CONE AND CONTRACTION THEOREM FOR PROJECTIVE
MORPHISMS BETWEEN COMPLEX ANALYTIC SPACES

OSAMU FUJINO

ABSTRACT. We discuss the cone and contraction theorem in a suitable complex analytic
setting. More precisely, we establish the cone and contraction theorem of normal pairs
for projective morphisms between complex analytic spaces. This result is a starting point
of the minimal model program for complex analytic log canonical pairs. In this paper,
we are mainly interested in normal pairs whose singularities are worse than kawamata
log terminal singularities.
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2 OSAMU FUJINO

1. INTRODUCTION

This paper is the second part of the trilogy on the minimal model theory for projective
morphisms between complex analytic spaces (see [Ful(] and [FuTl)).

In his epoch-making paper [Md], Shigefumi Mori established the cone theorem for
smooth projective varieties defined over any algebraically closed field k of arbitrary char-
acteristic by his ingenious method of bend and break. Then he established the contraction
theorem for smooth projective threefolds when the characteristic of the base field k is
zero. After that, in characteristic zero, the cone and contraction theorem was general-
ized for so-called log-terminal pairs in any dimension by using Hironaka’s resolution of
singularities and the Kawamata—Viehweg vanishing theorem. For the details, see [KMM],
[KM] and references therein. Now we know that, in characteristic zero, the cone and
contraction theorem holds for more general settings (see [Fn?], [Fu3, Chapter 6], and
references therein). In this paper, we will discuss the cone and contraction theorem of
normal pairs for projective morphisms between complex analytic spaces. For kawamata
log terminal pairs, it was known and has played an important role in [Nal], [Na2], and
[Fug]. In [Ful], we have already discussed the minimal model program for kawamata log
terminal pairs in a complex analytic setting. Roughly speaking, we showed that [BCHM]
and [HM) can work for projective morphisms between complex analytic spaces. We note
that the Kawamata—Viehweg vanishing theorem can be formulated and proved for projec-
tive morphisms of complex analytic spaces and is sufficient for the study of kawamata log
terminal pairs. We also note that L?-methods can work for kawamata log terminal pairs.
For an alternative approach to the minimal model program of kawamata log terminal
pairs for projective morphisms between complex analytic spaces, see [DHP|, which uses
the idea of [CI]. In [Ful0], we established some vanishing theorems and related results
necessary for the study of complex analytic log canonical pairs and quasi-log structures on
complex analytic spaces. Note that [Full] depends on Morihiko Saito’s theory of mixed
Hodge modules (see [Sall, [Sa2|, [Sa3], [FES], and [Sad]) and Takegoshi’s generalization
of Kollar’s torsion-free and vanishing theorem (see [[Ta]). In this paper, we will discuss the
cone and contraction theorem of normal pairs for projective morphisms between complex
analytic spaces as an application of [FinT(]. This paper can be seen as a complex analytic
generalization of [Fu?] and as a generalization of Nakayama’s paper [Nal]. We note that
Nakayama only treated kawamata log terminal pairs and Q-divisors in [Nal]. Finally, this
paper is independent of [Fu&] and does not use any results obtained in [Fug].

1.1 (Standard setting). One of the main difficulties to discuss the minimal model theory
for complex analytic spaces is how to formulate it.

Let m: X — Y be a projective morphism between complex analytic spaces such that
X is a normal complex variety and let W be a compact subset of Y. In this paper,
we formulate and prove almost everything over some open neighborhood of W. Let A
be an R-divisor on X such that Kx + A is R-Cartier. The number of the irreducible
components of Supp A is only locally finite. In general, the support of A may have
infinitely many irreducible components. By shrinking Y around W suitably, that is, by
replacing Y with a suitable relatively compact open neighborhood of W, we can always
assume that Supp A has only finitely many irreducible components. Moreover, we can
assume that every R-Cartier divisor on X is a finite R-linear combination of Cartier
divisors. Therefore, by considering some relatively compact open neighborhood of W, we
can avoid subtle problems caused by the difference between the Zariski topology and the
Euclidean topology. In [Eug|, we almost always assume that W is a Stein compact subset
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of Y such that I'(W, Oy ) is noetherian. In this paper, however, we usually assume that W
is only a compact subset of Y. When we consider the Kleiman-Mori cone NE(X/Y; W)
of 7: X — Y and W, we further assume that the dimension of N*(X/Y; W) is finite. For
the details of NE(X/Y;W) and N*(X/Y;W), see Section . Note that if W NV has
only finitely many connected components for any analytic subset V' which is defined over
an open neighborhood of W then the dimension of N*(X/Y; W) is finite by Nakayama’s
finiteness (see Theorem III0). Therefore, if W is a compact semianalytic subset of Y,
then the dimension of N'(X/Y; W) is always finite. Thus, we can find many compact
subsets W with dimg N*(X/Y; W) < oo,

1.1. Main theorem. In this paper, we call (X, A) a normal pair if it consists of a normal
complex variety X and an effective R-divisor A on X such that Kx + A is R-Cartier. The
main purpose of this paper is to establish the following cone and contraction theorem of
normal pairs for projective morphisms between complex analytic spaces.

Theorem 1.2 (Cone and contraction theorem, see Theorems 21, I272, I3, and [44).
Let m: X — Y be a projective morphism of complex analytic spaces such that X is a
normal complex variety and let W be a compact subset of Y. Assume that the dimension
of N (X/Y ;W) is finite. Let A be an effective R-divisor on X such that Kx + A is
R-Cartier. Then we have

NE(X/Y; W) = NE(X/Y; W) xa)20 + NE(X/Y; Wnieoea) + Y By

with the following properties.
(1) Nle(X,A) is the non-lc locus of (X,A) and NE(X/Y; W)nie(x,a) s the subcone
of NE(X/Y; W) which is the closure of the convex cone spanned by the projective

integral curves C' on Nle(X, A) such that w(C) is a point of W.
(2) R;is a (Kx 4+ A)-negative extremal ray of NE(X/Y; W) which satisfies

R; NNE(X/Y; W)Nie(x.a) = {0}

for every 7.

(3) Let A be a m-ample R-line bundle on X. Then there are only finitely many R;’s
included in NE(X/Y; W) rc+aray<o- In particular, the R;’s are discrete in the
half-space NE(X/Y; I/I/_)(KX+A)<0.

(4) Let F' be any face of NE(X/Y; W) such that

Fn (W(X/Y§ W) (kx+a)z0 + NE(X/Y; Wnie(x,a)) = {0}

Then, after shrinking Y around W suitably, there exists a contraction morphism

wr: X — Z over'Y satisfying the following properties.

(i) Let C be a projective integral curve on X such that 7(C) is a point of W.
Then ¢r(C) is a point if and only if the numerical equivalence class [C] of C
15 in F.

(ii) The natural map Oz — (pr).Ox is an isomorphism.

(iii) Let L be a line bundle on X such that L -C = 0 for every curve C with
[C] € F. Then, after shrinking Y around W suitably again, there exists a
line bundle Lz on Z such that L ~ ¢.L; holds.

(5) Every (Kx + A)-negative extremal ray R with

RNNE(X/Y; W)niex.a) = {0}
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is spanned by a (possibly singular) rational curve C with
0<—(Kx+A)-C<2dimX.

From now on, we further assume that (X, A) is log canonical, equivalently, Nle(X, A) =
(). Then we have the following properties.

(6) Let H be an effective R-Cartier R-divisor on X such that Kx + A + H is w-nef

over W and (X, A+ H) is log canonical. Then, either Kx + A is also m-nef over

W or there exists a (Kx + A)-negative extremal ray R of NE(X/Y; W) such that

(Kx + A+ MH)-R =0,

where
A=inf{t > 0| Kx + A +tH is w-nef over W}.
Of course, Kx + A+ AH s m-nef over W.
Stmilarly, we have:
(7) Let H be an R-line bundle on X which is m-ample over W such that Kx + A+ H

is w-nef over W. Then, either Kx + A s also w-nef over W or there ewists a
(Kx + A)-negative extremal ray R of NE(X/Y; W) such that

(Kx +A+XH)-R=0,

where
A:=inf{t > 0| Kx + A+ tH is w-nef over W }.
Note that Kx + A + \H is m-nef over W.

Remark 1.3. In Theorem 2, the proof of (5) needs Mori’s bend and break method and
(6) is an application of (5). On the other hand, (7) is an easy consequence of (3). Note
that m-very ample line bundles do not always have global sections. Hence (7) is not a
special case of (6). We need (7) in order to discuss the minimal model program of log
canonical pairs with ample scaling for projective morphisms between complex analytic
spaces.

For the minimal model program, the following theorem, which is a supplement to
Theorem [, may be useful (see [Fug]).

Theorem 1.4. Let (X, A) be a log canonical pair. Let w: X — Y be a projective mor-
phism of complex analytic spaces and let W be a compact subset of Y such that the
dimension of N*(X/Y; W) is finite. Suppose that m: X — Y is decomposed as

Xty Ly

such that Y’ is projective over Y. Let Ay be a g-ample line bundle on Y. Let R be
a (Kx + A+ (dim X + 1) f*Ay»)-negative extremal ray of NE(X/Y;W). Then R is a
(Kx + A)-negative extremal ray of NE (X/Yb;g_l(W)), that is, R - f*Ay» = 0.

We prove Theorem 4 as an application of the vanishing theorem for projective quasi-
log schemes. We do not need Theorem 2 (5) for the proof of Theorem 4. We have the
following result as an easy consequence of Theorem 4.

Corollary 1.5 (see [Fn3, Corollary 1.2]). Let (X, A) be a log canonical pair. Let m: X —
Y be a projective morphism of complex analytic spaces and let A be any w-ample line
bundle on X. Then Kx + A+ (dim X + 1).A is always nef over Y.
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We make an important remark on Theorem 2. By Remark [CH, we see that the cone
and contraction theorem of normal pairs holds for projective morphisms between compact
analytic spaces.

Remark 1.6. Let 7: X — Y be a projective morphism of complex analytic spaces and
let W be a compact subset of Y as in Theorem 2. Then the dimension of N*(X/Y; W)
is not always finite (see Example IT9). In [Na2, Chapter II. 5.19. Lemma)] (see Theorem
T1d), Noboru Nakayama proved that if

e W is a compact subset of Y such that W NV has only finitely many connected
components for any analytic subset V' which is defined over an open neighborhood

of W,

then the dimension of N*(X/Y;W) is finite. We note that the above assumption is
satisfied in the following cases:

(i) W is a point of Y.

(ii) W is a compact semianalytic subset of Y.

(iii) W =Y when Y is compact.
Case (i) is obvious. In Case (ii), W NV is a compact semianalytic subset of Y. Thus we
see that W NV has only finitely many connected components (see, for example, [BNI,
Corollary 2.7 (2)]). In Case (iii), WNV =V is a compact analytic subset of Y. Hence it
has only finitely many connected components.

By Remark @, we see that there are many compact subsets W of Y such that the
dimension of N'(X/Y; W) is finite.

We note that we can formulate and prove the basepoint-free theorem for projective
morphisms of complex analytic spaces as follows. In Theorem [Z4, L is only assumed to
be m-nef over W, that is, L|.-1(,) is nef in the usual sense for every w € W. Equivalently,
L-C > 0 for every projective integral curve C' on X such that 7(C) is a point of W.
However, Theorem 7 claims that it is m-semiample over some open neighborhood of W.

Theorem 1.7 (Basepoint-free theorem: Theorem @), Let m: X — Y be a projective
morphism of complex analytic spaces such that X is a normal complex variety and let W
be a compact subset of Y. Let A be an effective R-divisor on X such that Kx + A is
R-Cartier. Let L be a Cartier divisor on X which is w-nef over W. We assume that

(i) aL — (Kx + A) is m-ample over W for some positive real number a, and
(i) Onie(x,a)(mL) is T|nie(x,a)-generated over some open neighborhood of W for every
m > 0.

Then there ezists a relatively compact open neighborhood U of W such that Ox(mL) is
mw-generated over U for every m > 0.

In Theorem I, W is only assumed to be a compact subset of Y. We do not need
the assumption that dimg N'(X/Y; W) < co holds. When (X, A) is log canonical, we
will also prove the basepoint-free theorem for R-Cartier divisors (see Theorem [a). In
Theorem [, we have to assume that the dimension of N*(X/Y; W) is finite since we
need the cone theorem for the proof of Theorem [h.

In the proof of Theorems T2, T4, and so on, the following basic properties of log
canonical centers play an important role.

Theorem 1.8 (Basic properties of log canonical centers: Theorem ). Let (X, A) be a
log canonical pair. Then the following properties hold.

(1) The number of log canonical centers of (X, A) is locally finite.
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(2) The intersection of two log canonical centers is a union of some log canonical
centers.

(3) Let x € X be any point such that (X, A) is log canonical but is not kawamata log
terminal at x. Then there exists a unique minimal (with respect to the inclusion)
log canonical center C, passing through x. Moreover, C, is normal at x.

Theorem R is new for complex analytic log canonical pairs although it is well known
when (X, A) is algebraic. It will be useful for the study of complex analytic log canonical
singularities (see also [FuY]).

Theorem 2 is a starting point of the minimal model program of log canonical pairs for
projective morphisms between complex analytic spaces. We can formulate the minimal
model theory of log canonical pairs for projective morphisms between complex analytic
spaces by using Theorem 2 as in the algebraic case. On the other hand, one of the main
goals of the minimal model theory for projective morphisms between complex analytic
spaces is the following conjecture.

Conjecture 1.9 (Finite generation). Let m: X — Y be a projective morphism of complex
analytic spaces and let A be an effective Q-divisor on X such that (X, A) is log canonical.
Then
R(X)Y,Kx + A) == @ mOx(Im(Kx + A)))
meN
18 a locally finitely generated graded Oy -algebra.

We note that in [Fu® Conjecture I was already solved completely when (X, A) is
kawamata log terminal. We also note that Conjecture I is still widely open even when
m: X — Y is algebraic (see [FG]).

The author first prepared a short manuscript which only explains how to modify argu-
ments in [FuZ]. Unfortunately, however, it seemed to be hard to read. Hence he made
great efforts to make this paper as self-contained as possible except for the results estab-
lished in [Ful0]. He sometimes repeats arguments in [Fu?] and [Fu3]. Thus, some parts
of this paper are very similar to those of [Fn?] and [Fu3].

Remark 1.10 (Quasi-log structures). By [Ful0, Theorems 1.1 and 1.2] (see Theorems 63
and B70), we can formulate and discuss quasi-log structures on complex analytic spaces
(see [Fn3, Chapter 6]). Hence we can establish the cone and contraction theorem for
highly singular complex analytic spaces. However, in this paper, we will only discuss the
cone and contraction theorem of normal pairs (see Theorem ). This is because Theorem
2 is sufficient for many geometric applications and it is not so easy psychologically to
treat reducible complex analytic spaces. We will describe the theory of quasi-log complex
analytic spaces in [Full].

We look at the organization of this paper. In Section B, we collect some necessary
definitions and results for the reader’s convenience. Since we have to work in the complex
analytic setting, some of them become much more subtle than the usual ones in the
algebraic setting. In Section B, we collect some basic properties of relatively nef and
relatively ample R-line bundles for the sake of completeness. They are indispensable in
subsequent sections. In Section B, we define non-lc ideal sheaves in the complex analytic
setting and prove some elementary lemmas. In Section H, we quickly recall the main
result of [Ful(] without proof. Note that the proof of the main result in [FuT0] depends
on Saito’s theory of mixed Hodge modules and Takegoshi’s generalization of Kollar’s
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torsion-free and vanishing theorem. In Section B, we prepare some necessary vanishing
theorems as applications of the vanishing result explained in Section B. In Section [, we
establish the basic properties of log canonical centers. They are new and very important
in the theory of minimal models in the complex analytic setting. In Section B, we prove
the non-vanishing theorem in the complex analytic setting with the aid of the theory of
quasi-log schemes. Note that Lemma B™ is new and will be useful for the study of quasi-
log structures. In Section H, we establish the basepoint-free theorem for normal pairs
in the complex analytic setting by using the non-vanishing theorem proved in Section
B. It is well known and is not difficult to prove for kawamata log terminal pairs. In
Sections [, we prove the rationality theorem for normal pairs in the complex analytic
setting. The proof is essentially the same as the one for algebraic varieties explained in
[Fu2]. In Section [, we define Kleiman—-Mori cones for projective morphisms of complex
analytic spaces. In Subsection I, we briefly explain Nakayama’s finiteness without
proof for the reader’s convenience. Note that in this paper we do not need it except in
the proof of Corollary IH. Then, in Section [, we prove the cone theorem for normal
pairs in the complex analytic setting. The results in Section 2 are easy consequences
of the basepoint-free theorem in Section 8 and the rationality theorem in Section M. In
Subsection [21, we prove Theorem [4 as an easy application of the vanishing theorem
for projective quasi-log schemes. In Section 3, we discuss lengths of extremal rational
curves. The result in Section 3 seems to be indispensable for the minimal model program
with scaling. Here, we use the framework of quasi-log schemes. In Section I4, we discuss
Shokurov’s polytopes and some applications. The results in this section are well known
and have already played an important role in the usual algebraic setting. In Section I3,
we prove the basepoint-free theorem of log canonical pairs for R-Cartier divisors. It can
be seen as an application of the cone theorem. In Section [@, which is the final section, we
prove the main result of this paper, that is, the cone and contraction theorem of normal
pairs for projective morphisms between complex analytic spaces: Theorem 2.

Acknowledgments. The author was partially supported by JSPS KAKENHI Grant
Numbers JP19H01787, JP20H00111, JP21H00974, JP21H04994. He thanks Professor
Noboru Nakayama very much for useful suggestions and answering his questions. He also
would like to thank Professors Taro Fujisawa, Shigefumi Mori, and Morihiko Saito very
much.

