BIG \mathbb{R}-DIVISORS

OSAMU FUJINO

0.1. Big \mathbb{R}-divisors. In this subsection, we introduce the notion of big \mathbb{R}-djuisors on singular varieties. The basic references of big \mathbb{R}-divisors are $\left[\frac{L D, 2.2]}{2} \frac{1}{N}, 11 . \S 3\right.$ and $\left.\S 5\right]$. Since we have to consider big \mathbb{R} divisors on nop-normal varieties, we give supplementary definitions and arguments to L\rfloor and NJ .

First, let us quickly recall the definition of big Cartier divisors on normal complete varieties. For details, see, for example, $\left[\frac{\mathrm{KMM}}{\mathrm{L}}, \S 0-3\right]$.
def-big Definition 0.1 (Big Cartier divisors). Let X be a normal complete variety and D a Cartier divisor on X. Then D is big if one of the following equivalent conditions holds.
(1) $\max _{m \in \mathbb{N}}\left\{\operatorname{dim} \Phi_{|m D|}(X)\right\}=\operatorname{dim} X$, where $\Phi_{|m D|}: X \rightarrow \mathbb{P}^{N}$ is the rational map associated to the linear system $|m D|$ and $\Phi_{|m D|}(X)$ is the image of $\Phi_{|m D|}$.
(2) There exist a rational number α and a positive integer m_{0} such that

$$
\alpha m^{\operatorname{dim} X} \leq \operatorname{dim} H^{0}\left(X, \mathcal{O}_{X}\left(m m_{0} D\right)\right) .
$$

It is well known that we can take $m_{0}=1$ in the condition (2).
One of the most important properties of big Cartier divisors is known as Kodaira's lemma.
kod-lem Lemma 0.2 (Kodaira's lemma). Let X be a normal complete variety and D a big Cartier divisor on X. Then, for an arbitrary Cartier divisor M, we have $H^{0}\left(X, \mathcal{O}_{X}(l D-M)\right) \neq 0$ for $l \gg 0$.

Proof. By replacing X with its resolution, we can assume that X is smooth and projective. Then it is sufficient to show that for a very ample Cartier divisor $A, H^{0}\left(X, \mathcal{O}_{X}(l D-A)\right) \neq 0$ for $l \gg 0$. Since we have the exact sequence

$$
0 \rightarrow \mathcal{O}_{X}(l D-A) \rightarrow \mathcal{O}_{X}(l D) \rightarrow \mathcal{O}_{Y}(l D) \rightarrow 0
$$

[^0]where Y is a general member of $|A|$, and since there exist positive rational numbers α, β such that $\alpha l^{\operatorname{dim} X} \leq \operatorname{dim} H^{0}\left(X, \mathcal{O}_{X}(l D)\right)$ and $\operatorname{dim} H^{0}\left(Y, \mathcal{O}_{Y}(l D)\right) \leq \beta l^{\operatorname{dim} Y}$ for $l \gg 0$, we have $H^{0}\left(X, \mathcal{O}_{X}(l D-A)\right) \neq$ 0 for $l \gg 0$.

For non-normal varieties, we need the following definition.
def-big2 Definition 0.3 (Big Cartier divisors on non-normal varieties). Let X be a complete irreducible variety and D a Cartier divisor on X. Then D is big if $\nu^{*} D$ is big on X^{ν}, where $\nu: X^{\nu} \rightarrow X$ is the normalization.

Before we define big \mathbb{R}-divisors, let us recall the definition of big \mathbb{Q}-divisors.
defnQ Definition 0.4 ($\operatorname{Big} \mathbb{Q}$-divisors). Let X be a complete irreducible variety and D a \mathbb{Q}-Cartier \mathbb{Q}-divisor on X. Then D is big if $m D$ is a big Cartier divisor for some positive integer m.

We note the following obvious lemma.
lem0555 Lemma 0.5. Let $f: W \rightarrow V$ be a birational morphism between normal varieties and D a \mathbb{Q}-Cartier \mathbb{Q}-divisor on V. Then D is big if and only if so is $f^{*} D$.

Next, let us start to consider big \mathbb{R}-divisors.
defnA Definition 0.6 (Big \mathbb{R}-divisors on complete varieties). An \mathbb{R}-Cartier \mathbb{R} divisor D on a complete irreducible variety X is big if it can be written in the form

$$
D=\sum_{i} a_{i} D_{i}
$$

where each D_{i} is a big Cartier divisor and a_{i} is a positive real number for every i.

