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Abstract. We discuss the minimal model program for projective morphisms of complex
analytic spaces. Roughly speaking, we show that the results obtained by Birkar–Cascini–
Hacon–McKernan hold true for projective morphisms between complex analytic spaces.
We also treat some related topics.
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1. Introduction

This paper is the first step of the minimal model program for projective morphisms of
complex analytic spaces.

In [BCHM] and [HacM], Birkar, Cascini, Hacon, and McKernan established many im-
portant results on the minimal model program for quasi-projective kawamata log terminal
pairs defined over the complex number field (see [BCHM, Theorems A, B, C, D, E, and
F]). Thus we can run the minimal model program with scaling.

Theorem 1.1 (Minimal model program with scaling, see [BCHM, Corollary 1.4.2]). Let
π : X → Y be a projective morphism of normal quasi-projective varieties. Let (X,∆) be a
Q-factorial kawamata log terminal pair, where KX +∆ is R-Cartier and ∆ is π-big. Let
C be an effective R-divisor on X. If KX + ∆ + C is kawamata log terminal and π-nef,
then we can run the (KX + ∆)-minimal model program over Y with scaling of C. The
output of this minimal model program is a log terminal model (resp. a Mori fiber space)
over Y when KX +∆ is π-pseudo-effective (resp. not π-pseudo-effective).

Hence we can easily check:

Theorem 1.2 ([BCHM, Theorem 1.2]). Let (X,∆) be a kawamata log terminal pair,
where KX +∆ is R-Cartier. Let π : X → Y be a projective morphism of quasi-projective
varieties. If either ∆ is π-big and KX +∆ is π-pseudo-effective or KX +∆ is π-big, then

(1) KX +∆ has a log terminal model over Y ,
(2) if KX +∆ is π-big then KX +∆ has a log canonical model over Y , and
(3) if KX +∆ is Q-Cartier, then

R(X/Y,KX +∆) :=
⊕
m∈N

π∗O (⌊m(KX +∆)⌋)

is finitely generated as an OY -algebra.

The main purpose of this paper is to generalize the results obtained in [BCHM] and
[HacM] for projective morphisms of complex analytic spaces under some suitable assump-
tions. One of the main difficulties to translate [BCHM] and [HacM] into the complex
analytic setting is to find a reasonable formulation. For the general understanding of the
theory of minimal models in the complex analytic setting, see [KM, Example 2.17]. To
the best knowledge of the author, the minimal model program for projective morphisms
between complex analytic spaces is not discussed in standard literature.

Remark 1.3 (Minimal model program for compact Kähler threefolds). In a series of
papers (see [HP1], [HP2], and [CHP]), the theory of minimal models was generalized
for compact Kähler threefolds (see also [HP3]). It is different from our direction and is
another complex analytic generalization of the minimal model program. The minimal
model theory for log surfaces in Fujiki’s class C was described in [Fu12]. Based on the
idea that the essence of the theory of minimal models is projectivity, we think that our
formulation in this paper is more natural than the minimal model program for compact
Kähler varieties.

Let us see an easy example.

Example 1.4. Let {Pk}k∈N be a set of mutually distinct discrete points of Y := C2 and
let π : X → Y be the blow-up whose center is {Pk}k∈N. We put Ek := π−1(Pk) for every
k. Since the line bundle OX

(
−
∑

k∈NEk
)
is π-ample, π is a projective bimeromorphic
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morphism of smooth complex surfaces. In this case, there are infinitely many mutually
disjoint π-exceptional curves on X. Hence, there exists no naive generalization of the
minimal model program working for this projective bimeromorphic morphism π : X → Y .

By Example 1.4, it seems to be reasonable and indispensable to fix a compact subsetW
of Y with some good properties and only treat π : X → Y over some open neighborhood of
W . We need some finiteness condition in order to formulate the minimal model program
for projective morphisms of complex analytic spaces. In this paper, we will mainly consider
a projective morphism π : X → Y of complex analytic spaces and a compact subset W of
Y with the following properties:

(P1) X is a normal complex variety,
(P2) Y is a Stein space,
(P3) W is a Stein compact subset of Y , and
(P4) W ∩ Z has only finitely many connected components for any analytic subset Z

which is defined over an open neighborhood of W .

Since we are trying to discuss the minimal model program, (P1) is indispensable. So
we almost always assume that X is a normal complex variety. We note that the Steinness
of Y , that is, (P2), is a substitute of the quasi-projectivity of Y in [BCHM] and that the
quasi-projectivity of Y is indispensable in [BCHM]. Let F be a coherent sheaf on X such
that π∗F ̸= 0. Then we see that Γ(X,F) = Γ(Y, π∗F) ̸= 0 holds by Cartan’s Theorem
A. Here we need the Steinness of Y . We also note that the analytic space naturally
associated to an affine scheme is Stein. Let us explain (P3) and (P4). A compact subset
on an analytic space is said to be Stein compact if it admits a fundamental system of Stein

open neighborhoods. Note that a holomorphically convex hull K̂ of a compact subset K
on a Stein space is a Stein compact subset. Therefore, we can find many Stein compact
subsets on a given Stein space. If W satisfies (P3) and we are only interested in objects
defined over some open neighborhood of W , then we can freely replace Y with a small
Stein open neighborhood of W . The condition in (P4) is not so easy to understand and
looks somewhat artificial. However, it is a very natural condition. It is known that a Stein
compact subset W satisfies (P4) if and only if Γ(W,OY ) is noetherian by Siu’s theorem
(see [Si, Theorem 1]). If W is a Stein compact semianalytic subset, then it satisfies (P3)
and (P4). Thus we see that there are many Stein compact subsets satisfying (P4) on a
given Stein space Y . We consider the free abelian group Z1(X/Y ;W ) generated by the
projective integral curves C on X such that π(C) is a point of W . We take C1, C2 ∈
Z1(X/Y ;W ) ⊗Z R. If C1 · L = C2 · L holds for every L ∈ Pic (π−1(U)) and every open
neighborhood U ofW , then we write C1 ≡W C2. We set N1(X/Y ;W ) := Z1(X/Y ;W )⊗Z
R/ ≡W . Then, by (P4), we can check that N1(X/Y ;W ) is a finite-dimensional R-vector
space (see [Na3, Chapter II. 5.19. Lemma]). When N1(X/Y ;W ) is finite-dimensional,
we can define the Kleiman–Mori cone NE(X/Y ;W ) in N1(X/Y ;W ) for π : X → Y and
W , that is, NE(X/Y ;W ) is the closure of the convex cone in N1(X/Y ;W ) generated by
projective integral curves C onX such that π(C) is a point inW . Without any difficulties,
we can establish Kleiman’s ampleness criterion in the complex analytic setting. We further
assume that there exists an R-divisor ∆ on X such that (X,∆) is kawamata log terminal.
Then we can formulate the cone theorem as usual

NE(X/Y ;W ) = NE(X/Y ;W )KX+∆≥0 +
∑
j

Rj

and prove the contraction theorem for each (KX+∆)-negative extremal ray Rj over some
open neighborhood of W . This is essentially due to Nakayama (see [Na2]). By the above



4 OSAMU FUJINO

observations, we recognize that (P1), (P2), (P3), and (P4) are reasonable. From now on,
we usually simply say that π : X → Y and W satisfies (P) if it satisfies (P1), (P2), (P3),
and (P4).

Remark 1.5. Let D be an R-Cartier R-divisor on X. Then D ≥ 0 on NE(X/Y ;W )
means that D ·C ≥ 0 for every projective integral curve C on X such that π(C) is a point
in W . Unfortunately, however, D is not necessarily nef over some open neighborhood
of W even when D ≥ 0 on NE(X/Y ;W ). This fact often causes troublesome problems
when we discuss the minimal model program for projective morphisms between complex
analytic spaces.

In this paper, we will prove:

Theorem 1.6 (Main theorem, see Theorem 1.13 below). Let π : X → Y be a projective
morphism of complex analytic spaces and letW be a compact subset of Y such that π : X →
Y and W satisfies (P). Then Theorems A, B, C, D, E, and F in [BCHM] hold true with
some suitable modifications.

For the precise statement, see Theorems A, B, C, D, E, and F in Subsection 1.1 and
Theorem 1.13 below. To the best knowledge of the author, our results are new even
in dimension three. For projective morphisms of complex analytic spaces, the minimal
model program with scaling (see Theorem 1.1) becomes as follows.

Theorem 1.7 (Minimal model program with scaling for projective morphisms of complex
analytic spaces, see [BCHM, Corollary 1.4.2]). Let π : X → Y be a projective surjective
morphism of complex analytic spaces and let W be a compact subset of Y . Assume that
Y is Stein and that W is a Stein compact subset of Y such that Γ(W,OY ) is noetherian.
Let (X,∆) be a kawamata log terminal pair such that ∆ is π-big and that X is Q-factorial
over W . If C is an effective R-divisor on X such that KX + ∆ + C is kawamata log
terminal and it is nef over W . Then we can run the (KX + ∆)-minimal model program
with scaling of C over Y around W . More precisely, we have a finite sequence of flips and
divisorial contractions over Y starting from (X,∆):

(X,∆) =: (X0,∆0)
φ099K (X1,∆1)

φ199K · · ·
φm−199K (Xm,∆m),

where ∆i+1 := (φi)∗∆i for every i ≥ 0, such that (Xm,∆m) is a log terminal model
(resp. has a Mori fiber space structure) over some open neighborhood of W when KX +∆
is π-pseudo-effective (resp. not π-pseudo-effective). We note that each step φi exists only
after shrinking Y around W suitably. Hence we have to replace Y with a small Stein open
neighborhood of W repeatedly in the above process.

By Theorem 1.7, we can prove:

Theorem 1.8 ([BCHM, Theorem 1.2]). Let (X,∆) be a kawamata log terminal pair,
where KX +∆ is R-Cartier. Let π : X → Y be a projective morphism of complex analytic
spaces and let W be a compact subset of Y such that π : X → Y and W satisfies (P). If
either ∆ is π-big and KX +∆ is π-pseudo-effective or KX +∆ is π-big, then

(1) KX +∆ has a log terminal model over some open neighborhood of W ,
(2) if KX +∆ is π-big then KX +∆ has a log canonical model over some open neigh-

borhood of W , and
(3) if KX +∆ is Q-Cartier, then

R(X/Y,KX +∆) =
⊕
m∈N

π∗OX(⌊m(KX +∆)⌋)
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is a locally finitely generated graded OY -algebra.

Of course, Theorem 1.8 is an analytic version of Theorem 1.2. We note that this paper
is not self-contained. If the proof is essentially the same as the original one for quasi-
projective varieties, then we will only explain how to modify arguments in [BCHM] and
[HacM] in order to make them work for projective morphisms between analytic spaces
satisfying (P). In this paper, we always assume that complex analytic spaces are Hausdorff
and second-countable.

1.9 (Motivation). Let us explain the motivation of this paper. We sometimes have to
consider the following setting when we study degenerations of algebraic varieties. Let
π : X → ∆ be a projective morphism from a complex manifold X onto a disc ∆ = {z ∈
C | |z| < 1} with connected fibers. Suppose that π is smooth over ∆ \ {0} and KXz ∼Q 0
for every z ∈ ∆ \ {0}, where Xz = π−1(z), and that π∗0 is a reduced simple normal
crossing divisor on X. Roughly speaking, π : X \π−1(0) → ∆\{0} is a smooth projective
family of Calabi–Yau manifolds and π : X → ∆ is a semistable degeneration. Since ∆
is not a quasi-projective algebraic variety, we can not directly use [BCHM] for the study
of π : X → ∆. By using the results established in this paper, after slightly shrinking ∆
around 0 repeatedly, we can construct a finite sequence of flips and divisorial contractions
starting from X:

X =: X0 99K X1 99K X2 99K · · · 99K Xm

over ∆ such that Xm is a minimal model of X over ∆. More precisely, Xm has only ter-
minal singularities and KXm is Q-linearly trivial. The above result is a typical application
of our result in this paper, which is not covered by [BCHM]. It is a complex analytic
generalization of the semistable minimal model program established in [Fu4].

1.10 (Background, see [Fu5, 3.5, 3.6]). In the traditional framework of the minimal model
program, the most important and natural object is a quasi-projective kawamata log ter-
minal pair (see [KMM], [KM], [Matk], [BCHM], [HacM], and so on). From the Hodge
theoretic viewpoint, we think that there exists the following correspondence.

Kawamata log terminal pairs ⇐⇒ Pure Hodge structures

We have already used mixed Hodge structures on cohomology with compact support
systematically for the study of minimal models (see [Fu5], [Fu9], and so on). Then we
succeeded in greatly expanding the framework of the minimal model program. Roughly
speaking, we established the following correspondence.

Quasi-log schemes ⇐⇒ Mixed Hodge structures

For the details of this direction, see also [Fu13], [FFL], [Fu14], and so on.
On the other hand, from the complex analytic viewpoint, we know the following corre-

spondence.

Kawamata log terminal pairs ⇐⇒ L2 condition

Hence, it is natural to think that we can generalize the minimal model program for quasi-
projective kawamata log terminal pairs established in [BCHM] and [HacM] to the one
in the complex analytic setting. We note that the projectivity plays a crucial role in
the theory of minimal models. Therefore, it is reasonable to discuss the minimal model
program for projective morphisms between complex analytic spaces. This naive idea is
now realized in this paper.
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Unfortunately, we have not established complex analytic methods to treat varieties
whose singularities are worse than kawamata log terminal singularities yet. Thus, it is a
challenging problem to consider some analytic generalization of the theory of quasi-log
schemes (see [Fu9, Chapter 6] and [Fu15]).

1.11 (How to use (P)). Before we see the main results in Subsection 1.1, let us explain
how to use (P) for the reader’s convenience. Let π : X → Y be a projective morphism of
complex analytic spaces and let W be a compact subset of Y such that π : X → Y and
W satisfies (P). We usually consider an R-divisor ∆ on X such that KX +∆ is R-Cartier.
It sometimes happens that some properties hold true only over an open neighborhood U
of W . Since W is a Stein compact subset of Y , we can always take a relatively compact
Stein open neighborhood Y ′ of W in Y satisfying

W ⊂ Y ′ ⋐ U ⊂ Y.

Of course, π′ : X ′ → Y ′ and W satisfies (P), where X ′ := π−1(Y ′) and π′ := π|X′ . We
frequently replace π : X → Y with π′ : X ′ → Y ′ without mentioning it explicitly. We
note that the support of ∆ is only locally finite by definition. In general, the support of
∆ may have infinitely many irreducible components. By construction, X ′ is a relatively
compact open subset of X. Hence the support of ∆|X′ is finite. On the other hand, let V
be a relatively compact open neighborhood of W in Y . Since Y is Stein, we can take an
Oka–Weil domain V ′ satisfying

W ⊂ V ⊂ V ⊂ V ′ ⊂ V ′ ⊂ Y.

By construction, V ′ can be seen as a complex analytic subspace of a polydisc. Hence we
can take a semianalytic Stein compact subset W ′ such that

W ⊂ V ⊂ V ⊂ W ′ ⊂ V ′ ⊂ V ′ ⊂ Y.

Note that W ′ satisfies (P4) since it is semianalytic. Therefore, π : X → Y and W ′

satisfies (P) and W ′ contains a given relatively compact open neighborhood V of W .
This argument is useful and indispensable when we try to check that some properties
hold true over an open neighborhood of W . For example, when we prove that KX +∆ is
nef over some open neighborhood of W , we sometimes have to consider π : X → Y and
W ′.

1.1. Main results. Here, we state the main results of this paper. The following theorems
look very similar to those in [BCHM] although they treat complex analytic spaces.

Theorem A (Existence of pl-flips, [BCHM, Theorem A]). Let φ : X → Z be an analytic
pl-flipping contraction for a purely log terminal pair (X,∆). Then the flip φ+ : X+ → Z
of φ always exists.

Theorem B (Special finiteness, [BCHM, Theorem B]). Let π : X → Y be a projec-
tive morphism of complex analytic spaces and let W be a compact subset of Y such that
π : X → Y and W satisfies (P). Suppose that X is Q-factorial over W . Let V be a finite-
dimensional affine subspace of WDivR(X), which is defined over the rationals, let S be
the sum of finitely many prime divisors and let A be a general π-ample Q-divisor on X
such that the number of the irreducible components of SuppA is finite. Let (X,∆0) be a
divisorial log terminal pair such that S ≤ ∆0. We fix a finite set C of prime divisors on
X. Then, after shrinking Y around W suitably, there are finitely many bimeromorphic
maps ϕi : X 99K Zi over Y for 1 ≤ i ≤ k with the following property. If U is an open
neighborhood of W and ϕ : π−1(U) 99K Z is any weak log canonical model over W of
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(KX +∆)|π−1(U) such that Z is Q-factorial over W , where ∆ ∈ LS+A(V ; π−1(W )), which
only contracts elements of C and which does not contract every component of S, then
there exists an index 1 ≤ i ≤ k such that, after shrinking Y and U around W suitably,
the induced bimeromorphic map ξ : Zi 99K Z is an isomorphism in a neighborhood of the
strict transform of S.

Theorem C (Existence of log terminal models, [BCHM, Theorem C]). Let π : X → Y
be a projective surjective morphism of complex analytic spaces and let W be a compact
subset of Y such that π : X → Y and W satisfies (P). Suppose that (X,∆) is kawamata
log terminal and that ∆ is big over Y . If there exists an R-divisor D on X such that
KX + ∆ ∼R D ≥ 0, then (X,∆) has a log terminal model over some open neighborhood
of W .