In this paper, every complex analytic space is assumed to be Hausdorff and second-
countable. An irreducible and reduced complex analytic space is called a complex variety.
We will freely use the standard notation in [Fu2], [Fu3], [Fug], and so on. We will also freely
use the basic results on complex analytic geometry in [BS] and [Fi]. For the minimal model
program for projective morphisms between complex analytic spaces, see [Nal], [Na2], and
[EnuR]. For the traditional framework of the minimal model program, see [KMM] and
[KM]. We note that Z, Q, and R denote the set of integers, rational numbers, and real
numbers, respectively. We also note that N (resp. Z) is the set of non-negative integers

(resp. positive integers).

2. PRELIMINARIES

In this section, we collect basic definitions and results necessary for this paper. For the
details, see [Fn?2], [Fu3], [Fug], and so on. Since we are working in the complex analytic
setting, some of them become subtle.
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Let us start with the definition of singularities of pairs, which is indispensable in the
theory of minimal models.

2.1 (Singularities of pairs, log canonical centers, and non-lc loci). We consider a normal
complex variety X. Let X, denote the smooth locus of X. Then the canonical sheaf
wy of X is the unique reflexive sheaf whose restriction to X, is isomorphic to the sheaf
Q% , where n = dim X. Let A be an R-divisor on X, that is, A is a locally finite R-linear
combination of prime divisors on X. We say that Kx + A is R-Cartier at x € X if there
exist an open neighborhood U, of x and a Weil divisor Ky, on U, with Oy, (Ky,) ~ wx|u,
such that Ky, + Ay, is R-Cartier, that is, Ky, + Ay, is a finite R-linear combination of
Cartier divisors on U,. For any subset L of X, we say that Ky + A is R-Cartier at L if it
is R-Cartier at any point x of L. We simply say that Kx + A is R-Cartier when Kx + A
is R-Cartier at any point z € X. Unfortunately, however, we can not always define Kx
globally with Ox(Kx) ~ wx. In general, it only exists locally on X. We usually use the
symbol Kx as a formal divisor class with an isomorphism Ox(Kx) ~ wx and call it the
canonical divisor of X if there is no danger of confusion.

Let f: Y — X be a proper bimeromorphic morphism from a normal complex variety Y.
Suppose that Kx 4+ A is R-Cartier in the above sense. We take a small Stein open subset
U of X where Ky + Aly is a well-defined R-Cartier R-divisor on U. In this situation, we
can define Ky-1) and Ky such that f,K-1) = Ky. Then we can write

Ky = f"(Ky + Aly) + Ey

as usual. Note that Ey is a well-defined R-divisor on f~!(U) such that f,Ey = Aly.
Then we have the following formula

Ky = f(Kx+A)+ > a(BE,X,A)E
E

as in the algebraic case. We note that ) . a(E, X, A)E is a globally well-defined R-divisor
on Y such that (3, a(E,X,A)E)|;1) = Ey although Kx and Ky are well defined
only locally.

If A is a boundary R-divisor, that is, all the coefficients of A are in [0,1] N R, and
a(E, X,A) > —1 holds for any f: Y — X and every f-exceptional divisor E, then (X, A)
is called a log canonical pair. If (X,A) is log canonical and a(F, X,A) > —1 for any
f:Y — X and every f-exceptional divisor F, then (X, A) is called a purely log terminal
pair. If (X, A) is purely log terminal and [A| = 0, that is, the coefficients of A are
in [0,1) N R, then (X,A) is called a kawamata log terminal pair. When A = 0 and
a(E,X,0) > 0 (resp. > 0) for any f: Y — X and every f-exceptional divisor F, we
simply say that X has only canonical singularities (resp. terminal singularities). In this
paper, we will only use log canonical pairs and kawamata log terminal pairs.

More generally, let X be a normal complex variety and let A be an effective R-divisor
on X. We say that (X,A) is log canonical (resp. kawamata log terminal) at x € X if
there exists an open neighborhood U, of x such that (U,,Aly,) is a log canonical pair
(resp. kawamata log terminal pair). Let L be any subset of X. We say that (X, A) is log
canonical (resp. kawamata log terminal) at L if (X, A) is log canonical (resp. kawamata
log terminal) at any point = of L. We note that (X, A) is log canonical (resp. kawamata
log terminal) in the above sense if and only if (X, A) is log canonical (resp. kawamata log
terminal) at any point x of X.

Let X be a normal complex variety and let A be an effective R-divisor on X such that
Kx + A is R-Cartier. The image of E with a(E, X, A) = —1 for some f: Y — X such
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that (X, A) is log canonical around general points of f(FE) is called a log canonical center
of (X, A). The non-lc locus of (X, A), denoted by Nlc(X, A), is the smallest closed subset
Z of X such that the complement (X \ Z, A|x\z) is log canonical. We can define a natural
complex analytic space structure on Nle(X, A) by the non-lc ideal sheaf Jxpc(X,A) of
(X, A). For the definition of Jxrc(X,A), see Section B below.

The above definition is compatible with the usual definition for algebraic varieties.

Remark 2.2. Let (X, A) be a pair consisting of a normal algebraic variety X and an
effective R-divisor on X such that Ky + A is R-Cartier. Then (X, A) is kawamata log
terminal (resp. log canonical) in the usual sense (see [Fu?], [Fu3], and so on) if and only if
(X2, A*) is kawamata log terminal (resp. log canonical) in the above sense, where X"
is the complex analytic space naturally associated to X and let A*" be the R-divisor on
X*" associated to A.

The following lemma is well known for algebraic varieties.

Lemma 2.3. Let X be a normal complex variety and let A be an effective R-divisor on X
such that Kx + A is R-Cartier. Let P be a point of X and let D; be an effective Cartier

divisor on X with P € Supp D; for every i. If <X, A+ Zle Di) 18 log canonical at P,
then k < dim X holds.

We omit the proof of Lemma P=3 here since the usual proof for algebraic varieties can
work without any changes (see, for example, [Fn2, Lemma 13.2]). We will use Lemma 2=3
in order to create a new log canonical center.

In this paper, we sometimes implicitly use Serre’s GAGA.

2.4 (Serre’s GAGA). Let m: X — Y be a projective morphism of complex analytic spaces
and let I’ be a fiber of m: X — Y. Then F is projective. Hence we can apply various
results of projective schemes to F' with the aid of Serre’s GAGA (see [Sé]).

In the theory of minimal models, we need the notion of R-line bundles and Q-line
bundles.

2.5 (Line bundles, R-line bundles, and Q-line bundles). Let X be a complex analytic
space and let Pic(X) denote the group of line bundles on X, that is, the Picard group of
X. An element of Pic(X) ®z R (resp. Pic(X) ®7 Q) is called an R-line bundle (resp. a Q-
line bundle) on X. In this paper, we usually write the group law of Pic(X)®zR additively
for simplicity of notation. Hence we sometimes use m£L to denote L& for L € Pic(X)
and m € Z.

We also need the notion of R-divisors and Q-divisors.

2.6 (Divisors, R-divisors, and Q-divisors). Let X be a reduced equidimensional com-
plex analytic space. A prime divisor on X is an irreducible and reduced closed analytic
subspace of codimension one. An R-divisor D on X is a formal sum

D= Z (liDl‘,

where D; is a prime divisor on X with D; # D, for ¢ # j, a;, € R for every ¢, and the
support

Supp D := U D;
a;#0
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is a closed analytic subset of X. In other words, the formal sum ) . a;D; is locally finite.
If a; € Z (resp. a; € Q) for every i, then D is called a divisor (resp. Q-divisor) on X.
Note that a divisor is sometimes called an integral Weil divisor in order to emphasize the
condition that a; € Z for every i. If 0 < a; < 1 (resp. a; < 1) holds for every i, then an
R-divisor D is called a boundary (resp. subboundary) R-divisor.

Let D = )", a;D; be an R-divisor on X such that D; is a prime divisor for every i with
D; # D; for i # j. The round-down | D] of D is defined to be the divisor

where |x] is the integer defined by x —1 < |z] < x for every real number x. The round-up
and the fractional part of D are defined to be

[D]:=—|-D|, and {D}:=D —|D],
respectively. We put

D=':=>"D; D:=) aD;, and D7':=) a;D;

a;=1 a; <1 a;>1

Let D be an R-divisor on X and let « be a point of X. If D is written as a finite R-linear
(resp. Q-linear) combination of Cartier divisors on some open neighborhood of x, then D
is said to be R-Cartier at x (resp. Q-Cartier at x). If D is R-Cartier (resp. Q-Cartier) at x
for every = € X, then D is said to be R-Cartier (resp. Q-Cartier). More generally, for any
subset L of X, if D is R-Cartier (resp. Q-Cartier) at x for every x € L, then D is said to
be R-Cartier (resp. Q-Cartier) at L. Note that a Q-Cartier R-divisor D is automatically
a Q-Cartier Q-divisor by definition. If D is a finite R-linear (resp. Q-linear) combination
of Cartier divisors on X, then we sometimes say that D is a globally R-Cartier R-divisor
(resp. globally Q-Cartier Q-divisor).

Two R-divisors Dy and Dy are said to be linearly equivalent if Dy — Dy is a principal

Cartier divisor. The linear equivalence is denoted by D; ~ D,. Two R-divisors D; and
Dy are said to be R-linearly equivalent (resp. Q-linearly equivalent) if Dy — Dy is a finite
R-linear (resp. Q-linear) combination of principal Cartier divisors. When D; is R-linearly
(resp. Q-linearly) equivalent to Dy, we write Dy ~g Dy (resp. Dy ~g Ds).
Example 2.7. Let X be a non-compact Riemann surface and let {P;}7°, be a set of
mutually distinct discrete points of X. We put D := ) 7, %Pk. Then D is obviously
a Q-Cartier Q-divisor on X. However, D is not a finite Q-linear combination of Cartier
divisors on X.

We note that in this paper we can almost always assume that Supp D has only finitely
many irreducible components.

2.8 (Hybrids of R-line bundles and R-Cartier divisors). In this paper, we usually treat
hybrids of R-line bundles and R-Cartier divisors.

Let m: X — Y be a projective morphism between complex analytic spaces and let W
be a compact subset of Y. Let A and B be R-Cartier divisors on X and let £ and M be
R-line bundles on X.

We sometimes say that

L+A~g M+ B

holds over some open neighborhood U of W. This means:
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(i) We implicitly assume that A|.-1 and B|.-1(y) are finite R-linear combinations of
Cartier divisors on 7~ (U). Thus we can obtain R-line bundles A and B naturally
associated to A|r-1(yy and B|z-1(y), respectively.

(ii) In Pic(m~1(U)) ®z R, the following equality

Ly + A= M|y + B
holds.

If X is a normal complex variety and U is a relatively compact open subset of Y, then
Alz-1@w) and B|z-1(y) are automatically finite R-linear combinations of Cartier divisors
on 7 1(U). Therefore, (i) is harmless for applications.

Similarly, we say that £ 4+ A is m-ample over some open neighborhood U of W if
Alz-1y is a finite R-linear combination of Cartier divisors on 7~ '(U), A is the R-line
bundle naturally associated to A|ﬂ_1(U), and £|W_1(U) + A is m-ample over U, that is,
L]~y + A is a finite positive R-linear combination of r-ample line bundles on 7 (U).

2.9. Let m: X — Y be a projective morphism of complex analytic spaces such that X is a
normal complex variety and let A be an R-divisor on X such that Kx+A is R-Cartier. Let
y be an arbitrary point of Y and let U, be any relatively compact Stein open neighborhood
of y € Y. In this case, we can always find a Weil divisor K-1¢,) on 7~'(U,) such that
Orvw,)(Kr-1v,)) =~ w1, holds since 7 is projective and U, is Stein. Since U, is
relatively compact, Supp Al -1(y,) has only finitely many irreducible components. Thus,
we can easily see that K -1y,) + Al—1(y,) is a globally R-Cartier R-divisor on 7 HU,).
Moreover, for any R-line bundle £ on X, we can take a globally R-Cartier R-divisor L on
7~ '(U,) such that L|,-1,) is the R-line bundle naturally associated to L.

In the theory of minimal models, we often use the following formulation. We will
repeatedly use it in subsequent sections.

2.10. Let X be a normal complex variety. A real vector space spanned by the prime
divisors on X is denoted by WDivg(X), which has a canonical basis given by the prime
divisors. Let D be an element of WDivg(X). Then the sup norm of D with respect to
this basis is denoted by | D|. Note that an R-divisor D on X is an element of WDivg(X)
if and only if Supp D has only finitely many irreducible components.

Let V be a finite-dimensional affine subspace of WDivg(X'), which is defined over the
rationals. We put

R(V;z) :={A €V | Kx + A is R-Cartier at x}.

It is obvious that R(V;x) is an affine subspace of V. We take an arbitrary element A
of R(V;x). Then Kx + A is R-Cartier at « by definition. Therefore, there exist a small
open neighborhood U, of = such that

k
Ky, + Aly, = Z%Di,
i=1
where D; is a Cartier divisor on U, and a; is a real number for every . By this description,
we can easily see that there exists an affine subspace 7 of V' defined over the rationals

such that A € T C R(V;z). Hence R(V;z) itself is an affine subspace of V' defined over
the rationals. Let L be a compact subset of X. We put

R(V;L):={A €V | Kx+ A is R-Cartier at L}.
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Then the following equality
R(V;L) = [ R(V;x)
zeL

obviously holds. Therefore, R(V; L) is an affine subspace of V' defined over the rationals.
After shrinking X around L suitably, we may assume that Ky + A is R-Cartier for every
A € R(V; L) since V is finite-dimensional and L is compact. Let © be the union of the
support of any element of R(V; L). By [BM2, Theorem 13.2], after shrinking X around
L suitably, we can construct a projective bimeromorphic morphism f: Y — X from a
smooth complex analytic space Y such that Exc(f) and Exc(f) U Supp f, 1O are simple
normal crossing divisors on Y, where Exc(f) denotes the exceptional locus of f: Y — X.
Thus, for any A € R(V; L), we can write

Ky—f—Ay = f*(KX +A)

such that Supp Ay is a simple normal crossing divisor on Y. In this situation, (X, A) is
log canonical at L if and only if A is effective at L and the coefficients of Ay are less than
or equal to one over L. Hence, we can easily check that

L(V;L):={A eV ]|Kx+ A is log canonical at L}

is a rational polytope contained in R(V'; L). We can also check that there exists an open
neighborhood U of L such that (U, Aly) is log canonical for every A € L(V; L).

2.11. Let X be a complex analytic space. An analytic subset (resp. A locally closed
analytic subset) of X is the support of a closed analytic subspace (resp. a locally closed
analytic subspace) of X. A Zariski open subset of X means the complement of an analytic
subset. We note the following easy example.

Example 2.12. We consider A := {z € C | |z|] < 1} and A* := A\ {0}. Then A*is a
Zariski open subset of A. We put

1

U:=A"\ {ﬁ

Then U is a Zariski open subset of A* since
{ 1
n

is a closed analytic subset of A*. However, U is not a Zariski open subset of A. This is
because

nGZwithnZ?}.

nEZwithnZZ}

{0}u{%

is not a closed analytic subset of A.

nEZwithnZQ}

2.13. A subset S of a complex analytic space X is said to be analytically meagre if

sc |,

neN

where each Y, is a locally closed analytic subset of X of codimension > 1.

Let X be a complex analytic space. We say that a property P holds for an analytically
sufficiently general point € X when P holds for every point z contained in X \ S for
some analytically meagre subset S of X.



CONE AND CONTRACTION THEOREM 13

Let m: X — Y be a morphism of analytic spaces. Similarly, we say that a property P
holds for an analytically sufficiently general fiber of m: X — Y when P holds for 771(y)
for every y € Y\ S, where S is some analytically meagre subset of Y.

In this paper, we will freely use the following facts, which can be found in [BS, Chapter
I11].

2.14. Let m: X — Y be a projective surjective morphism of complex analytic spaces and
let £ be a line bundle on X. If RPw,.L = 0 holds, then H?(F, L|r) = 0 for an analytically
sufficiently general fiber F of 7: X — Y. If H(F, L|r) # 0 for an analytically sufficiently
general fiber F' of 7: X — Y then 7L # 0 holds.

We will use the following convention throughout this paper.

2.15. The expression ‘... for every m > 0’ means that ‘there exists a positive real number
mg such that ... for every m > my.’

3. BASIC PROPERTIES OF RELATIVELY AMPLE AND RELATIVELY NEF R-LINE BUNDLES

In this section, we will collect some basic properties of relatively nef and relatively ample
R-line bundles for the reader’s convenience. We will frequently use them in subsequent
sections.

Let us recall the definition of projective morphisms of complex analytic spaces for the
sake of completeness.

Definition 3.1 (Projective morphisms of complex analytic spaces). Let m: X — Y be a
proper morphism of complex analytic spaces and let £ be a line bundle on X. Then L is
said to be w-very ample or relatively very ample over Y if L is m-free, that is,

mrm L — L
is surjective, and the induced morphism
X — ]Py(ﬂ' *,C)

over Y is a closed embedding. A line bundle £ on X is called w-ample or ample over Y
if for any point y € Y there are an open neighborhood U of y and a positive integer m
such that L|.-1(y) is relatively very ample over U. Let D be a Cartier divisor on X.
Then we say that D is w-very ample, m-free, and m-ample if the line bundle Ox (D) is so,
respectively. We note that 7: X — Y is said to be projective when there exists a m-ample
line bundle on X.

For the basic properties of m-ample line bundles, see [BS, Chapter IV] and [Na2, Chapter
II. §1.c. Ample line bundles]. Since we are mainly interested in R-line bundles in this
paper, the following easy lemma is indispensable.

Lemma 3.2. Let m: X — Y be a projective morphism between complex analytic spaces
and let W be a compact subset of Y. Let L be an R-line bundle on X. Then the following
two conditions are equivalent.

(i) L is m-ample over W, that is, L|,-1(,) is ample in the usual sense for every w € W.
(ii) £ is m-ample over some open neighborhood U of W, that is, L],y is a finite
positive R-linear combination of | -1)-ample line bundles.

