∑k

i=1 ri = 1.

By construction, we can make ωi sufficiently close to ω (see the proof of Lemma 4.22).
Therefore, we may assume that ωi|Nqklt(X,ωi) is ample over S for every i by (b) and (c).
Thus [X,ωi] satisfies all the assumptions for [X,ω] in Theorem 11.2. Hence, by replacing
[X,ω] with [X,ωi], it is sufficient to prove the ampleness of ω under the extra assumption
that [X,ω] has a Q-structure by (a) and (d).

Step 2. By assumption and Theorem 1.6 (iii), ω is nef over S. Since ω|Nqklt(X,ω) is ample
over S by assumption, ω is nef and log big over S with respect to [X,ω]. Therefore, by
[F10, Theorem 1.1], we obtain that ω is semi-ample over S. Hence mω gives a birational
contraction morphism Φ: X → Y between normal varieties over S, wherem is a sufficiently
large and divisible positive integer.

Step 3. In this step, we will get a contradiction under the assumption that Φ is not an
isomorphism.

By shrinking S, we may assume that S, X, and Y are quasi-projective. By construction,

Φ: Nqklt(X,ω) → Φ(Nqklt(X,ω))
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is finite. Since Φ is birational and Y is quasi-projective, we can take an effective Cartier
divisor G on X such that −G is Φ-ample. By Lemma 4.21, for 0 < ε ≪ 1, [X,ω + εG] is
a quasi-log scheme such that

Nqklt(X,ω + εG) = Nqklt(X,ω)

holds. By the cone theorem (see Theorem 1.6 (iii)), we can find a non-constant morphism

f : A1 −→ X \ Nqklt(X,ω + εG) = X \ Nqklt(X,ω)

such that π ◦ f(A1) is a point and that 0 < −(ω+ εG) ·C ≤ 2 dimX holds, where C is the
closure of f(A1) in X. This is a contradiction.

Hence Φ is an isomorphism. Therefore, we obtain that ω is ample over S. This is what
we wanted. □

Once we know Theorem 11.2, it is not difficult to prove Theorem 11.1.

Proof of Theorem 11.1. By Theorem 1.6 (iii), ω is nef and log big over S with respect to
[X,ω]. We put

[X0, ω0] := [X,ω]

and

[Xi+1, ωi+1] := [Nqklt(Xi, ωi), ωi|Nqklt(Xi,ωi)]

for i ≥ 0. Then there exists k ≥ 0 such that

Nqklt(Xk, ωk) = Nqlc(Xk, ωk) = Nqlc(X,ω).

We note that Nqlc(X,ω) may be empty. By assumption, ωk|Nqklt(Xk,ωk) is ample over S. We
want to show by inverse induction on i that ωi is ample over S. Therefore, it is sufficient
to prove the following claim.

Claim. Let [X,ω] be a quasi-log scheme and let π : X → S be a projective morphism
between schemes such that ω|Nqklt(X,ω) is ample over S and that ω is nef and log big over
S with respect to [X,ω]. Then ω is ample over S.

Proof of Claim. By adjunction (see Theorem 4.6 (i) and [F11, Theorem 6.3.5 (i)]), we may

assume that X \X−∞ is irreducible. By Lemma 4.19, we may further assume that X is
irreducible. Then, by Theorem 1.9, we can reduce the problem to the case where X is a
normal variety. Hence ω is ample over S by Theorem 11.2. □

As we have already mentioned above, by applying Claim inductively, we obtain the
desired relative ampleness of ω = ω0. □

We close this section with the proof of Theorem 1.11.

Proof of Theorem 1.11. By Example 4.11, [X,KX + ∆] naturally becomes a quasi-log
scheme. We apply Theorem 11.1 to [X,KX +∆]. Then we obtain that KX +∆ is ample.
This is what we wanted. □

The author knows no proof of Theorem 1.11 that does not use the framework of quasi-log
schemes. Note that a similar result for dlt pairs was already established in [F7, Theorem
5.1], whose proof is much easier than that of Theorem 1.11 and depends on the basepoint-
free theorem of Reid–Fukuda type for dlt pairs (see [F1, Theorem 0.1]). We recommend
the interested reader to see [F7, Theorem 5.1] and [F1, Theorem 0.1].
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12. Proof of Theorems 1.12 and 1.13

In this section, we prove Theorems 1.12 and 1.13, and explain an application for normal
pairs. For the basic properties of uniruled varieties, see [Ko1, Chapter IV. 1]. Let us start
with the following lemma, which is a generalization of [Ka, Lemma].

Lemma 12.1. Let [X,ω] be a quasi-log scheme and let φ : X → W be a projective mor-
phism between schemes. Let P be an arbitrary closed point of W . Let E be a positive-
dimensional irreducible component of φ−1(P ) such that E ̸⊂ X−∞ and let ν : E → E
be the normalization. Then, for every ample R-divisor H on E, there exists an effective
R-divisor ∆E,H on E such that

ν∗ω +H ∼R KE +∆E,H

holds. Therefore,

AdimE−1 · ω · E ≥ (ν∗A)dimE−1 ·KE

holds for every φ-ample line bundle A on X.
In the above statement, if [X,ω] has a Q-structure and H is an ample Q-divisor on E,

then we can make ∆E,H an effective Q-divisor on E with

ν∗ω +H ∼Q KE +∆E,H .

Proof. Our approach is different from Kawamata’s in [Ka]. A key ingredient of this proof
is Theorem 1.10.

Step 1. If E is a qlc stratum of [X,ω], then we put B = 0 and go to Step 3.

