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Fibrations II
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Abstract

We prove that if the moduli Q-b-divisor of a basic slc-trivial fibration is b-numerically
trivial then it is Q-b-linearly trivial. As a consequence, we prove that the moduli part of
a basic slc-trivial fibration is semi-ample when the base space is a curve.
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§1. Introduction

This paper is a continuation of the first author’s paper: [Fu5]. We strongly rec-

ommend the reader to look at [Fu5, 1. Introduction] before starting to read this

paper. In [Fu5], we introduced the notion of basic slc-trivial fibrations, which is

a kind of canonical bundle formula for reducible varieties, and investigated some

fundamental properties. For the precise definition of basic slc-trivial fibrations, see

[Fu5, Definition 4.1] or Definition 3.1 below. The following statement is one of the

main results of [Fu5].

Theorem 1.1 ([Fu5, Theorem 1.2]). Let f : (X,B) → Y be a basic slc-trivial fi-

bration and let B and M be the induced discriminant and moduli Q-b-divisors of

Y respectively. Then we have the following properties:
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(i) K+B is Q-b-Cartier, and

(ii) M is b-potentially nef, that is, there exists a proper birational morphism σ : Y ′ →
Y from a normal variety Y ′ such that MY ′ is a potentially nef Q-divisor on

Y ′ and that M = MY ′ .

For the definition and some basic properties of b-divisors, see [C, 2.3.2 b-

divisors] and [Fu5, Section 2].

On moduli Q-b-divisors, we have the following conjecture, which is still widely

open.

Conjecture 1.2 (b-semi-ampleness conjecture, see [Fu5, Conjecture 1.4]). Let f : (X,B) →
Y be a basic slc-trivial fibration. Then the moduli Q-b-divisor M is b-semi-ample.

The main purpose of this paper is to prove the following theorem.

Theorem 1.3 (Main Theorem). Let f : (X,B) → Y be a basic slc-trivial fibration

such that Y is complete. Let M be the moduli Q-b-divisor associated to f : (X,B) →
Y . Assume that there exists a proper birational morphism σ : Y ′ → Y from a

normal variety Y ′ such that M = MY ′ with MY ′ ≡ 0. Then MY ′ ∼Q 0 holds.

Theorem 1.3 solves Conjecture 1.2 when the moduli Q-b-divisor M is b-

numerically trivial. It is obviously a generalization of [A2, Theorem 3.5] and [Fl,

Theorem 1.3]. More precisely, Florin Ambro and Enrica Floris proved Theorem

1.3 for klt-trivial fibrations and lc-trivial fibrations, respectively.

As a direct consequence of Theorem 1.3, we have the following result: Corol-

lary 1.4. It says that the b-semi-ampleness conjecture (see Conjecture 1.2) holds

true when the base space is a curve. Note that Corollary 1.4 was already proved

for klt-trivial fibrations by Florin Ambro (see [A1, Theorem 0.1]).

Corollary 1.4. Let f : (X,B) → Y be a basic slc-trivial fibration with dimY = 1.

Then the moduli Q-divisor MY of f : (X,B) → Y is semi-ample.

For the proof of Theorem 1.3, we closely follow Floris’s arguments in [Fl].

We adapt her proof of Theorem 1.3 for lc-trivial fibrations to our setting. As is

well known, the main ingredient of [A1, Theorem 0.1], [A2, Theorem 3.5], and [Fl,

Theorem 1.3] is Deligne’s result on local subsystems of polarizable variations of

Q-Hodge structure (see [D1, Corollaire (4.2.8)]).

In [FF1], the first and the second authors discussed variations of mixed Hodge

structure toward applications for higher-dimensional algebraic varieties (see also

[FFS]). One of the most important applications of [FF1] is the proof of the projec-

tivity of the coarse moduli spaces of stable varieties in [Fu4]. Then the first author



Basic Slc-trivial Fibrations II 3

introduced the notion of basic slc-trivial fibrations in [Fu5] in order to make results

in [FF1] useful for various geometric applications. The first and the third authors

established that every quasi-log canonical pair has only Du Bois singularities in

[FL] by using [Fu5]. We strongly recommend the reader to look at [Fu5, 1. In-

troduction] for more details. In this paper, we prove [Fu5, Conjecture 1.4] under

some special assumption. We freely use the formulation introduced in [Fu5] and

the arguments in this paper heavily depend on [FF1].

We briefly explain the organization of this paper. In Section 2, we fix the

notation and recall some definitions for the reader’s convenience. In Section 3,

we quickly recall the notion of basic slc-trivial fibrations and some definitions

following [Fu5]. In Section 4, we see that the cyclic group action constructed in

[Fu5, Section 6] preserves some parts of weight filtrations of the variation of mixed

Hodge structure. Section 5 is devoted to the proof of Theorem 1.3. By using the

result obtained in Section 4, we reduce Theorem 1.3 to Deligne’s result on local

subsystems of polarizable variations of Q-Hodge structure.

Conventions. We work over C, the complex number field, throughout this paper.

We freely use the basic notation of the minimal model program as in [Fu1] and

[Fu3]. A scheme means a separated scheme of finite type over C. A variety means

a reduced scheme, that is, a reduced separated scheme of finite type over C. In this

paper, a variety may be reducible. However, we sometimes assume that a variety

is irreducible without mentioning it explicitly if there is no danger of confusion.

The set of integers (resp. rational numbers) is denoted by Z (resp. Q). The set of

positive rational numbers (resp. integers) is denoted by Q>0 (resp. Z>0).

In this paper, we do not use R-divisors. We only use Q-divisors.

§2. Preliminaries

In this section, we quickly recall some basic definitions and notation for the reader’s

convenience. For the details, see [Fu5, Section 2].

Let us start with the definition of simple normal crossing pairs.

Definition 2.1 (Simple normal crossing pairs). We say that the pair (X,B) is

simple normal crossing at a point a ∈ X if X has a Zariski open neighborhood U

of a that can be embedded in a smooth variety M , where M has a regular system

of parameters (x1, . . . , xp, y1, . . . , yr) at a = 0 in which U is defined by a monomial

equation

x1 · · ·xp = 0
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and

B =

r∑
i=1

bi(yi = 0)|U , bi ∈ Q.

We say that (X,B) is a simple normal crossing pair if it is simple normal crossing

at every point of X. If (X, 0) is a simple normal crossing pair, then X is called a

simple normal crossing variety. If (X,B) is a simple normal crossing pair and B

is reduced, then B is called a simple normal crossing divisor on X.