Sketch of Proof of Lemma B2. It is obvious that (i) follows from (ii). Hence it is sufficient
to prove that (ii) follows from (i). It is an easy exercise to modify the proof of [FM2,
Lemmas 6.1 and 6.2] suitably with the aid of [Nall, Proposition 1.4]. O
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Throughout this paper, we will freely use Lemma B2 without mentioning it explicitly.
The following lemma is more or less well known to the experts. We describe it here for
the sake of completeness.

Lemma 3.3. Let m: X — Y be a projective surjective morphism of complex analytic
spaces such that X andY are both irreducible. Let L be a line bundle on X. Assume that
L1y s ample for some y € Y. Then there exists a Zariski open neighborhood U of y
in'Y and a positive integer m such that L&\ -1y is m-very ample over U. In particular,
L1y is m-ample over U.

Proof. 1t is well known that there exists a small open neighborhood U; of y in Y such that
Ll|z-1(u,) is m-ample over U, (see [Nall, Proposition 1.4]). Therefore, we can take some
positive integer m such that £™ is w-very ample over some small open neighborhood U,
of y in Y. We consider 7*m, L% — L®™ 1t is obviously surjective over U,. Therefore,

7 (Supp Coker(7* 7, LZ™ — LE™)) N Us = 0.
Then we put
Us :== Y \ 7 (Supp Coker(n*m, LZ — LE™))..

Hence Us; is a non-empty Zariski open subset of Y such that y € Us and that 7*7, L% —
L™ is surjective over Us. We put

T :=Im (7" 7 Lo = L%) @ L2 C Ox.

Then 7 is a coherent ideal sheaf on X. We take the blow-up p: Z — X of X along the
ideal sheaf Z, that is, p: Z := Projany @, Z¢ — X. By construction,

M :=1Im (p*’/T*7T*£®m — p*£®m)
becomes a line bundle on Z. This gives a closed embedding
7 ~ ]Pz(M) — Py(’fr*ﬁ@m) Xy Z.

Thus we obtain a morphism «: Z — Py (m.L®™) over Y. By construction again, p is an
isomorphism over Us and « is a closed embedding over U;. We can take a non-empty
Zariski open subset V of «(Z) such that « is flat over V. Without loss of generality, we
may assume that V' contains ¢~ (Uy), where q: a(Z) — Y, and that « is an isomorphism
over V.

We put
U=UsNY \qg(a(Z)\V)).

Then U is a non-empty Zariski open subset of Y such that y € U and aop™t: X --»
Py (7, L%™) is a closed embedding over U. Therefore, L&™ is w-very ample over U. O

As an application of Lemma BZ3, we have:
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Lemma 3.4. Let m: X — Y be a projective surjective morphism of complex analytic
spaces. Let L be an R-line bundle on X. Assume that L| -1, is ample for some y €Y.
Then there exists a Zariski open neighborhood U of y in'Y such that L],y is m-ample
over U.

In the theory of minimal models, we have to treat R-line bundles. Therefore, Lemma B2
is indispensable. Since we can not directly apply geometric arguments to R-line bundles,
Lemma B4 is not so obvious.

Proof of Lemma [F4. We can write £ = >, a;£; in Pic(X)®zR such that q; is a positive
real number, £; € Pic(X), and L;|,-1(,) is ample for every i € I. Let X = J.., X, be
the irreducible decomposition. We put

Ji={jeJlyen(X;)} and Jy:={je J|y¢&n(X;)}

We take an irreducible component X; of X with j € J;. By applying Lemma B3 to L] x;,
we can find a Zariski closed subset X; of 7(X;) such that y € 7(X;) \ X;, £|x, is ample
over m(X;) \ X; for every i € I. This implies that L|x; is ample over 7(X;)\ X;. We put

Y= (gl zj> Un (jg Xj> :

Then ¥ is a Zariski closed subset of Y such that y € Y\ ¥ and that £ is m-ample over
Y \ X. Therefore, U :=Y \ ¥ is a desired Zariski open neighborhood of y in Y. O

jeJ

By Lemma B4 we can easily obtain:

Lemma 3.5. Let m: X — Y be a projective surjective morphism of complex analytic
spaces. Let L be an R-line bundle on X. Assume that L|z-1(,, is nef for some yo € Y.
Then there exists an analytically meagre subset S such that L| -1y, is nef for every y €

Y\S.

Although Lemma B3 is easy, it will play a very important role in our framework of the
minimal model program of complex analytic spaces. We note that we can not make S a
Zariski closed subset of Y in Lemma BA.

Proof of Lemma Ed. We take a m-ample line bundle H on X. Then (mL + H)|r-1(y,) is
ample for every positive integer m. Therefore, by Lemma B3, for each m € N, we can
take a Zariski open neighborhood U, of yq in Y such that mL + H is w-ample over U,,.
We put S := J,,en(Y \ Un). Then (mL + H)|r-1(,) is ample for every m € N and every
y € Y \'S. This means that £|,-1(,) is nef for every y € Y\ S. O

The following obvious corollary of Lemma B3 is also useful for geometric applications.
We note that we sometimes have to treat a countably infinite set of line bundles.

Corollary 3.6. Let m: X — Y be a projective surjective morphism of complex analytic
spaces. Let L; be an R-line bundle on X for i € N. Assume that L;|r—1(y,) is nef for
some yg € Y and for every i € N. Then there exists an analytically meagre subset S such
that L;|z-1y) is nef for every y € Y \'S and every i € N. Therefore, if H is any m-ample
R-line bundle on X, then (H + L;)|r-1(y) is ample for every y € Y \ S and every i € N.

Proof. By Lemma B3, for each ¢ € N, we can find an analytically meagre subset S; of V'
such that L;[;-1(,) is nef for every y € Y\ S;. We put S := |J,y Si- Then it is easy to
see that § is a desired analytically meagre subset of Y. U
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By the proof of Lemma B3 and Corollary B8, we have:

Remark 3.7. In Lemma B and Corollary B8, we can make Y\ S a countable intersection
of non-empty Zariski open subsets of Y.

4. NON-LC IDEAL SHEAVES

Let us recall the notion of non-lc ideal sheaves. 1t is well defined even in the complex
analytic setting.

Definition 4.1 (Non-lc ideal sheaves, see [Fn2, Definition 7.1]). Let X be a normal
complex variety and let A be an effective R-divisor on X such that Kx 4+ A is R-Cartier.
Let f: Z — X be a projective bimeromorphic morphism from a smooth complex variety
Z with Kz + Ay := f*(Kx + A) such that Supp Az is a simple normal crossing divisor
on Z. Then we put

Tnic(X,A) = LOz([—(AZ)] = [AZ']) = £.0z(=[Az] + AZ)
and call it the non-lc ideal sheaf associated to (X, A). We put
J(X,A) = £.0z(=|Az]).

Then J (X, A) is the well-known multiplier ideal sheaf associated to (X, A). By definition,
the following inclusion

J(X,A) C Inne(X, A)

always holds. By definition again, we can easily see that the support of Ox/JnLc(X, A)
is the non-lc locus Nlc(X, A) of (X, A).

By the standard argument (see, for example, [Fu2, Lemma 7.2]), there are no difficulties
to check the following lemma.

Lemma 4.2. In Definition f-1, Jnrc(X,A) and J(X,A) are independent of the choice
of the resolution f: Z — X. Hence Jnnc(X,A) and J(X,A) are well-defined coherent

1deal sheaves on X.

Sketch of Proof of Lemma 3. Since we do not use J (X, A) in this paper and the proof
for J(X, A) is simpler than for Ixpc(Z, A), we only treat Jxnc(X, A) here. Let f1: Z; —
X and fyo: Zy — X be two resolutions with Kz, + Az = ff(Kx +A) and Kz, + Az, =
f3(Kx + A) as in Definition B, We take an arbitrary point z € X. It is sufficient to
prove that

[1,.02, (= Az | + A7) = £2,02,(—Az] + AZ)

holds on some open neighborhood of x. Therefore, by shrinking X around z and taking
an elimination of indeterminacy of Z, --+ Z;, we may further assume that f; decomposes
as

bjt
fQZ Z2H21 — X.

Then, by [Eu3, Proposition 6.3.1], we can directly check that f1,0z (—|Az | + AZ))
[2.02,(—=|Az,]) + AZ)) holds. We finish the proof.

ool

In this paper, we need the following Bertini-type theorem for Jnpc(X, A).
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Lemma 4.3 ([Fu2, Proposition 7.5]). Let X be a normal complex variety and let A be
an effective R-divisor on X such that Kx + A is R-Cartier. Let A (=~ PN) be a finite-
dimensional linear system on X. Let X' be any relatively compact open subset of X.
Then there exists an analytically meagre subset S of A such that

Tnre(XT, A+ D) = Tarc(XT, A)
holds outside the base locus Bs A of A for every element D of A\ S and every 0 <t < 1.

Proof. Without loss of generality, we can freely replace X with a relatively compact open
neighborhood of XT. Therefore, by the desingularization theorem (see [BM2, Theorem
13.2]), we can take a projective bimeromorphic morphism f: Z — X from a smooth
complex variety Z with Kz + Ay = f*(Kx + A) such that Supp Ay is a simple normal
crossing divisor on Z. By replacing X with X \Bs A, we may further assume that Bs A = ().
By Bertini’s theorem, there exists an analytically meagre subset S of A such that f*D is
smooth, f*D = f71D, f*D and Supp Az have no common irreducible components, and
the support of f*D + Supp Az is a simple normal crossing divisor on Z for every element
D of A\S. Then Kz +Ayz+ f*tD = f*(Kx+A+tD) holds over X' with f*tD =tf, 'D.
Thus,
[—(AZD] = [AZ'] = [-(Az + ftD)<'] = [(Az + ftD)™]
holds over X for every 0 <t <1 and every element D of A\ S. Thus, we obtain
Tnre(XT, A+ tD) = Tarc(XT, A)
by definition. This is what we wanted. U

We need the following lemma in order to reduce the problems for R-divisors to simpler
problems for QQ-divisors.

Lemma 4.4. Let X be a normal complex variety and let L be a compact subset of X.
Let A be an effective R-divisor on X such that Kx + A is R-Cartier at L. Then, after
shrinking X around L suitably, there exist effective Q-divisors Aq,...,Ar on X and
positive real numbers ry, ..., ri with Zle r; = 1 such that Kx 4+ A; is Q-Cartier for every
i, A = Zle riA;, and Inpe(X, A;) = Inuc(X, A) holds for every i. In particular, if
(X, A) is log canonical, then (X, A;) is log canonical for every i.

Proof. By shrinking X around L suitably, we may assume that Supp A has only finitely
many irreducible components. Let Supp A := 2221 D; be the irreducible decomposition.

We consider the R-vector space V' := @2:1 RD;. We put

R(V;L):={D € V| Kx + D is R-Cartier at L}.
Then R(V; L) is an affine subspace of V' defined over the rationals (see 210). By shrinking
X around L suitably again, we may assume that Ky + D is R-Cartier for every D €
R(V; L). By [BM2, Theorem 13.2], we may further assume that there exists a projective
bimeromorphic morphism f: Z — X from a smooth complex analytic space Z such that
Exc(f) and Exc(f)U 22:1 Supp f, ' D; are simple normal crossing divisors on Z. We put

a(E,X,D) = a(E,X,A) holds for every
divisor F on Z with a(F, X,A) € Q '

Then SA(V; L) is an affine subspace of V' defined over the rationals with A € SA(V; L).
Since SA(V; L) is defined over the rationals, we can take effective Q-divisors Ay, ..., A

from Sa(V; L) such that they are close to A in Sa(V; L) and positive real numbers
ri,...,7Tr with all the desired properties. O]

SA(V: L) = {D e R(V; L)
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Although we do not use multiplier ideal sheaves in this paper, we note:

Remark 4.5. In Lemma B4, we see that J(X,A;) = J(X,A) holds for every i by
construction. In particular, (X, A;) is kawamata log terminal for every i if (X, A) is
kawamata log terminal.

5. QUICK REVIEW OF VANISHING THEOREMS

In this section, let us quickly recall the vanishing theorems established in [FuT0]. Let
us start with the definition of analytic simple normal crossing pairs.

Definition 5.1 (Analytic simple normal crossing pairs). Let X be a simple normal cross-
ing divisor on a smooth complex analytic space M and let B be an R-divisor on M such
that Supp(B + X) is a simple normal crossing divisor on M and that B and X have no
common irreducible components. Then we put D := B|x and consider the pair (X, D).
We call (X, D) an analytic globally embedded simple normal crossing pair and M the
ambient space of (X, D).

If the pair (X, D) is locally isomorphic to an analytic globally embedded simple normal
crossing pair at any point of X and the irreducible components of X and D are all smooth,
then (X, D) is called an analytic simple normal crossing pair.

When (X, D) is an analytic simple normal crossing pair, X has an invertible dualizing
sheaf wy since it is Gorenstein. We use the symbol Kx as a formal divisor class with
an isomorphism Ox(Kx) ~ wy if there is no danger of confusion. Note that we can not
always define Kx globally with Ox(Kx) ~ wx. In general, it only exists locally on X.

Remark 5.2. Let X be a smooth complex analytic space and let D be an R-divisor
on X such that Supp D is a simple normal crossing divisor on X. Then, by considering
M := X x C, we can see (X, D) as an analytic globally embedded simple normal crossing
pair.

The notion of strata, which is a generalization of that of log canonical centers, plays a

crucial role.

Definition 5.3 (Strata). Let (X, D) be an analytic simple normal crossing pair such that
D is effective. Let v: X¥ — X be the normalization. We put

Kxo +0 = v (Kx + D).

This means that © is the union of v !D and the inverse image of the singular locus of
X. If S is an irreducible component of X or the r-image of some log canonical center of
(X", 0), then S is called a stratum of (X, D).

We recall Siu’s theorem on coherent analytic sheaves, which is a special case of [Si,
Theorem 4].

Theorem 5.4. Let F be a coherent sheaf on a compler analytic space X. Then there
exists a locally finite family {Y;}ier of complex analytic subvarieties of X such that

ASS@X’I (‘FSU) = {pdf,la SR 7pa:,7"(:c)}

holds for every point x € X, where pg1,...,Pzr(z) are the prime ideals of Ox . associated
to the irreducible components of the germs Y, , of Y; at x with x € Y;. We note that each
Y; is called an associated subvariety of F.

Now we are ready to state the main result of [Ful0)].
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Theorem 5.5 ([Eull, Theorem 1.1]). Let (X, A) be an analytic simple normal crossing
pair such that A is a boundary R-divisor on X. Let f: X — Y be a projective morphism
to a complex analytic space Y and let L be a line bundle on X. Let q be an arbitrary
non-negative integer. Then we have the following properties.

(i) (Strict support condition). If L — (wx + A) is f-semiample, then every associated
subvariety of RUf.L is the f-image of some stratum of (X, A).

(ii) (Vanishing theorem). If L — (wx + A) ~r f*H holds for some m-ample R-line
bundle H on'Y, where m:' Y — Z is a projective morphism to a complex analytic
space Z, then we have

RPm RUf L =0
for every p > 0.

We make a supplementary remark on Theorem B33.

Remark 5.6. In Theorem B (and Theorem 57 below), we always assume that A is
globally R-Cartier, that is, A is a finite R-linear combination of Cartier divisors. We note
that if the support of A has only finitely many irreducible components then it is globally
R-Cartier. Since we are mainly interested in the standard setting explained in [, this
assumption is harmless to geometric applications. Under this assumption, we can obtain
an R-line bundle A on X naturally associated to £ — (wx + A). The assumption in (i)
means that N is a finite positive R-linear combination of 7-semiample line bundles on X.
The assumption in (ii) says that N = f*H holds in Pic(X) @z R.

We do not prove Theorem B3 here. For the details of the proof of Theorem b3,
see [FuT0], which depends on Saito’s theory of mixed Hodge modules (see [Sall, [SaZ],
[Sa3], [EFS], and [Sad]) and Takegoshi’s analytic generalization of Kollar’s torsion-free and
vanishing theorem (see [Ia]). We note that Theorem B3 is one of the main ingredients of
this paper. Or, we can see this paper as an application of Theorem b3.

5.1. Vanishing theorems of Reid—Fukuda type. Although we do not need vanishing
theorems of Reid—Fukuda type in this paper, we will shortly discuss them here for future
usage.

Theorem 5.7 (Vanishing theorem of Reid-Fukuda type, see [Ful(, Theorem 1.2]). Let
(X, A) be an analytic simple normal crossing pair such that A is a boundary R-divisor
on X. Let f: X =Y and n:Y — Z be projective morphisms between complex analytic
spaces and let £ be a line bundle on X. If L — (wx +A) ~gr f*H holds such that H is an
R-line bundle, which is nef and log big over Z with respect to f: (X, A) =Y, onY, then

R RIf.L =0
holds for every p > 0 and every q.

Theorem 577 is obviously a generalization of Theorem B3 (ii). The reader can find
the detailed proof of Theorem B in [Ful0], which is harder than that of Theorem b
(ii). As an easy application of Theorem B4, we can establish the vanishing theorem of
Reid-Fukuda type for log canonical pairs in the complex analytic setting.

Theorem 5.8 (Vanishing theorem of Reid-Fukuda type for log canonical pairs). Let
(X, A) be a log canonical pair and let m: X — Y be a projective morphism of complex
analytic spaces. Let L be a Q-Cartier integral Weil divisor on X. Assume that L — (Kx +
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A) is nef and big overY and that (L—(Kx+A))|c is big over w(C) for every log canonical
center C' of (X,A). Then
Rqﬂ'*OX(L) =0
holds for every q > 0.
Proof. The proof of [Fu3, Theorem 5.7.6] works by Theorem B2 O

We leave the details of Theorems b7 and bR for the interested readers.

6. VANISHING THEOREMS FOR NORMAL PAIRS

In this section, we will prepare some vanishing theorems, which are suitable for geo-
metric applications. They will play a crucial role in subsequent sections. We note that
the results in this section follow from Theorem b3H. Hence they depend on Saito’s the-
ory of mixed Hodge modules and Takegoshi’s generalization of Kollar’s torsion-free and
vanishing theorem.

