
ON QUASI-LOG STRUCTURES FOR COMPLEX ANALYTIC SPACES

OSAMU FUJINO

Abstract. We introduce the notion of quasi-log complex analytic spaces and establish
various fundamental properties. Moreover, we prove that a semi-log canonical pair natu-
rally has a quasi-log complex analytic space structure. This paper is part of the author’s
project to establish a minimal model theory for projective morphisms between complex
analytic spaces.
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1. Introduction

The main purpose of this paper is to introduce the notion of quasi-log complex analytic
spaces and establish various fundamental results. They will play a crucial role in the study
of highly singular complex analytic spaces. Let us see the definition of quasi-log complex
analytic spaces, which may look artificial.

Definition 1.1 (Quasi-log complex analytic spaces, see Definition 4.1). A quasi-log com-
plex analytic space (

X,ω, f : (Y,BY ) → X
)

is a complex analytic space X endowed with an R-line bundle (or a globally R-Cartier
divisor) ω on X, a closed analytic subspace X−∞ ⊊ X, and a finite collection {C} of
reduced and irreducible closed analytic subspaces of X such that there exists a projective
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morphism f : (Y,BY ) → X from an analytic globally embedded simple normal crossing
pair (Y,BY ) satisfying the following properties:

(1) f ∗ω ∼R KY +BY .
(2) The natural map OX → f∗OY (⌈−(B<1

Y )⌉) induces an isomorphism

IX−∞
≃−→ f∗OY (⌈−(B<1

Y )⌉ − ⌊B>1
Y ⌋),

where IX−∞ is the defining ideal sheaf of X−∞ on X.
(3) The collection of closed analytic subvarieties {C} coincides with the f -images of

(Y,BY )-strata that are not included in X−∞.

Since we treat R-line bundles and globally R-Cartier divisors on (not necessarily com-
pact) complex analytic spaces, we need the following remark.

Remark 1.2 (R-line bundles and globally R-Cartier divisors). Let X be a complex an-
alytic space and let Pic(X) be the group of line bundles on X, that is, the Picard group
of X. An element of Pic(X)⊗Z R (resp. Pic(X)⊗Z Q) is called an R-line bundle (resp. a
Q-line bundle) on X. In this paper, we write the group law of Pic(X) ⊗Z R additively
for simplicity of notation. A globally R-Cartier (resp. globally Q-Cartier) divisor is a fi-
nite R-linear (resp. Q-linear) combination of Cartier divisors. If ω is a globally R-Cartier
(resp. Q-Cartier) divisor in Definition 1.1, then we can naturally see ω as an R-line bundle
(resp. a Q-line bundle) on X. In Definition 1.1, we always assume that BY is a globally
R-Cartier divisor on Y implicitly. This assumption is harmless to applications because Y
is usually a relatively compact open subset of a given complex analytic space. In that case,
the support of BY has only finitely many irreducible components and then BY automat-
ically becomes globally R-Cartier. Under the assumption that BY is globally R-Cartier,
KY + BY naturally defines an R-line bundle on Y . The condition f ∗ω ∼R KY + BY in
Definition 1.1 (1) means that f ∗ω = KY +BY holds in Pic(Y )⊗Z R.

Note that the notion of quasi-log schemes was first introduced by Ambro in [A]. Defi-
nition 1.1 is an analytic counterpart of the notion of quasi-log schemes. For the details of
the theory of quasi-log schemes, see [Fu8, Chapter 6] and [Fu12]. A gentle introduction
to the theory of quasi-log schemes is [Fu3]. As in the algebraic case, we establish the
following theorems.

Theorem 1.3 (Adjunction, see Theorem 4.4). Let(
X,ω, f : (Y,BY ) → X

)
be a quasi-log complex analytic space and let X ′ be the union of X−∞ with a union of some
qlc strata of [X,ω]. Then, after replacing X with any relatively compact open subset of
X, we can construct a projective morphism f ′ : (Y ′, BY ′) → X ′ from an analytic globally
embedded simple normal crossing pair (Y ′, BY ′) such that(

X ′, ω′, f ′ : (Y ′, BY ′) → X ′)
is a quasi-log complex analytic space with ω′ = ω|X′ and X ′

−∞ = X−∞. Moreover, the qlc
strata of [X ′, ω′] are exactly the qlc strata of [X,ω] that are included in X ′.

Theorem 1.4 (Vanishing theorem, see Theorems 4.7 and 4.8). Let(
X,ω, f : (Y,BY ) → X

)
be a quasi-log complex analytic space and let X ′ be the union of X−∞ with a union of some
qlc strata of [X,ω]. Let π : X → S be a projective morphism between complex analytic
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spaces and let L be a line bundle on X such that L − ω is nef over S and (L − ω)|C is
big over π(C) for every qlc stratum C of [X,ω] which is not contained in X ′. Then

Riπ∗(IX′ ⊗ L) = 0

holds for every i > 0, where IX′ is the defining ideal sheaf of X ′ on X. In particular, if
L − ω is ample over S, then

Riπ∗(IX′ ⊗ L) = 0

holds for every i > 0.

Although the definition of quasi-log complex analytic spaces looks complicated and
artificial, we think that the following example shows that it is natural.

Example 1.5 (Normal pairs). Let π : X → S be a projective morphism of complex
analytic spaces such that X is a normal complex variety and let ∆ be an effective R-
divisor on X such that KX + ∆ is R-Cartier. We sometimes call (X,∆) a normal pair.
We replace S with any relatively compact open subset of S. Then we can construct a
projective bimeromorphic morphism f : Y → X with

KY +BY := f ∗(KX +∆)

such that Y is smooth and SuppBY is a simple normal crossing divisor on Y . Then

f ∗(KX +∆) ∼R KY +BY

obviously holds and

JNLC(X,∆) := f∗OY (⌈−(B<1
Y )⌉ − ⌊B>1

Y ⌋)

is a well-defined coherent ideal sheaf on X which defines the non-lc locus Nlc(X,∆) of
(X,∆). By definition, C is a log canonical center of (X,∆) if and only if C is not contained
in Nlc(X,∆) and is the f -image of some log canonical center of (Y,BY ). Hence,

(X,KX +∆, f : (Y,BY ) → X)

with X−∞ := Nlc(X,∆) satisfies the conditions in Definition 1.1, that is,

(X,KX +∆, f : (Y,BY ) → X)

is a quasi-log complex analytic space. By construction, X−∞ = ∅ if and only if (X,∆) is
log canonical.

In this paper, after we define quasi-log complex analytic spaces and prove the adjunction
formula and vanishing theorems for them (see Section 4), we establish the basepoint-free
theorem (see Theorem 6.1), the basepoint-freeness of Reid–Fukuda type (see Theorem
7.1), the effective freeness (see Theorems 8.1 and 8.2), the cone and contraction theorem
(see Theorem 9.2), and so on, for quasi-log complex analytic spaces. We can use them for
the study of normal pairs by Example 1.5. We note that the cone and contraction theorem
for normal pairs, which is sufficient for the minimal model program for log canonical
pairs, was already proved in the complex analytic setting in [Fu16]. We do not need the
framework of quasi-log complex analytic spaces in [Fu16]. However, it seems to be difficult
to prove the basepoint-free theorem of Reid–Fukuda type for normal pairs in the complex
analytic setting without using the framework of quasi-log complex analytic spaces. By
combining some results obtained in this paper with Example 1.5, we have:
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Theorem 1.6 (Effective freeness of Reid–Fukuda type for log canonical pairs). Let
π : X → S be a projective morphism of complex analytic spaces such that (X,∆) is
log canonical and that ∆ is a Q-divisor. Let L be a π-nef line bundle on X such that
aL − (KX + ∆) is nef and log big over S with respect to (X,∆) for some positive real
number a. This means that aL−(KX+∆) is nef and big over S and that (aL−(KX+∆))|C
is big over π(C) for every log canonical center C of (X,∆). Then there exists a positive
integer m0, which depends only on dimX and a, such that L⊗m is π-generated for every
m ≥ m0. Moreover, we may allow ∆ to be an R-divisor when aL− (KX +∆) is π-ample
over S in the above statement.

Theorem 1.6 is a generalization of [Fu2, Theorem 2.2.4]. We note that we do not have
to replace S with a relatively compact open subset of S in Theorem 1.6. The notion
of quasi-log complex analytic spaces is very useful for the proof of Theorem 1.6. The
author does not know how to prove Theorem 1.6 in the framework of [Fu16]. Precisely
speaking, we first establish the basepoint-free theorem for quasi-log complex analytic
spaces (see Theorem 6.1). Then, by using it, we prove the basepoint-free theorem of
Reid–Fukuda type for quasi-log complex analytic spaces (see Theorem 7.1). Here, the
framework of quasi-log complex analytic spaces plays an important role. Finally, we
obtain the effective freeness for complex analytic quasi-log canonical pairs in Theorems
8.1 and 8.2. By combining it with Example 1.5, we have Theorem 1.6. Moreover, we think
that we need the theory of quasi-log complex analytic spaces for the study of semi-log
canonical pairs in the complex analytic setting by the following theorem.

Theorem 1.7 (Semi-log canonical pairs, see Theorem 10.1). Let π : X → S be a projective
morphism of complex analytic spaces and let (X,∆) be a semi-log canonical pair. Then,
after replacing S with any relatively compact open subset of S, [X,KX + ∆] naturally
becomes a quasi-log complex analytic space such that Nqlc(X,KX +∆) = ∅ and that C is
a qlc center of [X,KX +∆] if and only if C is a semi-log canonical center of (X,∆).
More precisely, after replacing S with any relatively compact open subset of S, we can

construct a projective surjective morphism f : (Y,BY ) → X from an analytic globally
embedded simple normal crossing pair (Y,BY ) such that the natural map

OX → f∗OY (⌈−(B<1
Y )⌉)

is an isomorphism and that C is the f -image of some stratum of (Y,BY ) if and only if
C is a semi-log canonical center of (X,∆) or an irreducible component of X. Moreover,
if every irreducible component of X has no self-intersection in codimension one, then we
can make f : Y → X bimeromorphic.

Theorem 1.7 is obviously a complex analytic generalization of [Fu5, Theorem 1.2].
Example 1.8 may help us understand Theorem 1.7.

Example 1.8. We consider

X :=
(
X0X

2
2 −X2

1 (X1 − 1) = 0
)
⊂ P2.

Then (X, 0) is a projective semi-log canonical curve. Let α : M → P2 be the blow-up at
[1 : 0 : 0] ∈ P2. We put Y := X ′ + E, where X ′ is the strict transform of X on M and
E is the α-exceptional curve. Then it is easy to see that Y is a simple normal crossing
divisor on M ,

(1.1) α∗(KP2 +X) = KM +X ′ + E,
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and f∗OY ≃ OX , where f := α|Y . By (1.1) and adjunction,

f ∗KX = KY

holds. Thus
(X,KX , f : (Y, 0) → X)

is a quasi-log complex analytic space with X−∞ = ∅. We note that X is irreducible but
Y is reducible. In particular, f : Y → X is not bimeromorphic.

By Theorem 1.7, we can use the results established for quasi-log complex analytic spaces
in this paper to study semi-log canonical pairs. Of course, by combining Theorems 8.1
and 8.2 with Theorem 1.7, we see that Theorem 1.6 holds for complex analytic semi-log
canonical pairs. More precisely, the basepoint-free theorem and its variants hold true
for semi-log canonical pairs in the complex analytic setting. Although we do not state
it explicitly here, the cone and contraction theorem holds in full generality for complex
analytic semi-log canonical pairs. We note that this paper is not self-contained. We
strongly recommend that the reader looks at [Fu16] before reading this paper. Roughly
speaking, this paper explains how to use the strict support condition and the vanishing
theorems established in [Fu14] systematically by introducing the framework of quasi-log
complex analytic spaces.

We briefly summarize the current state of the minimal model theory for projective
morphisms between complex analytic spaces.

Remark 1.9 (Minimal model program for projective morphisms of complex analytic
spaces). We are mainly interested in projective morphisms between complex analytic
spaces. Roughly speaking, in [Fu13], we translated [BCHM] and [HM] into the complex
analytic setting. After [Fu13], Das, Hacon, and Păun gave an alternative approach to
the minimal model program of kawamata log terminal pairs for projective morphisms
between complex analytic spaces (see [DHP]). Moreover, Lyu and Murayama established
a new approach to the relative minimal model program in [LM], which can work in
larger categories of spaces. We note that the framework of the minimal model program
established in [Na1] and [Na2] is almost sufficient for [Fu13]. We do not need [Fu14], which
is an analytic generalization of [Fu8, Chapter 5], for [Fu13]. The ACC for log canonical
thresholds in the complex analytic setting (see [Fu15]) is an easy consequence of [Fu13]
and [HMX]. We can use [Fu13] to prove the inversion of adjunction of log canonicity for
complex analytic spaces (see [Fu17]). On the other hand, [Fu16] and this paper heavily
depend on [Fu14]. We note that [Fu16] is a complex analytic generalization of [Fu4] based
on [Fu14]. This paper explains how to generalize [Fu8, Chapter 6], [Fu5], [Fu6], and [Fu7]
into the complex analytic setting. In [EH1] and [EH2], based on [Fu13], Enokizono and
Hashizume discussed the minimal model program for log canonical pairs in the complex
analytic setting. In [Fu19], which is an analytic generalization of [Fu1] and [FG], we
studied the abundance conjecture for projective morphisms of complex analytic spaces.
Finally, Enokizono and Hashizume strengthened some results of [EH2] in [EH3] and [H].
By the above mentioned works, we see that almost all conjectures of the minimal model
theory for projective morphisms between complex analytic spaces follow from the original
conjectures for projective varieties.

We make a remark on [Fu5] for the reader’s convenience.

Remark 1.10. Note that [Fu5, Definition A.20] has some subtle troubles. For the de-
tails, see [Fu8, Definition 2.1.25, Remark 2.1.16, and Lemma 2.1.18]. The proof of [Fu5,
Theorem 1.12] is insufficient. For the details, see Theorem 10.4 and Remark 10.5 below.
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We look at the organization of this paper. In Section 2, we collect some basic definitions
and results necessary for this paper. In Section 3, we recall the strict support condition
and the vanishing theorems for analytic simple normal crossing pairs established in [Fu14].
Note that we do not prove them in this paper. In Section 4, which is the main part of
this paper, we introduce the notion of quasi-log complex analytic spaces and prove some
basic properties. In Section 5, we prepare several useful lemmas. Although they may look
complicated and artificial, they are very important. In Section 6, we prove the basepoint-
free theorem for quasi-log complex analytic spaces. Then, in Section 7, we prove the
basepoint-free theorem of Reid–Fukuda type for quasi-log complex analytic spaces. In
Section 8, we establish the effective basepoint-freeness and effective very ampleness for
quasi-log complex analytic spaces. The argument in this section is new and is slightly
simpler than the known one. In Section 9, we discuss the cone and contraction theorem
for quasi-log complex analytic spaces. In Subsection 9.1, we prove that any extremal ray is
spanned by a rational curve. In Section 10, we treat complex analytic semi-log canonical
pairs. Roughly speaking, we show that a semi-log canonical pair naturally becomes a
quasi-log complex analytic space. In Subsection 10.1, we explain some vanishing theorems
for the reader’s convenience. In Subsection 10.2, we briefly discuss Shokurov’s polytopes
for semi-log canonical pairs for the sake of completeness.

Acknowledgments. The author was partially supported by JSPS KAKENHI Grant
Numbers JP19H01787, JP20H00111, JP21H00974, JP21H04994, JP23K20787. He thanks
Professor Taro Fujisawa for always giving him warm encouragement. He also thanks
Yoshinori Gongyo very much.

In this paper, we assume that every complex analytic space is Hausdorff and second-
countable. An irreducible and reduced complex analytic space is called a complex variety.
We will freely use the basic definitions and results on complex analytic geometry in [BS]
and [Fi]. Nakayama’s book [Na2] may be helpful. We will also freely use Serre’s GAGA
(see [Se]) throughout this paper. We strongly recommend that the reader looks at [Fu16]
before reading this paper. This paper is a continuation of [Fu16] and is also a supplement
to [Fu16].