Theorem D (Nonvanishing theorem, [BCHM, Theorem D]). Let (X,∆) be a kawamata
log terminal pair and let π : X → Y be a projective morphism of complex analytic spaces
such that Y is Stein. Assume that ∆ is big over Y and that KX + ∆ is pseudo-effective
over Y . Let U be any relatively compact Stein open subset of Y . Then there exists a
globally R-Cartier R-divisor D on π−1(U) such that (KX +∆)|π−1(U) ∼R D ≥ 0.

Theorem E (Finiteness of models, [BCHM, Theorem E]). Let π : X → Y be a projective
morphism of complex analytic spaces and letW be a compact subset of Y such that π : X →
Y and W satisfies (P). We fix a general π-ample Q-divisor A ≥ 0 on X such that the
number of the irreducible components of SuppA is finite. Let V be a finite-dimensional
affine subspace of WDivR(X) which is defined over the rationals. Suppose that there is a
kawamata log terminal pair (X,∆0). Then, after shrinking Y around W suitably, there
are finitely many bimeromorphic maps ψj : X 99K Zj over Y for 1 ≤ j ≤ l with the
following property. If U is an open neighborhood of W and ψ : π−1(U) 99K Z is a weak
log canonical model of (KX +∆)|π−1(U) over W for some ∆ ∈ LA(V ; π−1(W )), then there
exists an index 1 ≤ j ≤ l and an isomorphism ξ : Zj → Z such that ψ = ξ ◦ ψj after
shrinking Y and U around W suitably.

Theorem F (Finite generation, [BCHM, Theorem F]). Let π : X → Y be a projective
morphism of complex analytic spaces and letW be a compact subset of Y such that π : X →
Y and W satisfies (P). Let (X,∆ = A + B) be a kawamata log terminal pair, where
A ≥ 0 is a π-ample Q-divisor and B ≥ 0. We assume that the number of the irreducible
components of Supp∆ is finite. If KX +∆ is pseudo-effective over Y , then

(1) After shrinking Y around W suitably, the pair (X,∆) has a log terminal model
µ : X 99K Z over Y . In particular if KX +∆ is Q-Cartier, then the log canonical
ring

R(X/Y,KX +∆) =
⊕
m∈N

π∗OX(⌊m(KX +∆)⌋)

is a locally finitely generated graded OY -algebra.
(2) Let V ⊂ WDivR(X) be the vector space spanned by the components of ∆. Then,

after shrinking Y around W suitably, there is a constant δ > 0 such that if G
is a prime divisor contained in the stable base locus of KX + ∆ over Y and Ξ ∈
LA(V ; π−1(W )) such that ||Ξ−∆|| < δ, then G is contained in the stable base locus
of KX + Ξ over Y .

(3) Let V ′ ⊂ V be the smallest affine subspace of WDivR(X) containing ∆, which is
defined over the rationals. Then, after shrinking Y around W suitably, there exists
a constant η > 0 and a positive integer r > 0 such that if Ξ ∈ V ′ is any divisor
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and k is any positive integer such that ||Ξ−∆|| < η and k(KX + Ξ)/r is Cartier,
then every component of Fix(k(KX + Ξ)) is a component of the stable base locus
of KX +∆ over Y .

1.2. How to prove the main results. The formulation of Theorem C is not appropriate
for our inductive treatment of the main results in this paper. Therefore, we prepare a
somewhat artificial statement, which is a slight generalization of Theorem C. We will use
it instead of Theorem C in the inductive proof of the main results.

Theorem G (Existence of good log terminal models). Let π : X → Y be a projective
surjective morphism of complex analytic spaces and let W be a compact subset of Y such
that π : X → Y and W satisfies (P). Assume that π : X → Y ♭ → Y such that Y ♭ is
projective over Y . Suppose that (X,∆) is kawamata log terminal and that ∆ is big over
Y . If there exists an R-divisor D on X such that KX+∆ ∼R D ≥ 0, then, after shrinking
Y around W suitably, there exists a bimeromorphic contraction ϕ : X 99K Z over Y ♭ such
that ϕ is (KX + ∆)-negative, Z is Q-factorial over W , KZ + Γ is semiample over Y ♭,
where Γ = ϕ∗∆. This means that (Z,Γ) is a good log terminal model of (X,∆) over Y ♭.

As an obvious remark, we have:

Remark 1.12. If we put Y ♭ = Y in Theorem G, then we obtain Theorem C as a special
case of Theorem G. Therefore, it is sufficient to prove Theorem G.

Note that Theorem An refers to Theorem A in the case when the dimension of X is n.
In [BCHM] and [HacM], Theorem A, Theorem B, Theorem C, Theorem D, Theorem E,
and Theorem F were proved by induction on n as follows.

• Theorem Fn−1 implies Theorem An.
• Theorem En−1 implies Theorem Bn.
• Theorem An and Theorem Bn imply Theorem Cn.
• Theorem Dn−1, Theorem Bn and Theorem Cn imply Theorem Dn.
• Theorem Cn and Theorem Dn imply Theorem En.
• Theorem Cn and Theorem Dn imply Theorem Fn.

Our strategy in this paper is essentially the same as that of [BCHM]. However, it is
slightly simpler. We first note that we can easily check:

• Theorem Dn holds true for arbitrary n.
• Theorem Gn implies Theorem Cn for arbitrary n.

Hence it is sufficient to prove Theorem A, Theorem B, Theorem E, Theorem F, and
Theorem G by induction on n as follows.

• Theorem Fn−1 implies Theorem An.
• Theorem En−1 implies Theorem Bn.
• Theorem An and Theorem Bn imply Theorem Gn.
• Theorem Gn implies Theorem En.
• Theorem Gn implies Theorem Fn.

Although there are some new difficulties, the proof of each step is similar to the original
one in [BCHM] and [HacM]. Precisely speaking, we make great efforts to find a suitable
formulation in order to make the original proof work with only some minor modifications.

The correct statement of Theorem 1.6 should be:

Theorem 1.13 (Main theorem). Theorems A, B, C, D, E, F, and G hold true in any
dimension.
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1.3. Some other results. We have already known that many results follow from [BCHM].
We can prove that some of them hold true even in the complex analytic setting if we take
some suitable modifications.

Once we have Theorem G, it is not difficult to prove the existence of kawamata log
terminal flips in the complex analytic setting.

Theorem 1.14 (Existence of kawamata log terminal flips). Let (X,∆) be a kawamata
log terminal pair. Let φ : X → Z be a small projective surjective morphism of normal
complex varieties. Then the flip φ+ : X+ → Z of φ always exists. This means that there
exists the following commutative diagram:

X

φ
��@

@@
@@

@@
@

ϕ //_______ X+

φ+
}}||
||
||
||

Z

where

(1) φ+ : X+ → Z is a small projective morphism of normal complex varieties, and
(2) KX+ +∆+ is φ+-ample, where ∆+ := ϕ∗∆.

Note that (X+,∆+) is automatically a kawamata log terminal pair.

Remark 1.15. Theorem 1.14 generalizes Mori’s flip theorem (see [Mo3, (0.4.1) Flip The-
orem]). Roughly speaking, Mori coarsely classified three-dimensional flipping contractions
analytically and checked the existence of three-dimensional terminal flips.

The next one is a result on partial resolutions of singularities for complex varieties.

Theorem 1.16 (Existence of canonicalizations). Let X be a complex variety. Then there
exists a projective bimeromorphic morphism f : Z → X, which is the identity map over
a nonempty Zariski open subset where X has only canonical singularities, from a normal
complex variety Z with only canonical singularities such that KZ is f -ample.

If KX +∆ is not pseudo-effective over Y , then we can run the minimal model program
with scaling to get a Mori fiber space.

Theorem 1.17 ([BCHM, Corollary 1.3.3]). Let π : X → Y be a projective morphism of
complex analytic spaces and let W be a compact subset of Y such that π : X → Y and W
satisfies (P). Let (X,∆) be a divisorial log terminal pair such that X is Q-factorial over
W . Suppose that KX +∆ is not pseudo-effective over Y . Then we can run a (KX +∆)-
minimal model program and finally obtain a Mori fiber space over some open neighborhood
of W .

We can prove the finite generation theorem for kawamata log terminal pairs in full
generality in the complex analytic setting.

Theorem 1.18 ([BCHM, Corollary 1.1.2]). Let (X,∆) be a kawamata log terminal pair,
where KX + ∆ is Q-Cartier, and let π : X → Y be a projective morphism of complex
analytic spaces. Then

R(X/Y,KX +∆) =
⊕
m∈N

π∗OX(⌊m(KX +∆)⌋)

is a locally finitely generated graded OY -algebra.
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The original algebraic version of Theorem 1.19 below was first obtained in [Fu4] as an
application of [BCHM].

Theorem 1.19 ([Fu4, Theorem 1.3]). Let (X,∆) be a divisorial log terminal pair and let
π : X → Y be a projective morphism onto a disc Y = {z ∈ C | |z| < 1} with connected
fibers. Assume that (KX + ∆)|F ∼R 0 holds for an analytically sufficiently general fiber
F of π. We further assume that W is a Stein compact subset of Y such that Γ(W,OY ) is
noetherian and that X is Q-factorial over W . Then we can run the (KX + ∆)-minimal
model program over Y in a neighborhood of W with ample scaling. More precisely, we
have a finite sequence of flips and divisorial contractions over Y starting from (X,∆):

(X,∆) =: (X0,∆0)
φ099K (X1,∆1)

φ199K · · ·
φm−199K (Xm,∆m),

where ∆i+1 := (φi)∗∆i for every i ≥ 0, such that (Xm,∆m) is a log terminal model over
some open neighborhood of W . Moreover, KXm + ∆m ∼R (πm)

∗D for some R-Cartier
R-divisor D on Y after shrinking Y around W suitably, where πm : Xm → Y . We note
that each step φi exists only after shrinking Y around W suitably.

Remark 1.20. In Theorem 1.19, W = {z ∈ C | |z| ≤ r} for 0 ≤ r < 1 is a Stein compact
subset of Y such that Γ(W,OY ) is noetherian.

The following theorem is an analytic version of dlt blow-ups. In the recent developments
of the minimal model theory for higher-dimensional algebraic varieties, dlt blow-ups are
very useful and important.

Theorem 1.21 (Dlt blow-ups, I). Let X be a normal complex variety and let ∆ be an
effective R-divisor on X such that KX +∆ is R-Cartier. Let U be any relatively compact
Stein open subset of X and let V be any relatively compact open subset of U . Then we can
take a Stein compact subset W of U such that Γ(W,OX) is noetherian, V ⊂ W , and, after
shrinking X around W suitably, we can construct a projective bimeromorphic morphism
f : Z → X from a normal complex variety Z with the following properties:

(1) Z is Q-factorial over W ,
(2) a(E,X,∆) ≤ −1 for every f -exceptional divisor E on Z, and
(3)

(
Z,∆<1

Z + Supp∆≥1
Z

)
is divisorial log terminal, where KZ +∆Z = f ∗(KX +∆).

Note that if (X,∆) is log canonical then ∆Z = ∆<1
Z + Supp∆≥1

Z holds.

We can use Theorem 1.21 for the study of log canonical singularities, which are not
necessarily algebraic. The following result is a generalization of Theorem 1.18 for Kähler
manifolds. When Y is a point, Theorem 1.22 is [Fu8, Theorem 1.8].

Theorem 1.22 (Finite generation for Kähler manifolds, see [Fu8]). Let π : X → Y be a
proper morphism from a Kähler manifold X to a complex analytic space Y . Let ∆ be an
effective Q-divisor on X such that ⌊∆⌋ = 0 and that Supp∆ is a simple normal crossing
divisor on X. Then

R(X/Y,KX +∆) =
⊕
m∈N

π∗OX(⌊m(KX +∆)⌋)

is a locally finitely generated graded OY -algebra.

The assumption that ⌊∆⌋ = 0 holds in Theorem 1.22 is very important. The following
conjecture is widely open even when π : X → Y is a projective morphism between quasi-
projective varieties (see [FG2]).
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Conjecture 1.23. Let π : X → Y be a proper morphism from a Kähler manifold X to
a complex analytic space Y . Let ∆ be a boundary Q-divisor on X such that Supp∆ is a
simple normal crossing divisor on X. Then

R(X/Y,KX +∆) =
⊕
m∈N

π∗OX(⌊m(KX +∆)⌋)

is a locally finitely generated graded OY -algebra.

Let X be a normal complex variety and let L ⊂ K be compact subsets of X. Assume
that X is Q-factorial at K. Unfortunately, however, X is not necessarily Q-factorial at
L. Therefore, the following theorem seems to be much more useful than we expected and
is indispensable.

Theorem 1.24 (Small Q-factorializations). Let π : X → Y be a projective morphism of
complex analytic spaces and let W be a compact subset of Y such that π : X → Y and
W satisfies (P). Suppose that there exists ∆ such that (X,∆) is kawamata log terminal.
Then, after shrinking Y around W suitably, there exists a small projective bimeromor-
phic contraction morphism f : Z → X from a normal complex variety Z such that Z is
projective over Y and is Q-factorial over W .

As an obvious corollary of Theorem 1.24, we have:

Corollary 1.25. Let π : X → Y be a projective morphism of complex analytic spaces and
let W be a compact subset of Y such that π : X → Y and W satisfies (P). Let ϕ : X 99K Z
be a log terminal model over W . Let W ′ be a Stein compact subset of Y such that W ′ ⊂ W
and that Γ(W ′,OY ) is noetherian. Then there exists a log terminal model ϕ′ : X 99K Z ′

over W ′ after shrinking Y around W ′ suitably.
We further assume that there is an open neighborhood U of W ′ such that U ⋐ W . Then

ϕ′ : X 99K Z ′ is a log terminal model over some open neighborhood of W ′.

We can also prove:

Theorem 1.26. Let (X,∆) be a kawamata log terminal pair and let D be an integral Weil
divisor on X. Then

⊕
m∈N OX(mD) is a locally finitely generated graded OX-algebra.

Theorem 1.26 is a complete generalization of [Kaw2, Theorem 6.1] (see also [Fu8, The-
orem 7.2]). The next result will be indispensable for further studies of the minimal model
program for projective morphisms of complex analytic spaces.

Theorem 1.27 (Dlt blow-ups, II). Let π : X → Y be a projective morphism of complex
analytic spaces and let W be a compact subset of Y such that π : X → Y and W satisfies
(P). Let ∆ be an effective R-divisor on X such that KX + ∆ is R-Cartier. Then, after
shrinking Y around W suitably, we can construct a projective bimeromorphic morphism
f : Z → X from a normal complex variety Z with the following properties:

(1) Z is projective over Y and is Q-factorial over W ,
(2) a(E,X,∆) ≤ −1 for every f -exceptional divisor E on Z, and
(3)

(
Z,∆<1

Z + Supp∆≥1
Z

)
is divisorial log terminal, where KZ +∆Z = f ∗(KX +∆).

We note that ∆Z = ∆<1
Z + Supp∆≥1

Z holds when (X,∆) is log canonical.

We can generalize [Kaw5, Theorem 1] as follows.

Theorem 1.28 (see [Bir2, Corollary 3.3]). Let π1 : X1 → Y and π2 : X2 → Y be projective
morphisms such that Y is Stein and let W be a Stein compact subset of Y such that
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Γ(W,OY ) is noetherian. Let (X1,∆1) and (X2,∆2) be two kawamata log terminal pairs
such that KX1 +∆1 and KX2 +∆2 are nef over W , X1 and X2 are Q-factorial over W , X1

and X2 are isomorphic in codimension one, and ∆2 is the strict transform of ∆1. Then,
after shrinking Y around W suitably, X1 and X2 are connected by a sequence of flops with
respect to KX1 +∆1.

Remark 1.29. Precisely speaking, the proof of Theorem 1.28 shows that there exists an
effective Q-Cartier Q-divisor D1 on X1 such that (X1,∆1+D1) is kawamata log terminal,
X1 and X2 are connected by a finite sequence of flips with respect to KX1 +∆1+D1, and
KX1 +∆1 is numerically trivial over W in each flip.

On the abundance conjecture, we have:

Theorem 1.30 (Abundance theorem, see Theorem 23.2). Assume that the abundance
conjecture holds for projective kawamata log terminal pairs in dimension n.

Let π : X → Y be a projective surjective morphism of complex analytic spaces and let W
be a compact subset of Y such that π : X → Y and W satisfies (P). Assume that KX +∆
is nef over Y and dimX − dimY = n. Then KX + ∆ is π-semiample over some open
neighborhood of W .

Remark 1.31. The abundance conjecture for projective kawamata log terminal pairs was
completely solved affirmatively in dimension ≤ 3. Therefore, in Theorem 1.30, KX +∆ is
π-semiample over some open neighborhood of W when dimX − dimY ≤ 3. This result
seems to be new even when dimX = 3.

We make some remarks on the proof of our results in this paper.

Remark 1.32. We will use the fact that every extremal ray is spanned by a rational curve
of low degree (see [BCHM, Theorem 3.8.1] and Theorem 9.2) for the proof of Theorems A,
B, C, E, F, and G. Note that in [BCHM] it was only used for the proof of the finiteness of
negative extremal rays (see [BCHM, Corollary 3.8.2]). However, it is well known as a part
of the cone theorem (see also Theorems 7.2 and 7.3). Therefore, [BCHM] is independent
of Mori’s bend and break technique, which relies on methods in positive characteristic.

Remark 1.33. We can easily reduce Theorem D to the case where Y is a point. In this
case, X is projective and then Theorem D becomes a special case of [BCHM, Theorem
D].