Step 2. By Step 1, we may assume that E is not a qlc stratum of [X,ω]. Without
loss of generality, we may assume that W is quasi-projective by shrinking W around P .
Let B1, . . . , Bn+1 be general very ample Cartier divisors on W passing through P with
n = dimX. Let f : (Y,BY ) → X be a proper morphism from a globally embedded simple
normal crossing pair (Y,BY ) as in Definition 4.2. LetX ′ be the union ofX−∞ = Nqlc(X,ω)
and all qlc strata of [X,ω] mapped to P by φ. By [F11, Proposition 6.3.1] and [Ko2,
Theorem 3.35], we may assume that the union of all strata of (Y,BY ) mapped to X ′ by f ,
which is denoted by Y ′, is a union of some irreducible components of Y . As usual, we put
Y ′′ = Y − Y ′, KY ′′ + BY ′′ = (KY + BY )|Y ′′ , and f ′′ = f |Y ′′ . By [F11, Proposition 6.3.1]
and [Ko2, Theorem 3.35] again, we may further assume that(

Y ′′, (f ′′)∗φ∗
n+1∑
i=1

Bi + SuppBY ′′

)
is a globally embedded simple normal crossing pair. By [F11, Lemma 6.3.13], we can take
0 < c < 1 such that

f ′′

(BY ′′ + c(f ′′)∗φ∗
n+1∑
i=1

Bi

)>1
 ̸⊃ E

and that there exists an irreducible component G of(
BY ′′ + c(f ′′)∗φ∗

n+1∑
i=1

Bi

)=1

with f ′′(G) = E. By Lemma 4.20, we obtain that

(X,ω +B, f ′′ : (Y ′′, BY ′′ + (f ′′)∗B) → X) ,

where B = φ∗ (c∑n+1
i=1 B

)
, is a quasi-log scheme such that E is a qlc stratum of this

quasi-log scheme.
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Step 3. We put E ′ = E ∪ Nqlc(X,ω + B). Then, by adjunction (see Theorem 4.6 (i)
and [F11, Theorem 6.3.5 (i)]), [E ′, (ω + B)|E′ ] is a quasi-log scheme. By Lemma 4.19,
[E, (ω+B)|E] is also a quasi-log scheme. We note that (ω+B)|E ∼R ω|E since φ(E) = P .
Hence [E, ω|E] is a quasi-log scheme. By Theorem 1.9, [E, ν∗ω] naturally becomes a quasi-
log scheme. By Theorem 1.10, there exists an effective R-divisor ∆E,H on E such that

ν∗ω +H ∼R KE +∆E,H .

This implies that

(ν∗A)dimE−1 · (ν∗ω +H) · E = (ν∗A)dimE−1(KE +∆E,H) ≥ (ν∗A)dimE−1 ·KE.

Since the above inequality holds for every ample R-divisor H on E, we obtain

AdimE−1 · ω · E = (ν∗A)dimE−1 · ν∗ω · E ≥ (ν∗A)dimE−1 ·KE.

This is what we wanted. By the above proof, it is easy to see that we can make ∆E,H an

effective Q-divisor on E if [X,ω] has a Q-structure and H is an ample Q-divisor on E.

We finish the proof of Theorem 12.1. □
Remark 12.2. In the proof of [Ka, Lemma], Kawamata uses a relative Kawamata–
Viehweg vanishing theorem for projective bimeromorphic morphisms between complex
analytic spaces. His argument does not work for quasi-log schemes.

Let us prove Theorem 1.12.

Proof of Theorem 1.12. In this proof, we will freely use the notation of Lemma 12.1.

Case 1. We will treat the case where dimE = 1.
We take an ample Q-divisor H on E such that −(ν∗ω + H) is still ample. Then, by

Lemma 12.1, −KE is ample since ∆E,H is effective. This means that E ≃ P1. By Lemma
12.1 again, we have

0 < −ω · E ≤ − degKE = 2.

Case 2. We will treat the case where dimE ≥ 2.
We take a φ-ample line bundle A such that ν∗A is very ample. We put C = D1 ∩

· · · ∩ DdimE−1, where Di is a general member of |ν∗A| for every i. Then C is a smooth
irreducible curve on E such that C lies in the smooth locus of E. By Lemma 12.1, we
obtain

C ·KE ≤ AdimE−1 · ω · E < 0

because −ω is φ-ample. We note that

0 > ν∗ω · C = ν∗ω · (ν∗A)dimE−1 · E
= ω · AdimE−1 · E
≥ (ν∗A)dimE−1 ·KE

= C ·KE.

Therefore, for any given point x ∈ C, there exists a rational curve Γ on E passing through
x with

0 < −ν∗ω · Γ ≤ 2 dimE · −ν
∗ω · C

−KE · C
≤ 2 dimE.

This is essentially due to Miyaoka–Mori (see [MM]). We note that E is not always smooth
but it is smooth in a neighborhood of C. Hence we can use the argument of [MM]. For the
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details, see [Ko1, Chapter II. 5.8 Theorem]. Thus, E is covered by rational curves ℓ := ν∗Γ
with

0 < −ω · ℓ ≤ 2 dimE.

Hence, by [Ko1, Chapter IV. 1.4 Proposition–Definition], E is uniruled. We finish the
proof of Theorem 1.12. □
We prove Theorem 1.13.

Proof of Theorem 1.13. Since φR is the contraction morphism associated to R,

φR : Nqlc(X,ω) → φR(Nqlc(X,ω))

is finite. We apply Theorem 1.12 to φR : X → W , we can take a rational curve ℓ on X
such that φR(ℓ) is a point with

0 < −ω · ℓ ≤ 2d.

We finish the proof of Theorem 1.13. □
We explain an application of Theorems 1.12 and 1.13 for normal pairs, which is a gen-

eralization of [Ka, Theorem 1].

Corollary 12.3. Let X be a normal variety and let ∆ be an effective R-divisor on X such
that KX +∆ is R-Cartier. Let π : X → S be a projective morphism between schemes. Let
R be a (KX +∆)-negative extremal ray of NE(X/S) that are rational and relatively ample
at infinity. Let φR : X → W be the contraction morphism over S associated to R. We put

d = min
E

dimE,

where E runs over positive-dimensional irreducible components of φ−1
R (P ) for all P ∈ W .

Then R is spanned by a (possibly singular) rational curve ℓ with

0 < −(KX +∆) · ℓ ≤ 2d.

Furthermore, if φR is birational and (X,∆) is kawamata log terminal, then R is spanned
by a (possibly singular) rational curve ℓ with

0 < −(KX +∆) · ℓ < 2d.

Let V be an irreducible component of the degenerate locus

{x ∈ X |φR is not an isomorphism at x}
of φR. Then V is uniruled.

Proof. We divide the proof into three small steps.