Theorem 6.1 (see [Fu2, Theorem 8.1]). Let m: X — Y be a projective morphism of
complex analytic spaces such that X is a normal complex variety and let W be a compact
subset of Y. Let A be an effective R-divisor on X such that Kx + A is R-Cartier and
let L be a line bundle on X. We assume that L — (Kx + A) is m-ample over W, that is,
(L= (Kx + A)) |z-1(w) is ample for every w € W. Let {C;}icr be any set of log canonical
centers of the pair (X,A). We put V := {,c; Ci with the reduced structure. We further
assume that V' is disjoint from the non-lc locus Nlc(X, A) of (X,A). Then there ezists
some open neighborhood U of W such that

Rr(J®L)=0
holds on U for every i > 0, where J := Ly - Inue(X,A) C Ox and Iy is the defining
ideal sheaf of V on X. Therefore, the restriction map
T L = T (Llv) ® T (Llnex,n))
15 surjective on U and
Rzﬂ'*(£|v) =0
holds on U for every i > 0. In particular, the restriction maps
L — . (L]v)
and
W*L — 7T*<£|N1C(X,A))
are surjective on U.

The result and argument in Step 0 in the proof of Theorem B is the most important
part of this paper. We will use them repeatedly in subsequent sections.

Proof of Theorem 6. In Steps 0 and B, we will use the strict support condition (see
Theorem BA (i)) and the vanishing theorem (see Theorem B3 (ii)), respectively. The
assumption that £ — (Ky + A) is m-ample over W will be used only in Step B.

We take an arbitrary point w € W. Then it is sufficient to prove the desired vanishing
theorem over some open neighborhood of w by the compactness of W. Therefore, we may
replace Y with a relatively compact Stein open neighborhood of w and may assume that
L — (Kx + A) is m-ample over Y.
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Step 1. We can take a resolution of singularities f: Z — X of X such that f is projective
and that Supp f,'A U Exc(f) is a simple normal crossing divisor on Z. We may further
assme that f~!(V) is a simple normal crossing divisor on Z. Then we can write

Kz;+ Ay = f*(Kx-I—A).

Let T be the union of the irreducible components of AZ! that are mapped into V by f.
We consider the following short exact sequence

0> 0z(A-N-T)—= Oz(A-N)—- Or(A—N)—0,

where A := [—(AZ")] and N := |AJ'|. By definition, A is an effective f-exceptional
divisor on Z. We obtain the following long exact sequence

0— fiOz(A—N-T) — f.Oz(A—N) — f.Or(A—N)
S RYFOHMA-N-T) = -
Since
A-N-T—(Kz+{Az}+ A —T) = —(Kz + Ay) ~p —f(Kx +A),

every associated subvariety of R'f,Oz(A — N — T) is the f-image of some stratum of
(Z,{Az} + AZ' — T) by the strict support condition in Theorem A (i). Since f~(V)
is a simple normal crossing divisor, there are no strata of (Z,{Az} + AZ! — T') that are
mapped into V' by f. On the other hand, V' = f(T') holds by construction. Thus, the
connecting homomorphism ¢ is a zero map. Hence we have a short exact sequence

(6.1) 0= f.OZ(A—N—T) = £.02(A—N) = £.Or(A— N) = 0.

We put J = f.Oz(A— N —T) C Ox. Since V is disjoint from Nlc(X, A) by assump-
tion, the ideal sheaf J coincides with Zy and Jnpc(X,A) in a neighborhood of V' and
Nle(X, A), respectively. Therefore, we have J = Zy - Innc(X, A). We note that if V
is empty then Zy = Ox and J = Jnpe(X,A). We put X* := X \ Nle(X,A) and
Z*:= f~1(X*). By restricting (E1) to X*, we obtain

0= fLOz2(A=T) — f.Oz(A) = f.Op(A) = 0.
Since f,Oz:(A) ~ Ox-, we have f.Or(A) ~ Oy. This implies that Oy ~ f,Or holds.
Step 2. Since
fLAA=N—-T—(Kz+{Az} + A7 = T) ~r [ (L~ (Kx +A)),
we have A 4
R (J®L)~Rm(fOz(A—N-T)RL)=0
for every ¢ > 0 by the vanishing theorem in Theorem B3 (ii). If we put V = (), then we
have J = JnLc(X, A). Therefore,

R'7, (Ixne(X,A) @ L) =0
holds for every ¢ > 0 as a special case. By considering the short exact sequence
0= T = Ine(X,A) = Oy — 0,
we obtain
v = R (Inee( X, A) @ L) — Rin (Lly) = R m (T @ L) — -+ .
Since we have already checked

R (Ine(X,A) @ L) = R (T @ L) =0
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for every ¢ > 0, we have R'm,(L|y) = 0 for all 4 > 0. Finally, we consider the following
short exact sequence

0—-J —=>0x—=>0y® ONlc(X,A) — 0.
By taking ®£ and R'r,, we obtain that

0= 71 (T QL) = 1L = m(Lv) B m(Lnex,a)) = 0
is exact.
We finish the proof. dJ
The following remark is obvious by the proof of Theorem B

Remark 6.2. If (£ — (Kx 4+ A)) |1y is ample for every y € Y, then the proof of
Theorem B shows that Theorem B holds over Y. This means that we can take U =Y
in Theorem B

We prepare one more vanishing theorem.

Theorem 6.3 (see [Fu2, Theorem 11.1]). Let m: X — Y be a projective morphism of
complex analytic spaces such that X is a normal complex variety and let W be a compact
subset of Y. Let A be an effective R-divisor on X such that Kx + A is R-Cartier. Let
{Ci}ier be any set of log canonical centers of the pair (X,A). We put V := {J,c; Ci with
the reduced structure. We assume that V' is disjoint from the non-lc locus Nle(X, A) of
(X,A). Let M be a line bundle on V such that M — (Kx + A)|y is m-ample over W.
Then there exists some open neighborhood U of W such that Rim,M = 0 holds on U for
every v > 0.

Proof. As in Theorem B, it is sufficient to prove the desired vanishing theorem for some
open neighborhood of any point w € W. We will use the same notation as in the proof
of Theorem Bl. We note that

A—N—(Kz+{Az} + A7) ~p —f(Kx + A)
holds. We put fr:= f|r: T — V. Then
JiM+Alr — (Kp+ ({Az} + A7 = D)lr) ~r fH(M = (Kx + A)ly)

holds. Note that (T, ({Az}+AZ' —T)|r) is an analytic globally embedded simple normal
crossing pair. Thus, by the vanishing theorem in Theorem B3 (ii),

R'm M =~ R'm, (M & (fr).Or(Alr)) =0

for every i > 0. Here, we used the following isomorphism (f|7).Or(A|r) ~ Oy obtained
in Step O in the proof of Theorem Bl 0

We make two remarks on Theorem B23.

Remark 6.4. If (M — (Kx + A)|v) |ﬂ;1(y) is ample for every y € w(V'), where my := 7|y,
then Theorem B=3 holds true over Y, that is, we can take U = Y in Theorem 623. We can
check it by the proof of Theorems B and BG=3.

Remark 6.5. In [Fu2, Theorem 11.1], V' is assumed to be a minimal log canonical center
of (X, A) which is disjoint from Nlc(X, A). Moreover, the proof of [Fu2, Theorem 11.1]
depends on [BCHMI]. For the details, see [Fu2, Remark 11.2].

LB Ly
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7. ON LOG CANONICAL CENTERS

The main purpose of this section is to prove the following very fundamental theorem
on log canonical centers, which is an easy application of Theorem B and its proof. It
will play an important role in this paper.

Theorem 7.1 (Basic properties of log canonical centers). Let (X, A) be a log canonical
pair. Then the following properties hold.

(1) The number of log canonical centers of (X, A) is locally finite.

(2) The intersection of two log canonical centers is a union of some log canonical
centers.

(3) Let x € X be any point such that (X, A) is log canonical but is not kawamata log
terminal at x. Then there exists a unique minimal (with respect to the inclusion)
log canonical center C, passing through x. Moreover, C, is normal at x.

Proof. We note that (1) is almost obvious by definition. We take an arbitrary point x € X
and shrink X around x suitably. Then we may assume that there exists a projective
bimeromorphic morphism f: Y — X from a smooth complex analytic space Y such
that Ky + Ay := f*(Kx + A), Supp Ay is a simple normal crossing divisor on Y, and
Supp Ay has only finitely many irreducible components (see [BM2, Theorem 13.2]). Let

AT = > icr A; be the irreducible decomposition. Then C' is a log canonical center of
(X,A) if and only if C' = f(5), where S is an irreducible component of A; N---NA;,
for some {iy,...,ix} C I. Therefore, there exists only finitely many log canonical centers

on some open neighborhood of x. Thus we obtain (1).

From now on, we will use the same notation as in the proof of Theorem 611 with Y = X.
Let C7 and Cy be two log canonical centers of (X, A). We fix a closed point P € C; N Cs.
We replace X with a relatively compact Stein open neighborhood of P € X and apply
the argument in the proof of Theorem E. For the proof of (2), it is enough to find a
log canonical center C' such that P € C' € Cy N Cy. We put V := C; U Cs. By Step
@ in the proof of Theorem B, we obtain f,Or ~ Oy. This means that f: T — V
has connected fibers. We note that T is a simple normal crossing divisor on Z. Thus,
there exist irreducible components Ty and Ty of T such that Ty N T N f~1(P) # 0 and
that f(7;) € C; for i = 1,2. Therefore, we can find a log canonical center C' with
P e C C CyNCy We finish the proof of (2). Finally, we will prove (3). The existence
and the uniqueness of the minimal log canonical center follow from (2). We take the
unique minimal log canonical center C' = C, passing through . We put V := C. We
may replace X with a relatively compact Stein open neighborhood of € X. Then, by
Step M in the proof of Theorem B, we have f,Or ~ Oy . By shrinking V' around z, we
can assume that every stratum of 7" dominates V. Let v: V¥ — V be the normalization
of V. By applying Hironaka’s flattening theorem (see [Hi]) to the graph of 7' --» V¥ and
then using the desingularization theorem (see [BM2, Theorems 13.3 and 12.4]), we can
obtain the following commutative diagram:

TP

)

VVT>V,
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where p: TT — T is a projective bimeromorphic morphism such that 7 is simple normal
crossing with p,Opt ~ Or (see [Full, Lemma 2.15]). Hence

Oy — 1,0vv — 1,q,O0ri =~ fupOpi =~ f.Op >~ Oy.
This implies that Oy ~ v,Oy+ holds, that is, V' is normal. Thus we obtain (3). O

By the above proof of Theorem [, we see that Theorem 1 (2) and (3) are conse-
quences of the strict support condition in Theorem B3 (i).

8. NON-VANISHING THEOREM

In this section, we will explain the non-vanishing theorem for projective morphisms
between complex analytic spaces.

Theorem 8.1 (see [Fu2, Theorem 12.1]). Let m: X — Y be a projective morphism of
complex analytic spaces such that X is a normal complex variety and let W be a compact
subset of Y. Let A be an effective R-divisor on X such that Kx + A is R-Cartier. Let L
be a Cartier divisor on X which is m-nef over W, that is, L| -1y is nef for every w € W.
We assume that

(i) aL — (Kx + A) is m-ample over W for some positive real number a, and
(i) Oniex,a)(mL) is T|nie(x,a)-generated over some open neighborhood of W for every
m > 0.

Then for every m > 0 there exists a relatively compact open neighborhood U, of W over
which the relative base locus Bs, |mL| contains no log canonical centers of (X, A) and is
disjoint from Nlc(X, A). We note that the open subset U, depends on m.

We first prepare the following useful lemma, which is new, for the proof of Theorem
B, For the details of the theory of quasi-log schemes, see [Fu3, Chapter 6], [Fu6], and
(7).

Lemma 8.2. Let 7: X — Y be a projective morphism between complex analytic spaces
such that X is a normal complex variety and let f: (Z,Az) — X be a projective morphism
from an analytic globally embedded simple normal crossing pair (Z,Az) such that Az is a
subboundary R-divisor on Z and is a finite R-linear combination of Cartier divisors, the
natural map Ox — f.Oz([—(AZY)]) is an isomorphism, and Kz + Ay ~g f*w holds for
some R-line bundle w on X. Let y be an analytically sufficiently general point of m(X).
Then

(Xy»w|vafy3 (Zy»AZy) - Xy)

is a projective quasi-log canonical pair, where X, == n1(y), Z, := (7o f) " (y), fy := flx,.
and Azy = Az‘zy.

This lemma is also a consequence of the strict support condition in Theorem B3 (i).

Proof of Lemma 83. By replacing Y with 7(X), we may assume that 7 is surjective and
Y is a complex variety. By replacing Y with a Zariski open subset of Y, we may further
assume that Y is smooth. By replacing Y with a suitable Zariski open subset, we may
assume that 7 o f is flat. Then, by replacing Y with a suitable Zariski open subset
again, we may assume that every stratum of (Z, Supp Az) is smooth over Y. We take an
arbitrary point y € Y. Then (Z,, Az, ) is an analytic simple normal crossing pair. From
now on, we will prove that

(Xy’w|vafy3 (Zy,Az,) — Xy)
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is a projective quasi-log canonical pair. Without loss of generality, we may assume that
Y is a polydisc A™ with y =0 € A™. Let (z1,...,z,) be the local coordinate system of
A™. Then ((mo f)*z; = 0) does not contain any strata of (Z, Supp Az). Therefore,

m' 2% RUL.O7([=(AZD]) = R f.0z([—(AZ)])

is injective for every i and every p since [—(AZY)] — (Kz + {Az} + AZY) ~g —f*w. We
put X := (7*2z; =0) and Z; := ((m o f)*2; = 0). Since

max: RLOZ([—(AZ)]) = R £.02([-(AZ)])
is injective, we obtain the following short exact sequence:

0 —= £.0z([~(AF")]) == fO04([=(AF)]) — £.0z([-(Az)]) —0,
where Az, = Az|z,. This implies that the natural map Ox, — f.Oz ([—(A3])]) is an iso-
morphism. By repeating this argument, we finally obtain that Ox, ~ (f,).Oz,([— (A};ﬂ )
holds. By [Eud, Theorem 4.9], this means that

(vaW’Xyafy: (Zy,AZy) - Xy)
is a projective quasi-log canonical pair. [
Let us prove Theorem E.
Proof of Theorem 8. We divide the proof into several small steps.

Step 1. By shrinking Y suitably, we may assume that there exists a positive integer m,
such that Onie(x,a)(mL) is 7|nie(x,a)-generated for every m > my by (ii). We may further
assume that aL — (Kx + A) is m-ample over Y.

Step 2. In this step, we will prove the following claim.

Claim. There exists a positive integer mo such that m,Oy(mL) # 0 holds for every
m > ma, where V' is any minimal log canonical center of (X, A) such that #(V)NW # ()
and that V N Nle(X, A) = 0 over some open neighborhood of W.

Proof of Claim. We note that the number of the minimal log canonical centers V of (X, A)
with 7(V) N W # 0 is finite. We take a minimal log canonical center V' such that
7(V)NW # () and that V N Nle(X, A) = () over some open neighborhood of W. Let y be
an arbitrary point of 7(V') N W. It is sufficient to prove m,Oy(mL) # 0 on a small open
neighborhood of y. Therefore, we can replace Y with a small relatively compact Stein
open neighborhood of y. Thus, by Step 0 in the proof of Theorem B, we can construct
a projective surjective morphism f: (7, Ar) — V from an analytic globally embedded
simple normal crossing pair (T, Ar) such that Az is a subboundary R-divisor on T, the
natural map Oy — f.Or([—(AF")]) is an isomorphism, and K7 + Ar ~g f*(Kx +A)|y
holds. Thus, by Lemma B2, an analytically sufficiently general fiber F of 7: V — 7(V)
is a projective quasi-log canonical pair. By Lemma BJH, we may assume that L|p is
nef. Therefore, by the basepoint-free theorem for quasi-log canonical pairs (see [Fu3,
Theorem 6.5.1]), there exists a positive integer ms such that |mL|r| is basepoint-free for
every m > my. This implies that 7.0y (mL) # 0 for every m > my. This is what we
wanted. 0J

Step 3. We put mg := max{a, my, mo}. Let m be any positive integer with m > my.
Since aL — (Kx + A) is m-ample over W and L is m-nef over W, mL — (Kx + A) is
m-ample over W. By Theorem G, we can find an open neighborhood U, of W such that
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the vanishing theorem holds for mL over U,,. Without loss of generality, we may assume
that every minimal log canonical center V of (X, A) with (V) N U, # () always satisfies
7(V)NW # () by shrinking U, suitably.

Step 4. In this final step, we will prove that over U, the relative base locus Bs, |mL|
contains no log canonical centers of (X, A) and is disjoint from Nlc(X, A) for every m >
mo.

By the vanishing theorem (see Theorem BE1), we have R'7, (IxLc(X,A) ® Ox(mL)) =
0 on U,,. Thus the restriction map

1.O0x(mL) = m.Onie(x,a)(mL)

is surjective on U,,. This implies that the relative base locus Bs, |mL| is disjoint from
Nle(X, A) over U,,. Let V be a minimal log canonical center of (X, A) with «(V)NU,, # 0.
If VN NIe(X,A) # 0 over Uy, then V ¢ Bs, |mL| since Nle(X, A) N Bs, [mL| = () over
U,,. Hence we may assume that V NNle(X, A) = ) over U,,. In this case, m.Oy(mL) # 0
by Claim in Step B. On the other hand, by the vanishing theorem (see Theorem B), the
restriction map

W*Ox(mL) — W*Ov(mL)

is surjective on U,,. This implies that V' ¢ Bs, |mL|. Hence Bs, |mL| contains no log
canonical centers of (X, A) over U,,.

We finish the proof. O
We make an important remark on Theorem BT

Remark 8.3. In Step B in the proof of Theorem B, the condition that mL — (Kx + A)
is m-ample over w € W only implies that mL — (Kx + A) is m-ample over some open
neighborhood U}’ of w in Y. We note that U’ depends on m. Therefore, U, in Theorem
B also depends on m.

