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Canonical bundle formula and vanishing theorem

By

Osamu Fujino∗

Abstract

In this paper, we treat two different topics. We give sample computations of our canonical

bundle formula. They help us understand our canonical bundle formula, Fujita–Kawamata’s

semi-positivity theorem, and Viehweg’s weak positivity theorem. We also treat Viehweg’s

vanishing theorem.
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§ 1. Introduction

In this paper, we treat two different topics. In Section 2, we give sample computa-

tions of our canonical bundle formula (cf. [FM]). The examples constructed in Section

2 help us understand our canonical bundle formula, Fujita–Kawamata’s semi-positivity

theorem (cf. [K1, Theorem 5]), and Viehweg’s weak positivity theorem (cf. [V2, The-

orem III and Theorem 4.1]). There are no new results in Section 2. In Section 3,
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we treat Viehweg’s vanishing theorem (cf. [V1, Theorem IV]) which was obtained by

Viehweg as a byproduct of his original proof of the Kawamata–Viehweg vanishing the-

orem. It is a consequence of Bogomolov’s vanishing theorem. There exists a general-

ization of Viehweg’s vanishing theorem. See, for example, [EV1, (2.13) Theorem] and

[EV2, Corollary 5.12 d)]. Here, we quickly give a proof of the generalized Viehweg

vanishing theorem (cf. Theorem 3.1) as an application of the usual Kawamata–Viehweg

vanishing theorem (cf. Theorem 3.3). By our proof, we see that the generalized Viehweg

vanishing theorem is essentially the same as the usual Kawamata–Viehweg vanishing

theorem. There are no new results in Section 3. We note that Sections 2 and 3 are

mutually independent. Although this paper contains no new results, we hope that the

examples and the arguments will be useful. It seems to be the first time that the gener-

alized Viehweg vanishing theorem is treated in the relative setting (cf. Theorem 3.1). In

Section 4, which is an appendix, we discuss Miyaoka’s vanishing theorem. Section 4 is a

memorandum for the author’s talk in Professor Miyaoka’s sixtieth birthday celebration

symposium: Invariant in Algebraic Geometry, in November 2009.

Notation. For a Q-divisor D =
∑r
j=1 djDj such that Dj is a prime divisor for

every j and Di 6= Dj for i 6= j, we define the round-down xDy =
∑r
j=1xdjyDj , where for

every rational number x, xxy is the integer defined by x− 1 < xxy ≤ x. The fractional

part {D} of D denotes D − xDy.

In Sections 3 and 4, κ (resp. ν) denotes the Kodaira dimension (resp. numerical

Kodaira dimension).

Acknowledgments. The author thanks Takeshi Abe for answering my questions.

We will work over C, the complex number field, throughout this paper.

§ 2. Sample computations of canonical bundle formula

We give sample computations of our canonical bundle formula obtained in [FM].

We will freely use the notation in [FM]. For details of our canonical bundle formula,

see [FM], [F1, §3], and [F2, §3, §4, §5, and §6].

2.1 (Kummer manifolds). Let E be an elliptic curve and En the n-times direct

product of E. Let G be the cyclic group of order two of analytic automorphisms of

En generated by an automorphism g : En → En : (z1, · · · , zn) 7→ (−z1, · · · ,−zn). The

automorphism g has 22n fixed points. Each singular point is terminal for n ≥ 3 and is

canonical for n ≥ 2.

2.2 (Kummer surfaces). First, we consider q : E2/G → E/G ≃ P1, which is

induced by the first projection, and g = q ◦ µ : Y → P1, where µ : Y → E2/G is the
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minimal resolution of sixteen A1-singularities. It is easy to see that Y is a K3 surface.

In this case, it is obvious that

g∗OY (mKY/P1) ≃ OP1(2m)

for every m ≥ 1. Thus, we can put LY/P1 = D for any degree two Weil divisor D on

P1. We obtain KY = g∗(KP1 + LY/P1). Let Qi be the branch point of E → E/G ≃ P1

for 1 ≤ i ≤ 4. Then we have

LssY/P1 = D −
4

∑

i=1

(1−
1

2
)Qi = D −

4
∑

i=1

1

2
Qi

by the definition of the semi-stable part LssY/P1. Therefore, we obtain

KY = g∗(KP1 + LssY/P1 +

4
∑

i=1

1

2
Qi).

Thus,

LssY/P1 = D −
4

∑

i=1

1

2
Qi 6∼ 0

but

2LssY/P1 = 2D −
4

∑

i=1

Qi ∼ 0.