Step 1. By Example 4.11, [X,KX+∆] naturally becomes a quasi-log scheme. By applying
Theorem 1.13 to [X,KX +∆], we see that R is spanned by a rational curve ℓ with

0 < −(KX +∆) · ℓ ≤ 2d.

Step 2. When (X,∆) is kawamata log terminal and φR is a birational contraction, we
take a d-dimensional irreducible component E of φ−1

R (P ) for some P ∈ W . By shrinking
W around P , we may assume that W is affine. Since φR is birational, there exists an
effective Q-divisor G on X such that (X,∆ + G) is kawamata log terminal and that −G
is φR-ample. By applying Theorem 1.12 to [X,KX +∆+G], we see that E is covered by
rational curves ℓ with

0 < −(KX +∆+G) · ℓ ≤ 2d.

Since −G is φR-ample, we have

0 < −(KX +∆) · ℓ < 2d.
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This implies that R is spanned by a rational curve ℓ with

0 < −(KX +∆) · ℓ < 2d

when (X,∆) is kawamata log terminal and φR is birational.

Step 3. From now on, we will check that V is uniruled. We shrink W around the generic
point of φR(V ) and assume that W is quasi-projective. By replacing −(KX + ∆) with
−(KX +∆) + φ∗

RH for some sufficiently ample general Cartier divisor H, we may assume
that −(KX + ∆) is ample. By Theorem 1.12, V ∩ φ−1

R (P ) is covered by rational curves
ℓ of −(KX + ∆)-degree at most 2 dimV for every P ∈ φR(V ) ⊂ W . We take a suitable
projective completion X of X and apply [Ko1, Chapter IV. 1.4 Proposition–Definition].
Then we obtain that V is uniruled.

We finish the proof of Corollary 12.3. □

13. Proof of Theorem 1.14

In this section, we prove Theorem 1.14. Let us start with the following definition.

Definition 13.1 ([F11, Definition 6.8.1]). Let [X,ω] be a quasi-log scheme and let π : X →
S be a projective morphism between schemes. If −ω is ample over S, then [X,ω] is called
a relative quasi-log Fano scheme over S. When S is a point, we simply say that [X,ω] is
a quasi-log Fano scheme.

We recall an easy consequence of the vanishing theorem (see Theorem 4.6 (ii)), which is
missing in [F11, Section 6.8].

Lemma 13.2. Let [X,ω] be a quasi-log scheme and let π : X → S be a proper morphism
between schemes with π∗OX ≃ OS. Assume that −ω is nef and log big over S with respect
to [X,ω]. Then X−∞ ∩ π−1(P ) is connected for every closed point P ∈ S.

Proof. By Theorem 4.6 (ii), R1π∗IX−∞ = 0. Therefore, the restriction map

OS ≃ π∗OX → π∗OX−∞

is surjective. This implies thatX−∞∩π−1(P ) is connected for every closed point P ∈ S. □
Lemma 13.2 should have been stated in [F11, Lemma 6.8.3], which plays an important

role in this section. The main ingredient of the proof of Theorem 1.14 is the following
theorem.

Theorem 13.3 ([Z, Theorem 1], [HM], and [BP, Corollary 1.4]). Let X be a normal projec-
tive variety and let ∆ be an effective R-divisor on X such that KX+∆ is R-Cartier. Assume
that −(KX +∆) is ample. Then X is rationally chain connected modulo Nklt(X,∆).

Proof. We take an effective Q-divisor ∆′ on X such that KX+∆′ is Q-Cartier, −(KX+∆′)
is ample, and Nklt(X,∆′) = Nklt(X,∆) holds. If Nklt(X,∆′) = ∅, that is, (X,∆′) is
kawamata log terminal, then X is rationally connected by [Z, Theorem 1]. In particular,
X is rationally chain connected by Lemma 2.12. When Nklt(X,∆′) ̸= ∅, by applying
[BP, Corollary 1.4] to (X,∆′), we obtain that for any general point x of X there exists a
rational curve Rx passing through x and intersecting Nklt(X,∆′). By [Ko1, Chapter II. 2.4
Corollary], for every x ∈ X, we can find a chain of rational curves Rx such that x ∈ Rx

and Rx∩Nklt(X,∆′) ̸= ∅. Hence X is rationally chain connected modulo Nklt(X,∆). We
note that if −(KX + ∆) is an ample Q-divisor then the proof of [BP, Theorem 1.2 and
Corollary 1.4] becomes much simpler than the general case. Hence we obtain that X is
rationally chain connected modulo Nklt(X,∆). □
We prepare one useful lemma.
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Lemma 13.4. Let [X,ω] be a projective quasi-log canonical pair such that Nqklt(X,ω) = ∅,
−ω is ample, and X is connected. Then X is rationally connected. Hence X is rationally
chain connected.

Proof. By Lemma 4.8 and [F11, Theorem 6.3.11 (i)], X is a normal variety. By Theorem
1.10, we can find an effective R-divisor ∆ on X such that −(KX + ∆) is ample with
Nklt(X,∆) = ∅. Hence X is rationally connected by [Z, Theorem 1] (see the proof of
Theorem 13.3). □
By the framework of quasi-log schemes, we can prove the following lemma as a gen-

eralization of Theorem 13.3 without any difficulties. We note that if Nqlc(X,ω) = ∅ in
Lemma 13.5 then it is nothing but [F15, Theorem 1.7]. For semi-log canonical Fano pairs,
we recommend the reader to see [FLw].

Lemma 13.5. Let [X,ω] be a quasi-log scheme such that X is connected. Assume that
−ω is ample. Then X is rationally chain connected modulo X−∞.

Proof. As in the proof of Theorem 11.1, we put

[X0, ω0] := [X,ω]

and
[Xi+1, ωi+1] := [Nqklt(Xi, ωi), ωi|Nqklt(Xi,ωi)]

for i ≥ 0. Then there exists k ≥ 0 such that

Nqklt(Xk, ωk) = Nqlc(Xk, ωk) = Nqlc(X,ω) = X−∞.