In [BP, Section 3], Păun proved a slightly weaker version of the nonvanishing theorem
for projective varieties (see [BP, Theorem 1.5]). The proof is complex analytic and is
independent of the theory of minimal models. By combining it with [CKP, Theorem 0.1
and Corollary 3.3], we can recover the nonvanishing theorem for projective varieties in
full generality (see [BCHM, Theorem D]). By adopting this approach, Theorem D in this
paper becomes completely independent of the framework of the minimal model program.

Anyway, we can prove Theorem D without any difficulties by using some known results.

Remark 1.34. In [CaL], Cascini and Lazić directly proved the finite generation of ad-
joint rings by using Hironaka’s resolution and the Kawamata–Viehweg vanishing theorem.
Their proof does not use the minimal model program. Then, in [CoL], Corti and Lazić re-
covered many results on the minimal model program from [CaL, Theorem A]. The author
does not know whether this approach works or not in our complex analytic setting.

Remark 1.35. In dimension three, some results were formulated and established in the
complex analytic setting (see, for example, [Kaw2], [Mo3], and [KM, Chapter 6]). It is
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not surprising because the theory of minimal models for 3-folds originally owes to the
study of various singularities (see, for example, [Mo1], [Kaw2], and [Mo3]). Although
the classification of surface singularities is indispensable for adjunction, we do not need
any classifications of higher-dimensional singularities in [BCHM]. Hence, we think that
the minimal model program in dimension ≥ 4 has been formulated and studied only for
algebraic varieties.

We look at the organization of this paper. Section 2 is a long preliminary section,
where we will collect and explain some basic definitions and results on complex analytic
spaces. We think that the reader can understand that (P4) is reasonable. To the best
knowledge of the author, some of the results in this section seem to be new. In Section
3, we will explain singularities of pairs in the complex analytic setting. The definitions
of singularities become slightly complicated in the complex analytic setting. In Section
4, we will define Kleiman–Mori cones and establish Kleiman’s ampleness criterion in the
complex analytic setting. Here, the property (P4) plays a crucial role. Section 5 is a very
short section, where we explain only two vanishing theorems. From Section 6 to Section
8, we will establish several basepoint-free theorems, the cone and contraction theorem,
and so on, in the complex analytic setting. This part is essentially due to Nakayama (see
[Na2]). We note that we have to treat R-divisors. Therefore, some parts are harder than
the classical setting discussed in [Na2]. In Section 9, we will prove that every negative
extremal ray is spanned by a rational curve of low degree. Note that we need some
result obtained by Mori’s bend and break technique, which relies on methods in positive
characteristic. The result in this section will play an important role in the subsequent
sections. In Sections 11 and 12, we will prepare various basic definitions to establish
the main results of this paper. We closely follow the treatment of [BCHM]. However,
we have to reformulate some of them in order to make them suitable for our complex
analytic setting. Hence we strongly recommend the reader to read these sections carefully.
In Section 13, we will explain the minimal model program with scaling in the complex
analytic setting in detail. It is very useful for various geometric applications. From Section
14 to Section 19, we will prove Theorems A, B, C, D, E, F, and G. Although there are many
technical differences between the original proof for quasi-projective varieties (see [BCHM]
and [HacM]) and the one given here in the complex analytic setting, the strategy of the
whole proof is the same. In some parts, we will only explain how to modify the original
proof in order to make it work in our complex analytic setting. In Section 20, we will
prove almost all the theorems given in Section 1. We think that the reader who is familiar
with the minimal model program for quasi-projective varieties can understand this section
without any difficulties. In the last three sections, we will treat some advanced topics.
In Section 21, we will briefly discuss a canonical bundle formula in the complex analytic
setting and prove Theorems 1.18 and 1.22. This section needs some deep results on the
theory of variations of Hodge structure. Hence the topic in Section 21 is slightly different
from the other sections. In Section 22, we will discuss the minimal model program with
scaling again. Then we will prove Theorem 1.28 as an easy application. In Section 23, we
will explain how to reduce the abundance conjecture for projective morphisms between
complex analytic spaces to the original abundance conjecture for projective varieties (see
Theorem 1.30). Note that we will only treat kawamata log terminal pairs in Section 23.
The abundance conjecture for log canonical pairs looks much harder than the one for
kawamata log terminal pairs.

As is well known, the recent developments of the theory of minimal models heavily
owe to many ideas and results obtained by Shokurov. They are scattered in his papers
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(see, for example, [Sh1], [Sh2], and [Sh3]). In this paper, we will freely use them without
referring to Shokurov’s original papers.

Acknowledgments. The author was partially supported by JSPS KAKENHI Grant
Numbers JP19H01787, JP20H00111, JP21H00974. He would like to thank Hiromichi Tak-
agi for reading the first version of [BCHM] with him at Nagoya in 2006. He thanks Yoshi-
nori Gongyo, Kenta Hashizume, Yuji Odaka, Keisuke Miyamoto, Shigeharu Takayama,
and Yuga Tsubouchi very much.

The set of integers (resp. rational numbers, real numbers, complex numbers) is de-
noted by Z (resp. Q, R, C). The set of nonnegative integers (resp. positive integers,
positive rational numbers, positive real numbers, nonnegative real numbers) is denoted
by N (resp. Z>0, Q>0, R>0, R≥0).

2. Preliminaries

In this section, we will collect some basic definitions and explain various standard re-
sults. We note that every complex analytic space in this paper is assumed to be Hausdorff
and second-countable. The books [BS], [Fi], and [GuR] are standard references of complex
analytic geometry for algebraic geometers. A relatively new book by Noguchi (see [No])
is a very accessible textbook on several complex variables and complex analytic spaces.
Demailly’s book (see [D]) is also helpful and contains a proof of Grauert’s theorem on
direct images of coherent sheaves. We will freely use Serre’s GAGA principle (see, for
example, [Tay, Chapter 13] and [SGA1, Exposé XII]) throughout this paper.

Let us start with the definition of holomorphically convex hulls.

Definition 2.1 (Holomorphically convex hulls). Let X be an analytic space and let K

be a compact subset of X. The holomorphically convex hull K̂ of K in X is the set

K̂ =

{
x ∈ X

∣∣∣∣ |f(x)| ≤ sup
z∈K

|f(z)| for every f ∈ Γ(X,OX)

}
.

We note that K ⊂ K̂ always holds by definition. A compact subset K of X is said to be

holomorphically convex in X if K̂ = K holds.

Let us recall the definition of Stein spaces for the reader’s convenience. We note that
the analytic space naturally associated to an affine scheme is Stein

Definition 2.2 (Stein spaces). A complex analytic space X is said to be Stein if

(i) the global sections of OX separate points in X,
(ii) for each x ∈ X, the maximal ideal of OX,x is generated by a set of global sections

of OX , and

(iii) X is holomorphically convex, that is, K̂ is compact for every compact subset K

of X, where K̂ is the holomorphically convex hull of K in X.

The notion of Stein compact subsets plays a crucial role in this paper.

Definition 2.3 (Stein compact subsets). A compact subsetK of a complex analytic space
is called Stein compact if it admits a fundamental system of Stein open neighborhoods.

The notion of Oka–Weil domains is very useful when we construct desired Stein open
neighborhoods.
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Definition 2.4 (Oka–Weil domains, see [GuR, Chapter VII, Section A, 2′. Definition]).
Let X be a complex analytic space. An Oka–Weil domain on X is a relatively compact
open subset W such that there exists a holomorphic map φ defined in a neighborhood
of W , and with values in Cn, such that φ|W is a biholomorphic mapping onto a closed
complex analytic subspace of a polydisc in Cn. We note that W itself is Stein.

By the following lemma, we know that we can find many Stein compact subsets on a
given Stein space.

Lemma 2.5. Let K be a compact subset of a Stein space X. Let K̂ be a holomorphically

convex hull of K in X Then K̂ is a Stein compact subset of X.

Proof. Since X is holomorphically convex, K̂ is a compact subset of X. Let U be any

open subset of X with K̂ ⊂ U . Then we can take an Oka–Weil domain W of X such that

K̂ ⊂ W ⊂ W ⊂ U (see [GuR, Chapter VII, Section A, 3. Proposition]). This means that

K̂ admits a fundamental system of Stein open neighborhoods since W is a Stein space.

Hence K̂ is a Stein compact subset of X. □

Throughout this paper, we freely use Cartan’s Theorems A and B without mentioning
it explicitly. We include them here for the reader’s convenience.

Theorem 2.6 (Cartan’s Theorems). Let X be a Stein space and let F be a coherent sheaf
on X. Then

(1) (Cartan’s Theorem A). Γ(X,F) generates Fx at every point x ∈ X, and
(2) (Cartan’s Theorem B). H i(X,F) = 0 holds for every i > 0.

The following cohomological characterization of Stein spaces is useful and may help
algebraic geometers understand the definition of Stein spaces.

Theorem 2.7. Let X be a complex analytic space. Then X is Stein if and only if
H1(X,F) = 0 for every coherent sheaf F on X.

Proof. If X is Stein, then H1(X,F) = 0 for every coherent sheaf F on X by Cartan’s
Theorem B. On the other hand, if H1(X, I) = 0 for every coherent ideal sheaf I on
X, then it is an easy exercise to check that (i) and (ii) in Definition 2.2 hold true.

Let K be a compact subset of X. Suppose that the holomorphically convex hull K̂ of

K is not compact. Then we can take a discrete sequence {xk}k∈N ⊂ K̂. Note that
V := {xk | 0 ≤ k <∞} is a closed analytic subspace of X. Hence the defining ideal sheaf
IV of V is a coherent sheaf on X. Thus H1(X, IV ) = 0 holds by assumption. This implies
that the natural map H0(X,OX) → H0(X,OX/IV ) is surjective. Therefore, we can take
f ∈ H0(X,OX) such that f(xn) = n. On the other hand,

n = |f(xn)| ≤ sup
x∈K

|f(x)| <∞

for every n since xn ∈ K̂. This is a contradiction. Thus, K̂ is always compact, that is,
(iii) holds true. We finish the proof. □

As an easy consequence of Theorem 2.7, we have:

Theorem 2.8. Let f : Z → X be a finite morphism between complex analytic spaces. If
X is Stein, then so is Z.
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Proof. Let F be any coherent sheaf on Z. Since f : Z → X is finite, f∗F is coherent and
H1(Z,F) = H1(X, f∗F) = 0 holds by the Steinness of X. Hence, by Theorem 2.7, Z is
Stein. □
We have already explained that every Stein space X has many good properties. Unfor-

tunately, however, Γ(X,OX) is not noetherian if X does not consist of only finitely many
points.

Example 2.9. Let X be a Stein space and let {Pk}k∈N be a set of mutually distinct
discrete points of X. Then Zn := {Pn, Pn+1, . . .} can be seen as a closed analytic subspace
of X for every n ∈ N. Let In be the defining ideal sheaf of Zn on X. It is well known
that In is a coherent sheaf on X. We put an := Γ(X, In) for every n. Then

a0 ⊊ a1 ⊊ · · · ⊊ an ⊊ · · ·
is a strictly increasing sequence of ideals of Γ(X,OX). This means that Γ(X,OX) is not
noetherian.

Siu’s theorem clarifies the meaning of the condition in (P4).

Theorem 2.10 ([Si, Theorem 1]). Let K be a Stein compact subset of a complex analytic
space X. Then K∩Z has only finitely many connected components for any analytic subset
Z which is defined over an open neighborhood of K if and only if

OX(K) = Γ(K,OY ) = lim−→
K⊂U

Γ(U,OX),

where U runs through all the open neighborhoods of K, is noetherian.

Proof. For the details, see, for example, [BS, Chapter V, §3]. □
One point is a Stein compact subset satisfying (P4).

Example 2.11. Let X be a complex analytic space and let P be any point of X. Then
P is a Stein compact subset of X and OX,P = Γ(P,OX) is noetherian.

The Cantor set is a Stein compact subset which does not satisfy (P4).

Example 2.12. We note that C is Stein and that any open subset of C is also Stein since
it is holomorphically convex. We put X = {z ∈ C | |z| < 2} and consider the Cantor set C.
It is easy to see that C (⊂ [0, 1] ⊂ X) is a Stein compact subset of X and that X is Stein.
We can easily check that for any given x1, x2 ∈ C there exists x3 ̸∈ C with x3 ∈ [x1, x2].
Hence C does not satisfy (P4). Thus, Γ(C,OX) is not noetherian by Theorem 2.10 . More
explicitly, we put

an :=

{
f ∈ Γ(C,OX)

∣∣∣∣ f(z) = 0 for any z ∈ C ∩
[
0,

1

3n

]}
for every n ∈ N. Then we can check that an ⊊ an+1 holds for every n ∈ N. Therefore, we
get a strictly increasing sequence of ideals of Γ(C,OX):

a0 ⊊ a1 ⊊ · · · ⊊ an ⊊ · · · .
This implies that Γ(C,OX) is not noetherian.

We supplement Theorem 2.8.

Theorem 2.13. Let f : Z → X be a finite morphism of complex analytic spaces such
that X is Stein. Let K be a Stein compact subset of X such that Γ(K,OX) is noetherian.
Then f−1(K) is a Stein compact subset of Z such that Γ(f−1(K),OZ) is noetherian.
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Proof. Since f is finite, f−1(K) is a compact subset of Z. Let {Uλ}λ∈Λ be a fundamental
system of Stein open neighborhoods of K. By Theorem 2.8, Z is Stein and f−1(Uλ) is
also Stein for every λ ∈ Λ. Hence {f−1(Uλ)}λ∈Λ is a fundamental system of Stein open
neighborhoods of f−1(K). On the other hand, since f is finite, f∗OZ is a coherent sheaf
on X. By the Stein compactness of K, there exist a Stein open neighborhood U of K and
a surjection

O⊕N
U → f∗OZ |U → 0

for some positive integer N . This implies the surjection

Γ(K,OX)
⊕N → Γ(K, f∗OZ) → 0.

Hnece Γ(K, f∗OZ) is a finitely generated Γ(K,OX)-module. We note that Γ(K, f∗OZ) =
Γ(f−1(K),OZ) and that Γ(K,OX) is noetherian. Thus, Γ(f−1(K),OZ) is noetherian.
This means that f−1(K) is a Stein compact subset of Z such that Γ(f−1(K),OZ) is
noetherian. □
Remark 2.14. Let π : X → Y be a projective morphism between complex analytic spaces
and let W be a compact subset of Y such that π : X → Y and W satisfies (P). As an easy
consequence of Theorems 2.8 and 2.13, we usually may assume that π is surjective and
that Y is a Stein variety by replacing Y with π(X). For some purposes, we sometimes
replace Y with its normalization and further assume that Y is a normal Stein variety.
By taking the Stein factorization of π : X → Y , we sometimes further assume that π has
connected fibers and that Y is a normal Stein variety, that is, π : X → Y is a contraction
of normal complex varieties.

We note:

Definition 2.15. A proper morphism π : X → Y of normal complex varieties is called a
contraction if π∗OX ≃ OY holds.

When we enlarge a given Stein compact subset satisfying (P4) slightly, we need the
following lemma.

Lemma 2.16. Let X be a Stein space and let K be a holomorphically convex com-
pact subset of X. If U is any open neighborhood of K, then there exists an Oka–
Weil domain V , defined by global holomorphic functions on X, such that K ⊂ V ⊂
V ⊂ U . Note that V can be seen as a closed complex analytic subspace of a polydisc
∆(0, r) = {(z1, . . . , zn) | |zi| < r for 1 ≤ i ≤ n} for some r > 0 and n ∈ Z>0. We put
L := V ∩ ∆(0, r − ε) with 0 < ε < r. Then L is compact, semianalytic, and holomor-
phically convex in V . In particular, L is a Stein compact subset such that Γ(L,OX) is
noetherian. Furthermore, if U ′ is a relatively compact open neighborhood of K in X, then
we can choose U , V , and L such that

K ⊂ U ′ ⊂ L ⊂ V ⊂ V ⊂ U ⊂ X

holds.

Proof. For the existence of a desired Oka–Weil domain V , see, for example, [GuR, Chapter
VII, Section A, 3. Proposition]. By definition, L is obviously compact and semianalytic.
Since L is defined by |z1| ≤ r − ε, . . . , |zn| ≤ r − ε such that zi ∈ Γ(V,OV ) for every
i, it is easy to see that L is holomorphically convex in V . By Lemma 2.5, L is Stein
compact. Since L is compact and semianalytic, it is well known that L satisfies (P4) (see,
for example, [BM1, Corollary 2.7 (2)]). Thus, Γ(L,OX) is noetherian by Theorem 2.10.
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Or, by applying [Fr, Théorème (I,9)] to L, we obtain that Γ(L,OX) is noetherian. By the
above construction, the last statement is obvious. □
We frequently use the following property of coherent sheaves on complex analytic spaces.

Lemma 2.17. Let F be a coherent sheaf on a complex analytic space X and let

F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ F
be an increasing chain of coherent subsheaves. Then this chain is stationary over any
relatively compact subset of X.

Proof. See, for example, [Fi, 0.40. Proposition and Corollary]. □
Note that the arguments in [Kau, §2 Basic theorems on coherent O-modules] work for

Stein compact subsets K satisfying (P4) with obvious modifications.

Definition 2.18 (OX-exhaustions, see [Kau, 2.9 Definition]). Let M be an OX-module
on a complex analytic space X. An OX-exhaustion of M is an increasing sequence

M0 ⊂ M1 ⊂ · · · ⊂ Mk ⊂ · · · ⊂ M
of coherent sub-OX-modules such that M =

∪
kMk.