Note that LssY/P1 is not a Weil divisor but a Q-Weil divisor on P1.

2.3 (Elliptic fibrations). Next, we consider E3/G and E2/G. We consider the

morphism p : E3/G → E2/G induced by the projection E3 → E2 : (z1, z2, z3) →

(z1, z2). Let ν : X ′ → E3/G be the weighted blow-up of E3/G at sixty-four 1
2 (1, 1, 1)-

singularities. Thus

KX′ = ν∗KE3/G +
64
∑

j=1

1

2
Ej,

where Ej ≃ P2 is the exceptional divisor for every j. Let Pi be an A1-singularity

of E2/G for 1 ≤ i ≤ 16. Let ψ : X → X ′ be the blow-up of X ′ along the strict

transform of p−1(Pi), which is isomorphic to P1, for every i. Then we obtain the

following commutative diagram.

E3/G
φ:=ν◦ψ
←−−−−− X

p





y





y

f

E2/G ←−−−−
µ

Y
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Note that

KX = φ∗KE3/G +
64
∑

j=1

1

2
Ej +

16
∑

k=1

Fk,

where Ej is the strict transform of Ej on X and Fk is the ψ-exceptional prime divisor for

every k. We can check that X is a smooth projective threefold. We put Ci = µ−1(Pi)

for every i. It can be checked that Ci is a (−2)-curve for every i. It is easily checked

that f is smooth outside
∑16
i=1 Ci and that the degeneration of f is of type I∗0 along Ci

for every i. We renumber {Ej}
64
j=1 as {Eji }, where f(Eji ) = Ci for every 1 ≤ i ≤ 16 and

1 ≤ j ≤ 4. We note that f is flat since f is equi-dimensional.

Let us recall the following theorem (cf. [K2, Theorem 20] and [N, Corollary 3.2.1

and Theorem 3.2.3]).

Theorem 2.4 (..., Kawamata, Nakayama, ...). We have the following isomor-

phism.

(f∗ωX/Y )⊗12 ≃ OY (

16
∑

i=1

6Ci),

where ωX/Y ≃ OX(KX/Y ) = OX(KX − f
∗KY ).

The proof of Theorem 2.4 depends on the investigation of the upper canonical

extension of the Hodge filtration and the period map. It is obvious that

2KX = f∗(2KY +

16
∑

i=1

Ci)

and

2mKX = f∗(2mKY +m

16
∑

i=1

Ci)

for all m ≥ 1 since f∗Ci = 2Fi +
∑4
j=1E

j
i . Therefore, we have 2LX/Y ∼

∑16
i=1 Ci. On

the other hand, f∗ωX/Y ≃ OY (xLX/Y y). Note that Y is a smooth surface and f is flat.

Since

OY (12xLX/Y y) ≃ (f∗ωX/Y )⊗12 ≃ OY (
16
∑

i=1

6Ci),

we have

12LX/Y ∼ 6
16
∑

i=1

Ci ∼ 12xLX/Y y.

Thus, LX/Y is a Weil divisor on Y . It is because the fractional part {LX/Y } is effective

and linearly equivalent to zero. So, LX/Y is numerically equivalent to 1
2

∑16
i=1 Ci. We

have g∗Qi = 2Gi +
∑4

j=1C
j
i . Here, we renumbered {Cj}

16
j=1 as {Cji }

4
i,j=1 such that
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g(Cji ) = Qi for every i and j. More precisely, we put 2Gi = g∗Qi −
∑4

j=1C
j
i for every

i. We note that we used notations in 2.2. We consider A := g∗D −
∑4
i=1Gi. Then A

is a Weil divisor and 2A ∼
∑16
i=1Ci. Thus, A is numerically equivalent to 1

2

∑16
i=1Ci.

Since H1(Y,OY ) = 0, we can put LX/Y = A. So, we have

LssX/Y = g∗D −

4
∑

i=1

Gi −

16
∑

j=1

1

2
Cj .

We obtain the following canonical bundle formula.

Theorem 2.5. The next formula holds.