Let us recall an easy but very important lemma.
lemABC Lemma 0.7 (cf. |nakayama2 2.11. Lemma]). Let $f: Y \rightarrow X$ be a proper surjective morphism between normal varieties with connected fibers. Let D be an \mathbb{R}-Cartier \mathbb{R}-divisor on X. Then we have a canonical isomorphism

$$
\mathcal{O}_{X}(\llcorner D\lrcorner) \simeq f_{*} \mathcal{O}_{Y}\left(\left\llcorner f^{*} D\right\lrcorner\right) .
$$

lem088 Lemma 0.8. Let D be a big \mathbb{R}-Cartier \mathbb{R}-divisor on a smooth projective variety X. Then there exist a positive rational number α and a positive integer m_{0} such that

$$
\alpha m^{\operatorname{dim} X} \leq \operatorname{dim} H^{0}\left(X, \mathcal{O}_{X}\left(\left\llcorner m m_{0} D\right\lrcorner\right)\right)
$$

for $m \gg 0$.
 divisor E on X such that $D-E$ is ample. Therefore, there exists a positive integer m_{0} such that $A=\left\llcorner m_{0} D-m_{0} E\right\lrcorner$ is ample. We note that $m_{0} D=A+\left\{m_{0} D-m_{0} E\right\}+m_{0} E$. This implies that $m A \leq m m_{0} D$ for any positive integer m. Therefore,

$$
\operatorname{dim} H^{0}\left(X, \mathcal{O}_{X}(m A)\right) \leq \operatorname{dim} H^{0}\left(X, \mathcal{O}_{X}\left(\left\llcorner m m_{0} D\right\lrcorner\right)\right)
$$

So, we can find a positive rational number α such that

$$
\alpha m^{\operatorname{dim} X} \leq \operatorname{dim} H^{0}\left(X, \mathcal{O}_{X}\left(\left\llcorner m m_{0} D\right\lrcorner\right)\right)
$$

It is the desired inequality.
rem099 Remark ${ }^{0}$ 9. By Lemma $\frac{1 \text { em088 }}{0.8, ~ \text { Definition }} \frac{\text { defnA }}{0.6 \text { is }}$ compatible with Definition 0.4.
wkodaira Lemma 0.10 (Weak Kodaira's lemma). Let X be a projective irreducible variety and D a big \mathbb{R}-Cartier \mathbb{R}-divisor on X. Then we can write

$$
D \sim_{\mathbb{R}} A+E,
$$

where A is an ample \mathbb{Q}-divisor on X and E is an effective \mathbb{R}-Cartier \mathbb{R}-divisor on X.

Proof. Let B be a big Cartier divisor on X and H a general very ample Cartier divisor on X. We consider the short exact sequence

$$
0 \rightarrow \mathcal{O}_{X}(l B-H) \rightarrow \mathcal{O}_{X}(l B) \rightarrow \mathcal{O}_{H}(l B) \rightarrow 0
$$

for any l. It is easy to see that $\operatorname{dim} H^{0}\left(X, \mathcal{O}_{X}(l B)\right) \geq \alpha l^{\operatorname{dim} X}$ and $\operatorname{dim} H^{0}\left(H, \mathcal{O}_{H}(l B)\right) \leq \beta l^{\operatorname{dim} H}$ for some positive rational numbers α, β, and for $l \gg 0$. Therefore, $H^{0}\left(X, \mathcal{O}_{X}(l B-H)\right) \neq 0$ for some large l. This means that $l B \sim H+G$ for some effective Cartier divisor G. By Definition D.6, we can write $D=\sum_{i} a_{i} D_{i}$ where a_{i} is a positive real number and D_{i} is a big Cartier divisor for every i. By applying the above argument to each D_{i}, we can easily obtain the desired decomposition $D \sim_{\mathbb{R}} A+E$.

We prepare an important lemma.
lemN Lemma 0.11. Let X be a complete irreducible variety and N a numerically trivial \mathbb{R}-Cartier \mathbb{R}-divisor on X. Then N can be written in the form

$$
N=\sum_{i} r_{i} N_{i}
$$

where each N_{i} is a numerically trivial Cartier divisor and r_{i} is a real number for every i.