Lemma 2.19 (see [Kau, 2.10 Proposition]). Let K be a Stein compact subset of a complex
analytic space X such that Γ(K,OX) is noetherian. Let M and M′ be OX-modules on
X which admit OX-exhaustions. If ϕ : M → M′ is a surjective OX-homomorphism, then
the induced map Γ(K,M) → Γ(K,M′) is surjective.

Proof. For the details, see the proof of [Kau, 2.10 Proposition]. Although K is a polydisc
in [Kau], the proof of [Kau, 2.10 Proposition] works in our setting. □

Since we are working on complex analytic spaces, we note:

Remark 2.20. Let Fm be a coherent sheaf on a complex analytic space X for every
m ∈ N. Then the natural map⊕

m∈N

Γ(X,Fm) → Γ

(
X,
⊕
m∈N

Fm

)
is not necessarily an isomorphism. Fortunately,⊕

m∈N

Γ(K,Fm) ≃ Γ

(
K,
⊕
m∈N

Fm

)
holds for any compact subset K of X.

Example 2.21. Let X be a noncompact complex analytic space and let {xm}m∈N be a
discrete sequence of X. Let C(xm) := (ixm)∗C be a skyscraper sheaf, where ixm : xm ↪→ X
is the inclusion map. Then

⊕
m∈N C(xm) is a coherent sheaf on X. In this case,

Γ

(
X,
⊕
m∈N

C(xm)

)
=
∏
m∈N

C =
∏
m∈N

Γ(X,C(xm)).

Hence, the natural map ⊕
m∈N

Γ(X,C(xm)) → Γ

(
X,
⊕
m∈N

C(xm)

)
is not an isomorphism.
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In this paper, we will have to treat graded OX-algebras on a complex analytic spaces.
So we prepare some definitions and basic properties.

Definition 2.22 (see [Na3, Chapter II. §1. b. Spec and Proj]). Let X be a complex
analytic space and let C[x] = C[x1, · · · , xl] be the polynomial ring of l-variables x =
(x1, · · · , xl). An OX-algebra A is called of finite presentation if there exists a surjective
OX-algebra homomorphism

OX [x] = OX [x1, · · · , xl] = OX ⊗C C[x] ↠ A
for some l whose kernel is generated by a finite number of polynomials belonging to
H0(X,OX)[x]. If A|Uλ

is of finite presentation for an open covering X =
∪
λ∈Λ Uλ, then

A is called locally of finite presentation.

The notion of locally finitely generated graded OX-algebras is indispensable.

Definition 2.23 (Locally finitely generated graded OX-algebras). Let X be a complex
analytic space. An OX-algebra A =

⊕
m∈N Am is called a finitely generated graded OX-

algebra if there exists a surjective OX-algebra homomorphism

OX [x] = OX [x1, · · · , xl] = OX ⊗C C[x] ↠ A
for some l such that xi is mapped to a homogeneous element of H0(X,A) for every i.
If A|Uλ

is a finitely generated graded OUλ
-algebra for some open covering X =

∪
λ∈Λ Uλ,

then A is called a locally finitely generated graded OX-algebra.

We note the following basic property of locally finitely generated graded OX-algebras.

Lemma 2.24 (see [Na3, Chapter II. 1.6. Corollary]). Let X be a complex analytic space
and let A =

⊕
m∈NAm be a locally finitely generated graded OX-algebra such that Am are

all coherent OX-modules. Then A is locally of finite presentation.

Before we prove Lemma 2.24, we note:

Remark 2.25. Any locally finitely generated graded OX-algebra A =
⊕

m∈N Am in this
paper satisfies the condition that Am is a coherent OX-module for every m ∈ N. We do
not treat the case where Am is not a coherent OX-module.

Let us prove Lemma 2.24.

Proof of Lemma 2.24. We take an arbitrary point P ∈ X and replace X with a small
Stein open neighborhood of P . Then we have an exact sequence

ϕ : OX [x] → A → 0

for x = (x1, · · · , xl) such that xi is mapped to a homogeneous element of H0(X,A) for
every i. We take a relatively compact Stein open neighborhood U of P and a Stein
compact subset K of Y such that U ⊂ K and Γ(K,OY ) is noetherian. Then

ϕ(K) : OX(K)[x] → A(K) → 0

is exact by Lemma 2.19. Since OX(K) is noetherian, the kernel of ϕ(K) is generated
by weighted homogeneous polynomials f1, . . . , fN in OX(K)[x]. Hence we obtain a Stein
open neighborhood U ′ of K and a homomorphism

ψ := (f1, · · · , fN) :
N⊕
i=1

OU ′ [x](− deg fi) → OU ′ [x]
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of graded OU ′ [x]-modules such that the image of ψ(K) is (Kerϕ) (K). By construction,
there exists the following natural surjection

αm : (Cokerψ)m ↠ Am|U ′

for every m ∈ N, where (Cokerψ)m is the degree m part of Cokerψ. By construction
again, we can check that (Cokerψ)m (K) ≃ Am(K) holds for every m ∈ N. This implies
that the kernel of αm is zero on U . Hence A|U is of finite presentation. Therefore, A is
locally of finite presentation. □

The lemma below is important and will be used repeatedly without mentioning it
explicitly. The proof is much harder than that of the corresponding statement for algebraic
varieties (see [ADHL, Corollary 1.1.2.6]).

Lemma 2.26. Let X be a complex analytic space and let A =
⊕

m∈N Am be a graded
OX-algebra such that Am is a coherent OX-module for every m and A(U) is an integral
domain for every nonempty connected open subset U of X. We put A(d) :=

⊕
m∈N Adm.

Then A is a locally finitely generated graded OX-algebra if and only if so is A(d).

Proof. Since OX(U) is not necessarily noetherian, the proof is not so obvious.

Step 1. We assume that A(d) is a locally finitely generated graded OX-algebra. We take
an arbitrary point P ∈ X. By shrinking X around P , there exists a surjective OX-algebra
homomorphism

(2.1) OX [x] = OX [x1, · · · , xl] ↠ A(d)

for some l such that xi is mapped to a homogeneous element of H0(X,A(d)) for every i.
We take an open neighborhood U of P ∈ X and a Stein compact subset K of X such
that P ∈ U ⊂ K and that K satisfies (P4). Without loss of generality, we may assume
that K is connected. Since OX [x1, · · · , xl] and A(d) admit OX-exhaustions, we obtain the
surjection

(2.2) OX(K)[x1, · · · , xl] → A(d)(K) → 0

induced by (2.1). This means that A(d)(K) is a finitely generated graded OX(K)-algebra.
Note that OX(K) is noetherian and that A(K) is an integral domain. Therefore, we see
that A(K) is a finitely generated graded O(K)-algebra (see, for example, [CaL, Lemma
2.25 (ii)] and [ADHL, Proposition 1.1.2.5]). Since K is a Stein compact subset, for any
nonnegative integer m, Am(K) generates Am,x for every x ∈ K. Hence we can find a
surjective OU -algebra homomorphism

OU [y] = OU [y1, · · · , yk] ↠ A|U
for some k such that yj is mapped to a homogeneous element of H0(U,A) for every j.
This means that A is a locally finitely generated graded OX-algebra.

Step 2. As in Step 1, we take an arbitrary point P ∈ X and shrink X around P . Then
there exists a surjective OX-algebra homomorphism

(2.3) OX [x] = OX [x1, · · · , xl] ↠ A

for some l such that xi is mapped to a homogeneous element of H0(X,A) for every i. In
this case, it is easy to see that there exists a surjective OX-algebra homomorphism

OX [y] = OX [y1, · · · , yk] ↠ A(d)
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for some k such that yj is mapped to a homogeneous element of H0(X,A(d)) for every j
(see, for example, [CaL, Lemma 2.25 (i)] and [ADHL, Proposition 1.1.2.4]). Hence A(d)

is a locally finitely generated graded OX-algebra.

We finish the proof. □
In order to construct flips and log canonical models in the category of complex analytic

spaces, we need the notion of Projan. For the details of Projan, see [Na3, §1.b. Spec and
Proj].

Remark 2.27 (Projan). Let X be a complex analytic space and let A =
⊕

m∈N Am be a
locally finitely generated graded OX-algebra such that Am is a coherent OX-modules for
every m. Then we can define an analytic space ProjanX A which is proper over X. More
generally, we can define ProjanX A under a weaker assumption that A is locally of finite
presentation. Let F be a coherent OX-module. We note that ProjanX SymF is usually
denoted by PX(F), where SymF =

⊕
m∈N Sym

mF .

Now we can define projective morphisms of complex analytic spaces.

Definition 2.28. Let π : X → Y be a proper morphism of complex analytic spaces and let
L be a line bundle on X. Then L is said to be π-very ample or relatively very ample over Y
if L is π-free, that is, π∗π∗L → L is surjective, and the induced morphism X → PY (f∗L)
over Y is a closed embedding. A line bundle L on X is called π-ample or ample over Y
if for any point y ∈ Y there are an open neighborhood U of y and a positive integer m
such that L⊗m|π−1(U) is relatively very ample over U . Let D be a Cartier divisor on X.
Then we say that D is π-very ample, π-free, and π-ample if the line bundle OX(D) is
so, respectively. We note that π is said to be projective when there exists a π-ample line
bundle on X.

For the basic properties of π-ample line bundles, see [BS, Chapter IV] and [Na3, Chapter
II. §1. c. Ample line bundles].

Definition 2.29 (Semiampleness). Let π : X → Y be a proper morphism of complex
analytic spaces and let L be a line bundle on X. If there exist an open covering Y =∪
λ∈Λ Uλ and positive integers mλ such that L⊗mλ|π−1(Uλ) is π|π−1(Uλ)-free for every λ ∈ Λ,

then L is called π-semiample or relatively semiample over Y . Let D be a Cartier divisor
on X. If OX(D) is π-semiample, then D is called π-semiample or relatively semiample
over Y .

Here, we recall the precise definition of bimeromorphic maps for the sake of complete-
ness.

Definition 2.30 (Meromorphic maps). A meromorphic map f : X 99K Y of complex
analytic varieties is defined by the graph Γf ⊂ X×Y such that Γf is a subvariety of X×Y
and that the first projection is an isomorphism over a Zariski open dense subset ofX. Note
that a Zariski open subset is the complement of an analytic subset. If further the second
projection Γf → Y is proper and is an isomorphism over a Zariski open dense subset of
Y , then f : X 99K Y is called a bimeromorphic map. We say that a bimeromorphic map
f : X 99K Y of normal complex varieties is a bimeromorphic contraction if f−1 does not
contract any divisors. If in addition f−1 is also a bimeromorphic contraction, then we say
that f is a small bimeromorphic map. Let f : X → Y be a bimeromorphic morphism of
complex normal varieties, equivalently, f : X 99K Y is a bimeromorphic map of normal
complex varieties and the first projection Γf → X is an isomorphism. Then, we put
Exc(f) := {x ∈ X | f is not an isomorphism at x} and call it the exceptional locus of f .
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Remark 2.31. Let X be a complex analytic space and let U be a Zariski open subset
of X. Let V be a Zariski open subset of U . Unfortunately, V is not necessarily a Zariski
open subset of X. This is because the analytic subset Γ := U \ V of U can not always be
extended to an analytic subset of X.

In this paper, we discuss the minimal model program. Therefore, we need Q-divisors
and R-divisors.

Definition 2.32 (Divisors, Q-divisors, and R-divisors). Let X be a normal complex vari-
ety. A prime divisor on X is an irreducible and reduced closed subvariety of codimension
one. An R-divisor D on X is a formal sum

D =
∑
i

aiDi,

where Di is a prime divisor on X with Di ̸= Dj for i ̸= j, ai ∈ R for every i, and the
support

SuppD :=
∪
ai ̸=0

Di

is a closed analytic subset of X. In other words, the formal sum
∑

i aiDi is locally finite.
If ai ∈ Z (resp. ai ∈ Q) for every i, then D is called a divisor (resp. Q-divisor) on X.
Note that a divisor is sometimes called an integral Weil divisor in order to emphasize the
condition that ai ∈ Z for every i. If 0 ≤ ai ≤ 1 (resp. ai ≤ 1) holds for every i, then an
R-divisor D is called a boundary (resp. subboundary) R-divisor.

Let D =
∑

i aiDi be an R-divisor on X such that Di is a prime divisor for every i with
Di ̸= Dj for i ̸= j. The round-down ⌊D⌋ of D is defined to be the divisor

⌊D⌋ =
∑
i

⌊ai⌋Di.

The round-up and the fractional part of D are defined to be

⌈D⌉ := −⌊−D⌋, and {D} := D − ⌊D⌋,

respectively. We put

D=1 =
∑
ai=1

Di, D<1 :=
∑
ai<1

aiDi, and D≥1 :=
∑
ai≥1

aiDi.

We sometimes use

D+ :=
∑
ai>0

aiDi, and D− := −
∑
ai<0

aiDi ≥ 0.

By definition, D = D+ −D− holds.
Let D be an R-divisor on X and let x be a point of X. If D is written as a finite R-linear

(resp. Q-linear) combination of Cartier divisors on some open neighborhood of x, then D
is said to be R-Cartier at x (resp. Q-Cartier at x). If D is R-Cartier (resp. Q-Cartier) at x
for every x ∈ X, then D is said to be R-Cartier (resp. Q-Cartier). Note that a Q-Cartier
R-divisor D is automatically a Q-Cartier Q-divisor by definition. If D is a finite R-linear
(resp. Q-linear) combination of Cartier divisors on X, then we sometimes say that D is a
globally R-Cartier R-divisor (resp. globally Q-Cartier Q-divisor).

Example 2.33 below shows a big difference between divisors on algebraic varieties and
those on complex analytic spaces.
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Example 2.33 (Weierstrass). Let D be a divisor on C. We note that SuppD may
be any discrete subset of C. By the classical Weierstrass theorem, we can construct a
meromorphic function f on C such that div(f) = D.

Definition 2.34. Let X be a normal variety. A real vector space spanned by the prime
divisors on X is denoted by WDivR(X). It has a canonical basis given by the prime
divisors. Let D be an element of WDivR(X). Then the sup norm of D with respect to
this basis is denoted by ||D||. Note that an R-divisor D is an element of WDivR(X) if and
only if SuppD has only finitely many irreducible components.

We need the notion of semiample Q-divisors.

Definition 2.35 (Relatively semiample Q-divisors). Let π : X → Y be a projective mor-
phism of complex analytic spaces such that X is a normal variety. A Q-Cartier Q-divisor
D on X is called a π-semiample Q-divisor on X if it is a finite Q>0-linear combination of
π-semiample Cartier divisors on X.

The following lemma is very important.

Lemma 2.36. Let π : X → Y be a projective morphism of complex analytic spaces such
that X is a normal complex variety and let D be a π-semiample Q-divisor on X. Then⊕

m∈N π∗OX(⌊mD⌋) is a locally finitely generated graded OY -algebra. In particular, if L
is a π-ample line bundle on X, then

⊕
m∈N π∗L⊗m is a locally finitely generated graded

OY -algebra.

Proof. Throughout this proof, we fix a point y ∈ Y and repeatedly shrink Y around y.
In Step 1, we will reduce the problem to the case where OX(D) is π-ample. In Step 2, we
will prove the desired finite generation.

Step 1. By shrinking Y around y, we may assume that there exists a positive integer d
such that OX(dD) is π-free. By Lemma 2.26, we may further assume that OX(D) is π-free
by replacingD with dD. We consider a contraction morphism over Y associated toOX(D)
and take the Stein factorization. Then there exist a contraction morphism φ : X → Z
over Y with φ∗OX ≃ OZ and some πZ-ample line bundle L on Z, where πZ : Z → Y is
the structure morphism, such that OX(D) ≃ φ∗L. Since π∗OX(mD) ≃ (πZ)∗L⊗m holds
for every m, we may further assume that OX(D) is π-ample by replacing X and OX(D)
with Z and L, respectively.

Step 2. From now on, we assume that OX(D) is π-ample. By Lemma 2.26, we may
further assume that OX(D) is π-very ample. Therefore, after shrinking Y around y
suitably, there exists the following commutative diagram

X

π
##H

HH
HH

HH
HH

H
� � ι // Y × PN

p1

��

p2
// PN

Y

such that OX(D) ≃ ι∗p∗2OPN (1). We put N := p∗2OPN (1). Then there exists a positive
integer m0 such that (p1)∗N⊗m → π∗OX(mD) is surjective for every m ≥ m0. We note
that

(p1)∗N⊗m ≃ (p1)∗p
∗
2OPN (1) ≃ OY [X0, · · · , XN ]m,

where OY [X0, · · · , XN ]m is the degree m part of OY [X0, · · · , XN ]. Since π∗OX(mD) is a
coherent OY -module for every 0 ≤ m < m0, after replacing Y with a small Stein open
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neighborhood of y if necessary, we see that there is a surjectiveOY -algebra homomorphism

OY [X0, · · · , XN , XN+1, · · · , XN+M ] ↠
⊕
m∈N

π∗OX(mD)

for some M such that each Xi is mapped to an element of H0(Y, π∗OX(miD)) for some
mi ∈ N. This means that

⊕
m∈N π∗OX(mD) is a locally finitely generated graded OY -

algebra.

By Step 1 and Step 2,
⊕

m∈N π∗OX(⌊mD⌋) and
⊕

m∈N π∗L⊗m are both locally finitely
generated graded OY -algebras. □
For almost all applications, we may assume that any R-divisor has finitely many com-

ponents by the following lemma.