2. Preliminaries

In this section, we will recall some basic definitions and properties of complex analytic
spaces necessary for subsequent sections. For the details, see [Fu13] and [Fu16, Sections
2.1, 4.4, and 4.5].

2.1 (Hybrids of R-line bundles and globally R-Cartier divisors). As we already mentioned
in Remark 1.2, we usually treat hybrids of R-line bundles and globally R-Cartier divisors
on a complex analytic space X. Note that a globally R-Cartier divisor is a finite R-linear
combination of Cartier divisors. We often write

L+ A ∼R M+B,

where L,M ∈ Pic(X) ⊗Z R, and A and B are globally R-Cartier divisors on X. This
means that

L+A = M+ B
holds in Pic(X) ⊗Z R, where A and B are R-line bundles naturally associated to A and
B, respectively. We note that we usually write the group law of Pic(X) ⊗Z R additively
for simplicity of notation.
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2.2 (Divisors). Let X be a reduced equidimensional complex analytic space. A prime
divisor on X is an irreducible and reduced closed analytic subspace of codimension one.
An R-divisor D on X is a formal sum

D =
∑
i

aiDi,

where Di is a prime divisor on X with Di ̸= Dj for i ̸= j, ai ∈ R for every i, and the
support

SuppD :=
⋃
ai ̸=0

Di

is a closed analytic subset of X. In other words, the formal sum
∑

i aiDi is locally finite.
If ai ∈ Z (resp. ai ∈ Q) for every i, then D is called a divisor (resp. Q-divisor) on X.
Note that a divisor is sometimes called an integral Weil divisor in order to emphasize the
condition that ai ∈ Z for every i. If 0 ≤ ai ≤ 1 (resp. ai ≤ 1) holds for every i, then an
R-divisor D is called a boundary (resp. subboundary) R-divisor.

Let D =
∑

i aiDi be an R-divisor on X such that Di is a prime divisor for every i with
Di ̸= Dj for i ̸= j. The round-down ⌊D⌋ of D is defined to be the divisor

⌊D⌋ =
∑
i

⌊ai⌋Di,

where ⌊x⌋ is the integer defined by x−1 < ⌊x⌋ ≤ x for every real number x. The round-up
and the fractional part of D are defined to be

⌈D⌉ := −⌊−D⌋, and {D} := D − ⌊D⌋,

respectively. We put

D=1 :=
∑
ai=1

Di, D<1 :=
∑
ai<1

aiDi, and D>1 :=
∑
ai>1

aiDi.

Let D be an R-divisor on X and let x be a point of X. If D is written as a finite R-linear
(resp. Q-linear) combination of Cartier divisors on some open neighborhood of x, then D
is said to be R-Cartier at x (resp. Q-Cartier at x). If D is R-Cartier (resp. Q-Cartier) at x
for every x ∈ X, then D is said to be R-Cartier (resp. Q-Cartier). Note that a Q-Cartier
R-divisor D is automatically a Q-Cartier Q-divisor by definition. If D is a finite R-linear
(resp. Q-linear) combination of Cartier divisors on X, then we say that D is a globally
R-Cartier R-divisor (resp. globally Q-Cartier Q-divisor).
Two R-divisors D1 and D2 are said to be linearly equivalent if D1 − D2 is a principal

Cartier divisor. The linear equivalence is denoted by D1 ∼ D2. Two R-divisors D1 and
D2 are said to be R-linearly equivalent (resp. Q-linearly equivalent) if D1 −D2 is a finite
R-linear (resp. Q-linear) combination of principal Cartier divisors. When D1 is R-linearly
(resp. Q-linearly) equivalent to D2, we write D1 ∼R D2 (resp. D1 ∼Q D2).

Remark 2.3. Let D be an R-Cartier R-divisor on X and let U be any relatively compact
open subset of X. Then it is easy to see that D|U is a globally R-Cartier R-divisor on U .

2.4 (Singularities of pairs). We have already discussed the notion of singularities of pairs
for complex analytic spaces in detail in [Fu16, Section 2.1]. Hence we omit the details here.
We do not repeat the definitions of log canonical pairs, kawamata log terminal pairs, log
canonical centers, and so on. Here we define semi-log canonical pairs for complex analytic
spaces.
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Let X be an equidimensional reduced complex analytic space that satisfies Serre’s S2

condition and is normal crossing in codimension one. Let Xnc be the largest open subset
of X consisting of smooth points and normal crossing points. Then we have an invertible
dualizing sheaf ωXnc on Xnc. We put ωX := ι∗ωXnc , where ι : Xnc ↪→ X, and call it the
canonical sheaf of X. Since codimX(X \ Xnc) ≥ 2 and X satisfies Serre’s S2 condition,
ωX is a reflexive sheaf of rank one on X. Although we can not always define KX globally
with OX(KX) ≃ ωX , we use the symbol KX as a formal divisor class with an isomorphism
OX(KX) ≃ ωX if there is no danger of confusion.

Definition 2.5 (Semi-log canonical pairs). Let X be an equidimensional reduced complex
analytic space that satisfies Serre’s S2 condition and is normal crossing in codimension
one. Let ∆ be an effective R-divisor on X such that no irreducible component of Supp∆
is contained in the singular locus of X. In this situation, the pair (X,∆) is called a
semi-log canonical pair (an slc pair, for short) if

(1) KX +∆ is R-Cartier, and
(2) (Xν ,Θ) is log canonical, where ν : Xν → X is the normalization and KXν +Θ :=

ν∗(KX +∆).

Let (X,∆) be a semi-log canonical pair. A closed analytic subvariety C is called a
semi-log canonical center (an slc center, for short) of (X,∆) if C is the ν-image of some
log canonical center of (Xν ,Θ). A closed subvariety S is sometimes called an slc stratum
if S is an slc center of (X,∆) or S is an irreducible component of X.

Let X be an equidimensional complex analytic space. A real vector space spanned by
the prime divisors on X is denoted by WDivR(X), which has a canonical basis given by
the prime divisors. Let D be an element of WDivR(X). Then the sup norm of D with
respect to this basis is denoted by ||D||. Let V be a finite-dimensional affine subspace of
WDivR(X), which is defined over the rationals. Let L be a compact subset of X. We put

L(V ;L) := {∆ ∈ V | (X,∆) is semi-log canonical at L}.
Then we can check that L(V ;L) is a rational polytope. For the details, see [Fu16, 2.1.10],
where we treat the case where X is normal. We will use L(V ;L) in Subsection 10.2.

2.6 (Kleiman–Mori cones). Here we briefly discuss the basics about Kleiman–Mori cones
in the complex analytic setting. For the details, see [Fu13, Section 4] and [Fu16, Sections
4.4 and 4.5].

Let π : X → S be a projective morphism of complex analytic spaces and let W be
a compact subset of S. Let Z1(X/S;W ) be the free abelian group generated by the
projective integral curves C on X such that π(C) is a point of W . Let U be any open
neighborhood of W . Then we can consider the following intersection pairing

· : Pic
(
π−1(U)

)
× Z1(X/S;W ) → Z

given by L · C ∈ Z for L ∈ Pic(π−1(U)) and C ∈ Z1(X/S;W ). We say that L is
π-numerically trivial over W when L · C = 0 for every C ∈ Z1(X/S;W ). We take
L1,L2 ∈ Pic(π−1(U)). If L1⊗L−1

2 is π-numerically trivial overW , then we write L1 ≡W L2

and say that L1 is numerically equivalent to L2 over W . We put

Ã(U,W ) := Pic
(
π−1(U)

)
/≡W

and define
A1(X/S;W ) := lim−→

W⊂U

Ã(U,W ),
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where U runs through all the open neighborhoods of W .
From now on, we further assume that A1(X/S;W ) is a finitely generated abelian group.

Then we can define the relative Picard number ρ(X/S;W ) to be the rank of A1(X/S;W ).
We put

N1(X/S;W ) := A1(X/S;W )⊗Z R.
Let A1(X/S;W ) be the image of

Z1(X/S;W ) → HomZ
(
A1(X/S;W ),Z

)
given by the above intersection pairing. Then we set

N1(X/S;W ) := A1(X/S;W )⊗Z R.
In this setting, we can define the Kleiman–Mori cone

NE(X/S;W )

of π : X → S overW , that is, NE(X/S;W ) is the closure of the convex cone in N1(X/S;W )
spanned by the projective integral curves C on X such that π(C) is a point of W . An
element ζ ∈ N1(X/S;W ) is called π-nef over W or nef over W if ζ ≥ 0 on NE(X/S;W ),
equivalently, ζ|π−1(w) is nef in the usual sense for every w ∈ W .

When A1(X/S;W ) is finitely generated, equivalently, dimN1(X/S;W ) is finite, we can
formulate Kleiman’s ampleness criterion (see [Fu16, Theorem 4.4.5]) and discuss the cone
and contraction theorem for projective morphisms between complex analytic spaces (see
Section 9 below). We note that A1(X/S;W ) is not always finitely generated.

Remark 2.7 (Nakayama’s finiteness). By Nakayama’s finiteness (see [Fu13, Subsection
4.1] and [Fu16, Section 4.5]), it is known that dimN1(X/S;W ) is finite under the assump-
tion that W ∩ Z has only finitely many connected components for any analytic subset Z
defined over an open neighborhood of W . In particular, if W is a Stein compact subset
of Y such that Γ(W,OY ) is noetherian, then dimN1(X/S;W ) is finite.

2.8 (Big R-line bundles). Let π : X → S be a projective morphism of complex analytic
spaces such that X is irreducible and let L be an R-line bundle on X. If L is a finite
positive R-linear combination of π-big line bundles on X, then L is said to be big over S.

We will use the following convention throughout this paper.

2.9. The expression ‘... for every m ≫ 0’ means that ‘there exists a positive real number
m0 such that ... for every m ≥ m0.’

3. On vanishing theorems

In this section, we will briefly recall the the vanishing theorems and the strict support
condition established in [Fu14], which is an analytic generalization of [Fu8, Chapter 5].
The reader can find all the details in [Fu14] (see also [FF], [Fu18], and [Fu16, Chapter
3]). For a completely different approach due to Murayama, see [M]. Let us start with the
definition of analytic simple normal crossing pairs.

Definition 3.1 (Analytic simple normal crossing pairs). Let X be a simple normal cross-
ing divisor on a smooth complex analytic space M and let B be an R-divisor on M such
that Supp(B +X) is a simple normal crossing divisor on M and that B and X have no
common irreducible components. Then we put D := B|X and consider the pair (X,D).
We call (X,D) an analytic globally embedded simple normal crossing pair and M the
ambient space of (X,D).
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If the pair (X,D) is locally isomorphic to an analytic globally embedded simple normal
crossing pair at any point of X and the irreducible components of X and D are all smooth,
then (X,D) is called an analytic simple normal crossing pair.

As we explained in 2.4, we use the symbol KX as a formal divisor class with an isomor-
phism OX(KX) ≃ ωX if there is no danger of confusion, where ωX is the dualizing sheaf
of X.

Remark 3.2. Let X be a smooth complex analytic space and let D be an R-divisor
on X such that SuppD is a simple normal crossing divisor on X. Then, by considering
M := X ×C, we can see (X,D) as an analytic globally embedded simple normal crossing
pair.

The notion of strata, which is a generalization of that of log canonical centers, plays a
crucial role.

Definition 3.3 (Strata). Let (X,D) be an analytic simple normal crossing pair such that
D is effective. Let ν : Xν → X be the normalization. We put

KXν +Θ := ν∗(KX +D).

This means that Θ is the union of ν−1
∗ D and the inverse image of the singular locus of

X. If S is an irreducible component of X or the ν-image of some log canonical center of
(Xν ,Θ), then S is called a stratum of (X,D). By definition, S is a stratum of (X,D) if
and only if S is a stratum of (X,D=1).

We recall Siu’s theorem on coherent analytic sheaves, which is a special case of [Si,
Theorem 4].

Theorem 3.4. Let F be a coherent sheaf on a complex analytic space X. Then there
exists a locally finite family {Yi}i∈I of complex analytic subvarieties of X such that

AssOX,x
(Fx) = {px,1, . . . , px,r(x)}

holds for every point x ∈ X, where px,1, . . . , px,r(x) are the prime ideals of OX,x associated
to the irreducible components of the germs Yi,x of Yi at x with x ∈ Yi. We note that each
Yi is called an associated subvariety of F .

Now we are ready to state the main result of [Fu14].

Theorem 3.5 ([Fu14, Theorem 1.1]). Let (X,∆) be an analytic simple normal crossing
pair such that ∆ is a boundary R-divisor on X. Let f : X → Y be a projective morphism
to a complex analytic space Y and let L be a line bundle on X. Let q be an arbitrary
non-negative integer. Then we have the following properties.

(i) (Strict support condition). If L− (ωX +∆) is f -semi-ample, then every associated
subvariety of Rqf∗L is the f -image of some stratum of (X,∆).

(ii) (Vanishing theorem). If L − (ωX + ∆) ∼R f ∗H holds for some π-ample R-line
bundle H on Y , where π : Y → Z is a projective morphism to a complex analytic
space Z, then we have

Rpπ∗R
qf∗L = 0

for every p > 0.

We make a supplementary remark on Theorem 3.5.
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Remark 3.6. In Theorem 3.5, we always assume that ∆ is globally R-Cartier, that is, ∆
is a finite R-linear combination of Cartier divisors. Under this assumption, we can obtain
an R-line bundle N on X naturally associated to L − (ωX + ∆). The assumption in (i)
means that N is a finite positive R-linear combination of π-semi-ample line bundles on
X. The assumption in (ii) says that N = f ∗H holds in Pic(X)⊗Z R.

We do not prove Theorem 3.5 here. For the details of the proof of Theorem 3.5,
see [Fu14], which depends on Saito’s theory of mixed Hodge modules (see [Sa1], [Sa2],
[Sa3], [FFS], and [Sa4]) and Takegoshi’s analytic generalization of Kollár’s torsion-free
and vanishing theorem (see [Ta]). In [FF], the reader can find an alternative approach
to Theorem 3.5 without using Saito’s theory of mixed Hodge modules (see also [M]). We
note that Theorem 3.5 is one of the main ingredients of this paper. Or, we can see this
paper as an application of Theorem 3.5. In order to explain the vanishing theorem of
Reid–Fukuda type, we prepare the notion of nef and log big R-line bundles.

Definition 3.7. Let f : X → Y and π : Y → Z be projective morphisms between complex
analytic spaces and let H be an R-line bundle on Y . Let ∆ be a boundary R-divisor on
X such that (X,∆) is an analytic simple normal crossing pair. We say that H is nef and
log big over Z with respect to f : (X,∆) → Y if H is nef over Z and H|f(S) is big over
π ◦ f(S) for every stratum S of (X,∆).

We note that if H is π-ample then it is nef and log big over Z with respect to
f : (X,∆) → Y . Therefore, Theorem 3.8 is obviously a generalization of Theorem 3.5
(ii).

Theorem 3.8 (Vanishing theorem of Reid–Fukuda type, see [Fu14, Theorem 1.2]). Let
(X,∆) be an analytic simple normal crossing pair such that ∆ is a boundary R-divisor
on X. Let f : X → Y and π : Y → Z be projective morphisms between complex analytic
spaces and let L be a line bundle on X. If L− (ωX +∆) ∼R f ∗H holds such that H is an
R-line bundle, which is nef and log big over Z with respect to f : (X,∆) → Y , on Y , then

Rpπ∗R
qf∗L = 0

holds for every p > 0 and every q.