For kawamata log terminal pairs, the non-vanishing theorem is formulated as follows.

Theorem 8.4 (Non-vanishing theorem for kawamata log terminal pairs). Let m: X — Y
be a projective morphism of complex analytic spaces such that X is a normal complex
variety and let W be a compact subset of Y. Let A be an effective R-divisor on X such
that (X, A) is kawamata log terminal. Let L be a Cartier divisor on X which is m-nef over
W. We assume that al — (Kx + A) is m-ample over W for some positive real number a.
Then m,0x(mL) # 0 holds for every m > 0

Proof. By shrinking Y around W suitably, we may assume that aL — (Kx + A) is m-ample
over Y. Let F be an analytically sufficiently general fiber of 7: X — 7(X). Then (F, A|r)
is kawamata log terminal. By Lemma B, we may assume that L|p is nef. Hence |mL|p| is
basepoint-free for every m > 0 by the usual Kawamata—Shokurov basepoint-free theorem
for projective kawamata log terminal pairs. Thus, we obtain that m,Ox(mL) # 0 for
every m > (. This is what we wanted. U

We will use Theorems BTl and B4 in the proof of the basepoint-freeness in Section H.

9. BASEPOINT-FREE THEOREM

In this section, we will explain the basepoint-free theorem in the complex analytic
setting.



CONE AND CONTRACTION THEOREM 27

Theorem 9.1 (see [Fu2, Theorem 13.1]). Let m: X — Y be a projective morphism of
complex analytic spaces such that X is a normal complex variety and let W be a compact
subset of Y. Let A be an effective R-divisor on X such that Kx + A is R-Cartier. Let L
be a Cartier divisor on X which is w-nef over W. We assume that

(i) aL — (Kx + A) is m-ample over W for some positive real number a, and
(i) Onie(x,a)(mL) is T|nie(x,a)-generated over some open neighborhood of W for every
m > 0.

Then there ezists a relatively compact open neighborhood U of W such that Ox(mL) is
m-generated over U for every m > 0.

Theorem B is a consequence of the vanishing theorem (see Theorem Bl) and the
non-vanishing theorem (see Theorems B and &4).

Proof of Theorem [@1. We take an arbitrary point y € W. It is sufficient to prove that
Ox(mL) is m-generated for every m > 0 over some relatively compact Stein open neigh-
borhood of y. Hence, we will sometimes freely replace Y with a suitable relatively compact
Stein open neighborhood of y without mentioning it explicitly throughout this proof. So,
from now on, we assume that Y is Stein and that 7 is surjective.

Step 1. Let p be a prime number. In this step, we will prove that there exists a positive
integer k such that Bs, [p*L| = 0 holds over some open neighborhood of y.

By putting W := {y} and using the non-vanishing theorem (see Theorems B and
B4), we obtain [p* L| # () for some positive integer k;. If Bs, [p" L| = 0, then there is
nothing to prove. Hence we may assume that Bs, [p" L| # (). By Theorem B, we may
assume that Bs, [p* L| contains no log canonical centers of (X,A) and is disjoint from
Nlc(X, A) after shrinking Y suitably. By shrinking Y around W = {y}, we may assume
that 7(V) N W # @, where V is any irreducible component of Bs, [p¥ L|. Without loss
of generality, we may further assume that aL — (Kx + A) is m-ample over Y. We take
general members Dy, ..., D,y of [pML| with n = dim X. We put D := "' D,. We
may assume that (X, A + D) is log canonical outside Bs, [p* L| U Nlc(X,A). Let x € X
be any point of Bs, [p* L|. Then, by Lemma 223, (X, A + D) is not log canonical at z.
We put

c:=sup {t €R|(X,A+1tD) is log canonical at 7" (y) N (X \ Nle(X,A))}.

Then we can check that 0 < ¢ < 1. By shrinking Y around W = {y} suitably again, we
may assume that (X, A + ¢D) is log canonical outside Nlc(X, A). By Lemma B3 and its
proof, we see that Jxrc(X, A + ¢D) = InLc(X, A) holds. By construction,

(c(n+1)p" +a) L — (Kx + A+ cD) ~gp al — (Kx + A)

is m-ample over Y. By construction again, there exists a log canonical center V of (X, A+
¢D) which is contained in Bs, [p* L| such that 7(V) N W # (. By the non-vanishing
theorem (see Theorem B, we can find ko > ki such that Bs, [p*2L| C Bs, [p* L|. Here,
we replaced Y with a smaller open neighborhood of y. By repeating this process finitely
many times, we can find k such that Bs, [p"L| = () over some open neighborhood of y.

Step 2. We take another prime number p’. Then there exists &’ such that Bs, [p* L| = 0
over some open neighborhood of y by Step M. This implies that there exist a positive
integer m and some open neighborhood U, of y such that for every m > m the relative
base locus Bs, |mL| is empty over U,,.
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Since W is compact, we obtain a desired open neighborhood U of W. We finish the
proof. 0

Remark 9.2. Although the non-vanishing theorem (see Theorems Bl and B4) and the
basepoint-free theorem (see Theorem B) were formulated for Cartier divisors L, it is
obvious that they hold true even for line bundles £. We will sometimes use the basepoint-
free theorem for line bundles in subsequent sections.

10. RATIONALITY THEOREM

In this section, we will explain the rationality theorem in the complex analytic setting.
Although the proof of [Fu2, Theorem 15.1], which is the rationality theorem in the alge-
braic setting, works with some suitable modifications, we will explain the details for the
reader’s convenience. This is because the proof of the rationality theorem is complicated.

Theorem 10.1 (Rationality theorem, see [FuZ, Theorem 15.1]). Let m: X — Y be a
projective morphism of complex analytic spaces such that X is a normal complex variety
and let W be a compact subset of Y. Let A be an effective Q-divisor on X such that
Kx + A is Q-Cartier. Let H be a w-ample Cartier divisor on X. Assume that Kx + A
is not m-nef over W and that v is a positive number such that

(i) H+r(Kx + A) is w-nef over W but is not w-ample over W, and

(i) (H +r(Kx 4+ A)) [niex,a) 8 T|nie(x,a)-ample over W.
Then r is a rational number, and in reduced form, it has denominator at most a(d + 1),
where d = max,ew dim 7~ (w) and a is a positive integer such that a(Kx + A) is a
Cartier divisor in a neighborhood of == (W).

In the proof of Theorem MO, we will use the following elementary lemmas. We do not
prove Lemma IO2 here. For the proof, see, for example, [Fn?2].

Lemma 10.2 ([KM, Lemma 3.19]). Let P(x,y) be a non-trivial polynomial of degree < d
and assume that P vanishes for all sufficiently large integral solutions of 0 < ay —rx < e
for some fized positive integer a and positive € for some r € R. Then r is rational, and
in reduced form, r has denominator < a(d+1)/e.

Lemma 10.3. Let F' be a projective variety and let Dy and Dy be Cartier divisors on X.
Let us consider the Hilbert polynomaial

P(UhUQ) = X(F, OF(UlDl + UQDQ)).

If Dy is ample, then P(uy,us) is a non-trivial polynomial of total degree < dim F'. It is
because P(uq1,0) = dime HY(F, Op(u1Dy)) # 0 if uy is sufficiently large.

Let us start the proof of Theorem M.

Proof of Theorem . Throughout this proof, we can freely shrink Y around W suit-
ably. Hence we sometimes will replace Y with a small open neighborhood of W without
mentioning it explicitly.

Let m be a positive integer such that H' := mH is w-very ample after shrinking Y
around W suitably. If H' + 7' (Kx + A) is m-nef over W but is not m-ample over W, and
(H' +1'(Kx + A)) |Nie(x,a) 18 T|nie(x,a)-ample over W, then

1
H+r(Kx+A) = E(H’Jrr’(KXJrA))
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holds. This implies that 7 = (1/m)r” holds. Therefore, it is obvious that r is rational
if and only if 7’ is rational. We further assume that ' has denominator v. Then r has
denominator dividing mv. Since m can be an arbitrary sufficiently large positive integer,
this means that r has denominator dividing v. Hence, by replacing H with mH, we may
assume that H is m-very ample.

For each (p, q) € Z*, we put M(p,q) := pH + qa(Kx + A) and define

L(p, q) := Supp(Coker (7" 7. Ox (M (p, q)) = Ox(M(p,q)))).
By definition, L(p,q) = X holds if and only if 7.Ox (M (p,q)) = 0.

Claim 1. Let € be a positive number. For (p,q) sufficiently large and 0 < aqg —rp < ¢,
L(p, q) is the same subset of X after shrinking Y around W suitably. We call this subset
Lo. Let I C Z? be the set of (p,q) for which 0 < aq —rp <1 and L(p,q) = Ly. Then we
note that I contains all sufficiently large (p,q) with 0 < aqg —rp < 1.

Proof of Claim 0. We fix (pg,qo) € Z* such that py > 0 and 0 < agyg — rpy < 1. Since
H is m-very ample, there exists a positive integer mg such that Ox(mH + ja(Kx + A))
is m-generated for every m > my and every 0 < j < qop — 1 after shrinking Y around W
suitably. Let M be the round-up of

)

If (p/,q') € Z? such that 0 < aq’ —rp’ < 1 and ¢ > M + gy — 1, then we can write
PH+qa(Kx +A) =k(poH + qoa(Kx + A)) + (IH + ja(Kx + A))

for some £ > 0, 0 < 5 < gy — 1 with [ > mg. It is because we can uniquely write
q = kqo+ 7 with 0 < j < g9 — 1. Thus, we have kqy > M. So, we obtain

l:p’—l{:p0>gq’—1—(kq0)@2 (g—@>M—12mo.
reoor G~ \" o r
Therefore, L(p',q') C L(po, qo). We note that we can use the noetherian induction over a
relatively compact open neighborhood of W (see [Ei, 0.40. Corollary]). Therefore, after
shrinking Y around W suitably again, we obtain the desired closed subset Lo C X. We
can check that the subset I C Z? contains all sufficiently large (p, q) with 0 < ag—rp < 1
without any difficulties. 0

Claim 2. We have Lo N Nle(X, A) = 0.

Proof of Claim B. We take (a,3) € Q? such that « > 0, 8 > 0, and fBa/a > r is
sufficiently close to r. Then (aH + fa(Kx + A))|nie(x,a) 15 T|xie(x,a)-ample over W
because (H +r(Kx + A))|nie(x,a) 18 T|nie(x,a)-ample over W. We take any point w € W.
Then it is sufficient to prove that Ly N Nle(X, A) = () holds over some open neighborhood
of w. From now on, we will freely shrink Y around w without mentioning it explicitly.
We take a sufficiently large and divisible positive integer m’ such that

m'(aH + Ba(Kx + A))|nie(x,a)

is 7|nie(x,a)-very ample. We put (po, o) := (m'a,m'3) and apply the argument in the
proof of Claim M. Thus, if 0 < ag —rp < 1 and (p,q) € Z?* is sufficiently large, then we
can write

M(p,q) = mM(a, B) + (M(p,q) — mM(«, B))
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such that M(p,q) — mM (a, B) is m-very ample and that
m(aH + fa(Kx + A))|nie(x,a)
is also 7|nic(x,a)-very ample. Hence, Onie(x,a)(M (p, q)) is m-very ample. We note that
M(p,q) — (Kx +A) = pH + (qa — 1)(Kx + A)

is m-ample over some open neighborhood of w because (p,q) is sufficiently large and
aq — rp < 1. Thus, by the vanishing theorem: Theorem B, the restriction map

7T-*(9)('(]\4(]97 q)) — 7T*(QNIC(X,A) (M(pa Q)>

is surjective. Therefore, L(p,q) N Nlc(X, A) = () holds over some open neighborhood of
w. By Claim O, we have Ly N Nlc(X, A) = @) over some open neighborhood of w. Since
w is an arbitrary point of W, Ly N Nle(X, A) = () holds over some open neighborhood of
W. This is what we wanted. U

Claim 3. We assume that r is not rational or that r is rational and has denominator
> a(d 4+ 1) in reduced form. Then, for (p,q) sufficiently large and 0 < aq —rp < 1,
Ox(M(p,q)) is m-generated at general points of every log canonical center of (X, A).

We will explain the proof of Claim B in detail because we have to change the proof of
Claim 3 in the proof of [Fu2, Theorem 15.1] slightly.

Proof of Claim 3. After shrinking Y around W suitably, it is sufficient to consider minimal
log canonical centers C' of (X, A) such that 7(C) N W # (). By Claim B, we may assume
that C' N Nle(X,A) = 0 holds. We take a point w € «n(C) N W. It is sufficient to
consider everything over some small open enighborhood of w in Y. We take an analytically
sufficiently general fiber F' of C'— m(C'). Then we may assume that (H +r(Kx + A))|r
and (H + r(Kx + A))|r-1(z(r)) are both nef by Lemma B3 (see also Remark B71). We
note that

M(p,q) — (Kx +A) = pH + (qa — 1)(Kx + A)

- (p— qar_l) H—i-M(H—FT(KX—FA))

holds. Therefore, if ag — rp < 1 and (p, ¢) is sufficiently large, then we see that

(M(pv Q) - (KX + A)) |7T’1(7r(F))
is ample. We note that

Pr(p.q) == x(F, Or(M(p. q)))
is a non-zero polynomial of degree at most dim F' < d by Lemma MI=3. We also note
that F' is an analytically sufficiently general fiber of C' — n(C'). By Lemma I3, there
exists (p, q) such that Pr(p,q) # 0, (p,q) sufficiently large, and 0 < ag — rp < 1. By the
m-ampleness of M (p, q) — (Kx + A) over some open neighborhood of 7 (F),

Pr(p,q) = x(F, Or(M(p, q))) = dime H*(F, Or(M(p, q)))
and
m.0x(M(p,q)) = m.0c(M(p,q))

is surjective over some open neighborhood of 7(F') by Theorem B (see also 214). We
note that m.Oc (M (p,q)) # 0 by Pr(p,q) # 0 and that C N Nle(X, A) = () by assumption.
Therefore, Ox (M (p,q)) is m-generated at general points of C'. By combining this fact
with Claim 0, Ox (M (p,q)) is m-generated at general points of every log canonical center
of (X, A)if (p, q) is sufficiently large with 0 < ag —rp < 1. Hence we obtain Claim B. [
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Note that Ox(M(p,q)) is not m-generated for (p,q) € I because M (p,q) is not m-nef
over W. Therefore, Ly # () with 7(Lo) N W # (). We take a point w € 7(Lo) N W and
replace Y with a relatively compact Stein open neighborhood of w. From now on, we will
freely shrink Y around w suitably. Let Dy,..., D, be general members of

m.Ox(M(po, q0)) = H*(X, Ox (M (po, 00)))
with (po,qo) € I. We put D := 27.:11 D;. Let x € X be any point of Ly. Then, by

Lemma P23, Kx + A + D is not log canonical at . On the other hand, we may assume

that Kx + A+ D is log canonical outside Ly U Nlc(X, A) since D; is a general member of
|M (po, qo)| for every i. We put

c:=sup {t € R | (X,A+1D) is log canonical at 7~'(w) N (X \ Nle(X,A))}.

Then we can check that 0 < ¢ < 1 by Claim B. We note that w € 7(Lo) N W. Thus,
the pair (X, A + ¢D) has some log canonical centers contained in Ly and intersecting
71 (w). By shrinking Y around w, we may assume that (X, A + c¢D) is log canonical
outside Nlc¢(X,A). Let C be a log canonical center contained in Ly and intersecting
7~ (w). We note that Jxrc(X, A + ¢D) = Inne(X, A) by Lemma B3 and its proof and
that C N Nle(X, A+ ¢D) = CNNle(X,A) = 0. We consider

Kx+A+cD=cn+1)poH + (1 4+ c(n+ 1)ga)(Kx + A).
Thus we have
pH + qa(Kx + A) — (Kx + A +¢D)
= (p—cln+1po)H + (qa — (1 +c(n+ 1)goa))(Kx + A).
If p and ¢ are large enough and 0 < aq — rp < aqg — rpo, then
pH 4+ qa(Kx + A) — (Kx + A +¢D)
is m-ample over w. It is because

(p—c(n+1)po)H + (qa — (1 4 c(n + 1)goa))(Kx + A)
=(p—(L+cn+1)po)H + (ga — (1 +c(n + 1))goa)(Kx + A)
+p0H + (C]0a — 1)(KX + A)
By shrinking Y around w suitably, we may further assume that it is m-ample over Y. We
consider an analytically sufficiently general fiber F' of C' — 7(C) as in the proof of Claim
B. We note that (H + r(Kx + A)) |z-1(x(p)) is nef by the choice of F'.
Suppose that 7 is not rational. There exists an arbitrarily large (p, q) € Z? such that

0 < ag—r1p < e = aqy — rpo and x(F,Op(M(p,q))) # 0 by Lemma @I because

Pr(p,q) = x(F,Or(M(p,q))) is a non-trivial polynomial of degree at most dim F' < d by
Lemma I073. Since

(M(p,q) — (Kx + A+ cD)) [z=1x(ry)
is ample by 0 < aq — rp < aqy — rpy, we have
dime H°(F, Op(M(p,q))) = x(F, Op(M(p, q))) # 0

by the vanishing theorem: Theorem B (see also Z14). By the vanishing theorem: Theo-
rem B,

m.0x(M(p,q)) — 7.0c(M(p,q))
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is surjective over a neighborhood of m(F') because (M (p, q) — (Kx + A+ ¢cD)) [r1(x(r)) 18
ample. We note that C' N\Nle(X, A+c¢D) = ). Thus C'is not contained in L(p, q). There-
fore, L(p,q) is a proper subset of L(pg,qo) = Lo, which gives the desired contradiction.
Hence we know that r is rational.