KX = f∗(KY + LssX/Y +
16
∑

j=1

1

2
Cj),

where LssX/Y = g∗D −
∑4
i=1Gi −

∑16
j=1

1
2Cj.

We note that 2LssX/Y ∼ 0 but LssX/Y 6∼ 0. The semi-stable part LssX/Y is not a Weil

divisor but a Q-divisor on Y .

The next lemma is obvious since the index of KE3/G is two. We give a direct proof

here.

Lemma 2.6. H0(Y, LX/Y ) = 0.

Proof. If there exists an effective Weil divisor B on Y such that LX/Y ∼ B. Since

B · Ci = −1, we have B ≥ 1
2Ci for all i. Thus B ≥

∑16
i=1

1
2Ci. This implies that

B −
∑16
i=1

1
2
Ci is an effective Q-divisor and is numerically equivalent to zero. Thus

B =
∑16

i=1
1
2
Ci. It is a contradiction.

We can easily check the following corollary.

Corollary 2.7. We have

f∗ω
⊗m
X/Y ≃







OY (
∑16
i=1 nCi) if m = 2n,

OY (LX/Y +
∑16
i=1 nCi) if m = 2n+ 1.

In particular, f∗ω
⊗m
X/Y is not nef for any m ≥ 1. We can also check that

H0(Y, f∗ω
⊗m
X/Y ) ≃







C if m is even,

0 if m is odd.

2.8 (Weak positivity). Let us recall the definition of Viehweg’s weak positivity

(cf. [V2, Definition 1.2] and [V4, Definition 2.11]).
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Definition 2.9 (Weak positivity). Let W be a smooth quasi-projective variety

and F a locally free sheaf on W . Let U be an open subvariety of W . Then, F is weakly

positive over U if for every ample invertible sheaf H and every positive integer α there

exists some positive integer β such that Sα·β(F) ⊗ Hβ is generated by global sections

over U . This means that the natural map

H0(W,Sα·β(F)⊗Hβ)⊗OW → Sα·β(F)⊗Hβ

is surjective over U .

Remark 2.10 (cf. [V2, (1.3) Remark. iii)]). In Definition 2.9, it is enough to check

the condition for one invertible sheafH, not necessarily ample, and all α > 0. For details,

see [V4, Lemma 2.14 a)].

Remark 2.11. In [V3, Definition 3.1], Sα·β(F)⊗H⊗β is only required to be gener-

ically generated. See also [Mo, (5.1) Definition].

We explicitly check the weak positivity for the elliptic fibration constructed in 2.3

(cf. [V2, Theorem 4.1 and Theorem III] and [V4, Theorem 2.41 and Corollary 2.45]).

Proposition 2.12. Let f : X → Y be the elliptic fibration constructed in 2.3.

Then f∗ω
⊗m
X/Y is weakly positive over Y0 = Y \

∑16
i=1 Ci. Let U be a Zariski open set

such that U 6⊂ Y0. Then f∗ω
⊗m
X/Y is not weakly positive over U .

Proof. Let H be a very ample Cartier divisor on E2/G and H ′ a very ample

Cartier divisor on Y such that LX/Y +H ′ is very ample. We put H = OY (µ∗H +H ′).

Let α be an arbitrary positive integer. Then

Sα(f∗ω
⊗m
X/Y )⊗H ≃ OY (α

16
∑

i=1

nCi + µ∗H +H ′)

if m = 2n. When m = 2n+ 1, we have

Sα(f∗ω
⊗m
X/Y )⊗H

≃







OY (α
∑16
i=1 nCi + µ∗H +H ′ + LX/Y + x

α
2
y

∑16
i=1Ci) if α is odd,

OY (α
∑16
i=1 nCi + µ∗H +H ′ + α

2

∑16
i=1 Ci) if α is even.

Thus, Sα(f∗ω
⊗m
X/Y )⊗H is generated by global sections over Y0 for every α > 0. Therefore,

f∗ω
⊗m
X/Y is weakly positive over Y0.

Let H be an ample invertible sheaf on Y . We put k = max
j

(Cj · H). Let α be a

positive integer with α > k/2. We note that

S2α·β(f∗ω
⊗m
X/Y )⊗H⊗β ≃ (OY (α

16
∑

i=1

mCi)⊗H)⊗β.
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If H0(Y, S2α·β(f∗ω
⊗m
X/Y )⊗H⊗β) 6= 0, then we can take

G ∈ |(OY (α

16
∑

i=1

mCi)⊗H)⊗β |.