We note that if X−∞ = ∅, that is, [X,ω] is quasi-log canonical, then Xk is the unique
minimal qlc stratum of [X,ω] by [F11, Theorem 6.8.3 (ii)]. By applying Lemma 13.4 to
[Xk, ωk], we obtain that Xk is rationally connected when X−∞ = ∅. We want to show by
inverse induction on i that Xi+1 is rationally chain connected modulo X−∞ = Nqlc(X,ω).
Note that we want to show thatX is rationally chain connected moduloXk whenX−∞ = ∅.
We also note that Xi is connected by Lemma 13.2 and [F11, Theorem 6.8.3]. Hence it is
sufficient to prove the following claim.

Claim. Let [X,ω] be a quasi-log scheme such that X is connected, Nqklt(X,ω) ̸= ∅, and
−ω is ample. Then X is rationally chain connected modulo Nqklt(X,ω).

Proof of Claim. By adjunction (see Theorem 4.6 (i) and [F11, Theorem 6.3.5 (i)]) and

[F11, Theorem 6.8.3], we may assume that X \X−∞ is irreducible. We note that every qlc
stratum of [X,ω] intersects with Nqklt(X,ω) (see [F11, Theorem 6.8.3]). By Lemma 4.19,
we may further assume that X itself is irreducible. Then, by Theorem 1.9, we can further
reduce the problem to the case where X is a normal variety. Then, by Theorem 1.10, we
can take an ample R-divisor H on X such that −(ω +H) is still ample and that

KX +∆ ∼R ω +H

holds for some effective R-divisor ∆ on X with

Nklt(X,∆) = Nqklt(X,ω).

By applying Theorem 13.3 to (X,∆), we obtain that X is rationally chain connected
modulo Nqklt(X,ω). We finish the proof of Claim. □
By using Claim inductively, we can check that X is rationally chain connected modulo

X−∞ = Nqlc(X,ω). □
Let us prove Theorem 1.14.

Proof of Theorem 1.14. When π−1(P ) ∩ X−∞ = ∅, we may assume that X−∞ = ∅ by
shrinking X around π−1(P ). We divide the proof into several steps.
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Step 1. Let X0 be the union of X−∞ and all qlc strata of [X,ω] contained in π−1(P ). By
Lemma 13.2 and [F11, Theorem 6.8.3], X0 ∩ π−1(P ) is connected.

Case 1. If X0 ̸= X−∞, then [X0, ω0], where ω0 = ω|X0 , is a quasi-log scheme by adjunction

(see Theorem 4.6 (i) and [F11, Theorem 6.3.5 (i)]). Let us considerX†
0 = X0 \ Nqlc(X0, ω0).

Then [X†
0, ω

†
0], where ω

†
0 = ω|X†

0
, is a quasi-log scheme by Lemma 4.19. By construction,

−ω†
0 is ample since π(X†

0) = P . Therefore, by Lemma 13.5, X†
0 is rationally chain connected

modulo Nqlc(X†
0, ω

†
0). This means that X0 ∩ π−1(P ) is rationally chain connected modulo

π−1(P ) ∩X−∞.

Case 2. If X0 = X−∞, that is, there is no qlc stratum of [X,ω] contained in π−1(P ),
then X0 ∩ π−1(P ) is obviously rationally chain connected modulo π−1(P ) ∩X−∞ because
X0 ∩ π−1(P ) = π−1(P ) ∩X−∞. Note that X0 = X−∞ = ∅ may happen.

Hence π−1(P ) is rationally chain connected modulo π−1(P ) ∩X−∞ when π−1(P ) ⊂ X0.
Thus, from now on, we may assume that π−1(P ) ̸⊂ X0.

Step 2. Without loss of generality, we may assume that S is quasi-projective by shrinking
S around P . We take general very ample Cartier divisors B1, . . . , Bn+1 passing through P
with n = dimX. Let f : (Y,BY ) → X be a proper morphism from a globally embedded
simple normal crossing pair (Y,BY ) as in Definition 4.2. By [F11, Proposition 6.3.1] and
[Ko2, Theorem 3.35], we may assume that the union of all strata of (Y,BY ) mapped to X0

by f , which is denoted by Y ′, is a union of some irreducible components of Y . As usual,
we put Y ′′ = Y − Y ′, KY ′′ + BY ′′ = (KY + BY )|Y ′′ , and f ′′ = f |Y ′′ . By [F11, Proposition
6.3.1] and [Ko2, Theorem 3.35] again, we may further assume that(

Y ′′, (f ′′)∗π∗
n+1∑
i=1

Bi + SuppBY ′′

)
is a globally embedded simple normal crossing pair. By [F11, Lemma 6.3.13], we can take
0 < c1 < 1 such that

f ′′

(BY ′′ + c1(f
′′)∗π∗

n+1∑
i=1

Bi

)>1
 = X0

holds set theoretically and that there exists an irreducible component G of(
BY ′′ + c1(f

′′)∗π∗
n+1∑
i=1

Bi

)=1

with f ′′(G) ̸⊂ X0. By Lemma 4.20,

(X,ω + c1B, f
′′ : (Y ′′, BY ′′ + c1(f

′′)∗B) → X) ,

where B = π∗ (∑n+1
i=1 B

)
, is a quasi-log scheme.

Let X1 be the union of Nqlc(X,ω + c1B) and all qlc strata of [X,ω + c1B] contained
in π−1(P ). By construction, Nqlc(X,ω + c1B) = X0 holds set theoretically. Therefore, by
Case 1 in Step 1, X1∩π−1(P ) is rationally chain connected modulo X0∩π−1(P ). We note
that by Step 1 X0 ∩ π−1(P ) is rationally chain connected modulo π−1(P ) ∩ X−∞. This
means that X1 ∩ π−1(P ) is rationally chain connected modulo π−1(P ) ∩X−∞.

Step 3. By repeating the argument in Step 2, we can construct a finite increasing sequence
of positive real numbers

0 < c1 < · · · < ck < 1

and closed subschemes
X1 ⊊ · · · ⊊ Xk
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of X with the following properties:

(a) [Xi, ωi] is a quasi-log scheme, where ωi = (ω + ciB)|Xi
, for every i,

(b) Nqlc(Xi+1, ωi+1) = Xi holds set theoretically for every i,
(c) π−1(P ) ⊂ Xk holds, and
(d) Xi+1 ∩ π−1(P ) is rationally chain connected modulo Xi ∩ π−1(P ) for every i.