We next suppose that the assertion of the theorem concerning the denominator of r is
false. We choose (pg, qo) € I such that agy — rpo is the maximum, say it is equal to e/v.
If 0 <aqg—rp<e/vand (p,q) is sufficiently large, then

X(F, Op(M(p, q))) = dime H(F, Op(M(p, )))

since (M (p, q) — (Kx + A+ ¢cD)) |z-1(x(r)) is ample. There exists sufficiently large (p, q) €
Z? in the strip 0 < ag — rp < 1 with € = 1 for which

dime H°(F,Op(M(p,q))) = x(F,Op(M(p,q))) # 0

by Lemma I02 since Pr(p, q) = x(F, Or(M(p,q))) is a non-trivial polynomial of degree at
most dim F' < d by Lemma IT3. Note that ag—rp < e/v = agy —rpo holds automatically
for (p,q) € 1. Since

mOx(M(p, q)) = m.O0c(M(p, q))
is surjective over some open neighborhood of 7(F') by the ampleness of

(M(p,q) — (Kx + A4 ¢cD)) |x1(x(r)),

we obtain the desired contradiction by the same reason as above.
Thus, we finish the proof of the rationality theorem. O

We close this section with an easy remark.

Remark 10.4. The proof of Theorem I shows that Theorem MM holds true under
the assumption that H is a m-ample line bundle.

11. KLEIMAN—MORI CONES

In this section, we will define Kleiman—Mori cones for projective morphisms between
complex analytic spaces under some suitable assumption.

11.1. Throughout this section, let 7: X — Y be a projective morphism of complex
analytic spaces and let W be a compact subset of Y. Let Z;(X/Y; W) be the free abelian
group generated by the projective integral curves C' on X such that 7(C') is a point of W.
Let U be any open neighborhood of W. Then we can consider the following intersection
pairing

- Pie(r ' (U)) x Zy(X/)Y; W) = Z

given by £ -C € Z for L € Pic(r }(U)) and C € Z;(X/Y;W). We say that L is
m-numerically trivial over W when £ - C = 0 for every C € Z;(X/Y;W). We take
L1, Ly € Pic(r~Y(U)). If L;®L;" is m-numerically trivial over W, then we write £ =y L,
and say that £; is numerically equivalent to L5 over W. We put

A(U, W) := Pic(r 1(U)) /=w
and define

ANX/Y; W) = lim AU, W),
wcu
where U runs through all the open neighborhoods of W.
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11.2. We assume that A'(X/Y; W) is a finitely generated abelian group. Then we can
define the relative Picard number p(X/Y; W) to be the rank of A'(X/Y;W). We put

NYX/)Y; W) = AMX/)Y; W) @z R.

Let Ay (X/Y; W) be the image of
Zy(X/Y; W) — Homyg, (AY(X/Y; W), Z)

given by the above intersection pairing. Then we set

N( XY ;W) = A(X/Y; W) @z R.
As usual, we can define the Kleiman—Mori cone

NE(X/Y; W)

of m: X — Y over W, that is, NE(X/Y;W) is the closure of the convex cone in
N1(X/Y; W) spanned by the projective integral curves C' on X such that 7(C) is a

point of W. An element ¢ € N'(X/Y; W) is called 7-nef over W or nef over W if > 0
on NE(X/Y; W), equivalently, ([;-1(,) is nef in the usual sense for every w € W.

Remark 11.3. We assume that 7: X — Y decomposes as
X 2z 2y,

where 7z: Z — Y is a projective morphism of complex analytic spaces. Then ¢ is
always projective and 7,' (W) is a compact subset of Z. Therefore, we can define
AV (X/Z;n; (W) and N' (X/Z;7,'(W)) as above. By definition, N' (X/Z; 7, (W))
is a quotient vector space of N!'(X/Y;W). Hence, if dimg N'(X/Y; W) < oo, then we
see that dimg N' (X/Z;7,'(W)) < oo holds.

Lemma 11.4 ([Nal, Proposition 4.7 (2)]). NE(X/Y; W) contains no lines of N1(X/Y;W).

Proof. Suppose that NE(X/Y; W) contains a line of Ny(X/Y;W). Then we can take
I' € NE(X/Y; W) such that I', -T" € NE(X/Y;W). We take a m-ample R-line bundle A
on X. By definition, A is m-nef over W. Therefore, we obtain A-I' > 0 and —A-T" > 0.
This means that A-T' = 0. On the other hand, after shrinking Y around W suitably, we
can take a line bundle M on X such that I'- M > 0 since I # 0 in Ny (X/Y; W). Since
A is m-ample, mA — M is also m-ample over some open neighborhood of W, where m is
a large positive integer. This implies that (m.A — M) -T > 0 since I' € NE(X/Y; W).
Thus, mA-T' > M -T" > 0 holds. Hence we obtain A -I' > 0. This is a contradiction.
Therefore, there are no lines in NE(X/Y; W). O

The following theorem is Kleiman’s ampleness criterion for projective morphisms be-
tween complex analytic spaces (see [Nall, Proposition 4.7]).

Theorem 11.5 (Kleiman’s ampleness criterion). Let 7: X — Y be a projective mor-
phism between complex analytic spaces and let W be a compact subset of Y such that the
dimension of NY(X/Y ;W) is finite. Let L be an R-line bundle on X. Then the following
conditions are equivalent.
(i) L is m-ample over W.
(i) £ is m-ample over some open neighborhood U of W.
(iii) £ is positive on NE(X/Y; W)\ {0}.

Proof. We have already proved the equivalence of (i) and (ii) in Lemma B™ without
assuming dimg N*(X/Y; W) < oo.
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Step 1. In this step, we will prove that (i) follows from (iii).

We assume that £ is positive on NE(X/Y; W)\ {0}. Then we can take a m-ample R-
line bundle A on X such that N := £ — A is non-negative on NE(X/Y; W). This means
that NV|-1(y) is nef for every w € W. Since L|;-1(p) = N|r-1(w) + Alr-1(w), N|r-1(w) I8
nef, and A|-1(,) is ample, £|;-1(,) is ample by the usual Kleiman’s ampleness criterion.
Hence (i) follows from (iii).

Step 2. In this step, we will prove that (iii) follows from (ii).

We assume that £ is m-ample over some open neighborhood U of W. By replacing
Y with U, we may assume that ¥ = U. In the proof of Lemma [T, we have already
checked that £-T' > 0 for every I' € NE(X/Y; W) \ {0}. This means that (iii) follows
from (ii).

We finish the proof. O

From now on, we always assume that the dimension of N*(X/Y; W) is finite. In order
to formulate the cone and contraction theorem, we need the following definitions.

Definition 11.6. Let 7: X — Y be a projective morphism of complex analytic spaces
and let W be a compact subset of Y. Let X be a normal complex variety and let A be an
effective R-divisor on X such that Kx + A is R-Cartier. We assume that the dimension
of N'(X/Y;W) is finite. Then we define a subcone

NE(X/Y; W)nie(x,a)

of NE(X/Y; W) as the closure of the convex cone spanned by the projective integral curves
C on Nlc(X, A) such that 7(C) is a point of W. Let D be an element of N'(X/Y;W).
We define

Dsy:={z€ Ni(X/Y;W)|D-z>0}.
Similarly, we can define D+, D<q, and D.y. We also define

D :={z € N(X/Y;W)|D-z=0}.
We use the following notation

NE(X/Y; W)pso := NE(X/Y; W) N Dy,

and similarly for > 0, < 0, and < 0.

Definition 11.7. An extremal face of the Kleiman-Mori cone NE(X/Y; W) is a non-zero
subcone F' C NE(X/Y;W) such that z, 2/ € NE(X/Y;W) and z + 2/ € F imply that
2,2 € F. Equivalently, F = NE(X/Y;W) N H* for some R-line bundle H which is
defined on some open neighborhood of 771 (W) and is m-nef over W. We call H a support
function of F. An extremal ray is a one-dimensional extremal face.

(1) An extremal face F' is called (Kx + A)-negative if
FNONE(X/Y; W)k +a)20 = {0}

(2) An extremal face F is called rational if we can choose a Q-line bundle , which is
defined on some open neighborhood of 7=(W) and is m-nef over W, as a support
function of F'.

(3) An extremal face F' is called relatively ample at Nlc(X, A) if

FANE(X/Y; W)xie(x.a) = {0}.

Equivalently, H|nic(x,a) 15 7|nie(x,a)-ample over W for every support function H
of F.
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(4) An extremal face F' is called contractible at Nlc(X, A) if it has a rational support
function H such that H|nic(x,a) IS T|nie(x,a)-semiample over some open neighbor-

hood of W.
We make a remark on (3) in Definition [T72.

Remark 11.8. In (3) in Definition T4, the condition that F' is relatively ample at
Nlc(X, A) implies that the support function H of F' is positive on NE(X/Y; W)nie(x.a) \
{0}. Let A be a m-ample R-line bundle on X. Then N := H — A is positive on
NE(X/Y; Wnie(x,a) \ {0} for some 0 < ¢ < 1. Thus, it is easy to see that N|nie(x,a) is
7| Nie(x,a)-nef over W. Note that A|yiex,a) is obviously 7|nie(x,a)-ample. Hence H |nic(x,a)
is 7 |Nie(x,a)-ample over W,

11.1. Nakayama’s finiteness. In this subsection, we quickly recall Nakayama’s finite-
ness. As we saw above, for the cone and contraction theorem in this paper, we need the
assumption that the dimension of N'(X/Y;W) is finite. In general, the dimension of
NY(X/Y;W) may be infinite. The author learned the following example from Noboru
Nakayama.

Example 11.9 (Nakayama). Let 7: X — Y be a projective surjective morphism of
complex analytic spaces such that X is a normal complex variety with dim X > 2 and
that Y = {z € C||2| < 2}. We put

1
W::{—
n

Then W is a compact subset of Y. It is obvious that W has infinitely many connected
components. In this case, we can see that the abelian group A'(X/Y; W) is not finitely
generated. Hence we have dimg N'(X/Y; W) = cc.

n e Z>0} U {0}.

The following theorem gives an important and useful sufficient condition for the finite-
dimensionality of N'(X/Y;WW). We state it here for the reader’s convenience.

Theorem 11.10 (Nakayama'’s finiteness, see [Na2, Chapter II. 5.19. Lemmal). Let7: X —
Y be a projective surjective morphism of complex analytic spaces such that W is a compact
subset of Y. We assume that W NV has only finitely many connected components for
every analytic subset V' defined over an open neighborhood of W. Then AYX/Y ;W) is a
finitely generated abelian group.

Proof. For the details, see [Fn8, 4.1. Nakayama’s finiteness]. U

In this paper, we do not need Theorem ITT0 except in the proof of Corollary 3. We
only need the assumption that the dimension of N'(X/Y; W) is finite.

Remark 11.11. Let 7: X — Y be a smooth projective surjective morphism between
smooth irreducible complex analytic spaces. Let W be a compact subset of Y. Assume
that T is connected. Then we can easily check that the dimension of N'(X/Y; W) is
finite. However, W NV may have infinitely many connected components for some analytic
subset V' defined over an open neighborhood of W.

We close this subsection with some remarks on Nakayama’s fundamental paper [Nall.

Remark 11.12. Example 19 shows that [Nall, Proposition 4.3] is not correct. In [Full,
Section 4], we gave an alternative simple proof of [Nall, Theorem 5.5] (see also [Ful, 5.3]).
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12. CONE THEOREM

In this section, we will explain the cone and contraction theorem of normal pairs for
projective morphisms between complex analytic spaces. The proof given in this section is
essentially the same as that in [Fn?] for algebraic varieties. The main ingredients of this
section is the basepoint-free theorem (see Theorem B1) and the rationality theorem (see
Theorem [T).

We first treat the contraction theorem, which is a direct consequence of the basepoint-
free theorem: Theorem B, We will use it in the proof of the cone theorem: Theorem
2.

Theorem 12.1 (Contraction theorem). Let m: X — Y be a projective morphism of
complex analytic spaces such that X is a normal complex variety and let W be a compact
subset of Y such that the dimension of NY(X/Y ;W) is finite. Let A be an effective R-
divisor on X such that Kx + A is R-Cartier. Let H be a line bundle which is defined on
some open neighborhood of 7=*(W) and is w-nef over W such that the extremal face

F=H"NNEX/Y; W)

is (Kx + A)-negative and contractible at Nle(X, A). Then, after shrinking Y around
W suitably, there exists a projective morphism pp: X — Z over Y with the following
properties.

(1) Let C' be a projective integral curve on X such that w(C) is a point of W. Then
wr(C) is a point if and only if the numerical equivalence class [C] of C is in F.

(2) The natural map Oz — (pr)«Ox is an isomorphism.

(3) Let L be a line bundle on X such that L-C =0 for every curve C with [C] € F.
Assume that L2 |nie(x,a) 15 @r|Ne(x,a)-generated for every m > 0. Then, after
shrinking Y around W suitably again, there exists a line bundle Lz on Z such that
L~ oLy holds.

As we mentioned above, Theorem 2 easily follows from the basepoint-free theo-
rem: Theorem BT

Proof of Theorem IZ1A. Since F is contractible at Nlc(X, A) by assumption, we may as-
sume that H|N1C(X,A) is 7T|N1C(X,A)—semiample over some open neighborhood of W. Since
F is (Kx + A)-negative by assumption, we can take some positive integer a such that
aH — (Kx + A) is m-ample over W. By the basepoint-free theorem (see Theorem B),
after shrinking Y around W suitably, H®™ is m-generated for some positive integer m.
We take the Stein factorization of the associated morphism. Then we can obtain a con-
traction morphism ¢p: X — Z over Y satisfying the properties (1) and (2). We consider
¢or: X — Z and NE(X/Z; 7, (W)), where 7z: Z — Y is the structure morphism. Then
NE(X/Z;7,*(W)) = F holds by construction, £ is numerically trivial over 7,'(W), and
—(Kx + A) is pp-ample over 7, (W). We use the basepoint-free theorem over Z (see
Theorem BT). Then, after shrinking Z around 7,'(W) suitably, both £®™ and £&("+1)
are pull-backs of line bundles on Z. Their difference gives a line bundle £z on Z such
that £ ~ ¢}.L7 holds. We finish the proof of Theorem 2. O

The following theorem is the main result of this section, which is the cone theorem of
normal pairs for projective morphisms between complex analytic spaces.

Theorem 12.2 (Cone theorem, see [Fu2, Theorem 16.6]). Let m: X — Y be a projective
morphism of complex analytic spaces such that X is a normal complex variety and let W
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be a compact subset of Y such that the dimension of NY(X/Y ;W) is finite. Let A be
an effective R-divisor on X such that Kx + A is R-Cartier. Then we have the following
properties.

(1) We can write
NE(X/Y;W) = NE(X/Y; W) sy )20 + NE(X/Y; W)niexa) + ) Ry,

where R;’s are the (Kx + A)-negative extremal rays of NE(X/Y; W) that are
rational and relatively ample at Nle(X, A). In particular, each R; is spanned by
an integral curve C; on X such that w(C;) is a point of W.

(2) Let A be a w-ample R-line bundle defined on some open neighborhood of = (W).
Then there are only finitely many R;’s included in NE(X/Y; W)k yt+ata<0- In
particular, the R;’s are discrete in the half-space NE(X/Y; W)k +a)<0-

(3) Let F be a (Kx + A)-negative extremal face of NE(X/Y ;W) that is relatively
ample at Nle(X, A). Then F' is a rational face. In particular, F' is contractible at
Nlc(X, A).

By combining Theorem IZ2 with Theorem [, we obtain the cone and contraction
theorem of normal pairs for projective morphisms between complex analytic spaces.

Proof of Theorem Z2. Without loss of generality, we can freely shrink Y around W
suitably throughout this proof. From Step [ to Step H, we will prove Theorem 22 under
the extra assumption that Kx + A is Q-Cartier. Then, in Step B, we will treat the general
case. We note that we may assume that dimg N;(X/Y; W) > 2 and Kx + A is not m-nef
over W. Otherwise, the theorem is obvious.

Step 1. In this step, we will prove:
Claim 1. When Kx + A is Q-Cartier, the following equality

NE(X/Y; W) = NE(X/Y; W)y 4a)20 + NE(X/Y; W)Niex.a) + 3 F
F

holds, where F'’s vary among all rational proper (Kx + A)-negative extremal faces that
are relatively ample at Nle(X, A).
We note that in Claim 0 = denotes the closure with respect to the real topology.

Proof of Claim 0. We put

B = NE(X/Y; W)y +a)20 + NE(X/Y; W)Niexa) + > F.
F

The inclusion NE(X/Y; W) D B obviously holds by definition. We note that each F is
spanned by curves on X mapped to points in W by Theorem T2 (1). From now on,
we suppose NE(X/Y;W) # B. Then we will derive a contradiction. We can take a
separating function M which is a line bundle on some open neighborhood of 7=*(W) and
is not a multiple of Kx + A in N'(X/Y; W) such that M > 0 on B\ {0} and M - 2y < 0
for some zy € NE(X/Y;W). Let C be the dual cone of NE(X/Y; W)(xy+a)s0, that is,

C={De N X/Y;W)|D-z>0for z€ NE(X/Y;W)(xyia)>0}-

Then C is generated by Kx + A and R-line bundles on X which are 7-nef over W. Since
M >0 on NE(X/Y;W)(ktayz0 \ {0}, M is in the interior of C. Hence there exists a
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m-ample R-line bundle A such that
M—-A=L+pKx+A)

in N'Y(X/Y;W), where L’ is an R-line bundle on some open neighborhood of 7!(1¥)
which is m-nef over W, and p is a non-negative rational number. Therefore, M is expressed
in the form
M=H+p(Kx+A)

in NY(X/Y; W), where H = A+ L' is a Q-line bundle on X which is m-ample over W.
The rationality theorem (see Theorem M) implies that there exists a positive rational
number r < p such that

is m-nef over W but not m-ample over W, and L]Nlc( X,A) 18 W]Nlc( x,a)-ample over W. We
note that L # 0 in N'(X/Y; W) since M is not a multiple of Kx + A. Thus the extremal
face F, associated to the support function L is contained in B, which implies M > 0 on
Fp. Therefore, p < r. It is a contradiction. This completes the proof of Claim M. 0J

Step 2. In this step, we will prove:

Claim 2. In the equality in Claim O, we can assume that every extremal face F' is one-
dimensional.