Let (X,B) be a simple normal crossing pair such that all the coefficients of

B are less than or equal to one. Let ν : Xν → X be the normalization of X. We

put KXν + Θ = ν∗(KX + B), that is, Θ is the sum of the inverse images of B

and the singular locus of X. By assumption, all the coefficients of Θ are less than

or equal to one. Therefore, it is easy to see that (Xν ,Θ) is sub log canonical. In

this situation, we simply say that W is a stratum of (X,B) if W is an irreducible

component of X or W is the ν-image of some log canonical center of (Xν ,Θ). We

note that a stratum of a simple normal crossing variety X means a stratum of a

simple normal crossing pair (X, 0).

We write the precise definition of semi-log canonical pairs, slc centers, and slc

strata for the reader’s convenience. For the details of semi-log canonical pairs, we

recommend the reader to see [Fu2].

Definition 2.2 (Semi-log canonical pairs). Let X be an equidimensional scheme

which satisfies Serre’s S2 condition and is normal crossing in codimension one. Let

∆ be an effective Q-divisor on X such that no irreducible component of Supp∆ is

contained in the singular locus of X and that KX +∆ is Q-Cartier. We say that

(X,∆) is a semi-log canonical pair if (Xν ,∆Xν ) is log canonical in the usual sense,

where ν : Xν → X is the normalization of X and KXν + ∆Xν = ν∗(KX + ∆),

that is, ∆Xν is the sum of the inverse images of ∆ and the conductor of X. An

slc center of (X,∆) is the ν-image of an lc center of (Xν ,∆Xν ). An slc stratum of

(X,∆) means either an slc center of (X,∆) or an irreducible component of X.

We recall various definitions and operations of (Q-)divisors. We note that we

are mainly interested in reducible varieties in this paper.

2.3 (Divisors). Let X be a scheme with structure sheaf OX and let KX be the

sheaf of total quotient rings of OX . Let K∗
X denote the (multiplicative) sheaf of

invertible elements in KX , and O∗
X the sheaf of invertible elements in OX . We

note that OX ⊂ KX and O∗
X ⊂ K∗

X hold. A Cartier divisor D on X is a global

section of K∗
X/O∗

X , that is, D is an element of Γ(X,K∗
X/O∗

X). A Q-Cartier divisor

is an element of Γ(X,K∗
X/O∗

X)⊗ZQ. Let D1 and D2 be two Q-Cartier divisors on
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X. Then D1 is linearly (resp. Q-linearly) equivalent to D2, denoted by D1 ∼ D2

(resp. D1 ∼Q D2), if

D1 = D2 +

k∑
i=1

ri(fi)

such that fi ∈ Γ(X,K∗
X) and ri ∈ Z (resp. ri ∈ Q) for every i. We note that (fi)

is a principal Cartier divisor associated to fi, that is, the image of fi by

Γ(X,K∗
X) → Γ(X,K∗

X/O∗
X).

Let f : X → Y be a morphism between schemes. If there exists a Q-Cartier divisor

B on Y such that D1 ∼Q D2 + f∗B, then D1 is said to be relatively Q-linearly

equivalent to D2. It is denoted by D1 ∼Q,f D2 or D1 ∼Q,Y D2.

From now on, let X be an equidimensional scheme. We note that X is not

necessarily regular in codimension one. A (Weil) divisor D on X is a finite formal

sum

D =
∑
i

diDi,

where Di is an irreducible reduced closed subscheme of X of pure codimension one

and di is an integer for every i such that Di ̸= Dj for every i ̸= j. If di ∈ Q for

every i, then D is called a Q-divisor. Let D =
∑

i diDi be a Q-divisor as above.

We put

D≤1 =
∑
di≤1

diDi, D<1 =
∑
di<1

diDi, D=1 =
∑
di=1

Di, and ⌈D⌉ =
∑
i

⌈di⌉Di,

where ⌈di⌉ is the integer defined by di ≤ ⌈di⌉ < di + 1. Let D be a Q-divisor. We

also put

⌊D⌋ = −⌈−D⌉.
We call D a subboundary Q-divisor if D = D≤1 holds. When D is effective and

D = D≤1 holds, we call D a boundary Q-divisor.

We further assume that f : X → Y is a surjective morphism onto an irre-

ducible variety Y . Then we put

Dv =
∑

f(Di)⊊Y

diDi and Dh = D −Dv,

and call Dv the vertical part and Dh the horizontal part of D with respect to

f : X → Y , respectively.

Finally, let D be a Q-Cartier divisor on a complete normal irreducible variety

X. If D · C = 0 for any complete curve C on X, then D is said to be numerically

trivial. When D is numerically trivial, we simply write D ≡ 0.
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Let us recall the definition of potentially nef divisors introduced by the first

author in [Fu5].

Definition 2.4 (Potentially nef divisors, see [Fu5, Definition 2.5]). LetX be a nor-

mal irreducible variety and let D be a divisor on X. If there exist a completion X†

of X, that is, X† is a complete normal variety and contains X as a dense Zariski

open set, and a nef divisor D† on X† such that D = D†|X , then D is called a

potentially nef divisor on X. A finite Q>0-linear combination of potentially nef

divisors is called a potentially nef Q-divisor.

Although it is dispensable, the following definition is very useful when we

state our results (see Theorems 1.1 and 1.3). We note that the Q-Cartier closure

of a Q-Cartier Q-divisor D on a normal variety X is the Q-b-divisor D with trace

DY = f∗D,

where f : Y → X is a proper birational morphism from a normal variety Y .

Definition 2.5 (see [Fu5, Definition 2.12]). Let X be a normal irreducible vari-

ety. A Q-b-divisor D of X is b-potentially nef (resp. b-semi-ample) if there ex-

ists a proper birational morphism X ′ → X from a normal variety X ′ such that

D = DX′ , that is, D is the Q-Cartier closure of DX′ , and that DX′ is potentially

nef (resp. semi-ample). A Q-b-divisor D of X is Q-b-Cartier if there is a proper

birational morphism X ′ → X from a normal variety X ′ such that D = DX′ .

Let X be a complete normal irreducible variety. A Q-b-divisor D of X is

b-numerically trivial (resp. Q-b-linearly trivial) if there exists a proper birational

morphism X ′ → X from a complete normal variety X ′ such that D = DX′ with

DX′ ≡ 0 (resp. DX′ ∼Q 0).

For the details of (b-)potentially nef divisors, we recommend the reader to see

[Fu5, Section 2].

§3. Quick review of basic slc-trivial fibrations

In this section, we quickly recall some definitions of basic slc-trivial fibrations in

[Fu5, Section 4]. We recommend the reader to see [Fu5, 1.15] for some historical

comments.

We introduce the notion of basic slc-trivial fibrations.