Lemma 2.37. Let D be an R-Cartier R-divisor (resp. Q-divisor) on a normal complex
variety X. Let U be any relatively compact open subset of X. Then D is a finite R-linear
(Q-linear) combination of Cartier divisors in a neighborhood of U , that is, D is a globally
R-Cartier R-divisor (globally Q-Cartier Q-divisor) in a neighborhood of U .

Proof. Without loss of generality, we may assume that D is a finite R-linear combination
of prime divisors by shrinking X. We write D =

∑k
i=1 aiDi, where ai ∈ R and Di is a

prime divisor for every i with Di ̸= Dj for i ̸= j. We consider the following R-vector
space

V = {x1D1 + · · ·+ xkDk |xi ∈ R for every i} ≃ Rk.

We take an arbitrary point x ∈ X. Then there exists an open neighborhood Ux of x such
that D|Ux is a finite R-linear combination of Cartier divisors. Hence we can find an affine
subspace V x of V defined over the rationals such that D ∈ V x and that any member of
V x is R-Cartier in a neighborhood of x. Since U is relatively compact, there exists an
affine subspace Σ of V defined over the rationals such that D ∈ Σ and that every element
of Σ is R-Cartier in a neighborhood of U . Hence, by the standard argument, we can write
D as a finite R-linear combination of Cartier divisors in a neighborhood of U . When D
is a Q-divisor, it can be written as a finite Q-linear combination of Cartier divisors in a
neighborhood of U . Thus, we get the desired statement. □

The definition of Q-factoriality is very subtle.

Definition 2.38 (Q-factoriality, see [Na2, Definition 4.13]). Let X be a normal complex
variety and let K be a compact subset of X. Then X is said to be Q-factorial at K if
every prime divisor defined on an open neighborhood U of K is Q-Cartier at any point
x ∈ K.

Let π : X → Y be a projective morphism and let W be a compact subset of Y . If X is
Q-factorial at π−1(W ), then we usually say that X is Q-factorial over W .

Remark 2.39. Let π : X → Y be a projective morphism and let W be a compact subset
of Y . We take a compact subset W ′ of Y with W ′ ⊂ W . It is very important to note that
X is not necessarily Q-factorial over W ′ even if X is Q-factorial over W . This is because
there may exist a divisor defined over an open neighborhood of π−1(W ′) which can not
be extended to a divisor defined over an open neighborhood of π−1(W ).

We adopt the following definition of linear, Q-linear, and R-linear equivalences in this
paper. Although it may be somewhat artificial, it is sufficient for our minimal model
program for projective morphisms of complex analytic spaces.
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Definition 2.40 (Linear, Q-linear, and R-linear equivalences). Two R-divisors D1 and
D2 are said to be linearly equivalent if D1 −D2 is a principal Cartier divisor. The linear
equivalence is denoted by D1 ∼ D2. Two R-divisors D1 and D2 are said to be R-linearly
equivalent (resp. Q-linearly equivalent) if D1−D2 is a finite R-linear (resp. Q-linear) com-
bination of principal Cartier divisors. When D1 is R-linearly (resp. Q-linearly) equivalent
to D2, we write D1 ∼R D2 (resp. D1 ∼Q D2).

Example 2.41. Let X be a noncompact complex manifold with dimX = 1. Then it
is known that X is always Stein. We assume that H2(X,Z) = 0 holds. Let D be an
R-divisor on X such that SuppD is finite. Then D ∼R 0, that is, D is R-linearly trivial.
On the other hand, if SuppD is not finite, then D is not necessarily R-linearly trivial in
the sense of Definition 2.40. As in Example 2.33, if D is an integral Weil divisor on X,
then D ∼ 0 always holds.

We will use the following lemma in the proof of Theorem F (3).

Lemma 2.42 (see [Kaw2, Lemma 1.12] and [Na3, Chapter II. 2.12. Lemma]). Let X be a
normal complex variety with only rational singularities and let K be a compact subset of
X. Let Di be an integral Weil divisor on X such that Di is Q-Cartier at K for 1 ≤ i ≤ k.
Then there exists a positive integer m such that mDi is Cartier on some open neighborhood
of K for every 1 ≤ i ≤ k.

Proof. We take an arbitrary point x ∈ K. By [Na3, Chapter II. 2.12. Lemma] (see [Kaw2,
Lemma 1.12]), there exists a positive integer mx such that mxDi is Cartier at x for
1 ≤ i ≤ k. This means that there exists an open neighborhood Ux of x such that mxDi

is Cartier on Ux for every 1 ≤ i ≤ k. Since K is compact, we can take a positive integer
m and an open neighborhood U of K such that mDi is Cartier for every 1 ≤ i ≤ k. This
is what we wanted. □
In this paper, we usually consider the case where the base space Y is Stein and the

morphism π : X → Y is projective. In this setting, we have many good properties.

Remark 2.43. Let π : X → Y be a projective morphism from a normal complex variety
X to a Stein space Y . We take a π-ample line bundle A on X. Let ωX be the canonical
sheaf of X (see Definition 3.1 below). Since there exists a sufficiently large positive integer
m such that

H0(X,ωX ⊗A⊗m) ≃ H0(Y, π∗(ωX ⊗A⊗m)) ̸= 0

and
H0(X,A⊗m) ≃ H0(Y, π∗A⊗m) ̸= 0,

we can always take a Weil divisor KX on X satisfying ωX ≃ OX(KX). As usual, we call
it the canonical divisor of X. More generally, let L be a line bundle (resp. reflexive sheaf
of rank one) on X. By the same argument as above, we can take a Cartier (resp. Weil)
divisor D on X such that L ≃ OX(D).

2.44 (Ample, semiample, big, pseudo-effective, and nef R-divisors). In our framework of
the minimal model program for projective morphisms of complex analytic spaces, we have
to use R-divisors. Hence we need the following definitions: Definitions 2.45, 2.46, 2.47,
and 2.48. We state them explicitly here for the sake of completeness.

Definition 2.45 (Ample and semiample Q-divisors and R-divisors, see Definition 2.35).
Let π : X → Y be a projective morphism of complex analytic spaces. A finite R>0-
linear (resp. Q>0-linear) combination of π-ample Cartier divisors is called a π-ample R-
divisor (resp. π-ample Q-divisor). A finite R>0-linear (resp. Q>0-linear) combination of
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π-semiample Cartier divisors is called a π-semiample R-divisor (resp. π-semiample Q-
divisor).

In this paper, we adopt the following definition of big R-divisors.

Definition 2.46 (Bigness). Let π : X → Y be a projective morphism of complex analytic
spaces such that X is a normal complex variety. When Y is Stein, an R-divisor D is said
to be big over Y or π-big if D ∼R A + B, where A is a π-ample R-divisor and B is an
effective R-divisor. In general, if D|π−1(U) is big over U for any Stein open subset of Y ,
then D is said to be big over Y or π-big. We note that D is not necessarily R-Cartier.

Definition 2.47 (Pseudo-effective R-divisors). Let π : X → Y be a projective morphism
of complex analytic spaces such that X is a normal complex variety. An R-Cartier R-
divisor D on X is said to be pseudo-effective over Y or π-pseudo-effective if D+A is big
over Y for every π-ample R-divisor A on X.

Definition 2.48 (Nefness). Let π : X → Y be a projective morphism of complex analytic
spaces such that X is a normal complex variety and let W be a compact subset of Y . Let
D be an R-Cartier R-divisor on X. If D · C ≥ 0 for every projective integral curve C on
X such that π(C) is a point, then D is said to be π-nef or nef over Y . If D · C ≥ 0 for
every projective integral curve C on X such that π(C) is a point of W , then D is said to
be nef over W or π-nef over W .

Let us recall the definition of analytically meagre subsets. As we saw in Remark 2.31,
the notion of Zariski open subsets does not work well in the category of complex analytic
spaces. So we frequently have to use analytically meagre subsets.

Definition 2.49 (Analytically meagre subsets). A subset S of a complex analytic space
X is said to be analytically meagre if

S ⊂
∪
n∈N

Yn,

where each Yn is a locally closed analytic subset of X of codimension ≥ 1.

Definition 2.50 (Analytically sufficiently general points and fibers). Let X be a complex
analytic space. We say that a property P holds for an analytically sufficiently general
point x ∈ X when P holds for every point x contained in X \ S for some analytically
meagre subset S of X.

Let f : X → Y be a morphism of analytic spaces. Similarly, we say that a property P
holds for an analytically sufficiently general fiber of f : X → Y when P holds for f−1(y)
for every y ∈ Y \ S, where S is some analytically meagre subset of Y .

We sometimes use the notion of general π-ample Q-divisors.

Definition 2.51. Let π : X → Y be a projective morphism from a normal variety X to a
Stein space Y . Let A be a π-ample Q-divisor on X. We say that A is a general π-ample
Q-divisor on X if there exist

(i) a large and divisible positive integer k such that kA is π-very ample,
(ii) a finite-dimensional linear subspace V ofH0(X,OX(kA)) which generatesOX(kA),

and
(iii) some analytically meagre subset S of Λ := (V \ {0})/C×,

such that A = 1
k
A′ for some A′ ∈ Λ \ S. Note that Λ ≃ PN for some N ∈ N.
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Remark 2.52. Let π : X → Y be a projective morphism from a normal complex variety
X to a Stein space Y . Let σ : Z → X be a projective bimeromorphic morphism from a
smooth variety Z and let Σ be a simple normal crossing divisor on Z. Let {pi}i∈N be a
set of points of X. Let A be a general π-ample Q-divisor in the sense of Definition 2.51.
Then, by Bertini’s theorem (see [Man, (II.5) Theorem] and [Fu11, Theorem 3.2]), we may
assume that σ−1

∗ A = σ∗A holds, Σ + A′ is a simple normal crossing divisor on Z, where
A = 1

k
A′ as in Definition 2.51, and pi ̸∈ SuppA for every i, and so on.

The final result in this section is a very useful lemma. We will repeatedly use this
lemma in the subsequent sections.

Lemma 2.53 ([BCHM, Lemma 3.2.1] and [HasH, Lemma 2.10]). Let π : X → Y be
a projective morphism of complex varieties such that X is normal and that Y is Stein.
Let D be a globally R-Cartier R-divisor, that is, a finite R-linear combination of Cartier
divisors on X. Let F be an analytically sufficiently general fiber of π : X → Y . Assume
that D′ := D|F ∼R B

′ ≥ 0 holds for some R-divisor B′ on F . Then there exists a globally
R-Cartier R-divisor B on X such that D ∼R B ≥ 0.

We closely follow the proof of [HasH, Lemma 2.10]. In the proof of Lemma 2.53, we
will freely use the semicontinuity theorem and the base change theorem described in [BS,
Chapter III], whose proof is much harder than the proof of the corresponding statements
for algebraic varieties (see [Har, Chapter III, Section 12]).

Definition 2.54 (Iitaka–Kodaira dimensions). Let X be a normal projective variety and
letD be a Q-Cartier Q-divisor onX. Then κ(X,D) denotes the Iitaka–Kodaira dimension
of D.

Proof of Lemma 2.53. We can take a nonempty Zariski open subset U of Y such that
π : X → Y is flat over U .

Step 1. We fix a representation D =
∑n

i=1 riDi of D as a finite R-linear combination
of Cartier divisors. Since F is an analytically sufficiently general fiber of π : X → Y , we
may assume that Di|F are well defined as integral Weil divisors for all i. For any closed
point y ∈ U , the fiber of π over y is denoted by Xy. For any p = (p1, . . . , pn) ∈ Qn, we
set Dp =

∑n
i=1 piDi. We fix a positive integer kp such that kpDp is Cartier. For every

p ∈ Qn and every m ∈ Z>0, we put

Sp,m =
{
z ∈ U

∣∣ dimH0(Xy,OXy(mkpDp|Xy)) = 0
}
.

Then Sp,m = ∅ holds or U \ Sp,m = ∅ is analytically meagre by the upper semicontinuity
theorem. We set

J := {(p,m) |p ∈ Qn,m ∈ Z>0, Sp,m ̸= ∅} ,
and put

W =
∩

(p,m)∈J

Sp,m.

Then U \W is analytically meagre. Hence Y \W is also analytically meagre. We may
assume that F = Xy0 for some y0 ∈ W since F is an analytically sufficiently general fiber
of π : X → Y . Then, for any Q-Cartier Q-divisorDp′ associated to p′ = (p′1, . . . , p

′
n) ∈ Qn,

an inequality κ(F,Dp′|F ) ≥ 0 holds if and only if Dp′ ∼Q Ep′ for some Ep′ ≥ 0. Indeed,
κ(F,Dp′ |F ) ≥ 0 if and only if y0 ̸∈ Sp′,m for some m. By the above definitions ofW and J ,
the condition y0 ̸∈ Sp′,m is equivalent to Sp′,m = ∅ since y0 ∈ W . Since kp′Dp′ is a Cartier
divisor and Y is Stein, by the construction of Sp′,m, it is easy to check that Sp′,m = ∅ for
some m if and only if Dp′ ∼Q Ep′ for some Ep′ ≥ 0.
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Step 2. From our assumption that D′ ∼R B′ ≥ 0, there are positive real numbers
a1, . . . , as, effective integral Weil divisors E1, . . . , Es on F , real numbers b1, . . . , bt, and
meromorphic functions ϕ1, . . . , ϕt on F such that

D|F =
n∑
i=1

riDi|F =
s∑
j=1

ajEj +
t∑

k=1

bk · div(ϕk)

holds as R-divisors on F . We consider the following set{
v′ =

(
(r′i)i, (a

′
j)j, (b

′
k)k
)
∈ Rn × (R≥0)

s × Rt

∣∣∣∣∣
n∑
i=1

r′iDi|F =
s∑
j=1

a′jEj +
t∑

k=1

b′k · div(ϕk)

}
,

which contains v :=
(
(ri)i, (aj)j, (bk)k

)
. Since all Di|F are well defined as integral Weil

divisors, we can find positive real numbers α1, . . . , αl0 and rational points v1, . . . ,vl0 in the

above set such that
∑l0

l=1 αl = 1 and
∑l0

l=1 αlvl = v. This shows that there are Q-Cartier

Q-divisors D(1), . . . , D(l0) on X such that
∑l0

l=1 αlD
(l) = D and κ(F,D(l)|F ) ≥ 0 for every

1 ≤ l ≤ l0. We note that each D(l) is a finite Q-linear combination of Cartier divisors by
construction. By the argument in Step 1, for every 1 ≤ l ≤ l0, there exists a Q-divisor
E(l) ≥ 0 on X with D(l) ∼Q E

(l). We put B =
∑l0

l=1 αlE
(l). Then we have D ∼R B ≥ 0.

We finish the proof. □

We close this section with an important remark on [BCHM, Lemma 3.2.1].

Remark 2.55. In [BCHM], [BCHM, Lemma 3.2.1] plays a crucial role. We think that the
quasi-projectivity is indispensable in the framework of [BCHM] since we have to assume
that U is quasi-projective in [BCHM, Lemma 3.2.1]. Let π : X → U be a projective
morphism of normal complete algebraic varieties with connected fibers such that X is a
smooth projective variety and Pic(U) = {0}. Let D be a Cartier divisor on X such that
−D is effective, D ̸= 0, and π(D) ⊊ U . Then there exists no effective R-divisor B on X
satisfying D ∼R,U B ≥ 0. This means that [BCHM, Lemma 3.2.1] does not always hold
true without assuming the quasi-projectivity of U .

3. Singularities of pairs

In this section, we will define singularities of pairs in the complex analytic setting. The
definition is essentially the same as the one for algebraic varieties.

Definition 3.1 (Singularities of pairs). LetX be a normal complex variety. The canonical
sheaf ωX of X is the unique reflexive sheaf whose restriction to Xsm is isomorphic to the
sheaf Ωn

Xsm
, where Xsm is the smooth locus of X and n = dimX. Let ∆ be an R-divisor

on X. We say that KX + ∆ is R-Cartier at x ∈ X if there exist an open neighborhood
Ux of x and a Weil divisor KUx on Ux with OUx(KUx) ≃ ωX |Ux such that KUx + ∆|Ux is
R-Cartier at x. We simply say that KX + ∆ is R-Cartier when KX + ∆ is R-Cartier at
any point x ∈ X. Unfortunately, we can not define KX globally with OX(KX) ≃ ωX . It
only exists locally on X. However, we use the symbol KX as a formal divisor class with
an isomorphism OX(KX) ≃ ωX and call it the canonical divisor of X if there is no danger
of confusion.