The reader can find the detailed proof of Theorem 3.8 in [Fu14], which is harder than
that of Theorem 3.5 (ii). As an easy application of Theorem 3.8, we can establish the
vanishing theorem of Reid–Fukuda type of log canonical pairs for projective morphisms
between complex analytic spaces. Theorem 3.9 can be seen as a generalization of the
Kawamata–Viehweg vanishing theorem for projective morphisms between complex ana-
lytic spaces.

Theorem 3.9 (Vanishing theorem of Reid–Fukuda type for log canonical pairs). Let
(X,∆) be a log canonical pair and let π : X → Y be a projective morphism of complex
analytic spaces. Let L be a Q-Cartier integral Weil divisor on X. Assume that L− (KX +
∆) is nef and big over Y and that (L−(KX+∆))|C is big over π(C) for every log canonical
center C of (X,∆). Then

Rqπ∗OX(L) = 0

holds for every q > 0.

Proof. The proof of [Fu8, Theorem 5.7.6] works by Theorem 3.8. □
Theorem 3.9 will be generalized for semi-log canonical pairs in Theorem 10.2 by using

Theorem 1.7.
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4. Quasi-log structures for complex analytic spaces

This section is the main part of this paper. In this section, we will discuss quasi-log
structures on complex analytic spaces. For the details of the theory of quasi-log schemes,
see [Fu8, Chapter 6] and [Fu12].

Let us define quasi-log complex analytic spaces.

Definition 4.1 (Quasi-log complex analytic spaces). A quasi-log complex analytic space(
X,ω, f : (Y,BY ) → X

)
is a complex analytic space X endowed with an R-line bundle (or a globally R-Cartier
divisor) ω on X, a closed analytic subspace X−∞ ⊊ X, and a finite collection {C} of
reduced and irreducible closed analytic subspaces of X such that there exists a projective
morphism f : (Y,BY ) → X from an analytic globally embedded simple normal crossing
pair (Y,BY ) satisfying the following properties:

(1) f ∗ω ∼R KY +BY .
(2) The natural map OX → f∗OY (⌈−(B<1

Y )⌉) induces an isomorphism

IX−∞
≃−→ f∗OY (⌈−(B<1

Y )⌉ − ⌊B>1
Y ⌋),

where IX−∞ is the defining ideal sheaf of X−∞ on X.
(3) The collection of closed analytic subvarieties {C} coincides with the f -images of

(Y,BY )-strata that are not included in X−∞.

We often simply write [X,ω] to denote the above data(
X,ω, f : (Y,BY ) → X

)
if there is no risk of confusion. The closed analytic subvarieties C are called the qlc strata
of [X,ω]. If a qlc stratum C is not an irreducible component of X, then it is called
a qlc center of [X,ω]. The closed analytic subspace X−∞ is called the non-qlc locus of
[X,ω]. We note that we sometimes use Nqlc(X,ω) or Nqlc (X,ω, f : (Y,BY ) → X) to
denote X−∞. We usually call f : (Y,BY ) → X a quasi-log resolution of [X,ω].

In the above definition, if ω is a Q-line bundle (or a globally Q-Cartier divisor), BY is
a Q-divisor, and f ∗ω ∼Q KY +BY holds, then we say that

(X,ω, f : (Y,BY ) → X)

has a Q-structure.

We make an important remark.

Remark 4.2. As in Remark 1.2, we can naturally see ω as an R-line bundle on X in
Definition 4.1. In Definition 4.1 (1), f ∗ω ∼R KY +BY means that BY is globally R-Cartier,
that is, BY is a finite R-linear combination of Cartier divisors, and that f ∗ω = ωY + BY

holds in Pic(Y )⊗ZR, where ωY is the dualizing sheaf of Y and BY is an R-line bundle on
Y naturally associated to the globally R-Cartier divisor BY . Similarly, f ∗ω ∼Q KY +BY

means that f ∗ω = ωY + BY holds in Pic(Y )⊗Z Q.

The notion of quasi-log canonical pairs is useful.

Definition 4.3 (Quasi-log canonical pairs). In Definition 4.1, if X−∞ = ∅, then
(X,ω, f : (Y,BY ) → X)

is called a quasi-log canonical pair. We sometimes simply say that [X,ω] is a qlc pair.
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The most important result on quasi-log complex analytic spaces is the following ad-
junction formula. It is an easy consequence of the strict support condition in Theorem
3.5 (i).

Theorem 4.4 (Adjunction formula for quasi-log complex analytic spaces). Let(
X,ω, f : (Y,BY ) → X

)
be a quasi-log complex analytic space and let X ′ be the union of X−∞ with a union of some
qlc strata of [X,ω]. Then, after replacing X with any relatively compact open subset of
X, we can construct a projective morphism f ′ : (Y ′, BY ′) → X ′ from an analytic globally
embedded simple normal crossing pair (Y ′, BY ′) such that(

X ′, ω′, f ′ : (Y ′, BY ′) → X ′)
is a quasi-log complex analytic space with ω′ = ω|X′ and X ′

−∞ = X−∞. Moreover, the qlc
strata of [X ′, ω′] are exactly the qlc strata of [X,ω] that are included in X ′.

The proof of [Fu8, Theorem 6.3.5 (i)] works without any modifications.

Sketch of Proof of Theorem 4.4. We replace X with a relatively compact open subset of
X. LetM be the ambient space of (Y,BY ). By taking a suitable projective bimeromorphic
modification of M (see [Fu8, Proposition 6.3.1]), we may assume that the union of all
strata of (Y,BY ) mapped to X ′, which is denoted by Y ′, is a union of some irreducible
components of Y . We put KY ′ + BY ′ := (KY + BY )|Y ′ and Y ′′ := Y − Y ′. We also put
A := ⌈−(B<1

Y )⌉ and N := ⌊B>1
Y ⌋, and consider the following short exact sequence:

0 → OY ′′(A−N − Y ′) → OY (A−N) → OY ′(A−N) → 0.

Then we have the following long exact sequence:

0 −→ f∗OY ′′(A−N − Y ′) −→ f∗OY (A−N) −→ f∗OY ′(A−N)

δ−→ R1f∗OY ′′(A−N − Y ′) −→ · · · .
(4.1)

By the strict support condition in Theorem 3.5 (i), every associated subvariety of

R1f∗OY ′′(A−N − Y ′)

is the f -image of some stratum of (Y ′′, {BY ′′} + B=1
Y ′′ − Y ′|Y ′′), where KY ′′ + BY ′′ :=

(KY +BY )|Y ′′ , since

(A−N − Y ′)|Y ′′ − (KY ′′ + {BY ′′}+B=1
Y ′′ − Y ′|Y ′′) = −(KY ′′ +BY ′′)

∼R −(f ∗ω)|Y ′′ .

On the other hand, the support of f∗OY ′(A − N) is contained in f(Y ′). Hence, the
connecting homomorphism δ in (4.1) is zero. Thus we obtain the following short exact
sequence

(4.2) 0 → f∗OY ′′(A−N − Y ′) → IX−∞ → f∗OY ′(A−N) → 0.

We put IX′ := f∗OY ′′(A−N − Y ′) and define a complex analytic space structure on X ′

by IX′ . Then we can check that f ′ := f |Y ′ : (Y ′, BY ′) → X ′ and ω′ := ω|X′ satisfy all the
desired properties. We note that the short exact sequence (4.2) is

(4.3) 0 → IX′ → IX−∞ → IX′
−∞

→ 0.

For the details, see, for example, the proof of [Fu8, Theorem 6.3.5 (i)]. □
The following theorem is an important supplement to Theorem 4.4.
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Theorem 4.5. The complex analytic structure on X ′ of the quasi-log complex analytic
space (

X ′, ω′, f ′ : (Y ′, BY ′) → X ′)
defined in Theorem 4.4 is independent of the construction of f ′ : (Y ′, BY ′) → X ′. There-
fore, the defining ideal sheaf IX′ of X ′ is a globally well-defined coherent ideal sheaf on
X.

Sketch of Proof of Theorem 4.5. On any relatively compact open subset U of X, we de-
fined IX′ in the proof of Theorem 4.4. By [Fu8, Proposition 6.3.6], we see that it is
independent of the construction. Hence we get a globally well-defined coherent defining
ideal sheaf IX′ of X ′. This is what we wanted. For the details, see the proof of [Fu8,
Proposition 6.3.6]. □
For various inductive treatments, the notion of Nqklt(X,ω) is very useful.

Corollary 4.6. Let

(X,ω, f : (Y,BY ) → X)

be a quasi-log complex analytic space. The union of X−∞ with all qlc centers of [X,ω] is
denoted by Nqklt(X,ω), or, more precisely,

Nqklt (X,ω, f : (Y,BY ) → X) .

If Nqklt(X,ω) ̸= X−∞, then, after replacing X with any relatively compact open subset
of X, [

Nqklt(X,ω), ω|Nqklt(X,ω)

]
naturally becomes a quasi-log complex analytic space by adjunction.

Proof. This is a special case of Theorem 4.4. □
If we apply Corollary 4.6 to Example 1.5, then Nqklt(X,KX +∆) = Nklt(X,∆) holds,

where Nklt(X,∆) denotes the non-klt locus of (X,∆). Moreover, we have INqklt(X,KX+∆) =
J (X,∆), where J (X,∆) is the usual multiplier ideal sheaf of (X,∆) and INqklt(X,KX+∆)

is the defining ideal sheaf of Nqklt(X,KX +∆) on X.
For geometric applications, we need vanishing theorems. Of course, they follow from

the vanishing theorems for analytic simple normal crossing pairs (see Theorem 3.5 (ii)
and Theorem 3.8).

Theorem 4.7 (Vanishing theorem I). Let(
X,ω, f : (Y,BY ) → X

)
be a quasi-log complex analytic space and let π : X → S be a projective morphism between
complex analytic spaces. Let L be a line bundle on X such that L − ω is nef and log big
over S with respect to [X,ω], that is, L− ω is nef over S and (L− ω)|C is big over π(C)
for every qlc stratum C of [X,ω]. Then

Riπ∗(IX−∞ ⊗ L) = 0

holds for every i > 0.

Sketch of Proof of Theorem 4.7. We take an arbitrary point s ∈ S. It is sufficient to prove
Riπ∗(IX−∞ ⊗ L) = 0 for every i > 0 on a relatively compact open neighborhood Us of
s ∈ S. We replace X and S with π−1(Us) and Us, respectively. From now on, we use the
notation in the proof of Theorem 4.4. In the proof of Theorem 4.4, we put X ′ := X−∞.
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Then Y ′ is the union of all strata of (Y,BY ) mapped to X−∞. In this situation, we can
check that the following natural inclusion

f∗OY ′′(A−N − Y ′) ↪→ f∗OY (A−N)

is an isomorphism. Since

(f ∗L+ (A−N − Y ′)) |Y ′′ − (KY ′′ + {BY ′′}+B=1
Y ′′ − Y ′|Y ′′) ∼R (f ∗(L − ω))|Y ′′ ,

we obtain

Riπ∗(L ⊗ IX−∞) ≃ Riπ∗ (L ⊗ f∗OY (A−N))

= Riπ∗ (L ⊗ f∗OY ′′(A−N − Y ′))

= Riπ∗ (f∗(f
∗L ⊗OY ′′(A−N − Y ′))) = 0

for every i > 0 by Theorem 3.8. □
The following vanishing theorem and Theorem 4.4 will play a crucial role in the theory

of quasi-log complex analytic spaces. We can see it as a generalization of the Kawamata–
Viehweg–Nadel vanishing theorem for projective morphisms between complex analytic
spaces.

Theorem 4.8 (Vanishing theorem II). Let(
X,ω, f : (Y,BY ) → X

)
be a quasi-log complex analytic space and let X ′ be the union of X−∞ with a union of some
qlc strata of [X,ω]. Let π : X → S be a projective morphism between complex analytic
spaces and let L be a line bundle on X such that L − ω is nef over S and (L − ω)|C is
big over π(C) for every qlc stratum C of [X,ω] which is not contained in X ′. Then

Riπ∗(IX′ ⊗ L) = 0

holds for every i > 0, where IX′ is the defining ideal sheaf of X ′ on X. In particular, if
L − ω is ample over S, then

Riπ∗(IX′ ⊗ L) = 0

holds for every i > 0.

Sketch of Proof of Theorem 4.8. We take an arbitrary point s ∈ S. It is sufficient to prove
Riπ∗(IX′ ⊗L) = 0 for every i > 0 on a relatively compact open neighborhood Us of s ∈ S.
Therefore, we replace S and X with Us and π−1(Us), respectively. From now on, we use
the same notation as in the proof of Theorem 4.4. We note that

(f ∗L+ (A−N − Y ′)) |Y ′′ − (KY ′′ + {BY ′′}+B=1
Y ′′ − Y ′|Y ′′) ∼R (f ∗(L − ω))|Y ′′

holds. By Theorem 3.8, we obtain

Riπ∗(L ⊗ IX′) = Riπ∗ (L ⊗ f∗OY ′′(A−N − Y ′))

= Riπ∗ (f∗(f
∗L ⊗OY ′′(A−N − Y ′))) = 0

for every i > 0. We finish the proof. □
As in the algebraic case, the following important property holds.

Lemma 4.9. Let [X,ω] be a quasi-log complex analytic space with X−∞ = ∅, that is,
[X,ω] is a quasi-log canonical pair. We assume that every qlc stratum of [X,ω] is an
irreducible component of X, equivalently, Nqklt(X,ω) = ∅. Then X is normal.
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Sketch of Proof of Lemma 4.9. Let f : (Y,BY ) → X be a quasi-log resolution. By the
assumption that X−∞ is empty, we see that the natural map

OX → f∗OY (⌈−(B<1
Y )⌉)

is an isomorphism. This implies that OX ≃ f∗OY holds. Hence f has connected fibers.
Therefore, every connected component of X is an irreducible component of X by the
assumption that every stratum of [X,ω] is an irreducible component of X. Thus, we may
assume that X is irreducible and every stratum of Y is mapped onto X. In this case, it
is well known and is easy to prove that X is normal. For the details, see, for example,
the proof of [Fu16, Theorem 3.4.1]. □

By Theorem 4.4 and Lemma 4.9, we can prove:

Theorem 4.10 (Basic properties of qlc strata). Let [X,ω] be a quasi-log complex analytic
space with X−∞ = ∅, that is, [X,ω] is a quasi-log canonical pair. Then we have the
following properties.

(i) The intersection of two qlc strata is a union of some qlc strata.
(ii) For any point x ∈ X, the set of all qlc strata passing through x has a unique

minimal (with respect to the inclusion) element Cx. Moreover, Cx is normal at x.

Sketch of Proof of Theorem 4.10. Let C1 and C2 be two qlc strata of [X,ω]. We may
assume that C1 ̸= C2 with C1 ∩ C2 ̸= ∅. We take P ∈ C1 ∩ C2. It is sufficient to find a
qlc stratum C such that P ∈ C ⊂ C1 ∩ C2 for the proof of (i). We put X ′ := C1 ∪ C2

and ω′ := ω|X′ . Then, after shrinking X around P suitably, [X ′, ω′] becomes a quasi-
log complex analytic space by adjunction (see Theorem 4.4). Note that X ′ is reducible
at P . Therefore, by Lemma 4.9 above, there exists a qlc center C† of [X,ω] such that
P ∈ C† ⊂ X ′. By this fact, we can easily prove (i). For the details, see the proof of
[Fu8, Theorem 6.3.11 (i)]. The uniqueness of the minimal (with respect to the inclusion)
qlc stratum follows from (i) and the normality of the minimal qlc stratum follows from
Lemma 4.9. So we finish the proof of (ii). □

Theorem 4.10 will play a crucial role in the theory of quasi-log complex analytic spaces.

5. Some basic operations on quasi-log structures

In this section, we will discuss some basic operations on quasi-log structures in the
complex analytic setting. Almost all of them are well known for quasi-log schemes (see
[Fu6, Section 3], [Fu8, Chapter 6], [Fu10, Subsection 4.3], and so on). They will play an
important role in the subsequent sections.