Proof. Let Z_{j} be an integral 1-cycle on X for $1 \leq j \leq \rho=\rho(X)$ such that $\left\{\left[Z_{1}\right], \cdots,\left[Z_{\rho}\right]\right\}$ is a basis of the vector space $N_{1}(X)$. The condition that an \mathbb{R}-Cartier \mathbb{R}-divisor $B=\sum_{i} b_{i} B_{i}$, where b_{i} is a real number and B_{i} is Cartier for every i, is numerically trivial is given by the integer linear equations

$$
\sum_{i} b_{i}\left(B_{i} \cdot Z_{j}\right)=0
$$

on b_{i} for $1 \leq j \leq \rho$. Any real solution to these equations is an \mathbb{R}-linear combination of integral ones. Thus, we obtain the desired expression $N=\sum_{i} r_{i} N_{i}$.

The following proposition seems to be very important.
lemD Proposition 0.12. Let X be a complete irreducible variety. Let D and D^{\prime} be \mathbb{R}-Cartier \mathbb{R}-divisors on X. If $D \equiv D^{\prime}$, then D is big if and only if so is D^{\prime}.

Proof. We put $N=D^{\prime}-D$. Then N is a numerically trivial \mathbb{R}-Cartier \mathbb{R}-divisor on X. By Lemma $\overline{\text { D.e.II }}$, we can write $N=\sum_{i} r_{i} N_{i}$, where r_{i} is a real number and $N_{d_{i n}}$ is a numerically trivial Cartier divisor for every i. By Definition 0.6 , we are reduced to showing that if B is a big Cartier divisor and G is a numerically trivial Cartier divisor, then $B+r G$ is big for any real number r. If r is not a rational number, we can write

$$
B+r G=t\left(B+r_{1} G\right)+(1-t)\left(B+r_{2} G\right)
$$

where r_{1} and r_{2} are rational, $r_{1}<r<r_{2}$, and t is a real number with $0<t<1$. Therefore, we can assume that r is rational. Let $f: Y \rightarrow X$ be a resolution Then it is sufficient to check that $f^{*} B+r f^{*} G$ is big by Lemma 0.5 . So, we can assume that X is smooth and projective. By Kodaira's lemma (cf. Lemma $\frac{102 \text {), we can write } l B \sim A+E \text {, where }}{}$ A is an ample Cartier divisor, E is an effective Carteir divisor, and l is a positive integer. Thus, $l(B+r G) \sim(A+l r G)+E$. We note that $A+\operatorname{lr} G$ is an ample \mathbb{Q}-divisor. This implies that $B+r G$ is a big \mathbb{Q}-Cartier \mathbb{Q}-divisor. We finish the proof.
lemp
${ }^{\text {ad }} \mathrm{Bt}_{\mathrm{th}}$ Proposition 0.12 , we can discuss the bigness of $L-\omega$ in Theorem ?? betow, where ω is the quasi-log canonical class of the quasi-log pair $[X, \omega]$. We note that ω is defined up to \mathbb{R}-linear equivalence class (see Remark $\frac{\text { cano }}{7 ? \text { ? }}$.

Proposition llemCD
lemCD Proposition 0.13. Let D be an \mathbb{R}-Cartier \mathbb{R}-divisor on a normal complete variety X. Then the following conditions are equivalent.
(1) D is big.
(2) There exist a positive rational number α and a positive integer m_{0} such that

$$
\alpha m^{\operatorname{dim} X} \leq \operatorname{dim} H^{0}\left(X, \mathcal{O}_{X}\left(\left\llcorner m m_{0} D\right\lrcorner\right)\right)
$$