Hence we obtain that π−1(P ) = π−1(P )∩Xk is rationally chain connected modulo π−1(P )∩
X−∞.

We finish the proof of Theorem 1.14. □

14. Towards Conjecture 1.15

In this final section, we treat several results related to Conjecture 1.15. This section
needs some deep results on the theory of minimal models for higher-dimensional algebraic
varieties. Let us start with the following special case of the flip conjecture II.

Conjecture 14.1 (Termination of flips). Let (X,∆) be a Q-factorial klt pair and let
π : X → S be a projective surjective morphism between normal quasi-projective varieties
such that KX +∆ is not pseudo-effective over S. Let

(X,∆) =: (X0,∆0) 99K (X1,∆1) 99K · · · 99K (Xi,∆i) 99K · · ·
be a sequence of flips over S starting from (X,∆). Then it terminates after finitely many
steps.

In this section, we establish the following theorem, which is a precise version of Theorem
1.16.

Theorem 14.2 (see Theorem 1.16). Assume that Conjecture 14.1 holds true in dimension
at most dimπ−1(P ). Then Conjecture 1.15 holds true.

For the proof of Theorem 14.2, we prepare a variant of Theorem 1.8. We need the
termination of flips in this theorem.

Theorem 14.3. Let X be a normal variety and let ∆ be an effective R-divisor on X
such that KX + ∆ is R-Cartier. Assume that Conjecture 14.1 holds true in dimX. Let
π : X → S be a projective morphism onto a scheme S such that −(KX + ∆) is π-ample
with dimS < dimX. We assume that Nklt(X,∆) is not empty such that

π : Nklt(X,∆) → π(Nklt(X,∆))

is finite. Then there exists a non-constant morphism

f : A1 −→ X \ Nklt(X,∆)

such that π◦f(A1) is a point and that the curve C, the closure of f(A1) in X, is a (possibly
singular) rational curve satisfying C ∩ Nklt(X,∆) ̸= ∅ with

0 < −(KX +∆) · C ≤ 1.

Proof. By shrinking S suitably, we may assume that X and S are both quasi-projective.
By Lemma 3.10, we can construct a projective birational morphism g : Y → X from a
normal Q-factorial variety satisfying (i), (ii), and (iv) in Lemma 3.10. Since KY + ∆Y =
g∗(KX + ∆), (KY + ∆Y )|Nklt(Y,∆Y ) is nef over S by Lemma 3.10 (iv). Let us consider
π ◦ g : Y → S. By construction, (Y,∆<1

Y ) is a Q-factorial klt pair. Since −(KX + ∆) is
π-ample by assumption, KY +∆Y is not pseudo-effective over S. Hence KY +∆<1

Y is not
pseudo-effective over S. Since (KY +∆Y )|Nklt(Y,∆Y ) is nef over S, the cone theorem

NE(Y/S) = NE(Y/S)(KY +∆Y )≥0 +
∑
j

Rj
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holds by [F6, Theorem 1.1] (see also Theorem 1.5 (i)). SinceKY +∆Y is not pseudo-effective
over S, KY +∆Y is not nef over S. Hence we have a (KY +∆Y )-negative extremal ray R
of NE(Y/S). Then we consider the contraction morphism φR : Y → W over S associated
to R (see [F6, Theorem 1.1] and Theorem 4.17). We note that −(KY + ∆<1

Y ) · R > 0
since (KY + ∆Y )|Nklt(Y,∆Y ) is nef over S. If φR is an isomorphism in a neighborhood of
Nklt(Y,∆Y ), then we can run a minimal model program with respect to KY + ∆Y over
S by [BCHM]. Thus we run a minimal model program with respect to KY +∆Y over S.
Then we have a sequence of flips and divisorial contractions

Y =: Y0
ϕ0 //___ Y1

ϕ1 //___ · · ·
ϕi−1 //___ Yi

ϕi //___ · · ·

over S. As usual, we put (Y0,∆Y0) := (Y,∆Y ) and ∆Yi+1
= ϕi∗∆Yi

for every i.

Case 1. We assume that ϕi is an isomorphism in a neighborhood of Nklt(Yi,∆Yi
) for

every i. Then this minimal model program is a minimal model program with respect to
KY +∆<1

Y . Hence, by Conjecture 14.1, we finally get the following diagram

Y =: Y0
ϕ0 //___

π◦g

��6
66

66
66

66
66

66
66

6
Y1

ϕ1 //___ · · ·
ϕk−1 //___ Yk

p

��
Z

vvmmm
mmm

mmm
mmm

mmm
m

S

where ϕi is a flip or a divisorial contraction for every i and p : Yk → Z is a Fano contraction
over S. We note that (KYk

+ ∆Yk
)|Nklt(Yk,∆Yk

) is nef over S. By Case 1 in the proof

of Proposition 9.1, we can find a curve CYk
≃ P1 on Yk such that p(CYk

) is a point,
CYk

∩ Nklt(Yk,∆Yk
) is a point, and 0 < −(KYk

+ ∆Yk
) · CYk

≤ 1 holds. By using the
negativity lemma, we can check that

−(KY +∆Y ) · CY ≤ −(KYk
+∆Yk

) · CYk
≤ 1

holds, where CY is the strict transform of CYk
on Y . Note that CY ∩ Nklt(Y,∆Y ) is a

point since ϕi is an isomorphism in a neighborhood of Nklt(Yi,∆Yi
) for every i. Therefore,

C = g(CY ) is a curve on X such that C ∩ Nklt(X,∆) is a point by Lemma 3.10 (iv) with
0 < −(KX +∆) · C ≤ 1. Hence we can construct a morphism

f : A1 −→ X \ Nklt(X,∆)

such that f(A1) = C ∩ (X \ Nklt(X,∆)). This is a desired morphism.

Case 2. We assume that there exists i0 such that ϕi is an isomorphism in a neighborhood
of Nklt(Yi,∆Yi

) for 0 ≤ i < i0 and ϕi0 is not an isomorphism in a neighborhood of
Nklt(Yi0 ,∆Yi0

). Then, by using Case 3 in the proof of Proposition 9.1, we can find a

curve CYi0
≃ P1 on Yi0 such that CYi0

∩Nklt(Yi0 ,∆Yi0
) is a point, CYi0

is mapped to a point
on S, and 0 < −(KYi0

+∆Yi0
) ·CYi0

≤ 1 holds. By the same argument as in Case 1 above,
we get a desired morphism

f : A1 −→ X \ Nklt(X,∆).