Definition 3.1 (Basic slc-trivial fibrations, see [Fu5, Definition 4.1]). A pre-basic

slc-trivial fibration f : (X,B) → Y consists of a projective surjective morphism
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f : X → Y and a simple normal crossing pair (X,B) satisfying the following prop-

erties:

(1) Y is a normal irreducible variety,

(2) every stratum of X is dominant onto Y and f∗OX ≃ OY ,

(3) B is a Q-divisor such that B = B≤1 holds over the generic point of Y , and

(4) there exists a Q-Cartier Q-divisor D on Y such that

KX +B ∼Q f∗D.

If a pre-basic slc-trivial fibration f : (X,B) → Y also satisfies

(5) rank f∗OX(⌈−B<1⌉) = 1,

then it is called a basic slc-trivial fibration.

Roughly speaking, if X is irreducible and (X,B) is sub kawamata log terminal

(resp. sub log canonical) over the generic point of Y , then it is a klt-trivial fibration

(resp. an lc-trivial fibration).

In order to define discriminant Q-b-divisors and moduli Q-b-divisors for basic

slc-trivial fibrations, we need the notion of induced (pre-)basic slc-trivial fibrations.

3.2 (Induced (pre-)basic slc-tirival fibrations, see [Fu5, 4.3]). Let f : (X,B) → Y

be a (pre-)basic slc-trivial fibration and let σ : Y ′ → Y be a generically finite

surjective morphism from a normal irreducible variety Y ′. Then we have an in-

duced (pre-)basic slc-trivial fibration f ′ : (X ′, BX′) → Y ′, where BX′ is defined by

µ∗(KX +B) = KX′ +BX′ , with the following commutative diagram:

(X ′, BX′)
µ //

f ′

��

(X,B)

f

��
Y ′

σ
// Y,

where X ′ coincides with X ×Y Y ′ over a nonempty Zariski open set of Y ′. More

precisely, X ′ is a simple normal crossing variety with a morphism X ′ → X ×Y Y ′

that is an isomorphism over a nonempty Zariski open set of Y ′ such that X ′ is

projective over Y ′ and that every stratum of X ′ is dominant onto Y ′.

Now we are ready to define discriminant Q-b-divisors and moduli Q-b-divisors

for basic slc-trivial fibrations.
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3.3 (Discriminant and moduli Q-b-divisors, see [Fu5, 4.5]). Let f : (X,B) → Y

be a (pre-)basic slc-trivial fibration as in Definition 3.1. Let P be a prime di-

visor on Y . By shrinking Y around the generic point of P , we assume that P is

Cartier. We set

bP = max

{
t ∈ Q

∣∣∣∣∣ (Xν ,Θ+ tν∗f∗P ) is sub log canonical

over the generic point of P

}
,

where ν : Xν → X is the normalization and KXν + Θ = ν∗(KX + B), that is, Θ

is the sum of the inverse images of B and the singular locus of X, and set

BY =
∑
P

(1− bP )P,

where P runs over prime divisors on Y . Then it is easy to see that BY is a well-

defined Q-divisor on Y and is called the discriminant Q-divisor of f : (X,B) → Y .

We set

MY = D −KY −BY

and call MY the moduli Q-divisor of f : (X,B) → Y . By definition, we have

KX +B ∼Q f∗(KY +BY +MY ).

Let σ : Y ′ → Y be a proper birational morphism from a normal variety Y ′ and

let f ′ : (X ′, BX′) → Y ′ be an induced (pre-)basic slc-trivial fibration by σ : Y ′ →
Y . We can define BY ′ , KY ′ and MY ′ such that σ∗D = KY ′ +BY ′ +MY ′ , σ∗BY ′ =

BY , σ∗KY ′ = KY and σ∗MY ′ = MY . We note that BY ′ is independent of the

choice of (X ′, BX′), that is, BY ′ is well defined. Hence there exist a unique Q-b-

divisor B such that BY ′ = BY ′ for every σ : Y ′ → Y and a unique Q-b-divisor M

such that MY ′ = MY ′ for every σ : Y ′ → Y . Note that B is called the discriminant

Q-b-divisor and that M is called the moduli Q-b-divisor associated to f : (X,B) →
Y . We sometimes simply say that M is the moduli part of f : (X,B) → Y .

For the full details of this section, we recommend the reader to see [Fu5,

Section 4].

§4. On variation of mixed Hodge structure

This section heavily depends on [FF1, Sections 4 and 7]. We strongly recommend

the reader to take a quick look at [FF1, Section 4] before reading this section.

Let us quickly recall [FF1, Theorem 7.1], which is one of the main ingredients

of [Fu5] (see [Fu5, Section 3]).
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Theorem 4.1 ([FF1, Theorem 7.1]). Let (V, T ) be a simple normal crossing pair

such that T is reduced and let h : V → Y be a projective surjective morphism onto

a smooth variety Y . Assume that every stratum of (V, T ) is dominant onto Y . Let

Σ be a simple normal crossing divisor on Y such that every stratum of (V, T ) is

smooth over Y ∗ = Y \ Σ. We put V ∗ = h−1(Y ∗), T ∗ = T |V ∗ , and d = dimV −
dimY . Let ι : V ∗ \T ∗ ↪→ V ∗ be the natural open immersion. Then the local system

Rk(h|V ∗)∗ι!QV ∗\T∗ underlies a graded polarizable admissible variation of Q-mixed

Hodge structure on Y ∗ for every k. We put Vk
Y ∗ = Rk(h|V ∗)∗ι!QV ∗\T∗ ⊗OY ∗ for

every k. Let

· · · ⊂ F p+1(Vk
Y ∗) ⊂ F p(Vk

Y ∗) ⊂ F p−1(Vk
Y ∗) ⊂ · · ·

be the Hodge filtration. We assume that all the local monodromies on the local sys-

tem Rk(h|V ∗)∗ι!QV ∗\T∗ around Σ are unipotent for every k. Then Rkh∗OV (−T )

is isomorphic to the canonical extension of

Gr0F (Vk
Y ∗) = F 0(Vk

Y ∗)/F 1(Vk
Y ∗),

which is denoted by Gr0F (Vk
Y ), for every k. By taking the dual, we have

Rd−kh∗ωV/Y (T ) ≃
(
Gr0F (Vk

Y )
)∗

for every k.

For the details of Theorem 4.1, we recommend the reader to see [FF1, Sections

4 and 7] (see also [FFS]). We note that the reader can find basic definitions of

variations of mixed Hodge structure in [FF1, Section 3].

Let us introduce the notion of birational maps of simple normal crossing pairs.