In this case, G ·Ci < 0 for every i because α > k/2. Therefore, we obtain G ≥
∑16
i=1Ci.

Thus, S2α·β(f∗ω
⊗m
X/Y )⊗H⊗β is not generated by global sections over U for any β ≥ 1.

This means that f∗ω
⊗m
X/Y is not weakly positive over U .

Proposition 2.12 implies that [V4, Corollary 2.45] is the best result.

2.13 (Semi-positivity). We give a supplementary example for Fujita–Kawamata’s

semi-positivity theorem (cf. [K1, Theorem 5]). For details of Fujita–Kawamata’s semi-

positivity theorem, see, for example, [Mo, §5] and [F3, Section 5].

Definition 2.14. A locally free sheaf E on a projective variety V is (numerically)

semi-positive (or nef) if the tautological line bundle OPV (E)(1) is nef on PV (E).

For details of semi-positive locally free sheaves, see [V4, Proposition 2.9].

Example 2.15. Let f : X → Y be the elliptic fibration constructed in 2.3. Let

Z := C × X , where C is a smooth projective curve with the genus g(C) = r ≥ 2.

Let π1 : Z → C (resp. π2 : Z → X) be the first (resp. second) projection. We put

h := f ◦ π2 : Z → Y . In this case, KZ = π∗
1KC ⊗ π

∗
2KX . Therefore, we obtain

h∗ω
⊗m
Z/Y = f∗π2∗(π

∗
1ω

⊗m
C ⊗ π∗

2ω
⊗m
X )⊗ ω⊗−m

Y = (f∗ω
⊗m
X/Y )⊕l,

where l = dimH0(C,OC(mKC)). Thus, l = (2m − 1)r − 2m + 1 if m ≥ 2 and l = r

if m = 1. So, h∗ωZ/Y is a rank r ≥ 2 vector bundle on Y such that h∗ωZ/Y is not

semi-positive. We note that h is smooth over Y0 = Y \
∑16
i=1 Ci. We also note that

h∗ω
⊗m
Z/Y is weakly positive over Y0 for every m ≥ 1 by [V4, Theorem 2.41 and Corollary

2.45].

Example 2.15 shows that the assumption on the local monodromies around
∑16

i=1Ci

is indispensable for Fujita–Kawamata’s semi-positivity theorem (cf. [K1, Theorem 5

(iii)]).

We close this section with a comment on [FM].

2.16 (Comment). We give a remark on [FM, Section 4]. In [FM, 4.4], g : Y → X

is a log resolution of (X,∆). However, it is better to assume that g is a log resolution

of (X,∆− (1/b)B∆) for the proof of [FM, Theorem 4.8].
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§ 3. Viehweg’s vanishing theorem

In this section, we quickly give a proof of the generalized Viehweg vanishing theorem

(cf. [EV1, (2.13) Theorem]) as an application of the usual Kawamata–Viehweg vanishing

theorem. See also [EV2, Corollary 5.12 d)]. Our proof is different from the proofs given

in [EV1] and [EV2]. We treat it in the relative setting.

Theorem 3.1 (cf. [EV1, (2.13) Theorem]). Let π : X → S be a proper surjec-

tive morphism from a smooth variety X, L an invertible sheaf on X, and D an effective

Cartier divisor on X such that SuppD is normal crossing. Assume that LN (−D) is

π-nef for some positive integer N and that κ(Xη, (L
(1))η) = m, where Xη is the generic

fiber of π, (L(1))η = L(1)|Xη
, and

L(1) = L(−x
D

N
y).

Then we have

Riπ∗(L
(1) ⊗ ωX) = 0

for i > dimX − dimS −m.

We note that SuppD is not necessarily simple normal crossing. We only assume

that SuppD is normal crossing.

Remark 3.2. In Theorem 3.1, we assume that S is a point for simplicity. We note

that κ(X,L(1)) = m does not necessarily imply κ(X,L(i)) = m for 2 ≤ i ≤ N−1, where

L(i) = L⊗i(−x
iD

N
y).

Therefore, the original arguments in [V1] depending on Bogomolov’s vanishing theorem

do not seem to work in our setting.