We finish the proof of Theorem 14.3. □
By Theorem 14.3, we have:

Theorem 14.4. In Theorem 9.2, we further assume that dimS < dimX and that Σ ̸= ∅.
If Conjecture 14.1 holds true in dimX, then there exists a non-constant morphism

f : A1 −→ X \ Σ
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such that π ◦f(A1) is a point and that the curve C, the closure of f(A1) in X, is a rational
curve satisfying C ∩ Σ ̸= ∅ with

0 < −P · C ≤ 1.

Proof. We use Theorem 14.3 instead of Theorem 1.8. Then the proof of Theorem 9.2
implies the existence of

f : A1 −→ X \ Σ
with the desired properties. □
For the proof of Theorem 14.2, we establish the following somewhat technical lemma.

Lemma 14.5. Let π : X → S be a projective surjective morphism between normal quasi-
projective varieties with π∗OX ≃ OS and dimS > 0 and let [X,ω] be a quasi-log scheme
such that

π : Nqklt(X,ω) → π(Nqklt(X,ω))

is finite. Let P be a closed point of S such that dimπ−1(P ) > 0. Then there exists an
effective R-Cartier divisor B on S such that [X,ω + π∗B] is a quasi-log scheme with the
following properties:

(i) Nqklt(X,ω) ⊂ Nqklt(X,ω + π∗B),
(ii) Nqklt(X,ω) = Nqklt(X,ω + π∗B) holds outside π−1(P ),
(iii) π : Nqlc(X,ω + π∗B) → π(Nqlc(X,ω + π∗B)) is finite, and
(iv) there exists a positive-dimensional qlc center of [X,ω + π∗B] in π−1(P ).

We further assume that −ω is π-ample. Let W be a positive-dimensional qlc center of
[X,ω + π∗B] with π(W ) = P . Let ν : W ν → W be the normalization. Then [W ν , ν∗ω]
naturally becomes a quasi-log Fano scheme such that

ν−1
(
Nqklt(X,ω) ∩ π−1(P )

)
⊂ Nqklt(W ν , ν∗ω)

holds set theoretically.

Proof. Let B1, . . . , Bn+1 be general very ample Cartier divisors on S passing through P
with n = dimX. Let f : (Y,BY ) → X be a proper morphism from a globally embedded
simple normal crossing pair (Y,BY ) as in Definition 4.2. Let X ′ be the union of Nqlc(X,ω)
and all qlc centers of [X,ω] mapped to P by π. By [F11, Proposition 6.3.1] and [Ko2,
Theorem 3.35], we may assume that the union of all strata of (Y,BY ) mapped to X ′ by f ,
which is denoted by Y ′, is a union of some irreducible components of Y . As usual, we put
Y ′′ = Y − Y ′, KY ′′ + BY ′′ = (KY + BY )|Y ′′ , and f ′′ = f |Y ′′ . By [F11, Proposition 6.3.1]
and [Ko2, Theorem 3.35] again, we may further assume that(

Y ′′, (f ′′)∗π∗
n+1∑
i=1

Bi + SuppBY ′′

)
is a globally embedded simple normal crossing pair. By [F11, Lemma 6.3.13], we can take
0 < c < 1 such that

(a) we have

f ′′

(BY ′′ + c(f ′′)∗π∗
n+1∑
i=1

Bi

)>1
 ∩ π−1(P ) = ∅

or

dim

f ′′

(BY ′′ + c(f ′′)∗π∗
n+1∑
i=1

Bi

)>1
 ∩ π−1(P )

 = 0,

and
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(b) the following inequality

dim

f ′′

(BY ′′ + c(f ′′)∗π∗
n+1∑
i=1

Bi

)=1
 ∩ π−1(P )

 ≥ 1

holds.

By Lemma 4.20, we obtain that

(X,ω + π∗B, f ′′ : (Y ′′, BY ′′ + (f ′′)∗π∗B) → X) ,

where B = c
∑n+1

i=1 Bi, is a quasi-log scheme. By construction, we see that (i) holds true
and Nqklt(X,ω + π∗B) coincides with Nqklt(X,ω) outside π−1(P ) since B1, . . . , Bn+1 are
general very ample Cartier divisors on S. Hence we have (ii). Therefore, (iii) and (iv)
follow from (a) and (b), respectively.

From now on, we further assume that −ω is π-ample. As usual, we put

W ′ = W ∪ Nqlc(X,ω + π∗B).

By adjunction (see Theorem 4.6 (i) and [F11, Theorem 6.3.5 (i)]), [W ′, (ω + π∗B)|W ′ ] is a
quasi-log scheme. By Lemma 4.19, [W, (ω+π∗B)|W ] naturally becomes a quasi-log scheme.
We note that (π∗B)|W ∼R 0 since π(W ) = P . Therefore, by replacing (ω + π∗B)|W with
ω|W , we see that [W,ω|W ] is a quasi-log scheme. By Theorem 1.9, [W ν , ν∗ω] becomes a
quasi-log scheme. Note that −ν∗ω is ample since π ◦ ν(W ν) = P .

Claim. We have

Nqklt(X,ω) ∩ π−1(P )

⊂ Nqklt(W ′, (ω + π∗B)|W ′) ∩ π−1(P )

= Nqklt(W, (ω + π∗B)|W )

= Nqklt(W,ω|W )

set theoretically.

Proof of Claim. We divide the proof into several steps.

Step 1. By (iii) and Lemma 13.2, Nqlc(X,ω+π∗B)∩π−1(P ) is empty or a point. By [F11,
Theorem 6.8.3 (i)], every qlc center of [X,ω+π∗B] in π−1(P ) contains Nqlc(X,ω+π∗B)∩
π−1(P ) when Nqlc(X,ω+ π∗B)∩ π−1(P ) ̸= ∅. When Nqlc(X,ω+ π∗B)∩ π−1(P ) = ∅, the
set of all qlc centers intersecting π−1(P ) has a unique minimal element with respect to the
inclusion by [F11, Theorem 6.8.3 (ii)].