for $m \gg 0$.
Proof. First ${ }_{\text {Fienc }} \mathrm{Ve}$ assume (2). Let $f: Y \rightarrow X$ be a resolution. By
 usual argument as in the proof of Kodaira's lemma (cf. Lemma $\frac{10.2 \text {), }}{1000}$ we can write $f^{*} D \equiv A+E$, where A is an ample \mathbb{Q}-Cartier \mathbb{Q}-divisor and E is an effective \mathbb{R}-Cartier \mathbb{R}-divisor on Y. By using Lemma $\frac{\mathbb{D} .14}{}$ and Lemma $\overline{0} .15$ below, we can write $A+E \equiv \sum a_{i} G_{i}$ where a_{i} is a positive real number and G_{i} is a big Cartier divisor for every i. By Proposition $\overline{0} .12, f^{*} D$ is a big \mathbb{R}-Cartier \mathbb{R}-divisor on Y. Let D^{\prime} be a \mathbb{Q}-Cartier \mathbb{Q}-divisor on X whose coefficients are very close to those of D. Then $A+f^{*} D^{\prime}-f^{*} D$ is an ample \mathbb{R}-Cartier \mathbb{R}-divisor on Y. Therefore, $f_{1}^{*} D^{\prime}{ }^{\prime}=\left(A+f^{*} D^{\prime}-f^{*} D\right)+E$ is also a big \mathbb{Q}-divisor on Y. By Lemma $\frac{10.5, D^{+}}{}$is a big \mathbb{Q}-Cartier \mathbb{Q}-divisor on X. This means that there exists a big Cartier divisor M on X (see Example 0.16 below). By the assumption, we can write $l D \sim M+E^{\prime}$, where E^{\prime} is an effective \mathbb{R}-Cartier \mathbb{R}-divisor -fee , for example, the
 we can write $M+E^{\prime} \equiv \sum a_{i}^{\prime} G_{i}^{\prime}$, where a_{i}^{\prime} is a positive real number and G_{i}^{\prime} is a big Cartier divisor for every i. By Proposition $\frac{\mathrm{em} . \mathrm{m},}{0.12}, D$ is a big \mathbb{R}-divisor on X.
 big by Definition $\overline{0.6}$ and Lemma $\overline{0} .5$. By Lemma $\frac{10}{0.7}$ and Lemma $\frac{10}{0.8,}$ we obtain the desired estimate in (2).

We haye already used the following lemmas in the proof of Proposition 10.13 .
lemCDD Lemma 0.14. Let X be a normal variety and B an effective \mathbb{R}-Cartier \mathbb{R}-divisor on X. Then B can be written in the form

$$
B=\sum_{i} b_{i} B_{i}
$$

where each B_{i} is an effective Cartier divisor and b_{i} is a positive real number for every i.
Proof. We can write $B=\sum_{j=1}^{l} d_{j} D_{j}$, where d_{j} is a real number and D_{j} is Cartier for every j. We put $E=\cup_{j} \operatorname{Supp} D_{j}$. Let $E=\sum_{k=1}^{m} E_{k}$ be the irreducible decomposition. We can write $D_{j}=\sum_{k=1}^{m} a_{k}^{j} E_{k}$ for
every j. Note that a_{k}^{j} is integer for every j and k. We can also write $B=\sum_{k=1}^{m} c_{k} E_{k}$ with $c_{k} \geq 0$ for every k. We consider

$$
\mathcal{E}=\left\{\left(r_{1}, \cdots, r_{l}\right) \in \mathbb{R}^{l} \mid \sum_{j=1}^{l} r_{j} a_{k}^{j} \geq 0 \text { for every } k\right\} \subset \mathbb{R}^{l}
$$

Then \mathcal{E} is a rational convex polyhedral cone and $\left(d_{1}, \cdots, d_{l}\right) \in \mathcal{E}$. Therefore, we can find effective Cartier divisors B_{i} and positive real numbers b_{i} such that $B=\sum_{i} b_{i} B_{i}$.
lemCDDD Lemma 0.15. Let B be a big Cartier divisor on a normal variety X and G an effective Cartier divisor on X. Then $B+r G$ is big for any positive real number r.

Proof. If r is rational, then this lemma is obvious by the definition of $\operatorname{big} \mathbb{Q}$-divisors. If r is not rational, then we can write

$$
B+r G=t\left(B+r_{1} G\right)+(1-t)\left(B+r_{2} G\right)
$$

where r_{1} and r_{2} are rational, $0_{\text {defn }} r_{1}<r<r_{2}$, and t is a real number with $0<t<1$. By Definition $0.6, B+r G$ is a big \mathbb{R}-divisor.