Definition 4.2 (Birational maps of simple normal crossing pairs). Let (V1, T1) and

(V2, T2) be simple normal crossing pairs such that T1 and T2 are reduced. Let

α : V1 99K V2 be a proper birational map. Assume that there exist Zariski open

sets U1 and U2 of V1 and V2 respectively such that U1 contains the generic point of

any stratum of (V1, T1), U2 contains the generic point of any stratum of (V2, T2),

and α induces an isomorphism between (U1, T1|U1) and (U2, T2|U2). Then we call

α a birational map between (V1, T1) and (V2, T2).

As an easy application of [FF1, Lemma 6.2] and [BVP, Theorem 1.4], we can

prove the following useful lemma.

Lemma 4.3. Let (V1, T1) and (V2, T2) be simple normal crossing pairs such that

T1 and T2 are reduced. Let α : V1 99K V2 be a birational map between (V1, T1) and
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(V2, T2). Then there exists a commutative diagram

(4.1) (V ′, T ′)

p1

yysss
ss
ss
ss p2

%%KK
KKK

KKK
KK

(V1, T1) α
//_________ (V2, T2),

where (V ′, T ′) is a simple normal crossing pair such that T ′ is reduced, and pi
is a proper birational morphism between (V ′, T ′) and (Vi, Ti) for i = 1, 2. In this

situation, pi induces a natural one-to-one correspondence between the set of strata

of (V ′, T ′) and that of (Vi, Ti) for i = 1, 2. Let S be any stratum of (V ′, T ′). Then

we have

Rpi∗OS ≃ Opi(S)

for i = 1, 2. Moreover, we have

Rpi∗OV ′(−T ′) ≃ OVi
(−Ti)

for i = 1, 2.

Proof. By [BVP, Theorem 1.4], we can take a desired commutative diagram (4.1),

where pi is a proper birational morphism between (V ′, T ′) and (Vi, Ti) such that

pi is an isomorphism over Ui for i = 1, 2. By [FF1, Lemma 6.2], we have

Rpi∗OV ′(−T ′) ≃ OVi
(−Ti)

for i = 1, 2. Let S be a stratum of (V ′, T ′). Then pi(S) is a stratum of (Vi, Ti) since

pi is a birational morphism between (V ′, T ′) and (Vi, Ti) for i = 1, 2. Therefore,

pi(S) is a smooth irreducible variety and pi : S → pi(S) is obviously birational for

i = 1, 2. This implies that

Rpi∗OS ≃ Opi(S)

for i = 1, 2. Since pi : V
′ → Vi is a proper birational morphism between (V ′, T ′)

and (Vi, Ti), it is easy to see that there exists a natural one-to-one correspondence

between the set of strata of (V ′, T ′) and that of (Vi, Ti) for i = 1, 2.

Remark 4.4. In Lemma 4.3, we assume that α : (V1, T1) 99K (V2, T2) is projective

over a fixed scheme Y , that is, there exists the following commutative diagram

(V1, T1)

h1 ##G
GG

GG
GG

GG
α //_______ (V2, T2)

h2{{ww
ww
ww
ww
w

Y

such that h1 and h2 are projective. Then we see that we can make V ′ projective

over Y by the proof of Lemma 4.3.
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We define a somewhat artificial condition for birational maps of simple normal

crossing pairs. We will use it in Lemma 4.6 below. For the basic definitions of semi-

simplicial varieties, see, for example, [PS, Section 5.1].

Definition 4.5. Let (V, T ) be a simple normal crossing pair such that T is re-

duced. Let α : V 99K V be a birational map between (V, T ) and (V, T ) in the

sense of Definition 4.2. We say that α satisfies condition (⋆) if there exists a

commutative diagram

(4.2) (V ′, T ′)

p1

zzuuu
uu
uu
uu p2

$$II
II

II
II

I

(V, T )
α

//_________ (V, T )

with the following properties:

(1) (V ′, T ′) is a simple normal crossing pair such that T ′ is reduced.

(2) pi is a proper birational morphism between (V ′, T ′) and (V, T ) in the sense of

Definition 4.2 for i = 1, 2.

(3) There are semi-simplicial resolutions εT : T• → T and εV : V• → V , that is,

T• and V• are semi-simplicial varieties, εT and εV are argumentations and of

cohomological descent, such that Vp and Tq are disjoint unions of some strata

of (V, T ) for all p and q and that they fit in the following commutative diagram

(4.3) T•

εT

��

ϕ // V•

εV

��
T

j
// V,

where ϕ is a morphism of semi-simplicial varieties and j is the natural closed

embedding. Moreover, εT : S → εT (S) (resp. εV : S → εV (S)) is a natural

isomorphism for any irreducible component S of T• (resp. V•). We note that

S is a stratum of (V, T ).

(4) There are semi-simplicial varieties εT ′ : T ′
• → T ′ and εV ′ : V ′

• → V ′ such that

εT ′ and εV ′ are argumentations, V ′
p and T ′

q are disjoint unions of some strata of

(V ′, T ′) for all p and q and that they fit in the following commutative diagram

(4.4) T ′
•

εT ′

��

ϕ′
// V ′

•

εV ′

��
T ′

j′
// V ′,



12 O. Fujino, T. Fujisawa and H. Liu

where ϕ′ is a morphism of semi-simplicial varieties and j′ is the natural closed

embedding. As in (3), εT ′ : S′ → εT ′(S′) (resp. εV ′ : S′ → εV ′(S′)) is a natural

isomorphism for any irreducible component S′ of T ′
• (resp. V ′

•). We note that

S′ is a stratum of (V ′, T ′).

(5) The following commutative diagram

(4.5) T ′

p1|T ′

xxppp
ppp

ppp
ppp

p

j′

��

p2|T ′

&&NN
NNN

NNN
NNN

NN

T

j

��

______ α|T //______ T

j

��

V ′

p1

xxppp
ppp

ppp
ppp

p
p2

&&NN
NNN

NNN
NNN

NN

V
α

//_____________ V

can be lifted to a commutative diagram

(4.6) T ′
•

p1|T ′
•

xxqqq
qqq

qqq
qqq

q

ϕ′

��

p2|T ′
•

&&MM
MMM

MMM
MMM

MM

T•

ϕ

��

______ α|T• //______ T•

ϕ

��

V ′
•

p1|V ′
•

xxqqq
qqq

qqq
qqq

q
p2|V ′

•

&&MM
MMM

MMM
MMM

MM

V• α•
//_____________ V•

over (4.5) by (4.3) and (4.4) such that p1|V ′
p
, p2|V ′

p
, αp, p1|T ′

q
, p2|T ′

q
, and α|T ′

q

are birational maps of smooth varieties for all p and q.