Proof of Claim B. Let F be a rational proper (Kx + A)-negative extremal face that is
relatively ample at Nlc(X, A). We assume that dim /' > 2. After shrinking Y around W
suitably, we can take the contraction morphism pg : X — Z over Y associated to F' (see
Theorem I2ZT). We note that F' = NE(X/Z; 7, (W)), where 75: Z — Y is the structure
morphism, and that —(Ky + A) is pp-ample over 7' (W) by construction. By Claim I
in Step [, we obtain

(121) P =NE(X/Z:7 (W) = 3 G,
G

where the G’s in (IZ) are the rational proper (Kx + A)-negative extremal faces of
NE(X/Z; 7, (W)). We note that NE(X/Z; 7' (W))nie(x,a) = 0 holds because ¢ embeds
Nlc(X,A) into Z. The G’s are also (Kx + A)-negative extremal faces of NE(X/Y; W)
that are ample at Nlc(X, A) with dim G < dim F. By induction, we finally obtain

(12.2) NE(X/Y; W) = NE(X/Y; W)y +a)20 + NE(X/Y; W)niexa) + Y Rj,

where the R;’s are (K x + A)-negative rational extremal rays. Note that each R; does not
intersect NE(X/Y; W)nie(x,a)- We finish the proof of Claim B. O

Step 3. In this step, we still assume that Kx + A is Q-Cartier. We will finish the proof
of (1) when Kx + A is Q-Cartier.

The contraction theorem (see Theorem I2T) guarantees that for each extremal ray R;,
which is (Kx 4+ A)-negative, rational, and relatively ample at Nlc(X, A), there exists a
projective integral curve C; on X such that [C;] € R;. Let ¢; : X — Z; be the contraction
morphism of R; over Y after shrinking ¥ around W suitably, and let A be a m-ample line
bundle on X. Let 7z, : Z; — Y be the structure morphism. We set

A-C
(Kx +A)-C;

Tj:—
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Then A+ 7;(Kx + A) is 1;-nef over 7r§j1(W) but not 1;-ample over ngl(W), and
(A+7i(Kx + A))INe(x.a)

is 1 |nie(x,a)-ample over ngl(W). By the rationality theorem (see Theorem M), ex-
pressing r; = w;/v; with u;,v; € Zso and (u;,v;) = 1, we have the inequality v; <
a(dim X + 1). After shrinking Y around W suitably, we take m-ample line bundles
Hy,H,,...,H, ; on X such that Kx + A and the H,’s form a basis of N'(X/Y; W),
where p = dimg N'(X/Y; W) < co. As we saw above, the intersection of the extremal
rays R; with the hyperplane

{ze Mi\(X)Y; W) |a(Kx +A)-z=—1}
in N;(X/Y; W) lie on the lattice
A={ze N\(X)Y;W)|a(Kx+A)-z=—1,H; -z € (a(a(dim X + 1))!)Z}.
This implies that the extremal rays are discrete in the half space
{ze Ni(X)Y; W) | (Kx +A)-z<0}.

Thus we can omit the closure sign — from the formula (23) and this completes the
proof of (1) when Ky + A is Q-Cartier.

Step 4. In this step, we will prove (2) under the assumption that Ky + A is Q-Cartier.

Let A be a m-ample R-line bundle on X. We choose 0 < ¢; < 1 for 1 <i < p-—1
such that A — 277 &;H; is still m-ample. Then the R;’s included in (Kx 4+ A + A)<o
correspond to some elements of the above lattice A in Step B for which >~ &;H;-2 < 1/a.
Therefore, we obtain (2) when Kx + A is Q-Cartier.

Step 5. In this step, we will prove (3) under the extra assumption that Ky + A is
Q-Cartier.

Let F be a (Kx + A)-negative extremal face as in (3). The vector space V = F* C
NY(X/Y;W) is defined over Q because F is generated by some of the R;’s. There exists
a m-ample R-line bundle A such that F is contained in (Kx + A + A) <. Let (F') be the
vector space spanned by F. We put

Cr = NE(X/Y; W)kt ar 450 + NE(X/Y; W )iex.a) + Z R;.
R, 7 F

Then Cr is a closed cone,
NE(X/Y; W) =Cp+ F,
and
Cr N (F) ={0}.

The support functions of F' are the elements of V' that are positive on Cp \ {0}. This is
a non-empty open subset of V' and thus it contains a rational element that, after scaling,
gives a line bundle L defined over some open neighborhood of W such that L is m-nef
over W and that FF = L+ "NE(X/Y; W). Therefore, F is rational. Hence, we obtain (3)
when Kx + A is Q-Cartier.

We finish the proof of Theorem X under the extra assumption that Ky + A is
Q-Cartier. Therefore, from now on, we can freely use Theorem 22 when Kx + A is

Q-Cartier.
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Step 6. In this final step, we will treat the general case. This means that we will treat
the case where Kx + A is R-Cartier.

Let A be a m-ample R-line bundle on X. First we will prove (2). By Lemma B4, after
shrinking Y around W suitably, we can take effective Q-divisors Ay,..., Ay on X and
positive real numbers 7y, ..., r; with Zle r; = 1 such that

k
Kx +A= ZTz‘(KX + Ay)
i=1

and that Jnpo(X, A;) = Inne(X, A) holds for every i. Since Kx + A is Q-Cartier, there
are only finitely many (Kx + A; + A)-negarive extremal rays of NE(X/Y; W) which are
rational and relatively ample at Nlc(X, A;) = Nle(X, A) for every i. Therefore, since

k
Kx+A+ A=) ri(Kx+ A+ A)

=1

holds, there exist only finitely many (Kx +A-+.A)-negative extremal rays of NE(X/Y; W)
which are rational and relatively ample at Nlc(X, A). Thus we obtain (2) in full generality.
The statement (1) is a direct and formal consequence of (2). For the details, see, for
example, the proof of [Kd, Chapter III. 1.2 Theorem]|. Finally, we will prove (3). Let F
be a (Kx + A)-negative extremal face of NE(X/Y;W) as in (3). By using Lemma B3,
after shrinking Y around W suitably, we can take an effective Q-divisor AT on X, which is
sufficiently close to A, such that Kx +Af is Q-Cartier, IyLc(X, AT) = Inrc(X, A) holds,
and F is (Kx + AT)-negative. Therefore, we see that F is a rational face of NE(X/Y; W).
This is what we wanted.

We finish the proof of the cone theorem. O

12.1. Proof of Theorem T4 and Corollary ICH. In this subsection, we will prove
Theorem 4 as an application of the vanishing theorem for projective quasi-log schemes
(see [Fu3, Theorem 6.3.5 (ii)]). Note that Corollary 3 is an easy consequence of Theorem
4. For the details of the framework of quasi-log schemes, see [Fn3, Chapter 6], [Fud],
[Eu6], and [Fu7]. Let us start with an easy lemma.

Lemma 12.3 (see [FMI, Lemma 4.2]). Let [V,w] be an irreducible positive-dimensional
projective quasi-log scheme with dim Nqle(V,w) = 0 or Nqle(V,w) = 0 and let M be an
ample line bundle on V. Assume that w+rM is numerically trivial for some real number
r. Thenr < dimV + 1 holds.

Proof. If r <0, then r < dimV + 1 is obvious. Hence we may assume that r is positive.
We consider the following short exact sequence:

(12.3) 0 = Ingie(viw) = Ov = Oxqie(vw) — 0,

where Zngie(vw) is the defining ideal sheaf of Nqle(V,w) on V. Since IM — w is ample for
[ > —r, we have

Hz(v’ IquC(V,w) ® M®l) =0

for every i # 0 and | > —r by the vanishing theorem for quasi-log schemes (see [Fn3,
Theorem 6.3.5 (ii)]). Since dim Ngle(V,w) = 0 or Ngle(V, w) = 0,

Hl(va Oquc(V,w) ® M®l) =0



CONE AND CONTRACTION THEOREM 41

for every i # 0 and every . Therefore, we obtain H'(V, M®!) = 0 for every i # 0 and
[ > —r by (Z3). Let V' be the unique maximal (with respect to the inclusion) qlc
stratum of [V,w]. Then we have the following short exact sequence:

0 —— Kera Oy —2= Oy 0
such that dim Supp Ker o < 0 since dim Nqle(V,w) = 0 or Nqle(V,w) = (). Hence we have
H{(V', M%) = 0 for every i # 0 and [ > —r. Since dim V' = dimV > 0, it is obvious
that HO(V', M®'|y+) = 0 holds for every [ < 0. We consider

dim V'’

X(t) == > (=1) dime H' (V' M®|y).

1=0

Then it is well known that x(¢) is a non-trivial polynomial of deg x(t) = dim V' = dim V.
By the above observation, x(I) = 0 for [ € Z with —r < | < 0. This implies that
r < dimV 4 1. We finish the proof. 0

Let us start the proof of Theorem 4.

Proof of Theorem [I4. We put L := f*Ay». Without loss of generality, we may assume
that dim X > 1. Since £ is m-nef over W, R is a (Kx + A)-negative extremal ray of
NE(X/Y;W). Therefore, by Theorem 22 (3) and Theorem [2, after shrinking Y
around W suitably, we obtain a contraction morphism pgr: X — Z over Y associated to
R. Tt is sufficient to prove that R - L = 0 holds.

Step 1. In this step, we will treat the case where dim Z = 0.

From now on, we assume that dim Z = 0 holds. Then X is projective with p(X) =1
and £ is a nef line bundle on X in the usual sense. Suppose that £ is ample. Then we
obtain that Kx + A + r£ is numerically trivial for some r > dim X + 1 since (Kx +
A+ (dimX +1)L)- R <0 and p(X) = 1. We note that [X, Kx + A] naturally becomes
an irreducible projective quasi-log scheme with Nqle(X, Kx + A) = () (see, for example,
[En3, 6.4.1]). Therefore, we get a contradiction by Lemma [Z23. This implies that £ is
numerically trivial, that is, R - f*Ay» = R- £ = 0. This is what we wanted.

Step 2. In this step, we will treat the case where dim Z > 1.

From now on, we assume that dim Z > 1 holds. Then we can always take a point P € Z
such that dim ' (P) > 1. We shrink Z around P and assume that Z is Stein. Then we
can take an effective R-Cartier divisor B on Z such that (X, A + ¢}, B) is log canonical
outside ¢5' (P), there exists a positive-dimensional log canonical center C of (X, A+%B)
with pz(C) = P, and dim Nle(X, A+¢%B) = 0 or Nle(X, A+¢5B) = (). After shrinking
Z around P suitably again, we can take a projective bimeromorphic morphism f: Y — X
from a smooth complex variety Y such that f~1(C') and the exceptional locus Exc(f) of
f are both simple normal crossing divisors on Y and that the union of f~(C), Exc(f),
and Supp (f, (A + @i B)) is a simple normal crossing divisor on Y (see [BM2, Theorem
13.2]). We define By by the formula Ky + By = f*(Kx + A + ¢*B). Then we see that
Supp By is a simple normal crossing divisor on Y. By shrinking X around C, we assume
that (X \ C)NNIe(X, A+¢5B) = 0. Let T be the union of the irreducible components of
B! that are mapped to C' by f. We define Br by adjunction: K7 + Br = (Ky + By)|r.
We consider the following short exact sequence:

0 — Oy ([—(ByY)] = [B7'] = T) = Oy ([=(B3)] = By )
— Or([=(B7")] = [B7']) = 0.
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We note that
(124)  [=(BFY)] = |BY'| =T — (Ky +{By} + By' = T) = —f"(Kx + A+ ¢"B).
By taking R'f,, we have a long exact sequence:
0 — LOv([=(BF)] = [BY'] = T) — Jnic(X, A+ ¢"B)
— LOr([—(BfY)] = [B7']) =5 R £.0v([—(By)] = |BY ) = T) — -

The support of f.Or([—(B5')] — [ B7']) is contained in C since f(T') = C. On the other
hand, any associated subvarieties of R!f,Oy([—(Bs')] — | By'| — T) are not contained
in C by (Z4) and Theorem 53 (i). Hence, the connecting homomorphism ¢ in (IZH) is
zero. We put

(12.5)

J = £O0v([=(BF)] = By = 1),
Then it is an ideal sheaf contained in Jyxpc(X, A4+¢*B). Let X’ denote the closed analytic

subspace of X defined by 7. By applying the snake lemma to the following commutative
diagram:

0 \f Inee(X, f + ¢*B) — f.0r([=(B3')] — |B']) —=0
00— Oy ————0x 0 0,

we obtain the short exact sequence:
0= f.Or([—=(BF")] = |B7']) = Ox' = Onie(x.ate ) = 0.
Since C'is projective and T is projective over C' by construction,
(X', (Kx + A)|xr, f: (T, Br) — X')

is a projective quasi-log scheme with Nale(X', (Kx + A)|x/) = Nle(X, A+ ¢}, B) by [Fud,
Theorem 4.9]. In particular, dim Nqle(X', (Kx+A)|x/) = 0 or Nqle(X', (Kx+A)|x) =0
holds. We note that X’ = C holds set theoretically by construction. We put w :=
(Kx + A)|x. Then —w is ample since pr(X’) = P.

Suppose that R - £ > 0 holds. Then £ := L]y is ample and w + r£" is numerically
trivial on X’ for some positive real number r with » > dim X + 1 > dim X’ 4+ 1. This is a
contradiction by Lemma I2ZZ3. Hence we obtain R - £ = 0. Therefore, R is a (Kx + A)-
negative extremal ray of NE(X/Y?; g=}{(W)).

We finish the proof. [l

Proof of Corollary T3A. Let P € Y be any point. We put W := {P}. Then the dimension
of N'(X/Y; W) is finite by Theorem IITI0. Suppose that Kx + A + (dim X + 1).4 is not
m-nef over W. Then there exists a (Kx + A + (dim X + 1).A)-negative extremal ray R
of NE(X/Y;W). We put Y’ :=Y, Ay» := A, and f := idy. Then we use Theorem [4.
Thus we obtain R-.A = 0. This is a contradiction since A is m-ample over W. Therefore,
Kx + A+ (dim X 4 1)A is m-nef over W. Since P is any point of Y, this means that
Kx + A+ (dim X + 1).A is nef over Y. O

We close this section with a remark on Theorem 4 and Corollary 3.

Remark 12.4. In Theorem 4 and Corollary 3, we can replace (dim X +1) with dim X
when 7(X) is not a point. We can check it easily by the proof of Theorem [.



CONE AND CONTRACTION THEOREM 43

13. LENGTHS OF EXTREMAL RATIONAL CURVES

In this section, we will quickly explain that every extremal ray is spanned by a rational
curve. Our result in this section generalizes Kawamata’s famous result in [Ka]. We first
prove the following theorem as an application of [Fu6i, Theorem 1.12].

Theorem 13.1. Let p: X — Z be a projective morphism of complex analytic spaces
such that X is a normal complex variety and let A be an effective R-divisor on X such
that Kx + A is R-Cartier. Assume that —(Kx + A) is p-ample. Let P be an arbitrary
point of Z. Let E be any positive-dimensional irreducible component of o~ (P) such that
E ¢ Nle(X,A). Then E is covered by possibly singular rational curves ¢ with

0<—(Kx+A)-¢<2dimFE.
In particular, E is uniruled.

In the proof of Theorem L3, we will use the theory of quasi-log schemes (see [Fu3,
Chapter 6], [Fud], [Fuf], and [Fu7]).

Proof of Theorem 3. If ¢(X) = P, then F = X obviously holds. In this case, the
statement follows from [Fufi, Theorem 1.12] since we can see [X, Kx + A] as a projective
quasi-log scheme (see, for example, [Fu3, 6.4.1]). Therefore, from now on, we may assume
that p(X) # P. We shrink Z around P and may assume that Z is Stein. Then we
can take an effective R-Cartier divisor B on Z such that E is a log canonical center
of (X,A + ¢*B). After shrinking Z around P suitably again, we can take a projective
bimeromorphic morphism f: Y — X from a smooth complex variety Y such that f~!(E)
is a simple normal crossing divisor on Y,

Ky + By = f*(KX + A + QO*B),

and Supp By is a simple normal crossing divisor on Y (see [BM2, Theorem 13.2]). We
may further assume that the support of the union of f~!(E) and Supp By is also a simple
normal crossing divisor on Y. Let T' be the union of the irreducible components of By!

that are mapped to E by f. We put A := [—(Bs')] and N := |By!'| and consider the
following short exact sequence:

0—>0y(A-—N-T)—= Oy(A-—N)—= Or(A—N) —0.
We note that
(13.1) A—N-T—(Ky+{By}+By' —=T) = —f*(Kx + A+ ¢*B).
By taking R'f,, we have a long exact sequence:
0— fLOy(A=N—-T) — Inec(X, A+ ¢*"B) — f.Op(A—N)
(132) S ROy (A= N—T) —> - .

The support of f.Or(A — N) is contained in E since f(7') = E. On the other hand,
any associated subvarieties of R!'f,Oy(A — N — T) are not contained in E by (II3)
and Theorem B (i). Hence, the connecting homomorphism § in (IC33) is zero. We put
J = foOy(A — N —T). Then it is an ideal sheaf contained in Inpc(X, A + ¢*B). Let
X' denote the closed analytic subspace of X defined by 7. Thus we obtain the following
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big commutative diagram.