Step 2. In this step, we will check that

Nqklt(X,ω) ∩ π−1(P ) ⊂ Nqklt(W ′, (ω + π∗B)|W ′) ∩ π−1(P )

holds set theoretically.
If Nqklt(X,ω)∩π−1(P ) = ∅, then it is obvious. Hence we may assume that Nqklt(X,ω)∩

π−1(P ) ̸= ∅. By assumption, Nqklt(X,ω) ∩ π−1(P ) is zero-dimensional. We take Q ∈
Nqklt(X,ω)∩π−1(P ). IfQ is a qlc center of [X,ω] orQ ∈ Nqlc(X,ω), thenQ ∈ Nqlc(X,ω+
π∗B) by the construction of the quasi-log scheme structure of [X,ω+π∗B]. Then we have

Q ∈ Nqlc(W ′, (ω + π∗B)|W ′) ⊂ Nqklt(W ′, (ω + π∗B)|W ′).

Therefore, we have
Q ∈ Nqklt(W ′, (ω + π∗B)|W ′) ∩ π−1(P ).

From now on, we assume that Q is not a qlc center of [X,ω] and that Q ̸∈ Nqlc(X,ω).
Then, there exists a positive-dimensional qlc center V of [X,ω] such that Q ∈ V ∩π−1(P ).
Since Nqklt(X,ω) = Nqklt(X,ω + π∗B) holds outside π−1(P ) (see (ii)), V is also a qlc
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center of [X,ω+π∗B]. If Nqlc(X,ω+π∗B)∩π−1(P ) ̸= ∅, then Nqlc(X,ω+π∗B)∩π−1(P )
is a point by (iii) and Lemma 13.2. In this case, by [F11, Theorem 6.8.3 (i)], we have
Q ∈ V ∩ π−1(P ) ∩ Nqlc(X,ω + π∗B). Hence Q ∈ Nqlc(W ′, (ω + π∗B)|W ′) ∩ π−1(P ).
This implies that Q ∈ Nqklt(W ′, (ω + π∗B)|W ′) ∩ π−1(P ). Thus we further assume that
Nqlc(X,ω + π∗B) ∩ π−1(P ) = ∅. By shrinking X around π−1(P ), we may assume that
[X,ω + π∗B] is quasi-log canonical. Then Q ∈ V ∩W ∩ π−1(P ) by Step 1 (see also [F11,
Theorem 6.8.3 (ii)]). Hence Q ∈ Nqklt(W ′, (ω + π∗B)|W ′) ∩ π−1(P ) by [F11, Theorem
6.3.11 (i)]. More precisely, Q is a qlc center of [W ′, (ω + π∗B)|W ′ ].

In any case, we obtain

Nqklt(X,ω) ∩ π−1(P ) ⊂ Nqklt(W ′, (ω + π∗B)|W ′) ∩ π−1(P )

set theoretically.

Step 3. By Step 1 and Lemma 4.19,

Nqklt(W ′, (ω + π∗B)|W ′) ∩ π−1(P ) = Nqklt(W, (ω + π∗B)|W )

holds set theoretically. By the definition of the quasi-log scheme structure of [W,ω|W ],

Nqklt(W, (ω + π∗B)|W ) = Nqklt(W,ω|W )

obviously holds.

We finish the proof of Lemma 14.5. □
Hence by Claim

ν−1
(
Nqklt(X,ω) ∩ π−1(P )

)
⊂ Nqklt(W ν , ν∗ω)

holds set theoretically since ν−1 (Nqklt(W,ω|W )) = Nqklt(W ν , ν∗ω) by Theorem 1.9. □
Let us prove Theorem 14.2, which is stronger than Theorem 1.16.

Proof of Theorem 14.2. We first use the reduction as in Steps 2, 3, and 4 in the proof of
Theorem 1.6. Let us explain it more precisely for the reader’s convenience.

Step 1. We take an irreducible component W of X such that C† ⊂ W . We put X ′ =
W ∪Nqlc(X,ω). Then, by adjunction (see Theorem 4.6 (i) and [F11, Theorem 6.3.5 (i)]),
[X ′, ω′ = ω|X′ ] is a quasi-log scheme. By replacing [X,ω] with [X ′, ω′], we may assume that

X \ X−∞ is irreducible. By Lemma 4.19, we may replace X with X \X−∞ and assume
that X is a variety. Then, by taking the normalization, we may further assume that X is
a normal variety (see Theorem 1.9).

Step 2. By taking the Stein factorization, we may further assume that π∗OX ≃ OS. We
put Σ = Nqklt(X,ω). It is sufficient to find a non-constant morphism

f : A1 −→ (X \ Σ) ∩ π−1(P )

such that the curve C, the closure of f(A1) in X, is a (possibly singular) rational curve
satisfying C ∩ Σ ̸= ∅ with

0 < −ω · C ≤ 1.

Without loss of generality, we may assume that X and S are quasi-projective by shrinking
S suitably.

Step 3. By assumption, dim π−1(P ) > 0 and π−1(P ) ∩ Σ ̸= ∅. When dimS > 0, by
Lemma 14.5, we take an effective R-Cartier divisor B on S such that [X,ω + π∗B] is a
quasi-log scheme satisfying the properties (i), (ii), (iii), and (iv) in Lemma 14.5. Then
we take a positive-dimensional qlc center W of [X,ω + π∗B] in π−1(P ) such that there is
no positive-dimensional qlc center W † ⊊ W of [X,ω + π∗B]. By Lemma 14.5, [W ν , ν∗ω]
naturally becomes a quasi-log Fano scheme, where ν : W ν → W is the normalization. When
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dimS = 0, it is sufficient to put B = 0 and W = X. By construction, Nqklt(W ν , ν∗ω)
is finite. On the other hand, Nqklt(W ν , ν∗ω) is connected (see Lemma 13.2 and [F11,
Theorem 6.8.3]). By Lemma 14.5, we obtain

∅ ̸= ν−1
(
Σ ∩ π−1(P )

)
⊂ Nqklt(W ν , ν∗ω).