Lemma 5.1. Let

(X,ω, f : (Y,BY ) → X)

be a quasi-log complex analytic space and let P ∈ X be a point. Let D1, . . . , Dk be effective
Cartier divisors on X such that P ∈ SuppDi for every i. We assume that no irreducible
component of Y is mapped into

⋃k
i=1 SuppDi. Then, after replacing X with any relatively

compact open neighborhood of P ,
[
X,ω +

∑k
i=1 Di

]
naturally becomes a quasi-log complex

analytic space. Moreover, if Nqlc
(
X,ω +

∑k
i=1 Di

)
= ∅, then k ≤ dimP X holds. More

precisely, k ≤ dimP CP holds, where CP is the minimal qlc stratum of [X,ω] passing
through P .
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Sketch of Proof of Lemma 5.1. After replacing X with a relatively compact open neigh-
borhood of P , we may assume that(

Y,
k∑

i=1

f ∗Di + SuppBY

)
is an analytic globally embedded simple normal crossing pair by [Fu8, Proposition 6.3.1]
and [BM1]. Then we see that

f :

(
Y,BY +

k∑
i=1

f ∗Di

)
→ X

naturally gives a quasi-log structure on
[
X,ω +

∑k
i=1 Di

]
. When we prove k ≤ dimP X,

we can freely replace X with a relatively compact open neighborhood of P . Hence,
we can easily see that the proof of [Fu8, Lemma 6.3.13] works with only some minor
modifications. □

Lemma 5.2 is a very basic result in the theory of quasi-log complex analytic spaces.

Lemma 5.2. Let [X,ω] be a quasi-log complex analytic space and let D be an effective
R-Cartier divisor on X. This means that D is a finite positive R-linear combination of
effective Cartier divisors. Then, after replacing X with any relatively compact open subset
of X, [X,ω +D] naturally becomes a quasi-log complex analytic space.

Sketch of Proof of Lemma 5.2. Let f : (Y,BY ) → X be a quasi-log resolution. By replac-
ing X with any relatively compact open subset of X and taking a suitable projective
bimeromorphic modification of M , the ambient space of (Y,BY ), we may assume that
the union of all strata of (Y,BY ) mapped to SuppD ∪Nqlc(X,ω) by f , which is denoted
by Y ′, is a union of some irreducible components of Y (see [Fu8, Proposition 6.3.1] and
[BM1]). We put Y ′′ := Y − Y ′, KY ′′ + BY ′′ := (KY + BY )|Y ′′ , and f ′′ := f |Y ′′ . We may
further assume that (Y ′′, BY ′′ + (f ′′)∗D) is an analytic globally embedded simple normal
crossing pair. Then

(X,ω +D, f ′′ : (Y ′′, BY ′′) → X)

naturally becomes a quasi-log complex analytic space. For the details, see the proof of
[Fu10, Lemma 4.23]. We note that the quasi-log structure of (X,ω +D, f ′′ : (Y ′′, BY ′′) → X)
constructed above coincides with that of (X,ω, f : (Y,BY ) → X) outside SuppD. □

The following lemma is useful since we can reduce various problems to the case where
X is irreducible (see also [Fu10, Lemmas 4.19 and 4.20]).

Lemma 5.3 (see [Fu6, Lemmas 3.12 and 3.14]). Let [X,ω] be a quasi-log complex ana-
lytic space and let π : X → S be a projective morphism of complex analytic spaces. We
put X† := X \X−∞, the closure of X \ X−∞ in X, with the reduced structure. Then,
after replacing S with any relatively compact open subset of S, [X†, ω† := ω|X† ] naturally
becomes a quasi-log complex analytic space with the following properties.

(1) C is a qlc stratum of [X,ω] if and only if C is a qlc stratum of [X†, ω†].
(2) INqlc(X†,ω†) = INqlc(X,ω) holds.

Proof of Lemma 5.3. In Step 1, we will construct a quasi-log resolution

f ′ : (Y ′, BY ′) → X
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such that every irreducible component of Y ′ is mapped to X† by f ′. Then, in Step 2, we
will construct the desired quasi-log structure on [X†, ω†].

Step 1. Let M be the ambient space of (Y,BY ). After replacing S with any relatively
compact open subset of S, by taking some projective bimeromorphic modification of M , we
may assume that the union of all strata of (Y,BY ) that are not mapped to X \X−∞, which
is denoted by Y ′′, is a union of some irreducible components of Y (see [Fu8, Proposition
6.3.1] and [BM1]). We may further assume that the union of all strata of (Y,BY ) mapped

to X \X−∞∩X−∞ is a union of some irreducible components of Y . We put Y ′ := Y −Y ′′

and KY ′′ +BY ′′ := (KY +BY )|Y ′′ . We consider the short exact sequence

0 → OY ′′(−Y ′) → OY → OY ′ → 0.

As usual, we put A := ⌈−(B<1
Y )⌉ and N := ⌊B>1

Y ⌋. By applying ⊗OY (A−N), we have

0 → OY ′′(A−N − Y ′) → OY (A−N) → OY ′(A−N) → 0.

By taking Rif∗, we obtain

0 → f∗OY ′′(A−N − Y ′) → f∗OY (A−N) → f∗OY ′(A−N)

→ R1f∗OY ′′(A−N − Y ′) → · · · .

By the strict support condition (see Theorem 3.5 (i)), no associated subvariety of

R1f∗OY ′′(A−N − Y ′)

is contained in f(Y ′) ∩X−∞. Note that

(A−N − Y ′)|Y ′′ − (KY ′′ + {BY ′′}+B=1
Y ′′ − Y ′|Y ′′) = −(KY ′′ +BY ′′)

∼R −(f ∗ω)|Y ′′ .

Therefore, the connecting homomorphism

δ : f∗OY ′(A−N) → R1f∗OY ′′(A−N − Y ′)

is zero. This implies that

0 → f∗OY ′′(A−N − Y ′) → IX−∞ → f∗OY ′(A−N) → 0

is exact. The ideal sheaf J = f∗OY ′′(A − N − Y ′) is zero when it is restricted to X−∞
because J ⊂ IX−∞ = INqlc(X,ω). On the other hand, J is zero on X \ X−∞ because
f(Y ′′) ⊂ X−∞. Therefore, we obtain J = 0. Thus we have IX−∞ = f∗OY ′(A − N). So
f ′ = f |Y ′ : (Y ′, BY ′) → X, where KY ′ + BY ′ := (KY + BY )|Y ′ , gives the same quasi-log
structure as one given by f : (Y,BY ) → X.

Step 2. Let IX† be the defining ideal sheaf of X† on X. Let f ′ : (Y ′, BY ′) → X be the
quasi-log resolution constructed in Step 1. Note that

IX−∞ = f ′
∗OY ′(A−N)

= f ′
∗OY ′(−N)

and that

f ′(N) = X−∞ ∩ f ′(Y ′) = X−∞ ∩X†

set theoretically, where A = ⌈−(B<1
Y )⌉ and N = ⌊B>1

Y ⌋. We note that A|Y ′ = ⌈−(B<1
Y ′ )⌉

and N |Y ′ = ⌊B>1
Y ′ ⌋ hold by definition. Moreover, we obtain

IX† ∩ IX−∞ = IX† ∩ f∗OY (A−N) ⊂ J = f∗OY ′′(A−N − Y ′) = {0}.
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Thus we can construct the following big commutative diagram.

0

��

0

��
IX−∞

��

IX†
−∞

��
0 // IX† // OX

//

��

OX† //

��

0

0 // IX† // OX−∞
//

��

OX†
−∞

��

// 0

0 0

By construction, f ′ factors through X†. We put f † : (Y ′, BY ′) → X†. Then it is easy to
see that f † : (Y ′, BY ′) → X† gives the desired quasi-log structure on [X†, ω†].

We finish the proof. □

Although we do not need the following lemma in this paper, we state it here for the
sake of completeness.

Lemma 5.4 (see [Fu10, Lemma 4.20]). In Lemma 5.3, we consider a set of some qlc
strata {Ci}i∈I of [X,ω]. We put(

X†)′ = Nqlc(X†, ω†) ∪

(⋃
i∈I

Ci

)
and

X ′ = Nqlc(X,ω) ∪

(⋃
i∈I

Ci

)
.

Then, after replacing S with any relatively compact open subset of S,
[
(X†)′, ω†|(X†)′

]
and

[X ′, ω|X′ ] naturally become quasi-log complex analytic spaces by adjunction and I(X†)′ =

IX′ holds, where I(X†)′ and IX′ are the defining ideal sheaves of (X†)′ and X ′ on X† and
X, respectively. In particular, INqklt(X†,ω†) = INqklt(X,ω) holds.

Sketch of Proof of Lemma 5.4. Here, we will use the same notation as in the proof of
Lemma 5.3. We know that [(X†)′, ω†|(X†)′ ] and [X ′, ω|X′ ] naturally become quasi-log
complex analytic spaces by adjunction after replacing S with any relatively compact open
subset of S. Thus it is sufficient to prove the equality I(X†)′ = IX′ . As usual, by [Fu8,
Proposition 6.3.1] and [BM1], we may further assume that the union of all strata of (Y,BY )
that are mapped to X ′, which is denoted by Z, is a union of some irreducible components
of Y . We note that Z ≥ Y ′′. We put Z ′ = Y −Z. Then it is obvious that Z ′ ≤ Y ′ holds.
By the proof of adjunction (see the proof of Theorem 4.4 and [Fu8, Theorem 6.3.5 (i)]),
we see that

I(X†)′ = f ′
∗OZ′(A−N − (Z − Y ′′)|Z′) = f ′

∗OZ′(A−N − Z|Z′) = IX′

holds. We finish the proof. □
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Lemma 5.5 will play a crucial role in the proof of the basepoint-free theorem of Reid–
Fukuda type (see Theorem 7.1).

Lemma 5.5 (see [Fu6, Lemma 3.15]). Let [X,ω] be a quasi-log complex analytic space and
let π : X → S be a projective morphism of complex analytic spaces. Let E be an effective
R-Cartier divisor on X. This means that E is a finite positive R-linear combination of
effective Cartier divisors. We put

ω̃ := ω + εE

with 0 < ε ≪ 1. Then, after replacing S with any relatively compact open subset of S,
[X, ω̃] naturally becomes a quasi-log complex analytic space with the following properties.

(1) Let {Ci}i∈I be the set of all qlc centers of [X,ω] contained in SuppE. We put

X⋆ :=

(⋃
i∈I

Ci

)
∪ Nqlc(X,ω).

Then, by adjunction,

[X⋆, ω⋆ := ω|X⋆ ]

is a quasi-log complex analytic space and

X⋆ = Nqlc(X, ω̃)

holds. More precisely,

IX⋆ = INqlc(X,ω̃)

holds, where IX⋆ is the defining ideal sheaf of X⋆ on X.
(2) C is a qlc center of [X, ω̃] if and only if C is a qlc center of [X,ω] with C ̸⊂ SuppE.

Proof of Lemma 5.5. Let f : (Y,BY ) → X be a quasi-log resolution. We replace S with
any relatively compact open subset of S and take a suitable projective bimeromorphic
modification of M , where M is the ambient space of (Y,BY ). Then we may assume
that the union of all strata of (Y,BY ) mapped to X⋆, which is denoted by Y ′′, is a
union of some irreducible components of Y (see [Fu8, Proposition 6.3.1] and [BM1]).
We put Y ′ := Y − Y ′′ and KY ′ + BY ′ := (KY + BY )|Y ′ . We may further assume that
(Y ′, f ∗E + SuppBY ′) is an analytic globally embedded simple normal crossing pair. We
consider

f : (Y ′, BY ′ + εf ∗E) → X

with 0 < ε ≪ 1. We put A := ⌈−(B<1
Y )⌉ and N := ⌊B>1

Y ⌋. Then X⋆ is defined by the
ideal sheaf f∗OY ′(A − N − Y ′′) by the proof of adjunction (see Theorem 4.4). We note
that

(A−N − Y ′′)|Y ′ = −⌊BY ′ + εf ∗E⌋+ (BY ′ + εf ∗E)=1

= ⌈−(BY ′ + εf ∗E)<1⌉ − ⌊(BY ′ + εf ∗E)>1⌋.

Therefore, if we define Nqlc(X, ω̃) by the ideal sheaf

f∗OY ′(⌈−(BY ′ + εf ∗E)<1⌉ − ⌊(BY ′ + εf ∗E)>1⌋) = f∗OY ′(A−N − Y ′′),

then f : (Y ′, BY ′ + εf ∗E) → X gives the desired quasi-log structure on [X, ω̃]. □

By Lemma 5.1, we can prove:
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Lemma 5.6. Let ϕ : X → Z be a projective surjective morphism between complex analytic
spaces such that [X,ω] is a quasi-log complex analytic space and that X is irreducible. Let
P be an arbitrary point of Z. Let E be any positive-dimensional irreducible component of
ϕ−1(P ) with E ̸⊂ Nqlc(X,ω). Then, after shrinking Z around P suitably, we can take an
effective R-Cartier divisor G on Z such that [X,ω + ϕ∗G] naturally becomes a quasi-log
complex analytic space and E is a qlc stratum of [X,ω + ϕ∗G].

We will use Lemma 5.6 when we prove the existence of ω-negative extremal rational
curves (see Theorem 9.6).

Sketch of Proof of Lemma 5.6. If E is a qlc stratum of [X,ω], then it is sufficient to put
G = 0. From now on, we assume that E is not a qlc stratum of [X,ω]. We shrink Z around
P suitably and take general effective Cartier divisors D1, . . . , Dn+1 with P ∈ SuppDi for
every i, where n = dimX. By Lemma 5.2,

[
X,ω +

∑n+1
i=1 ϕ∗Di

]
naturally becomes a

quasi-log complex analytic space. We take a general point Q ∈ E. By Lemma 5.1, we
see that

[
X,ω +

∑n+1
i=1 ϕ∗Di

]
is not quasi-log canonical at Q. Therefore, we can find

0 < c < 1 such that G := c
∑n+1

i=1 Di and E is a qlc center of [X,ω + ϕ∗G]. This is what
we wanted. □

Similarly, we also have:

Lemma 5.7. Let ϕ : X → Z be a projective surjective morphism between complex ana-
lytic spaces with dimZ > 0 such that [X,ω] is a quasi-log complex analytic space, X is
irreducible, and Nqlc(X,ω) = ∅. Let P be an arbitrary point of Z with dimϕ−1(P ) >
0. Then, after shrinking Z around P suitably, there exists an effective R-Cartier di-
visor G′ on Z such that [X,ω + ϕ∗G′] naturally becomes a quasi-log complex analytic
space, there exists a positive-dimensional qlc center C of [X,ω + ϕ∗G′] with ϕ(C) = P ,
dimNqlc(X,ω + ϕ∗G′) ≤ 0, and Nqlc(X,ω + ϕ∗G′) = ∅ outside ϕ−1(P ).

We will use Lemma 5.7 in the proof of Theorem 9.4.

Sketch of Proof of Lemma 5.7. If there exists a positive-dimensional qlc center C of [X,ω]
with ϕ(C) = P , then it is sufficient to put G′ = 0. So we may assume that there are no
positive-dimensional qlc centers in ϕ−1(P ). From now on, we will use the same notation
as in the proof of Lemma 5.6. It is not difficult to see that we can take 0 < c′ < 1 such
that [X,ω + ϕ∗G′], where G′ := c′

∑n+1
i=1 Di, satisfies all the desired properties. □

We close this section with the following easy lemma.

Lemma 5.8. Let (X,ω, f : (Y,BY ) → X) be a quasi-log complex analytic space. We as-
sume that the support of BY has only finitely many irreducible components. Then we
obtain a Q-divisor Di on Y , a Q-line bundle ωi on X, and a positive real number ri for
1 ≤ i ≤ k such that

(i)
∑k

i=1 ri = 1,
(ii) SuppDi = SuppBY , D

=1
i = B=1

Y , ⌊D>1
i ⌋ = ⌊B>1

Y ⌋, and ⌈−(D<1
i )⌉ = ⌈−(B<1

Y )⌉
for every i,

(iii) ω =
∑k

i=1 riωi holds in Pic(X)⊗Z R and BY =
∑k

i=1 riDi, and
(iv) (X,ωi, f : (Y,Di) → X) is a quasi-log complex analytic space with KY +Di ∼Q f ∗ωi

for every i.