0 0
0 J Inee(X, A +¢*B) — f,.Or(A—=N) —0
Ox =——=0x
0 — f.Or(A—N) Ox/ Oxie(x,a4¢7B) — 0
0 0

We note that X’ = E U Nle(X, A + ¢*B) holds set theoretically. On X', by the above
big commutative diagram, we see that Nlc(X, A + ¢*B) is defined by the ideal sheaf
f+Or(A—N). We write T' = T"+T", where T" is the union of the irreducible components
of T'mapped to Nle(X, A + ¢*B) by f. We put Z := f,.Opv(A— N —T"). Then

1= f*OT//<A — N — T/) C f*OT(A — N) C Oxr.
Since Z C f.Or(A — N), T is zero when it is restricted to Nlc(X, A 4+ ¢*B). Since
f(T") € Nle(X, A+¢*B), T is zero on X"\ Nle(X, A+¢*B). Thus, we have Z = {0}. By

construction, we see that E is a closed analytic subvariety of X’. Let Zr be the defining
ideal sheaf of E on X’. Then we obtain

I N f*OT(A — N) - f*OT//(A — N — T’) =71= {O}

Hence, we can see f,Or(A — N) as an ideal sheaf on E. Since F is projective and T is
projective over E by construction,

(E,(Kx +A)|g, f: (T,Br) - E)

is a projective quasi-log scheme, where K1 + Br := (Ky + By)|r, by [Fud, Theorem 4.9].
Since p(F) = P, —(Kx + A)|g is ample. Thus, by [Fu6, Theorem 1.12], E' is covered by
possibly singular rational curves ¢ with 0 < —(Kx + A) - £ < 2dim E. In particular, this
implies that E is uniruled. 0

Theorem 33 is an easy consequence of Theorem 3. It seems to be indispensable for
the minimal model program with scaling.

Theorem 13.2 (Lengths of extremal rational curves). Let m: X — Y be a projective
morphism of complex analytic spaces such that X is a normal complex variety and let W
be a compact subset of Y such that the dimension of NY(X/Y ;W) is finite. Let A be an
effective R-divisor on X such that Kx + A is R-Cartier. If R is a (Kx + A)-negative
extremal ray of NE(X/Y; W) which is relatively ample at Nlc(X, A), then there exists a
rational curve ¢ spanning R with

0< —(Kx+A) €< 2dimX.

Proof. By the cone and contraction theorem (see Theorems [0 and [22), after shrinking
Y around W suitably, we obtain a contraction morphism ¢: X — Z over Y associated
to R. We note that —(Kx + A) is g-ample and ¢: Nlc(X, A) — ¢(Nle(X, A)) is finite
by construction. Therefore, we can find a rational curve ¢ in a fiber of ¢ with 0 <
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—(Kx +A)-¢ < 2dim X by Theorem L3, This ¢ is a desired rational curve spanning
R. O

14. ON SHOKUROV’S POLYTOPES

In this section, we will discuss Shokurov’s polytopes for projective morphisms of com-
plex analytic spaces. Here, we will follow the presentation in [Fu3, Section 4.7]. Let us
recall the definition of extremal curves.

Definition 14.1 (Extremal curves). Let 7: X — Y be a projective morphism of complex
analytic spaces such that X is a normal complex variety and let W be a compact subset
of Y such that the dimension of N'(X/Y; W) is finite. A curve I" on X is called extremal
over W if the following properties hold.

(i) T generates an extremal ray R of NE(X/Y;W).
(ii) There exists a m-ample line bundle H over some open neighborhood of W such
that

H-T'= mein{";‘-[ LY},
where ¢ ranges over curves generating R.
By Lemma 372, we have:

Lemma 14.2. Let m: X — Y be a projective morphism of complex analytic spaces and let
(X, A) be a log canonical pair. Let W be a compact subset of Y such that the dimension
of NY(X/Y ;W) is finite. Let R be a (Kx + A)-negative extremal ray of NE(X/Y;W).
If " is an extremal curve over W generating R, then

0<—(Kx+A)- I'<2dimX
holds.

Proof. By Theorem 33, we can take a rational curve ¢ spanning R such that
0<—(Kx+A)-¢<2dimX.

Let H be a line bundle as in Definition TZ1. Then
—(Kx+A)'F _ —(Kx—l-A)-ﬁ

H-T N H -/
holds. Hence we obtain
-T
0 < —(Kx+A) T = (—(KX+A)~€)-% < 2.dim X.
This is what we wanted. 0]

One of the main purposes of this section is to explain the following theorem, which is
very well known and has already played an important role when 7: X — Y is algebraic.

Theorem 14.3. Let m: X — Y be a projective morphism of complex analytic spaces
such that X is a normal complex variety and let W be a compact subset of Y such that
the dimension of NY(X/Y ;W) is finite. Let V be a finite-dimensional affine subspace of
WDivg(X), which is defined over the rationals. We fir an R-divisor A € L(V ;71 (W)),
that is, A € V and (X,A) is log canonical at 7= (W). Then we can find positive real
numbers o and 0, which depend on (X, A) and V', with the following properties.

(1) If T is any extremal curve over W and (Kx +A)-T' > 0, then (Kx +A)-T' > a.
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(2) If De L(V;m Y (W), |D—A| <46, and (Kx + D) -T <0 for an extremal curve
I' over W, then (Kx +A)-T <0.
(3) Let {Ri}ier be any set of extremal rays of NE(X/Y;W). Then

Np={Dc L(V;m'(W))| (Kx + D) - R, >0 for every t € T}
15 a rational polytope in V. In particular,
NIV W) ={A € L(V; 7 Y(W)) | Kx + A is nef over W}
1s a rational polytope.

Proof of Theorem [1Z-3. Throughout this proof, we can freely shrink Y around W suitably.
We first note that £(V;7~1(W)) is a rational polytope in V (see 210).

(1) If Ais a Q-divisor, then we may assume that m(Ky+A) is Cartier for some positive
integer m by shrinking Y around W suitably. Therefore, the statement is obvious even if
I' is not extremal. Hence, from now on, we assume that A is not a Q-divisor. Then we
can write Kx +A =3 a;(Kx + D;) as in Lemma B4. This means that a; is a positive
real number for every j with 37 a; = 1 and that D; € L(V;7~1(W)) is a Q-divisor for
every j. Thus we have (Kx +A)-I'= )" a;(Kx + D;) - I'. If (Kx +A) - T' < 1, then

1
—2dimX < (Kx+Dj,)-I'< — —Z@j(Kx+Dj) T+1
%o J#Jo
< 2dim X + 1

Ajo

for aj, # 0. This is because (Kx + D;)-I' > —2dim X holds for every j by Lemma [22.
Thus there are only finitely many possibilities of the intersection numbers (Kyx + D;) - T
for a; # 0 when (Ky + A) - I' < 1. Therefore, the existence of a is obvious.

(2) If we take ¢ sufficiently small, then, for every D € L(V;7~}(W)) with |[D —A| < 4,
we can always find D’ € L(V; 7 }(WW)) such that

Kx+D=(1-s)(Kx+A)+s(Kx+ D'
with
a

a+2dim X'
Since T' is extremal, we have (Kx + D’) - T' > —2dim X for every D' € L(V;7 }(W))
by Lemma IZ2. We assume that (Kx +A)-I' > 0. Then (Kx +A)-T' > «a by (1).
Therefore,

0<s<

(Kx+D)- I'=(1-s)(Kx+A)-T'+s(Kx+D')-T
> (1—s)a+s(—2dim X) > 0.
This is a contradiction. Hence, we obtain (Kx + A) - T' < 0. We complete the proof of

(2).

(3) For every ¢t € T, we may assume that there is some D(t) € L(V;7~1(W)) such
that (Kx + D(t))- Ry < 0. Let By,..., B, be the vertices of L(V;7~}(F)). We note that
(Kx + D) - R, < 0 for some D € L(V;7~Y(W)) implies (Kx + B;) - B, < 0 for some
j. Therefore, we may assume that 7T is contained in N. This is because there are only
countably many (Kx + B;)-negative extremal rays for every j by the cone theorem (see
Theorem [22). We note that A7 is a closed convex subset of £(V;7~1(WW)) by definition.
If T is a finite set, then the claim is obvious. Thus, we may assume that 7= N. By (2)
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and by the compactness of Np, we can take Aq,..., A, € Ny and dy,...,d, > 0 such
that N7 is covered by

Bi={D e L(V;x '(W))||D — Ay <&}
and that if D € B; with (Kx + D) - R; < 0 for some t, then (Kx + 4;) - R; = 0. If we put
T,={teT|(Kx+ D)-R; <0 for some D € B;},

then (Kx + A;) - R = 0 for every t € T; by the above construction. Since {B;}!" , gives
an open covering of N, we have Ny = ﬂ1§ign N7, by the following claim.

Claim 1. NT = ﬂlgignNTi'

Proof of Claim 0. We note that Ny C (),<;<,, N1, is obvious. Suppose that Ny C
MNi<;<n N1, holds. We take D € (), N7, \ N which is very close to Np. Since
N7 is covered by {B;}7,, there is some iy such that D € B;,. Since D ¢ N7, there is
some to € T such that (Kx + D) - Ry, < 0. Thus, ¢y € T;,. This is a contradiction because
D € Nr,,. Therefore, we obtain the desired equality N = (,;,, Nz O

Therefore, it is sufficient to see that each N7, is a rational polytope in V. By replacing
T with T;, we may assume that there is some D € Np such that (Kx + D) - Ry = 0 for
every t € T

Claim 2. If dimg L(V; 7' (W)) = 1, then Nt is a rational polytope in V.

Proof of Claim 2. As we explained above, we can take some D € N7 such that (Kx +
D) - R, =0 for every ¢t € T. Since dimg L(V;7 1(W)) =1, we can write

Kx +D =0 (Kx + Dy) +ba(Kx + Ds)
such that Kx + D; € L(V; 7 Y(W)), D; is a Q-divisor, and 0 < b; < 1 for i = 1,2, and

by + by =1. By (Kx + D) - R, = 0, we see that b; and by are rational numbers. This
implies that D is a Q-divisor. Therefore, N7 is a rational polytope in V. O

Hence we assume dimg £(V;771(W)) > 1. Let £',...,LP be the proper faces of
L(V;m Y (W)). Then Ni = Ny N L' is a rational polytope by induction on dimen-
sion. Moreover, for each D” € Np which is not D, there is D’ on some proper face of
L(V;7=1(W)) such that D” is on the line segment determined by D and D’. Note that
(Kx + D) - Ry = 0 for every t € T. Therefore, if D’ € L', then D' € Ni. Thus, N7 is the
convex hull of D and all the N’ There is a finite subset 7" C T such that

NG = N (£,

Therefore, the convex hull of D and |J; N7 is just Nv. We complete the proof of (3). O
As an application of Theorem 473, we have:

Theorem 14.4. Let m: X — Y be a projective morphism of complex analytic spaces
such that X s a normal complex variety and let W be a compact subset of Y such that
the dimension of NY(X/Y ;W) is finite. Let (X,A) be a log canonical pair and let H
be an effective R-Cartier R-divisor on X such that (X, A+ H) is log canonical and that
Kx + A+ H is nef over W. Then, either Kx + A is nef over W or there is a (Kx + A)-
negative extremal ray R of NE(X/Y; W) such that (Kx + A+ XH) - R =0, where

Ai=inf{t > 0| Kx + A +tH is nef over W}.
Of course, Kx + A + \H is nef over W.
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Proof. We assume that Ky + A is not m-nef over W. Let {R;} be the set of the (Kx +A)-

negative extremal rays of NE(X/Y; W). Let C; be an extremal curve over W spanning
R; for every j. We put p = sup{y;}, where
J

_ —(BEx+A4)-Cj
e A
By definition, it is obvious that A = p and 0 < p < 1 hold. Hence it is sufficient to prove
that 1 = p;, for some jo. By Lemma B4, after shrinking ¥ around W suitably, we can
find effective Q-divisors Ay, ..., A, and positive real numbers ry, ..., r, with Zle r =1
such that m(Kx + 4;) is Cartier for every i, A = Zle r;A; holds, and (X, A;) is log
canonical for every i. Therefore, by Lemma 472, we can write

M4
1 >0,
m

l
—(Kx+4)-C; =)
=1

where n;; is an integer with n;; < 2mdim X for every ¢ and j since Cj is extremal over
W. If (Kx +A+ H)-R;, =0 for some jy, then there are nothing to prove since A =1
and (Kx + A+ H)- R =0 with R = R;,. Thus, we assume that (Kx + A+ H)-R; >0
for every j. We put F' = Supp(A+ H). Let F' = )", Fj; be the irreducible decomposition.
We put V = @, RFy,

L(V;7 Y W)) :={D € V| (X, D) is log canonical at 7~ (W)},

and
N :={De L(V;x'(W))| (Kx + D) - R; >0 for every j}.
Then N is a rational polytope in V' by Theorem 233 (3) and A + H is in the relative

interior of A/ by the above assumption. Therefore, after shrinking Y around W suitably
again, we can write

q
KX +A+H = ZT’;(KX +Dp)7
p=1
where 7/, ..., 7 are positive real numbers such that Zp r, = 1, (X, D,) is log canonical
for every p, m'(Kx + D,,) is Cartier for some positive integer m’ and every p, and (Kx +
D,) - C; > 0 for every p and j. So, we obtain

q T/TL/»
_ P "pj
(KX+A+H)-C]~—;W

with 0 < ny, = m'(Kx + D,)-C; € Z. Note that m’ and r, are independent of j for every
p. We also note that

1 H-C; _(KX+A+H)'Cj+1
M —(Kx+A>Oj —(Kx‘i‘A)Cj

q ! A7
_ mzp=1 TpTlpj +1

l
/ .
m Zi:l Tl

Since
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for every j and n;; < 2mdim X with n;; € Z for every ¢ and j, the number of the set
{ni;}i; is finite. Thus,

) { 1 } 1

inf{d —p»=—

J e Ho

for some jy. Therefore, we obtain p = p,. We finish the proof. U

15. BASEPOINT-FREE THEOREM FOR R-DIVISORS

In this section, we will discuss the basepoint-free theorem for R-divisors, although we
do not need it in this paper. The proof of Theorem I51 needs the cone theorem (see
Theorem I22). Hence Theorem a1 looks much deeper than the basepoint-free theorem
for Cartier divisors (see Theorem O).

Theorem 15.1 (Basepoint-free theorem for R-divisors). Let m: X — Y be a projective
morphism of complex analytic spaces such that X is a normal complex variety and let
W be a compact subset of Y such that the dimension of N'(X/Y ;W) is finite. Let A
be an effective R-divisor on X such that (X, A) is log canonical. Let D be an R-Cartier
R-divisor defined on some open neighborhood of =Y (W) such that D is w-nef over W.
Assume that aD — (Kx + A) is m-ample over W for some positive real number a. Then
there exists an open neighborhood U of W such that D is semiample over U.

Theorem 5T is an application of the cone theorem (see Theorem [22) and the basepoint-
free theorem for Cartier divisors (see Theorem BT).

Proof of Theorem [IA1. Without loss of generality, by replacing D with aD, we may as-
sume that a = 1 holds. By replacing Y with a relatively compact open neighborhood of
W, we may further assume that Supp D has only finitely many irreducible components
and that D is a globally R-Cartier R-divisor on X. We consider
F={zeNEX/Y;W)|D-z=0}.
Then F is a face of NE(X/Y; W) and (Kx + A) -z < 0 holds for z € F. We take an
ample R-line bundle A on X such that D — (Kx + A + A) is still m-ample over W. Let
R be a (Kx + A)-negative extremal ray of NE(X/Y; W) such that R C F. Then R is
automatically a (Kx + A + A)-negative extremal ray of NE(X/Y; W) since D - R = 0
and D — (Kx + A + A) is m-ample over W. Therefore, F' contains only finitely many
(Kx + A)-negative extremal rays Ry,..., Ry of NE(X/Y;W). Thus, F is spanned by
the extremal rays Ry,..., Rx. Let Supp D = > ; Dj be the irreducible decomposition of
Supp D. Then we consider the finite-dimensional real vector space V' = @RD;. In this
J

situation, we can easily check that
R :={B € V| B is a globally R-Cartier R-divisor and B - z = 0 for every z € F'}

is a rational affine subspace of V' with D € R. As in Step B in the proof of Theorem 22,
we put

Cr = NE(X/Y; W)y saraz0+ Y Ry

R;¢F

and

R*:={B e R|B is positive on Cr \ {0}}.
We note that NE(X/Y; Wniex,a) = 0 since (X, A) is log canonical. Then R* is a
non-empty open subset of R with D € R". Hence we can find positive real num-
bers rq,7g,...,7y, and globally Q-Cartier Q-divisors By, Bs,...,B,, € R such that
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D = %" rB; and B; — (Kx + A) is m-ample over W for every i. We note that B;
is automatically m-nef over W for every i since B; € R". By the basepoint-free theorem
for Cartier divisors (see Theorem E), there exists a relatively compact open neighbor-
hood U of W such that B; is m-semiample over U for every i. Therefore, D =", r;B;
is m-semiample over U. This is what we wanted. 0]

Theorem I will play an important role in the study of minimal models of complex
analytic spaces.

16. PROOF OF MAIN THEOREM

In this final section, we will prove Theorem [, which is the main theorem of this
paper.

Proof of Theorem 3. By Theorem 23 (1) and (2), we obtain the following equality
NE(X/Y:W) = NE(X/Y; W) xy4a)20 + NE(X/Y Wniexa) + 3 R

satisfying (1), (2), and (3) in Theorem [2. By Theorem 22 (3), F' in Theorem 2 (4)
is rational and hence contractible at Nlc(X, A). Thus, by the contraction theorem (see
Theorem ), we obtain the desired contraction morphism @p: X — Z over Y after
shrinking ¥ around W suitably. By Theorem 32, we see that (5) holds. We note that (6)
is nothing but Theorem 2. Finally, we will prove (7). We may assume that Kx + A is
not m-nef over W. Then we can take a small positive real number ¢ such that Kx+A+ecH
is not m-nef over W. By the cone theorem (see Theorem 22 (2)), there exist only finitely
many (Ky + A + eH)-negative extremal rays Ry, ..., Ry of NE(X/Y;W). We put
 —(Kx+A)- R
W= ——r
for every 7. Then it is obvious that A = max;<;<j pt;. If A = p;, holds for 1 < iy <k, then

(Kx + A+ AH) - R;, = 0. By construction, Ky + A 4+ AH is m-nef over W. We finish the
proof of Theorem 2. O
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