Hence Nqklt(W ν , ν∗ω) is a point such that ν−1 (Σ ∩ π−1(P )) = Nqklt(W ν , ν∗ω) holds set
theoretically. By applying Theorems 1.10 and 14.4 to [W ν , ν∗ω] as in Step 5 in the proof
of Theorem 1.6, we obtain a non-constant morphism

h : A1 −→W ν \ Nqklt(W ν , ν∗ω)

such that C ′, the closure of h(A1) in W ν , is a (possibly singular) rational curve satisfying
C ′ ∩ Nqklt(W ν , ν∗ω) ̸= ∅ with 0 < −ν∗ω · C ′ ≤ 1. Then

f := ι ◦ ν ◦ h : A1 −→ (X \ Σ) ∩ π−1(P ),

where ι : W ↪→ X is a natural inclusion, is a desired morphism.

We finish the proof of Theorem 14.2. □
For the proof of Theorem 1.20, we prepare the following theorem. The proof of Theorem

14.6 uses a deep result on the existence problem of minimal models in [H1].

Theorem 14.6. Let (X,∆) be a dlt pair and let π : X → S be a projective morphism
between normal varieties such that −(KX + ∆) is π-ample. We assume that Nklt(X,∆)
is not empty such that π : Nklt(X,∆) → π(Nklt(X,∆)) is finite and that there exists a
curve C† on X such that π(C†) is a point with C† ∩ Nklt(X,∆) ̸= ∅. Then there exists a
non-constant morphism

f : A1 −→ X \ Nklt(X,∆)

such that π◦f(A1) is a point and that the curve C, the closure of f(A1) in X, is a (possibly
singular) rational curve satisfying C ∩ Nklt(X,∆) ̸= ∅ with

0 < −(KX +∆) · C ≤ 1.

Proof. By shrinking S suitably, we may assume that X and S are both quasi-projective.
By Lemma 3.10, we can construct a projective birational morphism g : Y → X from a
normal Q-factorial variety satisfying (i), (ii), and (iv) in Lemma 3.10. Since KY + ∆Y =
g∗(KX + ∆), (KY + ∆Y )|Nklt(Y,∆Y ) is nef over S by Lemma 3.10 (iv). Let us consider
π ◦ g : Y → S. By construction, (Y,∆Y ) is a Q-factorial dlt pair.

If dimS = dimX, then KY + ∆Y is pseudo-effective over S. In this case, we can take
an effective R-divisor A on Y such that KY + ∆Y + A ∼R,π◦g 0 and that (Y,∆Y + A) is
dlt since −(KY + ∆Y ) = −g∗(KX + ∆) is (π ◦ g)-semi-ample. Hence (Y,∆Y ) has a good
minimal model over S by [H1, Theorem 1.1] and any (KY +∆Y )-minimal model program
over S with scaling of an ample divisor terminates (see [H1, Theorem 2.11]).

If dimS < dimX, then KY + ∆Y is not pseudo-effective over S since −(KX + ∆) is
ample over S. In this case, we have a (KY +∆Y )-minimal model program which terminates
at a Mori fiber space by [BCHM].
Therefore, we have a finite sequence of flips and divisorial contractions

Y =: Y0
ϕ0 //___ Y1

ϕ1 //___ · · ·
ϕi−1 //___ Yi

ϕi //___ · · ·
ϕk−1 //___ Yk

starting from (Y0,∆Y0) := (Y,∆Y ) over S such that (Yk,∆Yk
) is a good minimal model

of (Y,∆Y ) over S or p : Yk → Z is a Mori fiber space with respect to KYk
+ ∆Yk

over S,
where ∆Yi+1

= ϕi∗∆Yi
for every i. By assumption, we can take a curve C ′ on Y such that

−(KY +∆Y ) ·C ′ > 0 with C ′∩Nklt(Y,∆Y ) ̸= ∅. If ϕi is an isomorphism in a neighborhood
of Nklt(Yi,∆Yi

) for 0 ≤ i < l, then

(14.1) 0 < −(KY +∆Y ) · C ′ ≤ −(KYl
+∆Yl

) · C ′
Yl
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holds by the negativity lemma, where C ′
Yl

is the strict transform of C ′ on Yl.

Case 1. We assume that ϕi is an isomorphism in a neighborhood of Nklt(Yi,∆Yi
) for every

i. Then, by (14.1), the final model Yk has a Mori fiber space structure p : Yk → Z over S.
We note that (KYk

+∆Yk
)|Nklt(Yk,∆Yk

) is nef over S. Hence the argument in Case 1 in the
proof of Theorem 14.3 works without any changes. Then we get a non-constant morphism

f : A1 −→ X \ Nklt(X,∆)

with the desired properties.

Case 2. By Case 1, we may assume that there exists i0 such that ϕi is an isomorphism
in a neighborhood of Nklt(Yi,∆Yi

) for 0 ≤ i < i0 and ϕi0 is not an isomorphism in a
neighborhood of Nklt(Yi0 ,∆Yi0

). The argument in Case 2 in the proof of Theorem 14.3
works without any changes. Then we get a non-constant morphism

f : A1 −→ X \ Nklt(X,∆)

with the desired properties.

We finish the proof of Theorem 14.6. □
We close this section with the proof of Theorem 1.20. Since adjunction works well for

dlt pairs, Theorem 1.20 directly follows from Theorem 14.6.

Proof of Theorem 1.20. We put W = Uj. Then W is an lc stratum of (X,∆). By adjunc-
tion, it is well known that we have

(KX +∆)|W = KW +∆W

such that (W,∆W ) is dlt and that the lc centers of (W,∆W ) are exactly the lc centers
of (X,∆) that are strictly included in W (see, for example, [F3, Proposition 3.9.2]). By
replacing π : X → S with the Stein factorization of φRj

: W → φRj
(W ), we may assume

that π : Nklt(X,∆) → π(Nklt(X,∆)) is finite and that there exists a curve C† on X such
that π(C†) is a point with C† ∩ Nklt(X,∆) ̸= ∅. By Theorem 14.6, we obtain a desired
non-constant morphism

f : A1 → X \ Nklt(X,∆)

with the desired properties. □
As we have already mentioned, we will completely prove Conjecture 1.15 in a joint paper

with Kenta Hashizume (see [FH]), where we use some deep results on the minimal model
program for log canonical pairs. We strongly recommend the interested reader to see [FH].
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