Let f : Y → X be a proper bimeromorphic morphism between normal complex varieties.
Suppose that KX +∆ is R-Cartier in the above sense. We take a small Stein open subset
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U of X where KU +∆|U is a well-defined R-Cartier R-divisor on U . In this situation, we
can define Kf−1(U) and KU such that f∗Kf−1(U) = KU . Then we can write

Kf−1(U) = f ∗(KU +∆|U) + EU

as usual. Note that EU is a well-defined R-divisor on f−1(U) such that f∗EU = ∆|U .
Then we have the following formula

KY = f ∗(KX +∆) +
∑
E

a(E,X,∆)E

as in the algebraic case. We note that
∑

E a(E,X,∆)E is a globally well-defined R-divisor
on Y such that (

∑
E a(E,X,∆)E) |f−1(U) = EU although KX and KY are well defined

only locally.
If ∆ is a boundary R-divisor and a(E,X,∆) ≥ −1 holds for any f : Y → X and every f -

exceptional divisor E, then (X,∆) is called a log canonical pair. If (X,∆) is log canonical
and a(E,X,∆) > −1 for any f : Y → X and every f -exceptional divisor E, then (X,∆)
is called a purely log terminal pair. If (X,∆) is purely log terminal and ⌊∆⌋ = 0, then
(X,∆) is called a kawamata log terminal pair. When ∆ = 0 and a(E,X, 0) ≥ 0 (resp. > 0)
for any f : Y → X and every f -exceptional divisor E, we simply say that X has only
canonical singularities (resp. terminal singularities).
Let X be a normal variety and let ∆ be an effective R-divisor on X such that KX +∆

is R-Cartier. The image of E with a(E,X,∆) ≤ −1 for some f : Y → X is called a
non-kawamata log terminal center of (X,∆). The image of E with a(E,X,∆) = −1 for
some f : Y → X such that (X,∆) is log canonical around general points of f(E) is called
a log canonical center of (X,∆). When (X,∆) is log canonical, a closed subset of X is a
log canonical center of (X,∆) if and only if it is a non-kawamata log terminal center of
(X,∆) by definition. In the above setting, (X,∆) is kawamata log terminal if and only if
there are no non-kawamata log terminal centers of (X,∆).

Remark 3.2. If we only assume that ∆ is a subboundary R-divisor on X in the above
definition of log canonical pairs and kawamata log terminal pairs, then (X,∆) is said to
be a sub log canonical pair and sub kawamata log terminal pair, respectively. We will use
sub log canonical pairs and sub kawamata log terminal pairs in Section 21.

Remark 3.3. Let X be a normal algebraic variety and let ∆ be an R-divisor on X such
that KX + ∆ is R-Cartier. Let Xan be the complex analytic space naturally associated
to X and let ∆an be the R-divisor on X associated to ∆. Then (Xan,∆an) is terminal,
canonical, kawamata log terminal, purely log terminal, and log canonical in the sense of
Definition 3.1 if and only if (X,∆) is terminal, canonical, kawamata log terminal, purely
log terminal, and log canonical in the usual sense, respectively. For the details, see, for
example, [Matk, Proposition 4-4-4].

In this paper, we need the following local definition of log canonical singularities and
kawamata log terminal singularities.

Definition 3.4. Let X be a normal complex variety and let ∆ be an effective R-divisor
on X. We say that (X,∆) is log canonical (resp. kawamata log terminal) at x ∈ X if
there exits an open neighborhood Ux of x such that (Ux,∆|Ux) is a log canonical pair
(resp. kawamata log terminal pair). We note that (X,∆) is log canonical (resp. kawa-
mata log terminal) in the sense of Definition 3.1 if and only if (X,∆) is log canonical
(resp. kawamata log terminal) at any point x of X.



30 OSAMU FUJINO

Let K be a compact subset of X. Then we say that (X,∆) is log canonical (resp. kawa-
mata log terminal) at K if (X,∆) is log canonical (resp. kawamata log terminal) at any
point x of K. We note that (X,∆) is log canonical (resp. kawamata log terminal) at K if
and only if there exits an open neighborhood U of K such that (U,∆|U) is log canonical
(resp. kawamata log terminal).

The following lemma is very fundamental.

Lemma 3.5 ([BCHM, Lemma 3.7.2]). Let X be a normal complex variety and let V be a
finite-dimensional affine subspace of WDivR(X), which is defined over the rationals. Let
K be a compact subset of X. Then

L(V ;K) := {∆ ∈ V |KX +∆ is log canonical at K}
is a rational polytope. Moreover, there exists an open neighborhood U of K such that
(U,∆|U) is log canonical for every ∆ ∈ L(V ;K).

Proof. We note that the set of divisors ∆ such that KX +∆ is R-Cartier at K forms an
affine subspace V ′ of V . Since V is defined over the rationals, we can easily see that V ′

is also defined over the rationals (see the proof of Lemma 2.37). Hence, by replacing V
with V ′, we may assume that KX + ∆ is R-Cartier at K for every ∆ ∈ V . Since V is
finite-dimensional, there is an open neighborhood U ′ of K such that KX +∆ is R-Cartier
on U ′ for every ∆ ∈ V . By replacing X with U ′, we may assume that KX + ∆ is R-
Cartier for every ∆ ∈ V . Let Θ be the union of the support of any element of V . By
shrinking X around K, we can take a projective birational morphism f : Y → X from a
smooth complex variety Y such that Exc(f) and Exc(f) ∪ Supp f−1

∗ Θ are simple normal
crossing divisors on Y . Thus, we can easily check that L(V ;K) is a rational polytope.
Let ∆1, . . . ,∆k be the vertices of L(V ;K). Then (X,∆i) is log canonical on some open

neighborhood Ui of K for every i. We put U :=
∩k
i=1 Ui. Then (X,∆) is log canonical on

U for every ∆ ∈ L(V ;K). Hence U is a desired open neighborhood of K. □
We note the following elementary property. We explicitly state it for the sake of com-

pleteness.

Lemma 3.6. Let (X,∆) be a log canonical pair and let C be an effective R-Cartier R-
divisor on X such that (X,∆ + C) is log canonical. Let ε be any positive real number
such that 0 < ε ≤ 1. Then V is a log canonical center of (X,∆) if and only if V is a log
canonical center of (X,∆+ (1− ε)C).

Proof. This is obvious by definition. □
The definition of divisorial log terminal pairs is very subtle. We adopt the following

definition, which is suitable for our purposes.

Definition 3.7 (Divisorial log terminal pairs). Let X be a normal complex variety and
let ∆ be a boundary R-divisor on X such that KX + ∆ is R-Cartier. If there exists a
proper bimeromorphic morphism f : Y → X from a smooth complex variety Y such that
Exc(f) and Exc(f) ∪ Supp f−1

∗ ∆ are simple normal crossing divisors on Y and that the
discrepancy coefficient a(E,X,∆) > −1 holds for every f -exceptional divisor E, then
(X,∆) is called a divisorial log terminal pair.

Remark 3.8. By definition, we can easily check that a divisorial log terminal pair is a log
canonical pair. Let (X,∆) be a kawamata log terminal pair and let U be any relatively
compact open subset of X. Then we can easily check that (U,∆|U) is a divisorial log
terminal pair.
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The morphism f in Definition 3.7 can be taken as a composite of blow-ups over any
relatively compact open subset.

Lemma 3.9. Let (X,∆) be a divisorial log terminal pair. Then there exists a morphism
σ : Z → X such that, for any relatively compact open subset X ′ of X,

g := σ|σ−1(X′) : Z
′ := σ−1(X ′) → X ′

is a composite of a finite sequence of blow-ups, Exc(g) and Exc(g)∪Supp g−1
∗ ∆ are simple

normal crossing divisors on Z ′, a(E,X ′,∆|X′) > −1 holds for every g-exceptional divisor
E. In particular, we can take an effective divisor F on Z ′ such that Exc(g) = F and that
−F is g-very ample.

Proof. It is sufficient to apply the resolution of singularities explained in [BM2, Sections
12 and 13]. For the details, see [BM2, Theorems 13.3 and 12.4]. See also [Kol2, 3.44
(Analytic spaces)], [W], and [Kol3, Theorem 10.45 and Proposition 10.49]. □

Our definition of divisorial log terminal pairs is compatible with the usual definition of
divisorial log terminal pairs for algebraic varieties.

Lemma 3.10. Let X be a normal algebraic variety and let ∆ be an R-divisor on X such
that KX + ∆ is R-Cartier. Let Xan be the complex analytic space naturally associated
to X and let ∆an be the R-divisor on X associated to ∆. Then (X,∆) is divisorial log
terminal in the usual sense if and only if (Xan,∆an) is divisorial log terminal in the sense
of Definition 3.7.

Sketch of Proof of Lemma 3.10. If (X,∆) is divisorial log terminal in the usual sense, then
it is obvious that (Xan,∆an) is divisorial log terminal in the sense of Definition 3.7. From
now on, we assume that (Xan,∆an) is divisorial log terminal in the sense of Definition
3.7. Let f : Y → Xan be a projective morphism from a smooth complex variety as in
Definition 3.7. We put Z ′ := f(Exc(f)), which is a closed analytic subset of Xan. Then
Xan \ Z ′ is smooth and the support of ∆an|Xan\Z′ is a simple normal crossing divisor on
Xan \ Z ′. We can check that if g : V → X is a projective bimeromorphic morphism from
a smooth complex variety V and E is a prime divisor on V such that g(E) ⊂ Z ′ then
a(E,X,∆) > −1 holds by the proof of [KM, Proposition 2.40]. Let Z be the smallest
closed algebraic subset of X such that X \ Z is smooth and the support of ∆|X\Z is a
simple normal crossing divisor on X \ Z. Then Z ⊂ Z ′ holds by definition. Hence, as in
the proof of [Matk, Proposition 4-4-4], we see that (X,∆) is divisorial log terminal in the
usual sense. □
Of course, Definition 3.7 is not analytically local.

Example 3.11. Let X be a smooth algebraic surface and let C be an irreducible curve
on X with only one singular point P . Assume that P is a node. It is obvious that
(X\P,C|X\P ) is divisorial log terminal, but (X,C) is not divisorial log terminal. However,
there exists a small open neighborhood U of P such that (U,C|U) is divisorial log terminal
in the sense of Definition 3.7. Note that C|U is a simple normal crossing divisor on U if
U is a small open neighborhood of P in X.

The final theorem in this section is more or less well known to the experts. We will use
it in the proof of Theorem F (3).

Theorem 3.12 (see [KMM, Theorem 1-3-6] and [Na3, Chapter VII. §1]). If (X,∆) is
divisorial log terminal, then X has only rational singularities.
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Proof. The arguments in [Fu9, 3.14 Elkik–Fujita vanishing theorem] work with some minor
modifications if we use Grothendieck duality for proper morphisms of complex analytic
spaces (see [RRV]). We note that we have necessary vanishing theorems in the complex
analytic setting (see Section 5 below). □

4. Cones

In this section, we will define various cones and explain Kleiman’s ampleness criterion
for projective morphisms between complex analytic spaces.

Throughout this section, let π : X → Y be a projective morphism of complex analytic
spaces and let W be a compact subset of Y . Let Z1(X/Y ;W ) be the free abelian group
generated by the projective integral curves C on X such that π(C) is a point ofW . Let U
be any open neighborhood of W . Then we can consider the following intersection pairing

· : Pic
(
π−1(U)

)
× Z1(X/Y ;W ) → Z

given by L · C ∈ Z for L ∈ Pic(π−1(U)) and C ∈ Z1(X/Y ;W ). We say that L is
π-numerically trivial over W when L · C = 0 for every C ∈ Z1(X/Y ;W ). We take
L1,L2 ∈ Pic(π−1(U)). If L1⊗L−1

2 is π-numerically trivial overW , then we write L1 ≡W L2

and say that L1 is numerically equivalent to L2 over W . We put

Ã(U,W ) := Pic
(
π−1(U)

)
/≡W

and define
A1(X/Y ;W ) := lim−→

W⊂U
Ã(U,W ),

where U runs through all the open neighborhoods of W . The following lemma due to
Nakayama is a key result of the minimal model program for projective morphisms between
complex analytic spaces.

Lemma 4.1 (Nakayama’s finiteness, see [Na3, Chapter II. 5.19. Lemma]). Assume that
W ∩ Z has only finitely many connected components for every analytic subset Z defined
over an open neighborhood of W . Then A1(X/Y ;W ) is a finitely generated abelian group.

Proof. For the details, see the proof of [Na3, Chapter II. 5.19. Lemma] and Theorem 4.7
in Subsection 4.1 below. □
Remark 4.2. Note that [Na3, Chapter II. 5.19. Lemma], that is, Lemma 4.1 above, is
a correction of [Na2, Proposition 4.3 and Lemma 4.4]. In Lemma 4.1, W is not assumed
to be Stein compact. Here, we only assume that W is a compact subset of Y satisfying
(P4). We will discuss Lemma 4.1 in detail in Subsection 4.1 below.

Under the assumption of Lemma 4.1, we can define the relative Picard number ρ(X/Y ;W )
to be the rank of A1(X/Y ;W ). We put

N1(X/Y ;W ) := A1(X/Y ;W )⊗Z R.
Let A1(X/Y ;W ) be the image of

Z1(X/Y ;W ) → HomZ
(
A1(X/Y ;W ),Z

)
given by the above intersection pairing. Then we set

N1(X/Y ;W ) := A1(X/Y ;W )⊗Z R.
As usual, we can define the Kleiman–Mori cone

NE(X/Y ;W )
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of π : X → Y over W , that is, NE(X/Y ;W ) is the closure of the convex cone in
N1(X/Y ;W ) spanned by the projective integral curves C such that π(C) is a point of
W . We also define Amp(X/Y ;W ) to be the cone in N1(X/Y ;W ) generated by line bun-
dles L such that L|π−1(U) is π-ample for some open neighborhood U of W . An element

ζ ∈ N1(X/Y ;W ) is called π-nef over W or nef over W if ζ ≥ 0 on NE(X/Y ;W ). Even
when ζ is nef over W , it is not clear whether ζ is nef over some open neighborhood of W
or not.

Remark 4.3 (see [Le, Theorem 1.2]). There exist a projective surjective morphism of
algebraic varieties π : X → Y and an R-Cartier R-divisor D on X such that {y ∈
Y |D|Xy is nef} is not Zariski open. This means that the nefness is not an open con-
dition. For a criterion of openness of a family of nef line bundles, see [Mw].

On the other hand, for ζ ∈ N1(X/Y ;W ), ζ|Xw is ample for every w ∈ W if and only if
ζ is ample over some open neighborhood of W . This is because the ampleness is an open
condition (see, for example, [KM, Proposition 1.41] and [Na2, Proposition 1.4]). Note
that Kleiman’s ampleness criterion holds true in our complex analytic setting.

Theorem 4.4 (Kleiman’s criterion, see [Na2, Proposition 4.7]). Let π : X → Y be a
projective morphism between complex analytic spaces and let W be a compact subset of Y
such that W satisfies (P4). Then we have

Amp(X/Y ;W ) =
{
ζ ∈ N1(X/Y ;W ) | ζ > 0 on NE(X/Y ;W ) \ {0}

}
.

Sketch of Proof of Theorem 4.4. We note that the ample cone is an open convex cone in
N1(X/Y ;W ). Hence we can easily check that it is contained in the right hand side.
Therefore, it is sufficient to prove the opposite inclusion. We take a π-ample Cartier
divisor A on X. Let ζ be an element of N1(X/Y ;W ) such that ζ > 0 on NE(X/Y ;W ) \
{0}. Then ζ − εA > 0 on NE(X/Y ;W ) \ {0} for some small positive rational number
ε. This implies that (ζ − εA)|π−1(w) is nef for every w ∈ W . Since A|π−1(w) is ample,
ζ|π−1(w) = (ζ − εA)|π−1(w) + A|π−1(w) is ample for every w ∈ W . We note that we can
use Kleiman’s ampleness criterion on π−1(w) since π−1(w) is projective. Hence, by the
standard argument (see, for example, [FMi, Section 6]), we can write ζ as a finite R>0-
linear combination of π-ample Cartier divisors over some open neighborhood of W . This
is what we wanted. □
We can define movable cones in our complex analytic setting (see [Kaw2, Section 2]).

Definition 4.5 (see [Fu4, Definition 2.1]). Let π : X → Y be a projective morphism of
complex analytic spaces and let W be a compact subset of Y such that X is a normal
complex variety. A Cartier divisor D on π−1(U), where U is some open neighborhood of
W , is called π-movable over W if π∗Oπ−1(U)(D) ̸= 0 and if the cokernel of the natural
homomorphism π∗π∗Oπ−1(U)(D) → Oπ−1(U)(D) has a support of codimension ≥ 2. We

define Mov(X/Y ;W ) as the closure of the convex cone in N1(X/Y ;W ) generated by the
classes of π-movable Cartier divisors over W . Note that Mov(X/Y ;W ) is usually called
the movable cone of π : X → Y and W .

We can easily see that a kind of negativity lemma holds.

Lemma 4.6 (Negativity lemma, see [Fu14, Lemma 3.8]). Let π : X → Y be a projective
bimeromorphic contraction morphism of normal complex varieties and let W be a compact
subset of Y . Let E be an R-Cartier R-divisor on X such that E ∈ Mov(X/Y ;W ). Let U
be any open subset of Y with U ⊂ W . If −π∗E|U is effective, then −E|π−1(U) is effective.
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Proof. For the details, see the proof of [Fu14, Lemma 3.8]. □

We will use Lemma 4.6 in order to terminate minimal model programs with scaling.

4.1. Nakayama’s finiteness. In this subsection, we give a detailed proof of Nakayama’s
finiteness (see Lemma 4.1), which is the starting point of the minimal model program for
projective morphisms between complex analytic spaces, for the sake of completeness. We
will closely follow Nakayama’s original proof in [Na3]. The reader who is not interested
in the proof can skip this subsection.

Let us recall the statement of Nakayama’s finiteness for the reader’s convenience.

Theorem 4.7 (Nakayama’s finiteness, see Lemma 4.1 and [Na3, Chapter II. 5.19. Lemma]).
Let π : X → Y be a projective morphism of complex analytic spaces and let W be a com-
pact subset of Y . Assume that W ∩ Z has only finitely many connected components for
every analytic subset Z defined over an open neighborhood of W . Then A1(X/Y ;W ) is a
finitely generated abelian group.

In this subsection, an R-line bundle on a complex analytic space X means an element of
Pic(X)⊗ZR. For simplicity of notation, we write the group law of Pic(X)⊗ZR additively.