(6) If α : (V, T ) 99K (V, T ) is projective over a fixed scheme Y , that is, there exists

the following commutative diagram

(V, T )

h ""E
EE

EE
EE

E
α //_______ (V, T )

h||yy
yy
yy
yy

Y

such that h is projective, then V ′ is also projective over Y .
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The main purpose of this section is to establish the following result, which

will play a crucial role in the proof of Theorem 1.3 in Section 5.

Lemma 4.6. We use the same notation and assumption as in Theorem 4.1. We

assume that Y is a curve. We further assume that (V, T + Supph∗Σ) is a sim-

ple normal crossing pair and that all the local monodromies on the local system

Rjh∗QS∗ around Σ are unipotent for any stratum S of (V, T ) and all j, where

S∗ = S|V ∗ . Let α : V 99K V be a birational map between (V, T ) and (V, T ) over

Y . We assume that α satisfies condition (⋆) in Definition 4.5. Then α induces

isomorphisms

α∗ : Wm Gr0F (Vk
Y )

∼−→ Wm Gr0F (Vk
Y )

for all m and k, where W denotes the canonical extension of the weight filtration.

Let G be a finite group which acts on (V, T ) birationally over Y such that

every element α ∈ G satisfies condition (⋆) in Definition 4.5. Then G acts on

Wm Gr0F (Vk
Y ) for all m and k.

In the proof of Lemma 4.6, we will use some arguments and constructions in

[FF1, Section 4].

Proof of Lemma 4.6. By assumption, α satisfies condition (⋆) in Definition 4.5.

Therefore, we can take a commutative diagram

(V ′, T ′)

p1

zzuuu
uu
uu
uu p2

$$II
II

II
II

I

(V, T )
α

//_________ (V, T )

as in (4.2). We note that V ′ is projective over Y . From now on, we will use the same

notation as in Definition 4.5. We put u = h◦j◦εT : T• → Y and v = h◦εV : V• → Y .

We set E• = v−1(Σ)red and F• = u−1(Σ)red. Since (V, T + Supph∗Σ) is a simple

normal crossing pair by assumption, E• and F• are simple normal crossing divisors

on V• and T•, respectively. As in the proof of [FF1, Lemma 4.12], we can construct

a complex C(ϕ∗) on Y equipped with filtrations W and F such that Hk(C(ϕ∗)) ≃
Vk
Y , where Vk

Y is the canonical extension of Vk
Y ∗ = Rk(h|V ∗)∗ι!QV ∗\T∗ ⊗OY ∗ , for

every k. We note that the filtration W is denoted by L in [FF1, Lemma 4.12].

Step 1. The spectral sequence

Ep,q
1 (C(ϕ∗), F ) = Hp+q(GrpF C(ϕ∗)) ⇒ Hp+q(C(ϕ∗))
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degenerates at E1 (see the proof of [FF1, Lemma 4.12] and [Fu5, 13.3]). Therefore,

we have the following short exact sequences

0 // Hp+q(F 1C(ϕ∗))
sp+q

// Hp+q(C(ϕ∗))
tp+q

// Hp+q(Gr0F C(ϕ∗)) // 0

for all p and q. We note that F 0C(ϕ∗) = C(ϕ∗) by construction. Let us consider

the following commutative diagram.

0 // Hp+q(F 1C(ϕ∗))
sp+q

// Hp+q(C(ϕ∗))
tp+q

// Hp+q(Gr0F C(ϕ∗)) // 0

Hp+q(W−pC(ϕ∗)) //

a
p+q
−p

OO

Hp+q(W−p Gr0F C(ϕ∗))

b
p+q
−p

OO

By definition, we have

F 1Hp+q(C(ϕ∗)) = Im sp+q

and

WqH
p+q(C(ϕ∗)) = Im ap+q

−p

for all p and q. We put

(4.7) WqH
p+q(Gr0F C(ϕ∗)) := Im bp+q

−p

for all p and q. Then the map tp+q induces

(4.8) Gr0F Hp+q(C(ϕ∗))
∼ // Hp+q(Gr0F C(ϕ∗))

Wq Gr0F Hp+q(C(ϕ∗))
ip+q
q

//
?�

OO

WqH
p+q(Gr0F C(ϕ∗))

?�

OO

for all p and q. We will prove that ip+q
q are isomorphisms for all p and q in Step 2.

Step 2. Let us analyse the spectral sequence

(4.9) Ep,q
1 (C(ϕ∗),W ) ⇒ Hp+q(C(ϕ∗))

in detail. Let ΩVp+1/Y (logEp+1) and ΩTp/Y (logFp) be relative logarithmic de

Rham complexes of vp+1 : Vp+1 → Y and up : Tp → Y , respectively. Then we

have

(Ep,q
1 (C(ϕ∗),W ), F )

=
(
Rq(vp+1)∗ΩVp+1/Y (logEp+1), F

)
⊕

(
Rq(up)∗ΩTp/Y (logFp), F

)
by construction. We note that the differentials of the spectral sequence (4.9) are

strictly compatible with the filtration induced by F (see [D1, (1.1.5)], [FF1, Re-

mark 3.2], and [PS, A. 3.1]) and that the spectral sequence (4.9) degenerates at
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E2. We do not repeat the proof of the above facts here. For the proof, see the first

part of the proof of [FF1, Lemma 4.12] and [Fu5, 13.3].

The following argument corresponds to the strictness of the filtration F on the

E0-term of the spectral sequence Ep,q
r (C(ϕ∗),W ) (see [Fu5, 13.3]). By [S, (2.11)

Theorem], Rb(up)∗Ω
a
Tp/Y

(logFp) is locally free for any a, b, and p. Therefore, the

spectral sequence

Rb(up)∗Ω
a
Tp/Y

(logFp) ⇒ Ra+b(up)∗ΩTp/Y (logFp)

degenerates at E1. In particular,

Gr0F Rq(up)∗ΩTp/Y (logFp) ≃ Rq(up)∗OTp

holds for any p, q. By the same way, we see that

Gr0F Rq(vp+1)∗ΩVp+1/Y (logEp+1) ≃ Rq(vp+1)∗OVp+1

holds for any p, q. Thus we have

Gr0F Ep,q
1 (C(ϕ∗),W )

= Gr0F Rq(vp+1)∗ΩVp+1/Y (logEp+1)⊕Gr0F Rq(up)∗ΩTp/Y (logFp)

≃ Rq(vp+1)∗OVp+1
⊕Rq(up)∗OTp

.

(4.10)

By taking Gr0F of the spectral sequence (4.9), we obtain the following spectral

sequence

Ep,q
1 (Gr0F C(ϕ∗),W ) ⇒ Hp+q(Gr0F C(ϕ∗)).