exAB

Example 0.16 implies that a normal complete variety does nhet alwas have big Cartier divisors. For the details of Example $\mathbb{D} .16$, see 7 ? Section 4].
exAB Example 0.16. Let Δ be the fan in \mathbb{R}^{3} whose rays are generated by $v_{1}=(1,0,1), v_{2}=(0,1,1), v_{3}=(-1,-2,1), v_{4}=(1,0,-1), v_{5}=$ $(0,1,-1), v_{6}=(-1,-1,-1)$ and whose maximal cones are

$$
\left\langle v_{1}, v_{2}, v_{4}, v_{5}\right\rangle,\left\langle v_{2}, v_{3}, v_{5}, v_{6}\right\rangle,\left\langle v_{1}, v_{3}, v_{4}, v_{6}\right\rangle,\left\langle v_{1}, v_{2}, v_{3}\right\rangle,\left\langle v_{4}, v_{5}, v_{6}\right\rangle
$$

Then the associated toric threefold X is complete with $\rho(X)=0$. More precisely, every Cartier divisor on X is linearly equivalent to zero.

Let $f: Y \rightarrow X$ be the blow-up along $v_{7}=(0,0,-1)$ and E the f-exceptional divisor on Y. Then we can check that $\rho(Y)=1$ and that $\mathcal{O}_{Y}(E)$ is a generator of $\operatorname{Pic}(Y)$. Therefore, there are no big Cartier divisors on Y.

The next lemma is almost obvious.
lemC Lemma 0.17. Let V be a complete irreducible variety and D a big \mathbb{R}-Cartier \mathbb{R}-divisor on V. Let $g: W \rightarrow V$ be an arbitrary proper birational morphism from an irreducible variety W. Then $g^{*} D$ is big.

Proof. By Definition $\frac{\text { defnA }}{0.6, \text { we }}$ can assume that D is Cartier. We obtain the following commutative diagram.

Here, $\mu: W^{\nu} \rightarrow W$ and $\nu: V^{\nu} \rightarrow V$ are the normalizations. Since $\nu^{*} D$ is big, $h^{*} \nu^{*} D=\mu^{*} g^{*} D$ is also big. We note that h is a birational morphism between normal varieties. Thus, $g^{*} D$ is big by Definition or

Kodaira's lemma for big \mathbb{R}-Cartier \mathbb{R}-divisors on normal varieties is also obvious by Proposition $\frac{1.13 \text {. }}{0}$
lemE Lemma 0.18 (Kodaira's lemma for big \mathbb{R}-divisors on normal varieties). Let X be a complete irreducible normal variety and D a big \mathbb{R}-Cartier \mathbb{R} divisor on X. Let M be an arbitrary Cartier divisor on X. Then there exist a positive integer l and an effective \mathbb{R}-divisor E on X such that $l D-M \sim E$.

Finally, we discuss relatively big \mathbb{R}-divisors.
defnF Definition 0.19 (Relatively big \mathbb{R}-divisors). Let $\pi: X \rightarrow S$ be a proper morphism onto a variety S and D an \mathbb{R}-Cartier \mathbb{R}-divisor on X. Then D is called π-big if D_{η} is big on X_{η}, where η is the generic point of S.

We need the following lemma for the proofs of the Kawamata-Viehweg

lemGH Lemma 0.20 (cf. lkmm K, Corollary 0-3-6]). Let $\pi: X \rightarrow S$ be a proper surjective morphism and D a π-nef and π-big \mathbb{R}-Cartier \mathbb{R}-divisor on X. Then there exist a proper birational morphism $\mu: Y \rightarrow X$ from a smooth variety Y projective over S and divisors F_{α} 's on Y such that Supp $\mu^{*} D \cup\left(\cup F_{\alpha}\right)$ is a simple normal crossing divisor and such that $\mu^{*} D-\sum_{\alpha} \delta_{\alpha} F_{\alpha}$ is $\pi \circ \mu$-ample for some δ_{α} with $0<\delta_{\alpha} \ll 1$.

We can check Lemma $\frac{1 \mathrm{emGH}}{0.20}$ by Lemma $\frac{1 \mathrm{emE}}{0.18}$ and Hironaka's resolution theorem.

References

Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606-8502, Japan

E-mail address: fujino@math.kyoto-u.ac.jp

[^0]: Date: 2009/8/3, Version 1.15.
 This note will be contained in my book. I thank Professors Takeshi Abe, Atsushi Moriwaki, and Noboru Nakayama.