We note that

INqlc(X,ωi) = INqlc(X,ω)
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holds for every i. In particular, if Nqlc(X,ω) = ∅, then Nqlc(X,ωi) = ∅ for every i. We
also note that W is a qlc stratum of [X,ω] if and only if W is a qlc stratum of [X,ωi] for
every i.

Proof of Lemma 5.8. The proof of [Fu10, Lemma 4.25] works without any changes. □

6. Basepoint-free theorem

In this section, we will prove the following basepoint-free theorem for quasi-log complex
analytic spaces, which is a generalization of [Fu8, Theorem 6.5.1] and [Fu16, Theorem
4.2.1].

Theorem 6.1 (Basepoint-free theorem for quasi-log complex analytic spaces). Let

(X,ω, f : (Y,BY ) → X)

be a quasi-log complex analytic space and let π : X → S be a projective morphism between
complex analytic spaces. Let W be a compact subset of S and let L be a line bundle on X
such that L is π-nef over W . We assume that

(i) qL − ω is π-ample over W for some real number q > 0, and
(ii) there exists some open neighborhood of W over which L⊗m|X−∞ is π|X−∞-generated

for every m ≫ 0.

Then there exists a relatively compact open neighborhood U of W such that L⊗m is π-
generated over U for every m ≫ 0.

Proof. By shrinking S around W suitably, we may assume that L⊗m|X−∞ is π|X−∞-
generated for every m ≫ 0 by (ii). We take an arbitrary point w ∈ W . Then it is
sufficient to prove that L⊗m is π-generated for every m ≫ 0 over some relatively compact
open neighborhood of w since W is compact. Hence, we may assume that W = {w},
S is Stein, and π is surjective. We will sometimes shrink S around W suitably without
mentioning it explicitly throughout this proof. We use induction on the dimension of
X \X−∞. We note that Theorem 6.1 obviously holds true when dimX \X−∞ = 0.

Step 1. In this step, we will prove that for every m ≫ 0 there exists an open neighborhood
Um of w such that L⊗m is π-generated around Nqklt(X,ω) over Um.

We put X ′ := Nqklt(X,ω). Then, after shrinking S around w suitably, [X ′, ω′], where
ω′ := ω|X′ , is a quasi-log complex analytic space by adjunction when X ′ ̸= X−∞ (see
Theorem 4.4). If X ′ = X−∞, then L⊗m|X′ is π-generated for every m ≫ 0 by assumption.
If X ′ ̸= X−∞, then L⊗m|X′ is π-generated for every m ≫ 0 by induction on the dimension
of X \ X−∞ after shrinking S around w suitably. We can take an open neighborhood
Um of w such that mL − ω is π-ample over Um. Then R1π∗ (IX′ ⊗ L⊗m) = 0 on Um (see
Theorems 4.7 and 4.8). Thus, the restriction map

π∗L⊗m → π∗
(
L⊗m|X′

)
is surjective on Um. This implies that L⊗m is π-generated around Nqklt(X,ω) over Um.
This is what we wanted.

Step 2. In this step, we will prove that π∗ (L⊗m|X′) ̸= 0 for every m ≫ 0 when X ′ ∩
Nqklt(X,ω) is empty, where X ′ is any connected component of X with w ∈ π(X ′).

Throughout this step, we can freely shrink S around w. Without loss of generality, we
may assume that X itself is connected (see [Fu8, Lemma 6.3.12]). Then, by Lemma 4.9,
X is a normal complex variety. We apply [Fu16, Lemma 4.1.3] to

(X,ω, f : (Y,BY ) → X) .
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Let s be an analytically sufficiently general point of S. Then

(Xs, ω|Xs , fs : (Ys, BYs) → Xs)

is a projective quasi-log canonical pair, where Xs := π−1(s), Ys := (π◦f)−1(s), fs := f |Xs ,
and BYs := BY |Ys . We may assume that L|Xs is nef (see [Fu16, Lemma 2.2.5 and Remark
2.2.7]) and qL|Xs − ω|Xs is ample. By the basepoint-free theorem for quasi-log schemes
(see [Fu8, Theorem 6.5.1]), we obtain that L⊗m|Xs is basepoint-free for every m ≫ 0. In
particular, |L⊗m|Xs | ̸= ∅ for every m ≫ 0. This implies that π∗L⊗m ̸= ∅ for every m ≫ 0.
This is what we wanted.

Step 3. Let p be a prime number and let k be a large positive integer. By Steps 1
and 2, after shrinking S around w suitably, we obtain that π∗L⊗pk ̸= 0 and that L⊗pk

is π-generated around Nqklt(X,ω). In this step, we will prove that if the relative base

locus Bsπ |L⊗pk | with the reduced structure is not empty over w then, after shrinking

S around w suitably again, there exists a positive integer l > k such that Bsπ |L⊗pl | is
strictly smaller than Bsπ |L⊗pk |.

From now on, we will sometimes shrink S around w suitably without mentioning it
explicitly. Let f : (Y,BY ) → X be a quasi-log resolution. We take a general member D ∈
|L⊗pk |. Then we may assume that f ∗D intersects any strata of (Y, SuppBY ) transversally

over X \ Bsπ |L⊗pk | by Bertini’s theorem and that f ∗D contains no strata of (Y,BY ).
By taking a suitable projective bimeromorphic modification of M , the ambient space
of (Y,BY ), we may assume that (Y, f ∗D + SuppBY ) is an analytic globally embedded
simple normal crossing pair (see [BM1] and [Fu8, Proposition 6.3.1]). After shrinking S
around w suitably, we take the maximal positive real number c such that BY + cf ∗D is a
subboundary over X \X−∞. We note that c ≤ 1 holds. Here, we used the fact that the
natural map OX → f∗OY (⌈−(B<1

Y )⌉) is an isomorphism over X \X−∞ (see [Fu11, Claim
3.5]). Then

f : (Y,BY + cf ∗D) → X

gives a natural quasi-log structure on the pair [X,ω′ := ω + cD] (see Lemma 5.2, [Fu11,
Proposition 3.4], and so on). We note that Nqlc(X,ω) = Nqlc(X,ω′) holds by con-
struction. We note that we may assume that [X,ω′] has a qlc center C that intersects

Bsπ |L⊗pk |∩π−1(w). Since (q+cpk)L−ω′ is π-ample over W , for every m ≫ 0, there exists
some open neighborhood U ′

m of w such that L⊗m is π-generated around Nqklt(X,ω′) over

U ′
m by Step 1. In particular, L⊗m is π-generated around C over U ′

m. Thus, Bsπ |L⊗pl | is
strictly smaller than Bsπ |L⊗pk | for some positive integer l > k. This is what we wanted.

Step 4. In this step, we will complete the proof.
By using Step 3 finitely many times, we obtain an open neighborhood Vp of w and a

large positive integer n such that L⊗pn is π-generated over Vp. We take another prime
number p′. By the same argument, we obtain an open neighborhood Vp′ of w and a large

positive integer n′ such that L⊗p′n
′
is π-generated over Vp′ . Hence, we can take an open

neighborhood Uw of w and a positive integer m0 such that L⊗m is π-generated over Uw

for every m ≥ m0 (see Lemma 8.6 below).

As we mentioned above, we can obtain a desired open neighborhood U of W since W
is compact. We finish the proof. □
By combining Theorem 6.1 with Example 1.5, we can recover the basepoint-free theorem

for normal pairs (see [Fu16, Theorem 4.2.1]).
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Remark 6.2. For normal pairs, we first established the non-vanishing theorem (see [Fu16,
Theorem 4.1.1]) and then proved the basepoint-free theorem (see [Fu16, Theorem 4.2.1]).
On the other hand, in this section, we can directly prove the basepoint-free theorem (see
Theorem 6.1) because quasi-log structures behave well for inductive treatments.

7. Basepoint-free theorem of Reid–Fukuda type

In this section, we will prove the basepoint-free theorem of Reid–Fukuda type. If we
apply this theorem to kawamata log terminal pairs, then we can recover the Kawamata–
Shokurov basepoint-free theorem for projective morphisms between complex analytic
spaces.

Theorem 7.1 (Basepoint-free theorem of Reid–Fukuda type for quasi-log complex an-
alytic spaces). Let [X,ω] be a quasi-log complex analytic space and let π : X → S be a
projective morphism of complex analytic spaces. Let L be a π-nef line bundle on X such
that qL− ω is nef and log big over S with respect to [X,ω] for some positive real number
q. This means that qL−ω is nef over S and that (qL−ω)|C is big over π(C) for every qlc
stratum C of [X,ω]. We assume that L⊗m|X−∞ is π-generated for every m ≫ 0. Then,
after replacing S with any relatively compact open subset of S, L⊗m is π-generated for
every m ≫ 0.

The following proof is essentially the same as the one for [Fu6, Theorem 1.1].

Proof of Theorem 7.1. In Step 1, we will reduce the problem to the case where X \X−∞
is irreducible and the relative base locus of L⊗m is disjoint from Nqklt(X,ω) for every
m ≫ 0.

Step 1. We use induction on dim(X \X−∞). It is obvious that the statement holds when
dim(X \ X−∞) = 0. We take an arbitrary point P ∈ S. It is sufficient to prove the
statement over some open neighborhood of P . Hence we will freely shrink S around P
throughout this proof. In particular, we may assume that S is Stein. Let C be any qlc
stratum of [X,ω]. We put X ′ := C ∪Nqlc(X,ω). By adjunction (see Theorem 4.4), after
replacing S with any relatively compact open neighborhood of P , [X ′, ω′ := ω|X′ ] is a
quasi-log complex analytic space. By the vanishing theorem (see Theorem 4.8), we have
R1π∗ (IX′ ⊗ L⊗m) = 0 for every m ≥ q. Therefore, the natural restriction map

π∗L⊗m → π∗
(
L⊗m|X′

)
is surjective for every m ≥ q. This implies that we may assume that X\X−∞ is irreducible
by replacing X with X ′. If Nqklt(X,ω) = Nqlc(X,ω), then L⊗m|Nqklt(X,ω) is π-generated
for every m ≫ 0 by assumption. If Nqklt(X,ω) ̸= Nqlc(X,ω), then we know that
L⊗m|Nqklt(X,ω) is π-generated for every m ≫ 0 by induction on dim(X \ X−∞). By the

vanishing theorem again (see Theorems 4.7 and 4.8), we have R1π∗
(
INqklt(X,ω) ⊗ L⊗m

)
= 0

for every m ≥ q. Thus, the restriction map

π∗L⊗m → π∗
(
L⊗m|Nqklt(X,ω)

)
is surjective for every m ≥ q. Hence, the relative base locus Bsπ |L⊗m| of L⊗m is disjoint
from Nqklt(X,ω) for every m ≫ 0.

Step 2. In this step, we will prove the basepoint-freeness under the extra assumption
that X is the disjoint union of X−∞ = Nqlc(X,ω) and a qlc stratum C of [X,ω] such that
C is the unique qlc stratum of [X,ω].
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In the above setting, we may assume that X−∞ = ∅ (see [Fu8, Lemma 6.3.12]). By
Kodaira’s lemma, after replacing S with any relatively compact open neighborhood of P ,
we can write

qL − ω ∼R A+ E

on X such that A is a π-ample Q-divisor on X and E is an effective R-Cartier divisor on
X. We put ω̃ = ω + εE with 0 < ε ≪ 1. Then [X, ω̃] is a quasi-log complex analytic
space with Nqlc(X, ω̃) = ∅ by Lemma 5.5. We note that

qL − ω̃ ∼R (1− ε)(qL − ω) + εA

is π-ample. Therefore, by the basepoint-free theorem (see Theorem 6.1), we obtain that
L⊗m is π-generated for every m ≫ 0 over some open neighborhood of P .

Step 3. By Step 2, we may assume that X is connected and Nqklt(X,ω) ̸= ∅. Let p be
any prime number. Then, by Step 1, the relative base locus Bsπ |plL| of plL is strictly
smaller than X for some large positive integer l. In this step, we will prove the following
claim.

Claim. If the relative base locus Bsπ |plL| with the reduced structure is not empty over
P , then there is a positive integer k with k > l such that Bsπ |pkL| is strictly smaller than
Bsπ |plL| after shrinking S around P suitably.

Proof of Claim. Note that the inclusion Bsπ |pkL| ⊆ Bsπ |plL| obviously holds for every
positive integer k > l. Let us consider [X†, ω†] as in Lemma 5.3. Since (qL− ω)|X† is nef
and big over S, after replacing S with any relatively compact open neighborhood of P ,
we can write

qL|X† − ω† ∼R A+ E

on X† by Kodaira’s lemma, where A is a π-ample Q-divisor on X† and E is an effective R-
Cartier divisor on X†. By Lemma 5.5, after replacing S with any relatively compact Stein
open neighborhood of P , we have a new quasi-log structure on [X†, ω̃], where ω̃ = ω†+εE
with 0 < ε ≪ 1, such that

(7.1) Nqlc(X†, ω̃) =

(⋃
i∈I

Ci

)
∪ Nqlc(X†, ω†),

where {Ci}i∈I is the set of qlc centers of [X†, ω†] contained in SuppE. We put n := dimX†.
Let D1, . . . , Dn+1 be general members of |plL|. Let f : (Y,BY ) → X† be a quasi-log
resolution of [X†, ω̃]. We consider

f :

(
Y,BY +

n+1∑
i=1

f ∗Di

)
→ X†.

Without loss of generality, we may assume that(
Y,

n+1∑
i=1

f ∗Di + SuppBY

)
is an analytic globally embedded simple normal crossing pair by taking a suitable pro-
jective bimeromorphic modification of the ambient space of (Y,BY ) (see [BM1] and [Fu8,
Proposition 6.3.1]). Then, after shrinking S around P suitably, we can take 0 < c < 1
such that

f :

(
Y,BY + c

n+1∑
i=1

f ∗Di

)
→ X†
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gives a quasi-log structure on
[
X†, ω̃ + c

∑n+1
i=1 Di

]
such that

[
X†, ω̃ + c

∑n+1
i=1 Di

]
has only

quasi-log canonical singularities on X† \Nqlc(X†, ω̃) and that there exists a qlc center C0

of
[
X†, ω̃ + c

∑n+1
i=1 Di

]
contained in Bsπ |plL| with C0 ∩π−1(P ) ̸= ∅ (see Lemmas 5.1 and

5.2). We put ω̃ + c
∑n+1

i=1 Di = ω. Then, by construction,

C0 ∩ Nqlc(X†, ω) = ∅

holds because

Bsπ |plL| ∩ Nqklt(X,ω) = ∅.
Note that Nqlc(X†, ω) = Nqlc(X†, ω̃) by construction. We also note that

(q + c(n+ 1)pl)L|X† − ω ∼R (1− ε)(qL|X† − ω†) + εA

is ample over S. Therefore,

(7.2) π∗
(
L⊗m|X†

)
→ π∗

(
L⊗m|C0

)
⊕ π∗

(
L⊗m|Nqlc(X†,ω)

)
is surjective for every m ≥ q+c(n+1)pl by Theorem 4.8. Moreover, L⊗m|C0 is π-generated
for every m ≫ 0 by the basepoint-free theorem (see Theorem 6.1). Note that [C0, ω|C0 ] is
a quasi-log complex analytic space with only quasi-log canonical singularities (see [Fu8,

Lemma 6.3.12]). Therefore, we can construct a section s of L⊗pk |X† for some positive
integer k > l such that s|C0 is not zero and s is zero on Nqlc(X†, ω) by (7.2). Thus s is
zero on

Nqlc(X†, ω) = Nqlc(X†, ω̃) =

(⋃
i∈I

Ci

)
∪ Nqlc(X†, ω†)

by (7.1). In particular, s is zero on Nqlc(X†, ω†). Hence, s can be seen as a section of

L⊗pk because INqlc(X†,ω†) = INqlc(X,ω) by construction (see Lemma 5.3). More precisely,
we can see

s ∈ π∗

(
INqlc(X†,ω) ⊗ L⊗pk

)
by construction. Since

INqlc(X†,ω) ⊂ INqlc(X†,ω†) = INqlc(X,ω),

we have

s ∈ π∗

(
INqlc(X†,ω) ⊗ L⊗pk

)
⊂ π∗

(
INqlc(X,ω) ⊗ L⊗pk

)
⊂ π∗

(
L⊗pk

)
.