Definition 4.8. Let π : X → Y be a projective surjective morphism of complex analytic
spaces. An R-line bundle L on X is called π-ample if it is a finite R>0-linear combination
of π-ample line bundles on X. Let Z be any subset of Y . An R-line bundle L on X is
called π-nef over Z and π-numerically trivial over Z if L|Xy is nef and numerically trivial
for every y ∈ Z, respectively, where Xy := π−1(y).

Let us see numerically trivial R-line bundles on smooth projective varieties.

4.9 (Characterization of numerically trivial R-line bundles on smooth projective varieties).
Let X be a smooth projective variety. We consider the following long exact sequence:

· · · −→ H1(X,OX) −→ H1(X,O∗
X)

c1−→ H2(X,Z) −→ H2(X,OX) −→ · · ·

given by 0 → Z → OX → O∗
X → 0. The image of

c1 : Pic(X) ≃ H1(X,O∗
X) → H2(X,Z)

is denoted by NS(X). It is usually called the Neron–Severi group of X. We note that a
line bundle L on X is numerically trivial if and only if c1(L) is a torsion element in NS(X)
(see, for example, [La1, Corollary 1.4.38]). Hence c1 induces the following isomorphism:

Pic(X)/≡ ∼−→ NS(X)/(torsion),

where ≡ denotes the numerical equivalence. As usual, we put

N1(X) = {Pic(X)/≡} ⊗Z R.

Let us consider an R-line bundle L on X. We can define the first Chern class c1(L) in
H2(X,R) since L is a finite R-linear combination of line bundles. If L is numerically
trivial, then it is easy to see that L is a finite R-linear combination of numerically trivial
line bundles on X. Therefore, L is numerically equivalent to zero, that is, L ≡ 0, if and
only if c1(L) = 0 in H2(X,R).

Let us start with the following basic properties of ample and nef R-line bundles. We
can check them without any difficulties.
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Lemma 4.10 (see [Na3, Chapter II. 5.14. Lemma]). Let π : X → Y be a projective
surjective morphism of complex analytic spaces such that Y is irreducible and let L be an
R-line bundle on X.

(1) Assume that L|Xy0
is ample for some y0 ∈ Y . Then there exists an open neighbor-

hood U of y0 such that L|π−1(U) is ample over U and that Y \ U is an analytically
meagre subset of Y .

(2) Assume that L|Xy0
is nef for some y0 ∈ Y . Then there exists an analytically

meagre subset S such that L is π-nef over Y \ S with y0 ̸∈ S.
(3) Assume that L|Xy0

is numerically trivial for some y0 ∈ Y . Then there exists an
analytically meagre subset S such that L is π-numerically trivial over Y \ S with
y0 ̸∈ S.

Proof. (1) We can write L =
∑k

i=1 aiLi such that ai ∈ R>0 and Li|Xy0
is an ample line

bundle for every i. If Ui is a desired open neighborhood of y0 for Li, then U :=
∩k
i=1 Ui

has the desired property for L. Hence it is sufficient to prove this statement under the
assumption that L is a line bundle. In this case, it is well known that there exists
an open neighborhood V of y0 such that L|π−1(V ) is π-ample over V (see, for example,
[KM, Proposition 1.41] and [Na2, Proposition 1.4]). Therefore, if m is a sufficiently large
positive integer, then π∗π∗L⊗m → L⊗m is surjective on a neighborhood of Xy0 . We put
Y † := Y \ π (Supp (Cokerπ∗π∗L⊗m → L⊗m)). Then Y † is a Zariski open subset of Y
and π∗π∗L⊗m → L⊗m is surjective over Y †. We consider the induced map φ : X† :=
π−1(Y †) → PY † ((π∗L⊗m)|Y †) over Y †. Since m is sufficiently large, we may assume that
φ is a closed embedding over some open neighborhood of y0. In particular, φ is flat in a
neighborhood of Xy0 . Hence, there exists a Zariski open subset U of Y † such that φ is flat
and finite over U (see [BS, Chapter V. Theorem 4.5]). This implies that L|π−1(U) is ample
over U . We can check that U is an open neighborhood of y0 with the desired properties.

(2) We take an ample line bundle A. Then (mL+A) |Xy0
is ample for every positive

integerm. By (1), we can take an open neighborhood Um of y0 such that (mL+A) |π−1(Um)

is ample over Um and that Y \ Um is an analytically meagre subset for every m. We put
S :=

∪
m∈Z>0

(Y \ Um). Then S is an analytically meagre subset and L is π-nef over Y \S.
By construction, y0 ̸∈ S. This is what we wanted.

(3) By assumption, L|Xy0
and −L|Xy0

are both nef. By (2), there exists analytically
meagre subsets S1 and S2 such that L is π-nef over Y \ S1 and −L is π-nef over Y \ S2.
We put S := S1∪S2. Then S is also an analytically meagre subset and L is π-numerically
trivial over Y \ S with y0 ̸∈ S. □
Remark 4.11. In Lemma 4.10 (2) and (3), we can write Y \ S =

∩
i∈Z>0

Ui such that

Ui is an open neighborhood of y0 and Y \ Ui is an analytically meagre subset for every
i ∈ Z>0.

The following lemma is a key lemma for the proof of Nakayama’s finiteness.

Lemma 4.12 (see [Na3, Chapter II. 5.14. Lemma]). Let π : X → Y be a projective
surjective morphism between complex manifolds such that Y is connected and let L be an
R-line bundle on X. Assume that L|Xy0

is numerically trivial for some y0 ∈ Y . Then L
is π-numerically trivial over Y .

Proof. By Lemma 4.10 (3), there exists an analytically meagre subset S such that L is
π-numerically trivial over Y \ S. Therefore, it is sufficient to prove the statement under
the extra assumption that Y is a polydisc and y0 is its origin. We can define the first
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Chern class c1(L) in H2(X,R) since L is a finite R-linear combination of line bundles.
It is sufficient to prove that c1(L) = 0 in H2(X,R). Since π is smooth and proper, X
is diffeomorphic to Y × F , where F := Xy0 , and π : X → Y is diffeomorphic to the first
projection p1 : Y × F → Y (see, for example, [Kod, Theorem 2.5]). On the other hand,

(4.1) H2(Y × F,R) ≃ H2(F,R)

holds as a very special case of Künneth formula (see, for example, [BT, (5.9)]), which
can be checked by Poincaré’s lemma. By the isomorphism H2(X,R) ≃ H2(Y × F,R)
and (4.1), c1(L) = p∗2c1(L|Xy0

), where p2 : Y × F → F is the second projection. Since
c1(L|Xy0

) = 0, we obtain c1(L) = 0. This implies that L is π-numerically trivial over Y .
This is what we wanted. □

By Lemmas 4.10 and 4.12, we can prove:

Theorem 4.13 (see [Na3, Chapter II. 5.14. Lemma]). Let π : X → Y be a projective
surjective morphism between normal complex varieties and let W be a compact subset of
W . For a point y0 ∈ W , after shrinking Y around W suitably, there exists a Zariski open
subset U of Y containing y0 having the following property: If an R-line bundle on X is
π-numerically trivial over the point y0 ∈ Y , then it is π-numerically trivial over U .

Proof. Throughout this proof, we will repeatedly shrink Y around W suitably without
mentioning it explicitly. By taking a resolution of singularities, we have a projective sur-
jective morphism X0 → X from a smooth complex variety X0. Let π0 be the composition
of X0 → X and π : X → Y . Let Y1 ⊂ Y be an analytic subset such that dimY1 < dimY ,
Y \ Y1 is smooth, and π0 is smooth over Y \ Y1. Let X1 → π−1

0 (Y1) be a projective
bimeromorphic morphism from a smooth complex analytic space X1 obtained by tak-
ing resolutions of singularities of irreducible components of π−1

0 (Y1). Then we obtain a
sequence of analytic subsets

Y =: Y0 ⊃ Y1 ⊃ · · · ⊃ Yl ⊃ Yl+1

and projective surjective morphisms πi : Xi → Yi, and projective surjective morphisms
Xi → π−1

i−1(Yi) for 1 ≤ i ≤ l such that

(i) dimy Yi < dimy Yi+1 holds at any point y ∈ Yi,
(ii) Yi \ Yi+1 is smooth,
(iii) πi is smooth over Yi \ Yi+1,
(iv) πi is nothing but the composition Xi → π−1

i−1(Yi) → Yi,
(v) πi is projective, and
(vi) y0 ∈ Yl \ Yl+1.

Let S be any connected component of Yi \Yi+1 for some i ≤ l such that y0 ̸∈ S, where S is
the topological closure of S in Y . We note that S is an analytic subset of Y by Remmert’s
extension theorem (see, for example, [GrR, Chapter 9, §4, 2. Extension Theorem for
Analytic Sets] and [No, Theorem 6.8.1]) since dimy Yi+1 < dimy Yi holds at any point
y ∈ Yi+1. Let U ⊂ Y be the Zariski open subset whose complement is the union of all
such S for all i and of Yl+1. By Lemma 4.10 (3), there exists an analytically meagre
subset S of Y such that L is π-numerically trivial over Y \ S with y0 ̸∈ S. Let T be any
connected component of Yi \ Yi+1 for some i ≤ l with y0 ∈ T . Then T ∩ (Y \ S) ̸= ∅ by
Remark 4.11. Thus, by Lemma 4.12, L is π-numerically trivial over U . This is what we
wanted. □
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Let us prove Theorem 4.7. In the proof of Theorem 4.7, we will use the argument in
the proof Theorem 4.13.

Proof of Theorem 4.7. As in the proof of Theorem 4.13, we construct a finite sequence of
analytic subsets

Y =: Y0 ⊃ Y1 ⊃ · · · ⊃ Yk

and projective surjective morphisms πi : Xi → Yi satisfying (i)–(v) in the proof of Theorem
4.13. Let Wi,j be the connected components of W ∩ Yi for 1 ≤ j ≤ ki. We take a point
wi,j ∈ Wi,j \ Yi+1 for any (i, j) with Wi,j ̸⊂ Yi+1. Then it is sufficient to show that

(4.2) A1(X/Y ;W ) →
⊕

NS
(
π−1
i (wi,j)

)
/(torsion)

is injective, where NS
(
π−1
i (wi,j)

)
is the Neron–Severi group of π−1

i (wi,j). Let L be a line
bundle on π−1(U), where U is an open neighborhood of W . We will prove that L is
π-numerically trivial overW under the assumption that L is π-numerically trivial over all
wi,j. Since L is π-numerically trivial over wi,j, L is π-numerically trivial over Ui,j \ Yi+1

by Lemma 4.12, where Ui,j is the connected component of Yi∩U containing wi,j. We note
that W ∩ Yi ⊂

∪
j Ui,j. Hence, L is π-numerically trivial over W =

∪
iW ∩ Yi. This is

what we wanted, that is, (4.2) is injective. Therefore, we obtain that A1(X/Y ;W ) is a
finitely generated abelian group since it is a subgroup of

⊕
NS
(
π−1
i (wi,j)

)
/(torsion). □

5. Vanishing theorems

In this section, we will treat some vanishing theorems. Fortunately, the necessary van-
ishing theorems have already been established. We explain only two vanishing theorems
here for the reader’s convenience. The first one is the Kawamata–Viehweg vanishing
theorem for projective morphisms between complex varieties.

Theorem 5.1 (Kawamata–Viehweg vanishing theorem for projective morphisms of com-
plex varieties). Let X be a smooth complex variety and let π : X → Y be a projective
morphism of complex varieties. Assume that D is an R-divisor on X such that D is
π-nef and π-big and that Supp{D} is a simple normal crossing divisor on X. Then
Riπ∗OX(KX + ⌈D⌉) = 0 for every i > 0.

Sketch of Proof of Theorem 5.1. When D is a Q-divisor, this statement is well known.
It follows from [Na2, Theorem 3.4], [Fu6, Corollary 1.4], and so on. Let y ∈ Y be any
point. It is sufficient to prove that Riπ∗OX(KX + ⌈D⌉) = 0 holds for i > 0 on some open
neighborhood Uy of y. Therefore, we will freely shrink Y around y without mentioning it
explicitly. We take a projective bimermorphic morphism f : Z → X and can reduce the
problem to the case where D is a Q-divisor which is ample over Y . This reduction step
is well known (see, for example, Step 2 in the proof of [Na2, Theorem 3.4], the proof of
[KMM, Theorem 1-2-3], and so on). Hence we obtain the desired vanishing theorem. □
The second one is essentially the same as the first one. However, we think that this

formulation is useful for some applications.

Theorem 5.2. Let (X,∆) be a divisorial log terminal pair and let π : X → Y be a
projective morphism of complex varieties. Let D be a Q-Cartier integral Weil divisor on
X such that D − (KX +∆) is π-ample. Then Riπ∗OX(D) = 0 holds for every i > 0.

Sketch of Proof of Theorem 5.2. By Lemma 3.9 and Theorem 5.1, the proof of [KMM,
Theorem 1-2-5] works. For the details, see [KMM]. □
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The reader can find various useful vanishing theorems for projective morphisms between
complex varieties in [Fu6], [FMa], [Matm], [Fu11], and so on.

6. Basepoint-free theorems, I

In this section, we will collect some necessary basepoint-free theorems for Cartier divi-
sors.

Let us start with Shokurov’s nonvanishing theorem for smooth projective varieties,
which can be proved by using Hironaka’s resolution of singularities and the Kawamata–
Viehweg vanishing theorem.

Theorem 6.1 (Shokurov’s nonvanishing theorem). Let X be a smooth projective variety
and let D be a nef Cartier divisor on X. Let A be an R-divisor on X such that pD+A−KX

is ample for some positive integer p, ⌈A⌉ ≥ 0, and Supp{A} is a simple normal crossing
divisor. Then there exists some positive integer m0 such that H0(X,OX(mD+ ⌈A⌉)) ̸= 0
holds for every integer m ≥ m0.

Sketch of Proof of Theorem 6.1. By perturbing the coefficients of A slightly, we may as-
sume that A is a Q-divisor. Then this statement is a special case of [KMM, Theorem
2-1-1] because pD + A−KX is automatically nef and big. For the details, see the proof
of [KMM, Theorem 2-1-1]. □

The following formulation of the basepoint-free theorem is suitable for our purposes
in this paper. It is the well-known Kawamata–Shokurov basepoint-free theorem when
π : X → Y is algebraic.

Theorem 6.2 (Basepoint-free theorem). Let π : X → Y be a projective morphism from
a normal complex variety to a complex analytic space Y and let ∆ be an R-divisor on X
such that (X,∆) is divisorial log terminal. Let D be a π-nef Cartier divisor on X such
that aD − (KX + ∆) is π-ample for some positive integer a. Then, for any relatively
compact open subset U of Y , there exists a positive integer m0, which depends on U , such
that

π∗π∗OX(mD) → OX(mD)

is surjective over U for every integer m ≥ m0.

Sketch of Proof of Theorem 6.2. By Lemma 3.9 and Theorem 6.1, the proof of [KMM,
Theorem 3-1-1] works over U . Note that we can not consider the generic fiber of π−1(U) →
U since it is a projective morphism of complex analytic spaces. Therefore, we apply
Theorem 6.1 to an analytically sufficiently general fiber of π−1(U) → U when we prove
π∗OX(mD) ̸= 0 for every large positive integer m. For the details, see the proof of [KMM,
Theorem 3-1-1]. □

Remark 6.3. If (X,∆) is kawamata log terminal in Theorem 6.2, then the same statement
holds under a slightly weaker assumption that aD − (KX + ∆) is π-nef and π-big. This
is almost obvious by the proof of Theorem 6.2 (see also the proof of [KMM, Theorem
3-1-1]).

In this paper, the following variant of the basepoint-free theorem is indispensable.
Theorem 6.4 is Kollár’s effective basepoint-freeness for projective morphisms of complex
analytic spaces.
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Theorem 6.4 (Effective basepoint-free theorem, see [BCHM, Theorem 3.9.1]). Fix a
positive integer n. Then there exists a positive integer m with the following properties.

Let π : X → Y be a projective morphism from a normal complex variety X to a complex
analytic space Y and let D be a π-nef Cartier divisor on X such that D − (KX + ∆) is
π-nef and π-big, where (X,∆) is kawamata log terminal with dimX = n.

Then, mD is π-free, that is,

π∗π∗OX(mD) → OX(mD)

is surjective.

Sketch of Proof of Theorem 6.4. It is sufficient to prove the statement over any small
relatively compact Stein open subset U of Y . We will freely replace Y with a small open
subset without mentioning it explicitly. By the standard argument (see, for example,
the proof of [BCHM, Theorem 3.9.1]), we may further assume that D − (KX +∆) is π-
ample and that KX +∆ is Q-Cartier. The modified basepoint-freeness method explained
in [Kol1, 2.1] works with some minor modifications. Note that we treat a projective
morphism π : X → Y . Therefore, when we prove that some sheaf is not zero, we restrict
it to an analytically sufficiently general fiber. We can not use the generic fiber since
we consider projective morphisms between complex analytic spaces. For the details, see
[Kol1, Section 2]. □
Theorem 6.5 below is essentially due to Nakayama (see [Na2, Theorem 4.10]), which

will play a crucial role in this paper.

Theorem 6.5 (see [Na2, Theorem 4.10]). Let π : X → Y be a projective surjective mor-
phism between complex analytic spaces and let W be a Stein compact subset of Y and let
(X,∆) be a kawamata log terminal pair. Let D be a Cartier divisor on X. Assume that
D is nef over W , that is, D ·C ≥ 0 for every projective curve C such that π(C) is a point
of W . We further assume that aD − (KX +∆) is π-ample for some positive real number
a. Then there exist an open neighborhood U of W and a positive integer m0 such that

π∗π∗OX(mD) → OX(mD)

is surjective over U for every integer m ≥ m0.