Note that

Gr0F Ep,q
1 (C(ϕ∗),W ) ≃ Ep,q

1 (Gr0F C(ϕ∗),W )

holds as we saw in (4.10). Moreover,

Gr0F Ep,q
r (C(ϕ∗),W ) ≃ Ep,q

r (Gr0F C(ϕ∗),W )

holds for every r ≥ 0 by the lemma on two filtrations (see [D2, Propositions (7.2.5)

and (7.2.8)] and [PS, Theorem 3.12]). Hence, we obtain

Gr0F GrWq Hp+q(C(ϕ∗)) ≃ Gr0F Ep,q
2 (C(ϕ∗),W )

≃ Ep,q
2 (Gr0F C(ϕ∗),W ) ≃ GrWq Hp+q(Gr0F C(ϕ∗))

(4.11)

for all p and q. We note that the filtration W on Hp+q(Gr0F C(ϕ∗)) is the one

defined in (4.7). We also note that Gr0F GrWq Hp+q(C(ϕ∗)) is canonically isomorphic

to GrWq Gr0F Hp+q(C(ϕ∗)). Thus, we can check that

(4.12) ip+q
q : Wq Gr0F Hp+q(C(ϕ∗)) // WqH

p+q(Gr0F C(ϕ∗))
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in (4.8) are isomorphisms for all p and q inductively by using (4.8) and (4.11) .

Step 3. In this proof, we did not define the filtration W on C(ϕ∗) explicitly. For

the details of the filtration W on C(ϕ∗), which is denoted by L in [FF1, Section

4], see (4.2.1) and (4.8.2) in [FF1, Section 4]. By construction, we have

W−p Gr0F C(ϕ∗)n = W−p−1(Rv∗OV•)
n+1 ⊕W−p(Ru∗OT•)

n

=
⊕

s≥p+1

(R(vs)∗OVs
)n+1−s ⊕

⊕
t≥p

(R(ut)∗OTt
)n−t.

Therefore, by Lemma 4.3 and the commutative diagram (4.6) in Definition 4.5, α

induces isomorphisms

α∗ : W−p Gr0F C(ϕ∗)
∼−→ W−p Gr0F C(ϕ∗)

for all p. Thus α induces isomorphisms

α∗ : WqH
p+q(Gr0F C(ϕ∗))

∼−→ WqH
p+q(Gr0F C(ϕ∗))

for all p and q by the following commutative diagram

Hp+q(W−p Gr0F C(ϕ∗))

≀α∗

��

// Hp+q(Gr0F C(ϕ∗))

≀α∗

��
Hp+q(W−p Gr0F C(ϕ∗)) // Hp+q(Gr0F C(ϕ∗))

and the definition of the filtration W in (4.7). Hence, we obtain isomorphisms

α∗ : WmHk(Gr0F C(ϕ∗))
∼−→ WmHk(Gr0F C(ϕ∗))

for all m and k by putting p = k − m and q = m. By (4.12) and the fact that

Vk
Y ≃ Hk(C(ϕ∗)), we obtain the desired isomorphisms

α∗ : Wm Gr0F (Vk
Y )

∼−→ Wm Gr0F (Vk
Y )

for all m and k.

When the group G acts on (V, T ) birationally over Y such that every element

α ∈ G satisfies condition (⋆) in Definition 4.5, it is easy to see that G also acts

on Wm Gr0F (Vk
Y ) for all m and k by the above result.

We make an important remark on dual variations of mixed Hodge structure.

We will use it in Step 4 in the proof of Theorem 1.3.
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Remark 4.7 (see [FF1, Remarks 3.15 and 7.4]). In this remark, we use the same

notation and assumption as in Lemma 4.6. Let us consider the dual local system of

Rk(h|V ∗)∗ι!QV ∗\T∗ and the dual variation of mixed Hodge structure on it. Then

the locally free sheaf (Vk
Y ∗)∗ carries the Hodge filtration F and the weight filtration

W defined as in [FF1, Remark 3.15]. By the construction of the Hodge filtration

F ,

Gr0F
(
(Vk

Y )
∗) ≃ (

Gr0F (Vk
Y )

)∗
holds, where (Vk

Y )
∗ is the canonical extension of (Vk

Y ∗)∗. More generally,

Gr−p
F

(
(Vk

Y )
∗) ≃ (

GrpF (V
k
Y )

)∗
holds for every p. We note that Gr0F

(
(Vk

Y )
∗) = F 0

(
(Vk

Y )
∗), the canonical extension

of the lowest piece of the Hodge filtration. By taking the dual of Lemma 4.6, G

acts on Wm Gr0F
(
(Vk

Y )
∗) for every m, where W denotes the canonical extension of

the weight filtration of (Vk
Y ∗)∗. We note that we have

GrWm GrpF
(
(Vk

Y )
∗) ≃ (

GrW−m Gr−p
F (Vk

Y )
)∗

for all p and m by construction.

We close this section with the following lemma, which is more or less well

known to the experts (see [Z], [P], [K], and [FF2]). We will use it in the proof of

Theorem 1.3 in Section 5.

Lemma 4.8. Let C be a smooth projective curve and let C0 be a non-empty

Zariski open set of C. Let V0 be a polarizable variation of Q-Hodge structure over

C0 with unipotent monodromies around Σ = C \ C0. Let F
b be the canonical ex-

tension of the lowest piece of the Hodge filtration. Let L be a line bundle on C

which is a direct summand of F b. Assume that degC L = 0. Then L|C0
is a flat

subbundle of F b|C0 .

Proof. Let h0 be the smooth hermitian metric on L|C0
induced by the Hodge met-

ric of F b|C0
. Then

√
−1
2π Θh0

(L|C0
) is a semipositive smooth (1, 1)-form on C0. We

note that Θh0
(L|C0

) is the curvature tensor of the Chern connection of (L|C0
, h0).

Then

degC L =

√
−1

2π

∫
C0

Θh0(L|C0)

holds (see, for example, [K, Theorem 5.1]). Note that the right hand side is an

improper integral. By assumption, degC L = 0. This implies that Θh0(L|C0) = 0.

Therefore, L|C0
is a flat subbundle of F b|C0

.
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Remark 4.9. In Lemma 4.8, the smooth hermitian metric h0 on L|C0
can be

extended naturally to a singular hermitian metric h on L in the sense of Demailly

such that
√
−1Θh(L) is positive in the sense of currents and that the Lelong

numbers of h are zero everywhere. For the details, see [FF2, Theorem 1.1].

§5. Proof of Theorem 1.3

In this section, we prove Theorem 1.3 and Corollary 1.4.