Therefore, Bsπ |pkL| is strictly smaller than Bsπ |plL| over P . We complete the proof of
Claim. □

Step 4. By the noetherian induction, after shrinking S around P suitably, plL and p′l
′L

are both π-generated for large positive integers l and l′, where p and p′ are distinct prime
numbers. Hence there exists a positive integer m0 such that L⊗m is π-generated for every
m ≥ m0 (see Lemma 8.6 below).

We finish the proof. □

As we saw above, since π : X → S is projective in Theorem 7.1, the proof of [Fu6,
Theorem 1.1] works even when π : X → S is not algebraic. When π : X → S is algebraic
but is only proper, the proof of Theorem 7.1 is unexpectedly difficult. For the details, see
the proof of [Fu12, Theorem 1.1].
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8. Effective freeness

In this section, we will prove the following effective freeness and effective very ampleness.
This type of effective freeness was originally due to Kollár (see [Ko1]). Note that his
method was already generalized for quasi-log schemes in [Fu7]. Here, we give a slightly
simpler proof for quasi-log complex analytic spaces.

Theorem 8.1 (Effective freeness for quasi-log complex analytic spaces). Let [X,ω] be a
quasi-log complex analytic space with X−∞ = ∅ and let π : X → S be a projective morphism
between complex analytic spaces. Let L be a π-nef line bundle on X such that aL − ω
is π-ample over S for some non-negative integer a. Then there exists a positive integer
m = m(dimX, a), which only depends on dimX and a, such that L⊗m is π-generated.
Moreover, there exists a positive integer m0 = m0(dimX, a) depending only on dimX and
a such that L⊗l is π-generated for every l ≥ m0.

If ω is a Q-line bundle in Theorem 8.1, then we have:

Theorem 8.2. In Theorem 8.1, if ω is a Q-line bundle (or a globally Q-Cartier divisor),
then we may replace the assumption that aL − ω is π-ample over S with a weaker one
that aL − ω is nef and log big over S with respect to [X,ω].

If L is π-ample in Theorem 8.1, then we have the following effective very ampleness.

Theorem 8.3 (Effective very ampleness for quasi-log complex analytic spaces). Let [X,ω]
be a quasi-log complex analytic space with X−∞ = ∅ and let π : X → S be a projective
morphism between complex analytic spaces. Let L be a π-ample line bundle on X such
that aL− ω is π-nef over S for some non-negative integer a. Then there exists a positive
integer m′ = m′(dimX, a) depending only on dimX and a such that L⊗m′

is π-very ample.
Moreover, there exists a positive integer m′

0 = m′
0(dimX, a) depending only on dimX and

a such that L⊗l′ is π-very ample for every l′ ≥ m′
0.

We will use the following easy lemmas in the proof of Theorem 8.1.

Lemma 8.4. Let P (x) be a polynomial and let a and n be positive integers. Assume that,
with at most n exceptions, P (a+ j) ̸= 0 holds for every non-negative integer j. Then, for
every positive integer m ≥ 2(a+n), there exists a non-negative integer j0 with 0 ≤ j0 ≤ n
such that P (a+ j0) ̸= 0 and P (m− a− j0) ̸= 0.

Proof. We note that m− a− j = a+ (m− 2a)− j and m− 2a ≥ 2n. Therefore, we can
easily find some non-negative integer j0 with 0 ≤ j0 ≤ n such that P (a + j0) ̸= 0 and
P (m− a− j0) ̸= 0. □
Lemma 8.5. Let n0 and n1 be positive integers such that gcd(n0, n1) = 1. We put
n2 := (kn0 + 1)n1, where k is any positive integer. Then gcd(n0, n2) = 1.

Proof. It is obvious. □
Lemma 8.6. Let a and b be positive integers with 1 < a < b such that gcd(a, b) = 1.
Then, for any positive integer l with l ≥ a

(
b− ⌈ b

a
⌉
)
, there exist non-negative integers u

and v such that l = ua+ vb.

Proof. It is an easy exercise. For the details, see, for example, the proof of [Fu12, Lemma
4.3]. □
Let us prove Theorem 8.1. The proof is new and is slightly simpler than the one given

in [Fu7] for quasi-log schemes.
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Proof of Theorem 8.1. We take an arbitrary point s ∈ S. It is sufficient to prove the
existence of m(dimX, a) and m0(dimX, a) over some open neighborhood of s. Therefore,
we replace S with a relatively compact Stein open neighborhood of s.

Step 1. Let X ′ be an irreducible component of X. Then X ′ is a qlc stratum of [X,ω].
Hence, by adjunction (see Theorem 4.4), we see that [X ′, ω′ := ω|X′ ] is a quasi-log complex
analytic space with X ′

−∞ = ∅. By the vanishing theorem (see Theorem 4.8), we have

R1π∗(IX′ ⊗ L⊗j) = 0

for every j ≥ a. Thus the natural restriction map

π∗L⊗j → π∗(L⊗j|X′)

is surjective for every j ≥ a. Therefore, we replace X with X ′ and may assume that X is
irreducible.

Step 2. In this step, we will prove the following claims.

Claim 1 (see [Fu7, Lemma 3.3]). For every positive integer m1 ≥ 2(a + dimX), there
exists an effective Cartier divisor D1 on X such that D1 ∈ |L⊗m1 | and that SuppD1

contains no qlc strata of [X,ω].

Proof of Claim 1. Let C be any qlc stratum of [X,ω]. We consider the following short
exact sequence:

0 → IC ⊗ L⊗j → L⊗j → L⊗j|C → 0,

where IC is the defining ideal sheaf of C on X. By the vanishing theorem (see Theorem
4.8),

Riπ∗
(
IC ⊗ L⊗j

)
= Riπ∗L⊗j = Riπ∗

(
L⊗j|C

)
= 0

for every i ≥ 1 and j ≥ a. Therefore,

χ(Cs,L⊗j|Cs) = dimH0(Cs,L⊗j|Cs)

holds for j ≥ a, where Cs is an analytically sufficiently general fiber of C → π(C). Note
that χ(Cs,L⊗j|Cs) is a non-zero polynomial in j since L⊗m is π-generated for every m ≫ 0
by the basepoint-free theorem (see Theorem 6.1). We also note that the restriction map

(8.1) π∗L⊗j → π∗
(
L⊗j|C

)
is surjective for every j ≥ a. Thus, with at most dimCs exceptions, we have

dimH0(Cs,L⊗(a+j)|Cs) ̸= 0

for j ≥ 0. By Lemma 8.4, we see that

dimH0(Cs,L⊗m1 |Cs) ̸= 0

holds for m1 ≥ 2(a+ dimX). Therefore, we have C ̸⊂ Bsπ |L⊗m1 | for m1 ≥ 2(a+ dimX)
by (8.1). By this observation, we can take a desired effective Cartier divisor D1 ∈ |L⊗m1 |
for every m1 ≥ 2(a+ dimX). □

By the basepoint-free theorem (see Theorem 6.1), we have the commutative diagram:

X

π
��@

@@
@@

@@
@

p // Z

q
����
��
��
��

S

such that L ≃ p∗LZ for some q-ample line bundle LZ on Z with p∗OX ≃ OZ .
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Claim 2. If Bsπ |L⊗m1 | contains no qlc strata of [X,ω], then

dimBsq |L⊗m2
Z | < dimBsq |L⊗m1

Z |
holds for every positive integer m2 ≥ 2 (a+ (dimX + 1)m1 + dimX) with m1|m2.

Proof of Claim 2. We take general members D1, . . . , DdimX+1 ∈ |L⊗m1 | = |p∗L⊗m1
Z |. Let

B be any irreducible component of Bsq |L⊗m1
Z |. Then, by Lemmas 5.1 and 5.2, we can

take 0 < c < 1 such that [X,ω + cD], where D :=
∑dimX+1

i=1 Di, has a natural quasi-log
structure with the following properties:

• there exists a qlc center V of [X,ω + cD] such that p(V ) = B, and
• p(Nqlc(X,ω + cD)) does not contain B.

We put V ′ := V ∪Nqlc(X,ω+cD). Then, by the proof of adjunction (see (4.3) in Theorem
4.4), we have the following short exact sequence:

0 → IV ′ → INqlc(X,ω+cD) → INqlc(V ′,(ω+cD)|V ′ ) → 0.

We note that L⊗j − (ω + cD) is π-ample for every j ≥ a+ (dimX + 1)m1. Therefore,

Riπ∗
(
IV ′ ⊗ L⊗j

)
= Riπ∗

(
INqlc(X,ω+cD) ⊗ L⊗j

)
= Riπ∗

(
INqlc(V ′,(ω+cD)|V ′ ) ⊗ L⊗j

)
= 0

for every i > 0 and j ≥ a + (dimX + 1)m1. In particular, we have the following short
exact sequence:

0 → π∗
(
IV ′ ⊗ L⊗j

)
→ π∗

(
INqlc(X,ω+cD) ⊗ L⊗j

)
→ π∗

(
INqlc(V ′,(ω+cD)|V ′ ) ⊗ L⊗j

)
→ 0

(8.2)

for j ≥ a + (dimX + 1)m1. Let V ′ p′−→ V ′′ → p(V ′) be the Stein factorization of
V ′ → p(V ′). By construction, we see that p′∗

(
INqlc(V ′,(ω+cD)|V ′ )

)
is a non-zero ideal sheaf

on V ′′. Therefore,
π∗
(
INqlc(V ′,(ω+cD)|V ′ ) ⊗ L⊗k

)
̸= 0

for every k ≫ 0 since L ≃ p∗LZ and LZ is q-ample. Let s be an analytically sufficiently
general point of π(V ). We put V ′

s := V ′|π−1(s). Thus, with at most dim V ′
s exceptions,

π∗
(
INqlc(V ′,(ω+cD)|V ′ ) ⊗ L⊗(a+(dimX+1)m1+j)

)
̸= 0

for j ≥ 0. Hence,
π∗
(
INqlc(V ′,(ω+cD)|V ′ ) ⊗ L⊗m2

)
̸= 0

for m2 ≥ 2 (a+ (dimX + 1)m1 + dimX) by Lemma 8.4. Thus, by (8.2), we obtain
that V ̸⊂ Bsπ |L⊗m2 | for every m2 ≥ 2 (a+ (dimX + 1)m1 + dimX). This implies that
B = p(V ) ̸⊂ Bsq |L⊗m2

Z | for every m2 ≥ 2 (a+ (dimX + 1)m1 + dimX). Therefore,

dimBsq |L⊗m2
Z | < dimBsq |L⊗m1

Z |
holds for m2 ≥ 2 (a+ (dimX + 1)m1 + dimX) with m1|m2. This is what we wanted. We
note that B is any irreducible component of Bsq |L⊗m1

Z |. □
Step 3. In this step, we will complete the proof.

By Claim 1, we see that Bsπ |L⊗(2(a+dimX))| ⊊ X and Bsπ |L⊗(2(a+dimX))| contains no
qlc strata of [X,ω]. Then we use Claim 2 finitely many times. We finally obtain m =
m(dimX, a), which only depends on dimX and a, such that L⊗m(dimX,a) is π-generated.
By Claims 1, 2, and Lemma 8.5, we can also take m†, which only depends on dimX and
a, such that L⊗m†

is π-generated with gcd(m(dimX, a),m†) = 1. Therefore, by Lemma
8.6, we can find a positive integer m0 = m0(dimX, a) depending only on dimX and a
such that L⊗l is π-generated for every l ≥ m0(dimX, a).
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We finish the proof. □

Proof of Theorem 8.2. We take a positive integer b with b ≥ a such that bω is a line
bundle on X. We put M := a(b + 1)L − bω. Then M is a π-nef line bundle such that
M and M − ω = (b + 1)(aL − ω) are nef and log big over S with respect to [X,ω].
After replacing S with any relatively compact open subset of S, we have a contraction
morphism ϕ : X → X ′ over S associated to M and a contraction morphism p : X → Z
over S associated to L by the basepoint-free theorem of Reid–Fukuda type (see Theorem
7.1). Then we have the following commutative diagram:

X
φ

~~||
||
||
|

p

  @
@@

@@
@@

@

X ′

π′
  B

BB
BB

BB
B

// Z

q
~~~~
~~
~~
~~

S

such that L ≃ ϕ∗L′ for some line bundle L′ on X ′ and ω ∼Q ϕ∗ω′ for some Q-line bundle
ω′ on X ′. Let f : (Y,BY ) → X be a quasi-log resolution of [X,ω]. Then

(X ′, ω′, ϕ ◦ f : (Y,BY ) → X ′)

naturally becomes a quasi-log complex analytic space with X ′
−∞ = ∅. By construction,

L′ is π′-nef over S and (a + 1)L′ − ω′ is π′-ample over S since a + 1 ≥ a(b+1)
b

. We note
that

(a+ 1)L′ − ω′ ∼Q
1

b
M′ +

(
(a+ 1)− a(b+ 1)

b

)
L′,

where M ≃ ϕ∗M′. Thus, by Theorem 8.1, we obtain that L′⊗m(dimX,a+1) is π′-generated
and L′⊗l is π′-generated for every l ≥ m0(dimX, a+1). This implies the desired effective
freeness for L ≃ ϕ∗L′. □

Let us prove Theorem 8.3.

Sketch of Proof of Theorem 8.3. By assumption, (a+1)L−ω is π-ample over S. We put

m′ = m′(dimX, a) := (dimX + 1)×m(dimX, a+ 1),

where m(dimX, a+1) is a positive integer obtained in Theorem 8.1. Then, we can check
that L⊗m′

is π-very ample (see, for example, [Fu7, Lemma 4.1] and [Fu9, Lemma 7.1]).
We put

m′
0 = m′

0(dimX, a) := m0(dimX, a+ 1) +m′(dimX, a),

where m0(dimX, a+ 1) is a positive integer obtained in Theorem 8.1. Then, it is easy to
see that L⊗l′ is π-very ample for every l′ ≥ m′

0. □

Finally, we prove Theorem 1.6.

Proof of Theorem 1.6. We replace S with any relatively compact open subset of S. Then
[X,KX+∆] naturally becomes a quasi-log complex analytic space with Nqlc(X,KX+∆) =
∅. By Theorems 8.1 and 8.2, there exists a positive integer m0 depending only on dimX
and a such that L⊗m is π-generated for every m ≥ m0. We note that m0 is independent
of S. Hence we see that L⊗m is π-generated for every m ≥ m0 without replacing S with
a relatively compact open subset of S. This is what we wanted. □
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9. Cone theorem

In this section, we will briefly see that the cone and contraction theorem holds for quasi-
log complex analytic spaces. We note that we have already established it for normal pairs
in [Fu16, Theorem 1.1.6]. Let us start with the rationality theorem for quasi-log complex
analytic spaces.

Theorem 9.1 (Rationality theorem for quasi-log complex analytic spaces). Let π : X → S
be a projective morphism of complex analytic spaces and let W be a compact subset of S.
Let [X,ω] be a quasi-log complex analytic space such that ω is a Q-line bundle. Let H be
a π-ample line bundle on X. Assume that ω is not π-nef over W and that r is a positive
real number such that

(i) H + rω is π-nef over W but is not π-ample over W , and
(ii) (H + rω) |Nqlc(X,ω) is π|Nqlc(X,ω)-ample over W .

Then r is a rational number, and in reduced form, it has denominator at most a(d + 1),
where d := maxw∈W dim π−1(w) and a is a positive integer such that aω is a line bundle
in a neighborhood of π−1(W ).

There are no difficulties to adapt the proof of [Fu16, Theorem 4.3.1] for Theorem 9.1.
So we omit the proof of Theorem 9.1 here. By using the basepoint-free theorem (see
Theorem 6.1) and the rationality theorem (see Theorem 9.1), we can establish the cone
and contraction theorem for quasi-log complex analytic spaces.

Theorem 9.2 (Cone and contraction theorem for quasi-log complex analytic spaces). Let
[X,ω] be a quasi-log complex analytic space and let π : X → S be a projective morphism of
complex analytic spaces. Let W be a compact subset of S. We assume that the dimension
of N1(X/S;W ) is finite. Then we have

NE(X/S;W ) = NE(X/S;W )ω≥0 +NE(X/S;W )Nqlc(X,ω) +
∑
j

Rj

with the following properties.

(1) Nqlc(X,ω) is the non-qlc locus of [X,ω] and NE(X/S;W )Nqlc(X,ω) is the subcone

of NE(X/S;W ) which is the closure of the convex cone spanned by the projective
integral curves C on Nqlc(X,ω) such that π(C) is a point of W .

(2) Rj is an ω-negative extremal ray of NE(X/S;W ) which satisfies

Rj ∩ NE(X/S;W )Nqlc(X,ω) = {0}
for every j.

(3) Let A be a π-ample R-line bundle on X. Then there are only finitely many Rj’s
included in NE(X/S;W )(ω+A)<0. In particular, the Rj’s are discrete in the half-

space NE(X/S;W )ω<0.
(4) Let F be any face of NE(X/S;W ) such that

F ∩
(
NE(X/S;W )ω≥0 +NE(X/S;W )Nqlc(X,ω)

)
= {0}.

Then, after shrinking S around W suitably, there exists a contraction morphism
ϕF : X → Z over S satisfying the following properties.
(i) Let C be a projective integral curve on X such that π(C) is a point of W .

Then ϕF (C) is a point if and only if the numerical equivalence class [C] of C
is in F .

(ii) The natural map OZ → (ϕF )∗OX is an isomorphism.
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(iii) Let L be a line bundle on X such that L · C = 0 for every curve C with
[C] ∈ F . Then, after shrinking S around W suitably again, there exists a line
bundle LZ on Z such that L ≃ ϕ∗

FLZ holds.

Sketch of Proof of Theorem 9.2. The proof of the cone theorem for normal pairs in the
complex analytic setting, which is described in [Fu16, Section 4.6], works with only some
minor modifications since we have already established the basepoint-free theorem (see
Theorem 6.1) and the rationality theorem (see Theorem 9.1) for quasi-log complex analytic
spaces. Note that we can use Lemma 5.8 to reduce problems to the case where ω is a
Q-line bundle. □

As an immediate application of Theorem 9.2, we have:

Theorem 9.3 (Basepoint-freeness for R-line bundles). Let π : X → S be a projective
morphism between complex analytic spaces and let W be a compact subset of S such that
the dimension of N1(X/S;W ) is finite. Let [X,ω] be a quasi-log complex analytic space
with X−∞ = ∅ and let L be an R-line bundle defined on some open neighborhood of
π−1(W ) such that L is π-nef over W . We assume that aL − ω is π-ample over W for
some positive real number a. Then there exists an open neighborhood U of W such that
L is π-semi-ample over U .

Sketch of Proof of Theorem 9.3. Without loss of generality, we may assume that a = 1 by
replacing L with aL. As in the proof of [Fu16, Theorem 5.3.1], we can write L =

∑m
i=1 riLi

such that

• Li is a Q-line bundle for every i,
• ri is a positive real number for every i with

∑m
i=1 ri = 1, and

• Li − ω is π-ample over W for every i,

with the aid of the cone theorem (see Theorem 9.2). By the usual basepoint-free theorem
(see Theorem 6.1), Li is π-semi-ample over some open neighborhood of W for every i.
This implies that L is a finite positive R-linear combination of π-semi-ample line bundles
over some open neighborhood U of W . This is what we wanted. □
We have a supplementary result, which is a generalization of [Fu16, Theorem 1.1.8].

Theorem 9.4. Let [X,ω] be a quasi-log complex analytic space with X−∞ = ∅, that is,
[X,ω] is a quasi-log canonical pair. Let π : X → S be a projective morphism of complex
analytic spaces and let W be a compact subset of S such that the dimension of N1(X/S;W )
is finite. Suppose that π : X → S is decomposed as

π : X
f // S♭ g // S

such that S♭ is projective over S. Let AS♭ be a g-ample line bundle on S♭. Let R be an
(ω + (dimX + 1)f ∗AS♭)-negative extremal ray of NE(X/S;W ). Then R is an ω-negative
extremal ray of NE

(
X/S♭; g−1(W )

)
, that is, R · f ∗AS♭ = 0.

Sketch of Proof of Theorem 9.4. We put L := f ∗AS♭ . We may assume that dimX ≥ 1.
Since L is π-nef over W , R is an ω-negative extremal ray of NE(X/S;W ). After shrinking
S around W suitably, we obtain a contraction morphism ϕR : X → Z over S associated
to R by the cone and contraction theorem (see Theorem 9.2). It is sufficient to prove
that L · R = 0 holds. We will get a contradiction by supposing that L · R > 0 holds. If
there exists a positive-dimensional irreducible component X ′ of X such that ϕR(X

′) is a
point. Then, by applying the argument in Step 1 in the proof of [Fu16, Theorem 1.1.8] to
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[X ′, ω|X′ ], we get a contradiction. Hence, we may assume that dim ϕR(X
′) ≥ 1 holds for

every positive-dimensional irreducible component X ′ of X. By adjunction (see Theorem
4.4), [X ′, ω|X′ ] is a quasi-log canonical pair. By considering [X ′, ω|X′ ], we may assume
that X is irreducible. We take a point P ∈ Z with ϕ−1

R (P ) ≥ 1. By Lemma 5.7, after
shrinking Z around P suitably, we can take an effective R-Cartier divisor G′ on Z such that
[X,ω+ϕ∗

RG
′] naturally becomes a quasi-log complex analytic space, there exists a positive-

dimensional qlc center C of [X,ω + ϕ∗
RG

′] with ϕ(C) = P , dimNqlc(X,ω + ϕ∗
RG

′) ≤ 0,
and Nqlc(X,ω + ϕ∗

RG
′) = ∅ outside ϕ−1

R (P ). Then, by adjunction (see Theorem 4.4),
we can construct a projective irreducible quasi-log scheme [X ′′, ω′′ := ω|X′′ ] such that
ϕR(X

′′) = P , −ω′′ is ample, dimX ′′ ≥ 1, and dimX ′′
−∞ ≤ 0. By construction, L|X′′ is

ample and ω′′+rL|X′′ is numerically trivial for some r > dimX+1. This is a contradiction
by [Fu16, Lemma 4.7.1]. Anyway, we obtain that L ·R = 0. This is what we wanted. □

As an obvious corollary of Theorem 9.4, we have:

Corollary 9.5. Let [X,ω] be a quasi-log complex analytic space with X−∞ = ∅, that is,
[X,ω] is a quasi-log canonical pair. Let π : X → S be a projective morphism of complex
analytic spaces and let A be any π-ample line bundle on X. Then ω + (dimX + 1)A is
always nef over S.

Corollary 9.5 is a generalization of [Fu16, Corollary 1.1.9] (see also [Fu11, Corollaries
1.2 and 1.8]).

Proof of Corollary 9.5. Let P ∈ S be any point. We put W := {P}. Then we can check
that the dimension of N1(X/S;W ) is finite (see Remark 2.7). Assume that there exists
an (ω + (dimX + 1)A)-negative extremal ray R of NE(X/S;W ). We apply Theorem 9.4
by putting S♭ := S. Then we obtain R · A = 0. This is a contradiction since A is
ample. Therefore, there are no (ω + (dimX + 1)A)-negative extremal rays. This implies
that ω + (dimX + 1)A is π-nef over W . Since P is any point of S, we obtain that
ω + (dimX + 1)A is nef over S. We finish the proof. □
9.1. On ω-negative extremal rational curves. The following results easily follow from
[Fu10]. They generalize [Ka]. We explicitly state them here for the reader’s convenience.
We think that [Fu10] shows that the framework of quasi-log structures is useful. We note
that the results in this subsection depend on Mori’s bend and break method.

Theorem 9.6 (see [Fu16, Theorem 5.1.1]). Let ϕ : X → Z be a projective morphism of
complex analytic spaces such that [X,ω] is a quasi-log complex analytic space. Assume
that −ω is ϕ-ample. Let P be an arbitrary point of Z. Let E be any positive-dimensional
irreducible component of ϕ−1(P ) such that E ̸⊂ Nqlc(X,ω). Then E is covered by possibly
singular rational curves ` with

0 < −ω · ` ≤ 2 dimE.

In particular, E is uniruled.

Sketch of Proof of Theorem 9.6. If E is an irreducible component of X, then [E, ω|E] is
a projective quasi-log scheme by adjunction (see Theorem 4.4) and Lemma 5.3 since
ϕ(E) = P . Hence, the statement follows from [Fu10, Theorem 1.12]. From now on, we
assume that E is not an irreducible component of X. We take an irreducible component
X ′ of X such that E ⊂ X ′. By adjunction and Lemma 5.3 again, [X ′, ω|X′ ] is a quasi-log
complex analytic space. By replacing X with X ′, we may assume that X is irreducible.
By Lemma 5.6, after shrinking Z around P suitably, we can take an effective R-Cartier
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divisor G on Z such that [X,ω + ϕ∗G] naturally becomes a quasi-log complex analytic
space and that E is a qlc center of [X,ω + ϕ∗G]. By adjunction (see Theorem 4.4) and
Lemma 5.3 (see also the proof of [Fu16, Theorem 5.1.1]), [E, ω|E] is a projective quasi-log
scheme such that −ω|E is ample since ϕ(E) = P . Thus, by [Fu10, Theorem 1.12], we
have the desired properties. □
Hence, we have:

Theorem 9.7 (Lengths of ω-negative extremal rational curves, see [Fu16, Theorem
5.1.3]). Let π : X → S be a projective morphism of complex analytic spaces such that
[X,ω] is a quasi-log complex analytic space and let W be a compact subset of S such that
the dimension of N1(X/S;W ) is finite. If R is an ω-negative extremal ray of NE(X/S;W )
which is relatively ample at Nqlc(X,ω), that is, R∩NE(X/S;W )Nqlc(X,ω) = {0}, then there
exists a possibly singular rational curve ` spanning R with

0 < −ω · ` ≤ 2 dimX.

Sketch of Proof of Theorem 9.7. By the cone and contraction theorem (see Theorem 9.2),
we have a contraction morphism ϕR : X → Z over S associated to R after shrink-
ing S around W suitably. By construction, −ω is ϕR-ample and ϕR : Nqlc(X,ω) →
ϕR(Nqlc(X,ω)) is finite. Thus, by Theorem 9.6, we can find a rational curve ` in a fiber
of ϕR with 0 < −ω · ` ≤ 2 dimX. This ` is a desired rational curve spanning R. □
Theorem 9.7 will play a crucial role in Subsection 10.2. We close this subsection with

a complex analytic generalization of [Fu10, Theorem 1.14].

Theorem 9.8 (Rationally chain connectedness, see [Fu10, Theorem 1.14]). Let π : X → S
be a projective morphism of complex analytic spaces with π∗OX ≃ OS and let [X,ω] be a
quasi-log complex analytic space. Assume that −ω is π-ample. Then π−1(P ) is rationally
chain connected modulo π−1(P ) ∩ X−∞ for every point P ∈ S. In particular, if further
π−1(P )∩X−∞ = ∅ holds, that is, [X,ω] is quasi-log canonical in a neighborhood of π−1(P ),
then π−1(P ) is rationally chain connected.

Proof. There are no difficulties to adapt the arguments in [Fu10, Section 13] to our com-
plex analytic setting here. For the details, see [Fu10, Section 13]. □

10. On analytic semi-log canonical pairs

In this section, we will explain how to use the framework of quasi-log complex analytic
spaces for the study of semi-log canonical pairs. In [Fu5], the author proved that any
quasi-projective semi-log canonical pair naturally has a quasi-log structure. The following
theorem is a complex analytic generalization.

Theorem 10.1. Let (X,∆) be a semi-log canonical pair and let π : X → S be a projective
morphism of complex analytic spaces. Then, after replacing S with any relatively compact
open subset of S, [X,KX +∆] naturally becomes a quasi-log complex analytic space such
that Nqlc(X,KX +∆) = ∅ and that C† is a qlc center of [X,KX +∆] if and only if C† is
a semi-log canonical center of (X,∆).

More precisely, after replacing S with any relatively compact open subset of S, we can
construct a projective surjective morphism f : (Z,∆Z) → X from an analytic globally
embedded simple normal crossing pair (Z,∆Z) such that the natural map

OX → f∗OZ(⌈−(∆<1
Z )⌉)
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is an isomorphism and that C† is the f -image of some stratum of (Z,∆Z) if and only if
C† is a semi-log canonical center of (X,∆) or an irreducible component of X. Moreover,
if every irreducible component of X has no self-intersection in codimension one, then we
can make f : Z → X bimeromorphic.

Proof of Theorem 10.1. We take an arbitrary relatively compact open subset U of S. We
will construct f : (Z,∆Z) → X over U . In this proof, Xncp denotes the largest open
subset of X consisting of smooth points, double normal crossing points, and pinch points.
Similarly, Xsnc denotes the largest open subset of X consisting of smooth points and
simple normal crossing points. Moreover, Xsnc2 is the largest open subset of X which
has only smooth points and simple normal crossing points of multiplicity ≤ 2. We note
that SingX denotes the singular locus of X. From Step 1 to Step 8, we will explain how