Let us recall the Kawamata–Viehweg vanishing theorem. Although there are many

formulations of the Kawamata–Viehweg vanishing theorem, the following one is the

most convenient one for various applications of the log minimal model program.

Theorem 3.3 (Kawamata–Viehweg’s vanishing theorem). Let f : Y → X be a

projective morphism from a smooth variety Y and M a Cartier divisor on Y . Let ∆ be

an effective Q-divisor on Y such that Supp∆ is simple normal crossing and x∆y = 0.

Assume that M − (KX + ∆) is f -nef and f -big. Then

Rif∗OY (M) = 0

for all i > 0.
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We note that we can prove Theorem 3.3 without using Viehweg’s vanishing the-

orem. See, for example, [KMM, Theorem 1-2-3]. The reader can find a log canonical

generalization of the Kawamata–Viehweg vanishing theorem in [F4, Theorem 2.48].

Remark 3.4. In the proof of [KMM, Theorem 1-2-3], when we construct comple-

tions π′ : X ′ → S′ with π′|X = π and a π-ample Q-divisor D′ on X ′ with D′|X = D, it

seems to be better to use Szabó’s resolution lemma. It is because we have to make the

support of the fractional part of D′ have only simple normal crossings.

Remark 3.5. It is obvious that Theorem 3.3 is a special case of Theorem 3.1. By

applying Theorem 3.1, the assumption in Theorem 3.3 can be weaken as follows: M −

(KX + ∆) is f -nef and M − KX is f -big. We note that M − KX is f -big if so is

M − (KX + ∆). In this section, we give a quick proof of Theorem 3.1 only by using

Theorem 3.3 and Hironaka’s resolution. Therefore, Theorem 3.1 is essentially the same

as Theorem 3.3.

Let us start the proof of Theorem 3.1.

Proof. Without loss of generality, we can assume that S is affine. Let f : Y → X

be a proper birational morphism from a smooth quasi-projective variety Y such that

Suppf∗D ∪ Exc(f) is simple normal crossing. We write

KY = f∗(KX + (1− ε){
D

N
}) +Eε.

Then F = pEεq is an effective exceptional Cartier divisor on Y and independent of

ε for 0 < ε ≪ 1. Therefore, the coefficients of F − Eε are continuous for 0 < ε ≪

1. Let L be a Cartier divisor on X such that L ≃ OX(L). We can assume that

κ(Xη, (L − x
D
N

y)η) = m ≥ 0. Let Φ : X 99K Z be the relative Iitaka fibration over S

with respect to l(L− x
D
N

y), where l is a sufficiently large and divisible integer. We can

further assume that

f∗(L− x
D

N
y) ∼Q ϕ∗A+E,

where E is an effective Q-divisor such that SuppE∪Suppf∗D∪Exc(f) is simple normal

crossing, ϕ = Φ ◦ f : Y → Z is a morphism, and A is a ψ-ample Q-divisor on Z with

ψ : Z → S. Let
∑

iEi = SuppE ∪Suppf∗D∪Exc(f) be the irreducible decomposition.

We can write Eε =
∑

i a
ε
iEi and E =

∑

i biEi and note that aεi is continuous for

0 < ε≪ 1. We put ∆ε = F −Eε + εE. By definition, we can see that every coefficient

of ∆ε is in [0, 2) for 0 < ε ≪ 1. Thus, x∆εy is reduced. If aεi < 0, then aεi ≥ −1 + 1
N

for 0 < ε ≪ 1. Therefore, if paεiq − a
ε
i + εbi ≥ 1 for 0 < ε ≪ 1, then aεi > 0. Thus,

F ′ = F − x∆εy is effective and f -exceptional for 0 < ε ≪ 1. On the other hand,
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(Y, {∆ε}) is obviously klt for 0 < ε≪ 1. We note that

f∗(KX + L− x
D

N
y) + F ′ − (KY + {∆ε})

= f∗(KX + L− x
D

N
y) + F − f∗(KX + (1− ε){

D

N
})− Eε

− (F − Eε + εE)

∼Q (1− ε)f∗(L−
D

N
) + εϕ∗A

for a rational number ε with 0 < ε≪ 1. We put

M = f∗(KX + L− x
D

N
y) + F ′.