Let us prepare an easy lemma. By this lemma, we can reduce the problem to

the case where the base space is a curve.

Lemma 5.1. Let Y be a smooth projective irreducible variety with dimY ≥ 2 and

let N be a numerically trivial Cartier divisor on Y . Let H be a smooth ample

Cartier divisor on Y such that H contains no irreducible components of SuppN .

Then N ∼ 0 if and only if N |H ∼ 0.

Proof. We consider the following long exact sequence

0 → H0(Y,OX(N −H)) → H0(Y,OY (N)) → H0(H,OH(N |H))

→ H1(Y,OY (N −H)) → · · · .

It is obvious that H0(Y,OY (N − H)) = 0. By the Kodaira vanishing theorem,

we have H1(Y,OY (N − H)) = 0. Therefore, H0(Y,OY (N)) ≃ H0(H,OH(N |H))

holds. In particular, N ∼ 0 if and only if N |H ∼ 0.

Let us start the proof of Theorem 1.3. We adapt Floris’s proof of Theorem 1.3

for lc-trivial fibrations (see [Fl]) to our setting, that is, basic slc-trivial fibrations.

Proof of Theorem 1.3. This proof heavily depends on [Fu5, Section 6]. Let σ : Y ′ →
Y be a projective birational morphism from a smooth projective variety Y ′. By

considering the induced basic slc-trivial fibration by σ : Y ′ → Y , we may assume

that Y is a smooth projective variety.

Step 1. In this step, we construct a cyclic cover of the generic fiber of f : X → Y

following [Fu5, 6.1 and 6.2]. Let f : (X,B) → Y be a basic slc-trivial fibration. Let

F be a general fiber of f : X → Y . We put

b = min{m ∈ Z>0 |m(KF +BF ) = m(KX +B)|F ∼ 0}.

Then we can write

(5.1) KX +B +
1

b
(φ) = f∗(KY +BY +MY )
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with φ ∈ Γ(X,K∗
X), where BY is the discriminant Q-divisor and MY is the moduli

Q-divisor of f : (X,B) → Y . By taking some suitable blow-ups (see [BVP, Theo-

rem 1.4 and Section 8] and [Fu4, Lemma 2.11]), we may assume that Supp(B −
f∗(BY +MY )) is a simple normal crossing divisor on X, (Bh)=1 is Cartier, and

every stratum of (X, (Bh)=1) is dominant onto Y . We take the b-fold cyclic cover

π : X̃ → X associated to (5.1), that is,

X̃ = SpecX

b−1⊕
i=0

OX(⌊i∆⌋),

where ∆ = KX/Y + B − f∗(BY + MY ). We note that π : X̃ → X is a finite

Galois cover by construction (see [Fu5, Proposition 6.3 (i)]). We put KX̃ +BX̃ =

π∗(KX+B). By construction, it is easy to see that (Bh
X̃
)=1 = π∗((Bh)=1) and that

(X̃, (Bh
X̃
)=1) is semi-log canonical. Moreover, every slc stratum of (X̃, (Bh

X̃
)=1) is

dominant onto Y . We take a projective birational morphism d : V → X̃ from a

simple normal crossing variety V such that d is an isomorphism over the generic

point of every slc stratum of (X̃, (Bh
X̃
)=1) by [BVP, Theorem 1.4]. We put KV +

BV = d∗(KX̃ +BX̃). Then we get the following commutative diagram

(5.2) (X,B)

f

��

X̃

f̃

||yy
yy
yy
yy
yy

πoo (V,BV )

h
uulll

lll
lll

lll
lll

l
doo

Y

with g = π ◦ d. By taking a suitable birational modification of Y and considering

induced (pre-)basic slc-trivial fibrations as in [Fu5, 6.2], we may further assume

that the following properties hold for

KX +B +
1

b
(φ) = f∗(KY +BY +MY )

and

h : (V,BV )
g−→ (X,B)

f−→ Y.

(a) Y is a smooth projective irreducible variety, andX and V are projective simple

normal crossing varieties.

(b) There exist simple normal crossing divisors ΣX , ΣV , and ΣY on X, V , and

Y , respectively.

(c) f and h are projective surjective morphisms.

(d) The supports of B, BV , and BY , MY are contained in ΣX , ΣV , and ΣY ,

respectively.
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(e) Every stratum of (X,Σh
X) and (V,Σh

V ) is smooth over Y \ ΣY .

(f) f−1(ΣY ) ⊂ ΣX , f(Σv
X) ⊂ ΣY , and h−1(ΣY ) ⊂ ΣV , h(Σ

v
V ) ⊂ ΣY .

(g) (Bh)=1 and (Bh
V )

=1 are Cartier.

We note that conditions (a)–(g) above are nothing but the conditions stated just

before [Fu5, Proposition 6.3]. As we saw in the proof of [Fu5, Theorem 1.2] (see

[Fu5, Section 9]), M = MY holds and MY is a nef Q-divisor on Y . By assumption,

MY ≡ 0. If ν : Y ′′ → Y is a finite surjective morphism from a smooth projective

irreducible variety Y ′′, then it is easy to see that MY ∼Q 0 if and only if ν∗MY ∼Q

0. Therefore, by taking a unipotent reduction (see [Fu5, Lemma 7.3]), we may

further assume that

(A) for any irreducible component P of SuppΣY , there exists a prime divisor Q

on V such that multQ(−BV + h∗BY ) = 0, h(Q) = P , and multQ h∗P = 1,

(B) all the local monodromies on the local system

RdimV−dimY (h|V ∗)∗ι!QV ∗\(Bh
V ∗ )=1

around ΣY are unipotent, where Y ∗ = Y \ΣY , V
∗ = h−1(Y ∗), BV ∗ = (BV )|V ∗ ,

and ι : V ∗ \ (Bh
V ∗)=1 ↪→ V ∗ is the natural open immersion, and

(C) all the local monodromies on the local system Rkh∗QS∗ around ΣY are unipo-

tent for any stratum S of (V, (Bh
V )

=1) and every k, where S∗ = S|V ∗ .

Note that the above assumptions (A) and (B) are nothing but the assumptions

in (iv) and (v) in [Fu5, Proposition 6.3]. We also note that we do not treat the

assumption (C) in the original statement of [Fu5, Lemma 7.3]. Therefore, we have

to make Nj in the proof of [Fu5, Lemma 7.3] sufficiently divisible in order to make

the monodromy on the local system Rkh∗QS∗ around Pj , an irreducible component

of ΣY , unipotent for any stratum S of (V, (Bh
V )

=1) and every k when we take a

finite cover ν : Y ′′ → Y for a unipotent reduction (see [Fu5, Lemma 7.3]).