to construct a projective surjective morphism f : (Z,∆Z) → X from an analytic globally
embedded simple normal crossing pair (Z,∆Z) over U .

Step 1. By [BM2, Remark 1.6 and Theorem 1.18], after replacing S with any relatively
compact open subset containing U , we can take a morphism f1 : X1 → X, which is a finite
composite of admissible blow-ups, such that

(i) X1 = Xncp
1 ,

(ii) f1 is an isomorphism over Xncp, and
(iii) SingX1 maps bimeromorphically onto the closure of SingXncp.

We note that Xncp = Xsnc2 and X1 = Xncp
1 = Xsnc2

1 hold in the above construction when
every irreducible component of X has no self-intersection in codimension one.

Step 2. By replacing S with any relatively compact open subset containing U again, X1 is
projective over S by construction. Hence we can embed X1 into S×PN over S for some PN .
We pick a finite set P ⊂ X1 such that each irreducible component of SingX1 contains a
point of P . Moreover, we may assume that each irreducible component of Sing(π◦f1)−1(U)
contains a point of P . After shrinking S around U , we take a sufficiently large positive
integer d such that IX1 ⊗O(d) is globally generated, where IX1 is the defining ideal sheaf
of X1 on S×PN and O(d) := p∗OPN (d) with the second projection p : S×PN → PN . We
take a complete intersection of (dim S+N −dimX− 1) general members of |IX1 ⊗O(d)|.
Then we have X1 ⊂ Y such that Y is smooth at every point of P . Note that here we used
the fact that X1 has only hypersurface singularities near P .

Step 3. After replacing S with a relatively compact open subset containing U suitably,
we take a resolution g : Y2 → Y , which is a finite composite of admissible blow-ups and
is an isomorphism over the largest Zariski open subset of Y on which Y is smooth (see
[BM1, Theorem 13.3]). Let X2 be the strict transform of X1 on Y2. We note that
f2 := g|X2 : X2 → X1 is an isomorphism over general points of any irreducible component
of SingX1 because Y is smooth at every point of P by construction.

Step 4. By applying [BM2, Remark 1.6 and Theorem 1.18] to X2 ⊂ Y2, after replacing
S with any relatively compact open subset containing U , we have a finite composite of
admissible blow-ups g3 : Y3 → Y2 from a smooth variety Y3 such that X3 = Xncp

3 holds,
where X3 is the strict transform of X2 on Y3, and that SingX3 maps bimeromorphically
onto SingX1 by f2 ◦ f3, where f3 := g3|X3 : X3 → X2. We note that we can make
X3 = Xncp

3 = Xsnc2
3 hold by [BM1, Theorems 13.3 and 12.4] when X1 = Xncp

1 = Xsnc2
1

hold.
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Step 5. We put

KX1 +∆1 = f ∗
1 (KX +∆)

and

KX3 +∆3 = (f1 ◦ f2 ◦ f3)∗(KX +∆).

Since X1 and X3 have only Gorenstein singularities, ∆1 and ∆3 are well-defined R-Cartier
R-divisors onX1 andX3, respectively. By construction, the singular locus of X1 (resp.X3)
does not contain any irreducible components of Supp∆1 (resp. Supp∆3).

Step 6. Let C be an irreducible component of X3 \Xsnc
3 . Then C is smooth and dimC =

dimX3 − 1 since X3 = Xncp
3 holds. Let α : W → Y3 be the blow-up along C and let V

be α−1(X3) with the reduced structure. Then we can check that β∗OV ≃ OX3 , where
β := α|V . We put

KV +∆V = β∗(KX3 +∆3).

We can easily check that KV = β∗KX3 and ∆V = β∗∆3. When α is the blow-up along
a pinch points locus C, see [Fu5, Lemma 4.4] for the local description of α : W → Y3.
When α is the blow-up along a double normal crossing points locus C, it is easy to un-
derstand α : W → Y3. By repeating this process finitely many times and replacing S with
any relatively compact open subset containing U , we obtain a projective bimeromorphic
morphism g4 : Y4 → Y3 from a smooth variety Y4 and a simple normal crossing divisor X4

on Y4 such that f4∗OX4 ≃ OX3 , where f4 := g4|X4 . We put

KX4 +∆4 := f ∗
4 (KX3 +∆3).

If X3 = Xsnc2
3 holds, then X3 \Xsnc

3 is empty. In this case, we have Y4 = Y3 and X4 = X3.

Step 7. We consider the following closed subset Σ := Supp(f1 ◦ f2 ◦ f3 ◦ f4)
∗∆ of X4.

By [BM1, Theorems 13.3 and 12.4], after replacing S with any relatively compact open
subset containing U , we can construct a projective bimeromorphic morphism g5 : Y5 → Y4

with the following properties.

(i) Let X5 be the strict transform of X4 on Y5. Then f5 := g5|X5 : X5 → X4 is an
isomorphism outside Σ with f5∗OX5 ≃ OX4 .

(ii) (X5,Σ
′) is an analytic globally embedded simple normal crossing pair such that Σ′

is reduced and contains Supp f−1
5∗ ∆4 and Exc(f5), where Exc(f5) is the exceptional

locus of f5.

Step 8. We replace S with U and put M := Y5, Z := X5, and f := f1◦f2◦f3◦f4◦f5 : Z =
X5 → X. We define ∆Z by

KZ +∆Z := f ∗(KX +∆).

By construction, f is a projective surjective morphism. Moreover, we see that f is a
projective bimeromorphic morphism when every irreducible component of X has no self-
intersection in codimension one.

Step 9. In this step, we will prove that f∗OZ(⌈−(∆<1
Z )⌉) ≃ OX holds.

We first note that X satisfies Serre’s S2 condition and codimX(X \ Xncp) ≥ 2 holds
by assumption. Thus, we have f1∗OX1 ≃ OX . Since ∆ is effective, ⌈−(∆<1

1 )⌉ is effective
and f1-exceptional, we see that f1∗OX1(⌈−(∆<1

1 )⌉) ≃ OX holds. By construction, we can
easily check that the following inclusions

OX1 ⊂ (f2 ◦ f3)∗OX3(⌈−(∆<1
3 )⌉) ⊂ OX1(⌈−(∆<1

1 )⌉)
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hold. Therefore, we obtain

(f1 ◦ f2 ◦ f3)∗OX3(⌈−(∆<1
3 )⌉) ≃ OX .

Let α : W → Y3 be the blow-up in Step 6. When α : W → Y3 is the blow-up along a pinch
points locus, see [Fu5, Lemma 4.4] for the local description of α. When α : W → Y3 is the
blow-up along a double normal crossing points locus, it is easy to describe α : W → Y3.
Then we have

0 ≤ ⌈−(∆<1
V )⌉ ≤ β∗ (⌈−(∆<1

3 )⌉
)

by ∆V = β∗∆3. This implies

OX3 ⊂ β∗OV (⌈−(∆<1
V )⌉) ⊂ OX3(⌈−(∆<1

3 )⌉)
by β∗OV ≃ OX3 . By using it finitely many times, we get

OX3 ⊂ f4∗OX4(⌈−(∆<1
4 )⌉) ⊂ OX3(⌈−(∆<1

3 )⌉).
This implies

(f1 ◦ f2 ◦ f3 ◦ f4)∗OX4(⌈−(∆<1
4 )⌉) ≃ OX .

It is easy to see that

OX4 ⊂ f5∗OX5(⌈−(∆<1
5 )⌉) ⊂ OX4(⌈−(∆<1

4 )⌉).
Thus,

(f1 ◦ f2 ◦ f3 ◦ f4 ◦ f5)∗OX5(⌈−(∆<1
5 )⌉) ≃ OX .

This means that
f∗OZ(⌈−(∆<1

Z )⌉) ≃ OX .

This is what we wanted.

Step 10. In this final step, we will see that C† is a semi-log canonical center if and only
if C† is a qlc center of [X,KX +∆].

When f is bimeromorphic, the desired statement is almost obvious. Hence, we may
assume that f is not bimeromorphic. In this case, we can directly check the above
statement with the aid of [Fu5, Lemma 4.4].

We finish the proof. □
By Theorem 10.1, we can apply the results for quasi-log complex analytic spaces to

semi-log canonical pairs. We see that the basepoint-free theorem and its variants (see
Theorems 6.1, 7.1, 8.1, 8.2, and 8.3) hold true for semi-log canonical pairs. All the results
established in Section 9 hold for semi-log canonical pairs. In particular, the cone and
contraction theorem (see Theorem 9.2) holds for semi-log canonical pairs in the complex
analytic setting.

10.1. Vanishing theorems and torsion-freeness for semi-log canonical pairs. In
this subsection, we will explicitly state the vanishing theorems and torsion-freeness for
semi-log canonical pairs in the complex analytic setting for the reader’s convenience.

Theorem 10.2 ([Fu5, Theorems 1.7 and 1.10]). Let (X,∆) be a semi-log canonical pair
and let π : X → S be a projective morphism of complex analytic spaces. Let D be a
Cartier divisor on X, or a Q-Cartier integral Weil divisor on X such that no irreducible
component of SuppD is contained in the singular locus of X. Assume that D− (KX +∆)
is nef and log big over S with respect to (X,∆). This means that D − (KX + ∆) is nef
over S and that (D − (KX +∆)) |C is big over π(C) for every slc stratum C of (X,∆).
Then Riπ∗OX(D) = 0 for every i > 0.
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Sketch of Proof of Theorem 10.2. We take an arbitrary point s ∈ S. It is sufficient to
prove Riπ∗OX(D) = 0 for every i > 0 on some open neighborhood of s. Hence, we can

freely shrink S around s suitably. By [Ko2, 5.23], we can take a double cover p : X̃ → X
and reduce the problem to the case where every irreducible component of X has no
self-intersection in codimension one. Thus, we can construct a projective bimeromorphic
morphism f : (Z,∆Z) → X as in Theorem 10.1. By [BM1, Theorems 13.3 and 12.4], we
may further assume that (Z,Σ) is an analytic globally embedded simple normal crossing
pair with Supp f ∗D∪Supp∆Z ⊂ Σ. Thus, by Theorem 3.5 (ii), we can apply the argument
in the proof of [Fu5, Theorem 1.7 and Theorem 1.10]. □
Theorem 10.3 ([Fu5, Theorem 1.11 and Remark 5.2]). Let (X,∆) be a semi-log canonical
pair and let π : X → S be a projective morphism of complex analytic spaces. Let L be a
line bundle on X. Let X ′ be a union of some slc strata of (X,∆) with the reduced structure
and let IX′ be the defining ideal sheaf of X ′ on X. Assume that L − (KX + ∆) is nef
over S and (L − (KX +∆)) |C is big over π(C) for every slc stratum C of (X,∆) which
is not contained in X ′. Then Riπ∗ (IX′ ⊗ L) = 0 holds for every i > 0. In particular,
Riπ∗L = 0 holds for every i > 0 when X ′ = ∅.
Sketch of Proof of Theorem 10.3. We take an arbitrary point s ∈ S. It is sufficient to
prove that Riπ∗ (IX′ ⊗ L) = 0 holds for every i > 0 on some open neighborhood of s. By
Theorem 10.1, after shrinking S around s suitably, we may assume that [X,KX +∆] is a
quasi-log complex analytic space such that C is a qlc stratum of [X,KX +∆] if and only
if C is an slc stratum of (X,∆). Hence, we obtain Riπ∗ (IX′ ⊗ L) = 0 for every i > 0 by
Theorem 4.8. □
We close this subsection with the torsion-freeness, that is, the strict support condition,

for semi-log canonical pairs.

Theorem 10.4 ([Fu5, Theorem 1.12]). Let (X,∆) be a semi-log canonical pair and let
π : X → S be a projective morphism of complex analytic spaces. Let D be a Cartier divisor
on X, or a Q-Cartier integral Weil divisor on X such that no irreducible component of
SuppD is contained in the singular locus of X. Assume that D − (KX + ∆) is π-semi-
ample. Then every associated subvariety of Riπ∗OX(D) is the π-image of some slc stratum
of (X,∆) for i = 0 and 1.

We make a very important remark on [Fu5, Theorem 1.12].

Remark 10.5 (Correction of [Fu5, Theorem 1.12]). In [Fu5, Theorem 1.12], we claim
that every associated prime of Riπ∗OX(D) is the generic point of the π-image of some
slc stratum of (X,∆) for every i. Unfortunately, however, the latter half of the proof of
[Fu5, Theorem 1.12] is insufficient. In the proof of [Fu5, Theorem 1.12], the π|A-image of
some slc stratum of (A,∆|A) is not necessarily the π-image of some slc stratum of (X,∆).
Hence, the correct statement of [Fu5, Theorem 1.12] is that every associated prime of
Riπ∗OX(D) is the generic point of some slc stratum of (X,∆) for i = 0 and 1.

Sketch of Proof of Theorem 10.4. As in the proof of Theorem 10.2, the former half of the
proof of [Fu5, Theorem 1.12] works with some minor modifications. Hence we omit the
details here. □
10.2. On Shokurov’s polytopes for semi-log canonical pairs. In this final sub-
section, we will briefly explain Shokurov’s polytopes for semi-log canonical pairs in the
complex analytic setting. Here, we need the results in Subsection 9.1. Therefore, the
results in this subsection also depend on Mori’s bend and break.
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Let π : X → S be a projective morphism between complex analytic spaces such that
X is equidimensional and let W be a compact subset of S. Let V be a finite-dimensional
affine subspace of WDivR(X), which is defined over the rationals. We put

L(V ; π−1(W )) := {D ∈ V | (X,D) is semi-log canonical at π−1(W )}.
Then, as we saw in 2.4, it is known that L(V ; π−1(W )) is a rational polytope in V defined
over the rationals.

Definition 10.6 (Extremal curves). Let π : X → S be a projective morphism of com-
plex analytic spaces and let W be a compact subset of S such that the dimension of
N1(X/S;W ) is finite. A curve Γ on X is called extremal over W if the following proper-
ties hold.

(i) Γ generates an extremal ray R of NE(X/S;W ).
(ii) There exists a π-ample line bundle H over some open neighborhood of W such

that

H · Γ = min
ℓ
{H · `},

where ` ranges over curves generating R.

By Theorem 10.1 with Theorem 9.7, we have:

Lemma 10.7. Let π : X → S be a projective morphism of complex analytic spaces and let
(X,∆) be a semi-log canonical pair. Let W be a compact subset of S such that the dimen-
sion of N1(X/S;W ) is finite. Let R be a (KX+∆)-negative extremal ray of NE(X/S;W ).
If Γ is an extremal curve over W generating R, then

0 < −(KX +∆) · Γ ≤ 2 dimX

holds.

Sketch of Proof of Lemma 10.7. By Theorem 10.1, we may assume that [X,KX + ∆] is
a quasi-log canonical pair by shrinking S around W suitably. Then, by Theorem 9.7, we
see that there exists a rational curve ` spanning R such that

0 < −(KX +∆) · ` ≤ 2 dimX.

Therefore, we obtain

0 < −(KX +∆) · Γ = (−(KX +∆) · `) · H · Γ
H · `

≤ 2 dimX.

This is what we wanted. □
We have already established the following theorems for log canonical pairs in [Fu16,

Section 5.2], which may be useful for the minimal model program with scaling.

Theorem 10.8. Let π : X → S be a projective morphism of complex analytic spaces such
that X is equidimensional and let W be a compact subset of S such that the dimension of
N1(X/S;W ) is finite. Let V be a finite-dimensional affine subspace of WDivR(X), which
is defined over the rationals. We fix an R-divisor ∆ ∈ L(V ; π−1(W )), that is, ∆ ∈ V and
(X,∆) is semi-log canonical at π−1(W ). Then we can find positive real numbers α and δ,
which depend on (X,∆) and V , with the following properties.

(1) If Γ is any extremal curve over W and (KX +∆) · Γ > 0, then (KX +∆) · Γ > α.
(2) If D ∈ L(V ; π−1(W )), ||D −∆|| < δ, and (KX +D) · Γ ≤ 0 for an extremal curve

Γ over W , then (KX +∆) · Γ ≤ 0.
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(3) Let {Rt}t∈T be any set of extremal rays of NE(X/S;W ). Then

NT := {D ∈ L(V ; π−1(W )) | (KX +D) ·Rt ≥ 0 for every t ∈ T}
is a rational polytope in V . In particular,

N ♯
π(V ;W ) := {∆ ∈ L(V ; π−1(W )) |KX +∆ is nef over W}

is a rational polytope.

Sketch of Proof of Theorem 10.8. By Theorem 10.1, we may assume that [X,KX + ∆]
is a quasi-log canonical pair. Hence, we can use the cone and contraction theorem (see
Theorem 9.2). Thus, we can apply the proof of [Fu16, Theorem 5.2.3] with some minor
modifications. We note that we need Lemma 10.7 for the proof of (2) and (3). □

We close this subsection with the following theorem, which is well known when π : X →
S is algebraic and X is a normal variety.

Theorem 10.9. Let π : X → S be a projective morphism of complex analytic spaces such
that X is equidimensional and let W be a compact subset of S such that the dimension of
N1(X/S;W ) is finite. Let (X,∆) be a semi-log canonical pair and let H be an effective R-
Cartier R-divisor on X such that (X,∆+H) is semi-log canonical and that KX +∆+H
is nef over W . Then, either KX + ∆ is nef over W or there is a (KX + ∆)-negative
extremal ray R of NE(X/S;W ) such that (KX +∆+ λH) ·R = 0, where

λ := inf{t ≥ 0 |KX +∆+ tH is nef over W}.
Of course, KX +∆+ λH is nef over W .

Sketch of Proof of Theorem 10.9. As for Theorem 10.8, we can use the proof of [Fu16,
Theorem 5.2.4] with only some minor modifications. So we omit the details here. □
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