By combining the long exact sequence

· · · → Rip∗OY (M)→ Rip∗OY (M +H)→ Rip∗OH(M +H)→ · · ·

obtained from

0→ OY (M)→ OY (M +H)→ OH(M +H)→ 0

for a p-ample general smooth Cartier divisor H on Y , where p = ψ ◦ϕ = π ◦ f : Y → S,

and the induction on the dimension, we obtain

Rip∗OY (M) = Rip∗OY (f∗(KX + L− x
D

N
y) + F ′) = 0

for every i > dimY −dimS−m = dimX−dimS−m by Theorem 3.3 (cf. [V1, Remark

0.2]). We note that

M − (KY + {∆ε}) ∼Q (1− ε)f∗(L−
D

N
) + εϕ∗A,

(M +H)− (KY + {∆ε}) ∼Q (1− ε)f∗(L−
D

N
) + εϕ∗A+H,

and

(M +H)|H − (KH + {∆ε}|H) ∼Q (1− ε)f∗(L−
D

N
)|H + εϕ∗A|H .

We also note that (H, {∆ε}|H) is klt and

κ(Hη, (ϕ
∗A)|Hη

) ≥ min{m, dimHη}.

On the other hand,

Rif∗OY (M) = Rif∗OY (f∗(KX + L− x
D

N
y) + F ′) = 0



Canonical bundle formula and vanishing theorem 11

for every i > 0 by Theorem 3.3. We note that

f∗OY (f∗(KX + L− x
D

N
y) + F ′) ≃ OX(KX + L− x

D

N
y)

by the projection formula because F ′ is effective and f -exceptional. Therefore, we

obtain

Riπ∗OX(KX + L− x
D

N
y) = Rip∗OY (M) = 0

for every i > dimX − dimS −m.

We close this section with an obvious corollary.

Corollary 3.6. Let X be an n-dimensional smooth complete variety, L an in-

vertible sheaf on X. Assume that D ∈ |LN | for some positive integer N and that SuppD

is simple normal crossing. Then we have

Hi(X,L(1) ⊗ ωX) = 0

for i > n− κ(X, {DN }).

§ 4. Appendix: Miyaoka’s vanishing theorem

The following statement is a correct formulation of Miyaoka’s vanishing theorem

(cf. [Mi, Proposition 2.3]) from our modern viewpoint. Miyaoka’s vanishing theorem

seems to be the first vanishing theorem for the integral part of Q-divisors.

Theorem 4.1. Let X be a smooth complete variety with dimX ≥ 2 and D a

Cartier divisor on X. Assume that D is numerically equivalent to M +B, where M is

a nef Q-divisor on X with ν(X,M) ≥ 2 and B is an effective Q-divisor with xBy = 0.

Then H1(X,OX(−D)) = 0.

Proof. By the Serre duality, it is sufficient to see that Hn−1(X,OX(KX+D)) = 0,

where n = dimX . Let J (X,B) be the multiplier ideal sheaf of (X,B). We consider

· · · → Hn−1(X,OX(KX +D)⊗J (X,B))→ Hn−1(X,OX(KX +D))

→ Hn−1(X,OX(KX +D)⊗OX/J (X,B))→ · · · .

Since xBy = 0, we see that dim SuppOX/J (X,B) ≤ n−2. Therefore, Hn−1(X,OX(KX+

D) ⊗ OX/J (X,B)) = 0. Thus, it is enough to see that Hn−1(X,OX(KX + D) ⊗

J (X,B)) = 0. Let f : Y → X be a resolution such that Suppf∗B is a simple normal

crossing divisor. Then we have J (X,B) = f∗OY (KY/X−xf∗By) and Rif∗OY (KY/X−

xf∗By) = 0 for every i > 0. So, we obtain Hn−1(X,OX(KX + D) ⊗ J (X,B)) ≃
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Hn−1(Y,OY (KY +f∗D−xf∗By)) = 0 by the usual general hyperplane cutting technique

(cf. the proof of Theorem 3.1) and Kawamata–Viehweg’s vanishing theorem (cf. Theo-

rem 3.3).

Remark 4.2. In Theorem 4.1, we can replace the assumption ν(X,M) ≥ 2 with

κ(Y, f∗D − xf∗By) ≥ 2 by Theorem 3.1.
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