Step 2. We assume that dimY ≥ 2. Then we take a general ample Cartier divisor

H on Y and put Z = f∗H and W = h∗H. In this situation,

KX + Z +B +
1

b
(φ) = f∗(KY +H +BY +MY ).

By adjunction,

KZ +B|Z +
1

b
(φ|Z) = f∗(KH +BY |H +MY |H)

holds. It is not difficult to see that f |Z : (Z,B|Z) → H is a basic slc-trivial fibration

and

h|W : (W,BV |W )
g|W−→ (Z,B|Z)

f |Z−→ H
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satisfies conditions (a)–(g), (A), (B), and (C) in Step 1. We note that BY |H = BH

andMY |H = MH hold, where BH (resp.MH) is the discriminant (resp. moduli) Q-

divisor of f |Z : (Z,B|Z) → H. By Lemma 5.1, MY ∼Q 0 if and only if MY |H ∼Q 0.

Therefore, we can replace f : (X,B) → Y with f |Z : (Z,B|Z) → H. By repeating

this reduction finitely many times, we may assume that Y is a smooth projective

curve.

Step 3. In Step 1, we have already seen that π : X̃ → X is Galois. Let G = Z/bZ
be the Galois group of the b-fold cyclic cover π : X̃ → X. The action of G on X̃

preserves the slc strata of (X̃, (Bh
X̃
)=1) by construction. Therefore, any element α of

G induces a birational map between (V, T ) and (V, T ) over X, where T = (Bh
V )

=1.

From now on, we will check that α satisfies condition (⋆) in Definition 4.5. As

usual, we can take a commutative diagram

(V ′, T ′)

g′

��

p1

zzuuu
uu
uu
uu p2

$$II
II

II
II

I

(V, T )

g
%%JJ

JJJ
JJJ

JJ

h

��8
88

88
88

88
88

88
88

8
α //_________ (V, T )

g
yyttt

ttt
ttt

t

h

����
��
��
��
��
��
��
��

X

f

��
Y

by using [BVP, Theorem 1.4], where (V ′, T ′) is a simple normal crossing pair such

that T ′ is reduced, and pi is a projective birational morphism between (V ′, T ′)

and (V, T ) for i = 1, 2. We put C = (Bh)=1. The irreducible decomposition of X

and C are given by

X =
∪
i∈I

Xi, and C =
∪
λ∈Λ

Cλ

respectively as in [FF1, 4.14]. We put V =
∪

i∈I Vi and Vi =
∪

j Vij , where Vij runs

over irreducible components of V such that g(Vij ) = Xi. We put T =
∪

λ∈Λ Tλ and

Tλ =
∪

l Tλl
, where Tλl

runs over irreducible components of T such that g(Tλl
) =

Cλ. Note that Tλ and Vi are disjoint unions of some strata of (V, T ). By applying

the same construction as above to (V ′, T ′) and g′ := g ◦ p1 = g ◦ p2 : V ′ → X, we

get V ′ =
∪

i∈I V
′
i and T ′ =

∪
λ∈Λ T ′

λ. We apply the same construction as in [FF1,

4.14] to V =
∪

i∈I Vi and T =
∪

λ∈Λ Tλ (resp. V ′ =
∪

i∈I V
′
i and T ′ =

∪
λ∈Λ T ′

λ)

instead of X =
∪

i∈I Xi and D =
∪

λ∈Λ Dλ in [FF1, 4.14]. Then we can construct

semi-simplicial resolutions εT : T• → T and εV : V• → V (resp. εT ′ : T ′
• → T ′

and εV ′ : V ′
• → V ′). By construction, these semi-simplicial resolutions satisfy the
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conditions stated in Definition 4.5. Therefore, α satisfies condition (⋆). This is

what we wanted.

Step 4. We note that MY is a Cartier divisor on Y and that OY (MY ) is a direct

summand of (
Gr0F (Vd

Y )
)∗ ≃ Gr0F

(
(Vd

Y )
∗) ,

where d = dimX − dimY (see [Fu5, Proposition 6.3]). More precisely, by con-

struction, OY (MY ) is an eigensheaf of rank one corresponding to the eigenvalue

ζ−1 of

h∗ωV/Y

(
(Bh

V )
=1

)
≃ Gr0F

(
(Vd

Y )
∗)

by the group action of G = Z/bZ, where ζ is a fixed primitive b-th root of unity

(see the proof of [Fu5, Proposition 6.3]). We take an integer l such that

OY (MY ) ⊂ Wl Gr0F
(
(Vd

Y )
∗) and OY (MY ) ̸⊂ Wl−1 Gr0F

(
(Vd

Y )
∗)

hold. Thus we can easily see that OY (MY ) is an eigensheaf of rank one corre-

sponding to the eigenvalue ζ−1 of Wl Gr0F
(
(Vd

Y )
∗) and that

OY (MY ) ∩Wl−1 Gr0F
(
(Vd

Y )
∗) = {0}

inWl Gr0F
(
(Vd

Y )
∗). We note that G acts onWm Gr0F

(
(Vd

Y )
∗) for everym by Lemma

4.6 and Remark 4.7. Since degMY = 0 by assumption, OY (MY )|Y ∗ defines a local

subsystem of GrWl
(
(Vd

Y ∗)∗
)
by Lemma 4.8. We note that

GrWl Gr0F
(
(Vd

Y ∗)∗
)
≃ Gr0F GrWl

(
(Vd

Y ∗)∗
)
= F 0 GrWl

(
(Vd

Y ∗)∗
)
⊂ GrWl

(
(Vd

Y ∗)∗
)

holds since we have F 1 GrWl
(
(Vd

Y ∗)∗
)
= 0 by the construction of the dual Hodge fil-

tration (see [FF1, Remark 3.15] and Remark 4.7). Therefore, there exists a positive

integer a such that OY (aMY )|Y ∗ ≃ OY ∗ by [D1, Corollaire (4.2.8) (iii) b)]. This

is because GrWl
(
(Vd

Y ∗)∗
)
is a polarizable variation of Q-Hodge structure. Thus we

get OY (aMY ) ≃ OY by taking the canonical extension. This is what we wanted.

Hence, we obtain MY ′ ∼Q 0.

We close this section with the proof of Corollary 1.4.

Proof of Corollary 1.4. By [Fu5, Lemma 4.12], we may assume that Y is a smooth

projective curve. We always have degMY ≥ 0 since MY is nef by [Fu5, Theorem

1.2]. If degMY > 0, then it is obvious that MY is ample. If degMY = 0, then MY

is numerically trivial. In this case, by Theorem 1.3, MY ∼Q 0 holds. Therefore, we

see that MY is always semi-ample.
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