Before we prove Lemma 6.5, we prepare an easy lemma. We describe it for the sake of
completeness.

Lemma 6.6. Let π : X → Y be a projective surjective morphism between complex varieties
and let L be a line bundle on X. Assume that L|π−1(y0) is nef for some y0 ∈ Y . Then
there exists an analytically meagre subset S such that L|π−1(y) is nef for every y ∈ Y \ S.

Proof of Lemma 6.6. We take a π-ample line bundle H on X. Then L⊗n ⊗ H|π−1(y0) is
ample for every n ∈ Z>0. For each n, there exist a positive integer mn and an open
neighborhood Un of y0 such that

π∗π∗(L⊗nmn ⊗H⊗mn) → L⊗nmn ⊗H⊗mn

is surjective on π−1(Un) since L⊗n ⊗H is ample over some open neighborhood of y0 (see,
for example, [Na2, Proposition 1.4]). We put

Fn := Coker
(
π∗π∗(L⊗nmn ⊗H⊗mn) → L⊗nmn ⊗H⊗mn

)
.

Then π∗Fn is a coherent sheaf on Y and Sn := SuppFn is a closed analytic subset of
Y with y0 ̸∈ Sn. By construction, L⊗nmn ⊗ H⊗mn is π-free over Y \ Sn. In particular,



40 OSAMU FUJINO

L⊗n⊗H is π-nef over Y \Sn. We put S :=
∪
n∈Z>0

Sn. If (L⊗n ⊗H) |π−1(y) is nef for every

n ∈ Z>0, then L|π−1(y) is nef. Therefore, S is the desired analytically meagre subset of
Y . □
Let us see the proof of Theorem 6.5.

Sketch of Proof of Theorem 6.5. Let B be a Cartier divisor on X such that B is nef over
W and let A be any π-ample R-divisor onX. Then A+B is π-ample over some open neigh-
borhood ofW . By this easy observations, we see that the usual proof of the basepoint-free
theorem (see Sketch of Proof of Theorem 6.2) works over some open neighborhood U of
W . We note that we can use the nonvanishing theorem (see Theorem 6.1) on an analyti-
cally sufficiently general fiber by Lemma 6.6. Of course, we may have to replace U with
a smaller open neighborhood of W finitely many times throughout the proof. □
We will treat some basepoint-free theorems for R-Cartier divisors in Section 8.

7. Cone and contraction theorem

This section will be devoted to the cone and contraction theorem for projective mor-
phisms of complex analytic spaces.

Let us start with the rationality theorem. We need the following formulation. The
proof is essentially the same as that for algebraic varieties.

Theorem 7.1 (Rationality theorem, see [Na2, Theorem 4.11]). Let π : X → Y be a
projective morphism of complex analytic spaces and let W be a compact subset of Y such
that π : X → Y andW satisfies (P). Let ∆ be an effective Q-divisor on X such that (X,∆)
is divisorial log terminal and that a(KX +∆) is Cartier in a neighborhood of π−1(W ) for
some positive integer a. Let H be a π-ample Cartier divisor on X. Assume that KX +∆
is not π-nef over W . Then

r := max{t ∈ R |H + t(KX +∆) is π-nef over W}
is a positive rational number. Furthermore, expressing r/a = u/v with u, v ∈ Z>0 and
(u, v) = 1, we have v ≤ a(d+ 1), where d = maxw∈W dimπ−1(w).

Sketch of Proof of Theorem 7.1. The proof of [KMM, Theorem 4-1-1] works with some
minor modifications. As usual, we will freely replace Y with a relatively compact Stein
open neighborhood of W throughout this proof. By an easy reduction argument, we may
further assume that H is π-very ample. We put

M(x, y) := xH + ya(KX +∆)

and
Λ(x, y) := Supp (Cokerπ∗π∗OX(M(x, y)) → OX(M(x, y))) .

It is not difficult to see that Λ(x, y) is the same subset of X for (x, y) sufficiently large
and 0 < ya − xr < 1. We call it Λ0. Moreover, let I ⊂ Z2 be the set of (x, y) for which
0 < ya − xr < 1 and Λ(x, y) = Λ0. Then I contains all sufficiently large (x, y) with
0 < ya − xr < 1 (for the details, see Claim 1 in the proof of [Fu5, Theorem 15.1]). If
r ̸∈ Q or v > r(d+1), then we can find (x′, y′) sufficiently large and 0 < y′a−x′r < 1 with
Λ(x′, y′) ⊊ Λ0 (for the details, see the proof of [KMM, Theorem 4-1-1] or Step 7–Step
11 in [KM, Section 3.4]). This is a contradiction. Hence, we get the desired properties
of r. We note that we can not consider generic fibers. Therefore, when we check that
some sheaf is not a zero sheaf in the above argument, we restrict it to an analytically
sufficiently general fiber. □
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It is very well known that the cone and contraction theorem is a consequence of the
rationality theorem (see Theorem 7.1) and the basepoint-free theorem (see Theorem 6.5).

Theorem 7.2 (Cone and contraction theorem, see [Na2, Theorem 4.12]). Let (X,∆) be a
divisorial log terminal pair. Let π : X → Y be a projective morphism of complex analytic
spaces and let W be a compact subset of Y such that π : X → Y and W satisfies (P).
Then we have

NE(X/Y ;W ) = NE(X/Y ;W )KX+∆≥0 +
∑
j

Rj

with the following properties.

(1) Let A be a π-ample R-divisor on X. Then there are only finitely many Rj’s
included in (KX +∆+A)<0. In particular, the Rj’s are discrete in the half space
(KX +∆)<0.

(2) Let R be a (KX + ∆)-negative extremal ray. Then, after shrinking Y around W
suitably, there exists a contraction morphism φR : X → Z over Y satisfying:
(i) Let C be a projective integral curve on X such that π(C) is a point in W .

Then φR(C) is a point if and only if [C] ∈ R.

(ii) OZ
∼−→ (φR)∗OX .

(iii) Let L be a line bundle on X such that L · C = 0 for every curve C with
[C] ∈ R. Then there is a line bundle M on Z such that L ≃ φ∗

RM.

Sketch of Proof of Theorem 7.2. WhenKX+∆ isQ-Cartier in a neighborhood of π−1(W ),
we have the desired properties as a consequence of the rationality theorem (see Theorem
7.1) and the basepoint-free theorem (see Theorem 6.5). This part is well known (for the
details, see, for example, [KMM, Theorem 4-2-1]). From now on, we assume that KX+∆
is R-Cartier but is not Q-Cartier. As usual, we will freely shrink Y around W without
mentioning it explicitly. By the standard argument, we can find effective Q-divisors
∆1, . . . ,∆k on X and positive real numbers r1, . . . , rk with

∑k
i=1 ri = 1 such that KX+∆i

is Q-Cartier and (X,∆i) is divisorial log terminal for every i and that
∑k

i=1 ri∆i = ∆

holds. Let R be a (KX + ∆)-negative extremal ray of NE(W/Y ;W ). Then there exists
some i0 such that R is a (KX + ∆i0)-negative extremal ray of NE(X/Y ;W ). We have
already known that extremal rays are discrete in the half space (KX +∆i)<0 for every i
since KX +∆i is Q-Cartier. Hence it is not difficult to see that all the desired properties
hold true even when KX +∆ is only R-Cartier. □
In this paper, we sometimes treat log canonical pairs. Thus, we need:

Theorem 7.3. Let (X,∆) be a log canonical pair. Let π : X → Y be a projective mor-
phism of complex analytic spaces and let W be a compact subset of Y such that π : X → Y
and W satisfies (P). We assume that there exists ∆0 on X such that (X,∆0) is kawamata
log terminal. Let A be a π-ample R-divisor on X. Then there are only finitely many
(KX +∆+ A)-negative extremal rays of NE(X/Y ;W ).

Let R be a (KX + ∆)-negative extremal ray of NE(X/Y ;W ). Then the contraction
morphism φR : X → Z associated to R as in Theorem 7.2 (2) exists.

Proof. We take a sufficiently small positive rational number ε and consider

KX +∆+ A = KX + (1− ε)∆ + ε∆0 + (A− ε(∆0 −∆)) .

Since ε is sufficiently small, A − ε(∆0 − ∆) is still π-ample. On the other hand, the
pair (X, (1− ε)∆ + ε∆0) is kawamata log terminal. Hence, by Theorem 7.2 (1), there are
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only finitely many (KX +∆+A)-negative extremal rays. Let R be a (KX +∆)-negative
extremal ray of NE(X/Y ;W ). Then we can see it as a (KX + (1− ε)∆ + ε∆0)-negative
extremal ray for some small positive rational number ε. Therefore, by Theorem 7.2 (2),
we have the desired contraction morphism φR : X → Z. □

8. Basepoint-free theorems, II

In this section, we will treat basepoint-free theorems for R-divisors. We note that the
use of R-divisors is indispensable in the theory of minimal models.

Theorem 8.1 (Basepoint-free theorem for R-divisors, see [BCHM, Theorem 3.9.1]). Let
π : X → Y be a projective morphism of normal complex variety X to a complex analytic
space Y and let W be a Stein compact subset of Y such that π : X → Y and W satisfies
(P). Let D be a π-nef R-divisor on X such that aD − (KX + ∆) is π-nef and π-big for
some positive real number a, where (X,∆) is kawamata log terminal.

Then there exists an open neighborhood U of W such that D|π−1(U) is semiample over
U .

Sketch of Proof of Theorem 8.1. By replacing D with aD, we may assume that a = 1.
We take a small Stein open neighborhood U ′ of W and a Stein compact subset W ′ of Y
such that Γ(W ′,OY ) is noetherian and U ′ ⊂ W ′. Throughout this proof, we will freely
shrink Y around W ′ without mentioning it explicitly. By the standard argument (see, for
example, the proof of [BCHM, Theorem 3.9.1]), we may further assume that D−(KX+∆)
is π-ample and KX + ∆ is Q-Cartier. We take a small π-ample Q-divisor A on X such
that D− (KX+∆+A) is still π-ample. By the cone theorem (see Theorem 7.2 (1)), there
are only finitely many (KX +∆+A)-negative extremal rays of NE(X/Y ;W ′). Hence, we

can write D =
∑k

i=1 riDi, where ri is a positive real number, Di is a Q-Cartier Q-divisor
on X which is nef over W ′, and Di − (KX + ∆) is π-ample for every i (for the details,
see the proof of [BCHM, Theorem 3.9.1]). We replace Y with U ′. Then, by the usual
basepoint-free theorem (see Theorem 6.2), Di|π−1(U) is semiample over U for some U and
every i. This implies that D|π−1(U) is semiample over U . □
We used the cone theorem (see Theorem 7.2) in the above proof of Theorem 8.1. So it

is much deeper than the usual basepoint-free theorem for Cartier divisors (see Theorem
6.2).

By combining Lemma 6.5 with the argument in the proof of Theorem 8.1, we have:

Theorem 8.2. Let π : X → Y be a projective bimeromorphic contraction morphism of
complex analytic spaces and let y ∈ Y be a point. Let D be an R-Cartier R-divisor on X
such that D is numerically trivial over y, that is, D · C = 0 for every projective curve C
on X such that π(C) = y. Assume that aD − (KX + ∆) is π-nef for some positive real
number a, where (X,∆) is a kawamata log terminal pair. Then π∗D is R-Cartier at y.

Proof. We put W = {y}. Then W is a Stein compact subset of Y such that Γ(W,OY )
is noetherian. We will freely shrink Y around W without mentioning it explicitly. As
in the proof of Theorem 8.1, we may assume that a = 1 and D − (KX +∆) is π-ample.

By using the cone theorem as in the proof of Theorem 8.1, we can write D =
∑k

i=1 riDi,
where ri is a positive real number, Di is numerically trivial over y, and Di − (KX + ∆)
is π-ample for every i. By replacing Di with miDi for some positive integer mi, we may
further assume that Di is a Cartier divisor on X for every i. Then, by Theorem 6.5, π∗Di

is Q-Cartier for every i. Hence π∗D is R-Cartier. This is what we wanted. □
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The final theorem in this section is suitable for our framework of the minimal model
program. We only assume that KX +∆ is R-Cartier and is nef over W in Theorem 8.3.
The conclusion says that it is semiample over some open neighborhood of W .

Theorem 8.3. Let π : X → Y be a projective morphism of complex analytic spaces and
let W be a compact subset of Y such that π : X → Y and W satisfies (P). Let (X,∆)
be a log canonical pair. Assume that there exists ∆0 such that (X,∆0) is kawamata log
terminal. We further assume that ∆ = A+B, where A is π-ample, A ≥ 0, and B ≥ 0. If
KX +∆ is nef over W , then there exists an open neighborhood U of W such that KX +∆
is semiample over U .

Proof. Throughout this proof, we will shrink Y around W suitably without mentioning
it explicitly. By assumption, we can take ∆′ such that (X,∆′) is kawamata log terminal
and KX +∆′ ∼R KX +∆. Hence, by replacing ∆ with ∆′, we may assume that (X,∆) is
kawamata log terminal. Then (X,B) is kawamata log terminal and 2(KX+∆)−(KX+B)
is ample over Y . We take a general π-ample Q-divisor H on X such that (X,B + H)
is kawamata log terminal and that 2(KX + ∆) − (KX + B + H) is still ample over Y .
As in the proof of [BCHM, Theorem 3.9.1], by using Theorem 7.3, we take positive
real numbers r1, . . . , rk and Q-divisors ∆1, . . . ,∆k such that KX +∆i is nef over W and
2(KX + ∆i) − (KX + B + H) is ample over Y for every i and that

∑k
i=1 ∆i = ∆. By

Theorem 6.5, we obtain that KX+∆i is π-semiample for every i. This means that KX+∆
is semiample over Y . This is what we wanted. □
We close this section with conjectures related to Theorem 8.3.

Conjecture 8.4. Let (X,∆) be a log canonical pair and let π : X → Y be a projective
morphism of complex analytic spaces. We put

N := {y ∈ Y | (KX +∆)|π−1(y) is nef}.
Then N is open.

If we can establish the minimal model program for projective morphisms between com-
plex analytic spaces in full generality, then we see that Conjecture 8.4 holds true.

Remark 8.5. In Conjecture 8.4, it is sufficient to prove that N contains an open neigh-
borhood of y0 under the assumption that (KX + ∆)|π−1(y0) is nef. We take an open
neighborhood U of y0 and a Stein compact subset W of Y such that y0 ∈ U ⊂ W and
that Γ(W,OY ) is noetherian. We will freely shrink Y around W . By Theorem 1.27, we
can reduce the problem to the case where X is Q-factorial overW and (X,∆) is divisorial
log terminal. Then we run a (KX +∆)-minimal model program over Y around W . Note
that KX + ∆ is π-pseudo-effective since (KX + ∆)|π−1(y0) is nef. If the above minimal
model program terminates after finitely many steps, then it is easy to see that KX + ∆
is nef over some open neighborhood of y0. Hence Conjecture 8.4 would be absolutely
correct.

Conjecture 8.4 is also related to the following abundance conjecture for projective mor-
phisms of complex analytic spaces.

Conjecture 8.6 (Abundance conjecture). Let (X,∆) be a log canonical pair and let
π : X → Y be a projective morphism of complex analytic spaces. Assume that KX + ∆
is π-nef, that is, (KX +∆) · C ≥ 0 for every projective integral curve C on X such that
π(C) is a point. Then KX +∆ is π-semiample.
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As is well known, the abundance conjecture (see Conjecture 8.6) is widely open even
when Y is a point. We will treat the abundance conjecture in Section 23.

9. Lengths of extremal rational curves

In this paper, we will repeatedly use the fact that every extremal ray is spanned by a
rational curve of low degree, which is essentially due to Kawamata (see [Kaw3, Theorem
1]). Note that Kawamata’s result comes from the result obtained by Mori’s bend and
break technique, which relies on methods in positive characteristic.

Theorem 9.1 (see [Kaw3, Theorem 1] and [Fu14, Theorem 1.12]). Let (X,∆) be a kawa-
mata log terminal pair and let φ : X → Z be a projective morphism of complex analytic
spaces such that −(KX + ∆) is φ-ample. Let P be an arbitrary point of Z. Let E be
any positive-dimensional irreducible component of φ−1(P ). Then E is covered by possibly
singular rational curves ℓ with

0 < −(KX +∆) · ℓ ≤ 2 dimE.

In particular, E is uniruled.

Here, we quickly reduce Theorem 9.1 to [Fu14, Theorem 1.12]. So we use the framework
of quasi-log schemes.

Proof of Theorem 9.1. If φ(X) = P , then E = X holds. In this case, the statement
follows from [Fu14, Theorem 1.12] since [X,KX + ∆] is a quasi-log scheme. From now
on, we may assume that φ(X) ̸= P . We shrink Z around P . Then we can take an
effective R-Cartier divisor B on Z such that (X,∆ + φ∗B) is kawamata log terminal
outside φ−1(P ) and that E is a log canonical center of (X,∆ + φ∗B). We consider the
non-kawamata log terminal locus V := Nklt(X,∆ + φ∗B). Note that φ(V ) = P . Let
f : Y → X be a projective bimeromorphic morphism from a smooth variety Y such that
KY + ∆Y = f ∗(KX + ∆ + φ∗B) and that Supp∆Y is a simple normal crossing divisor
on Y . We put U := ∆=1

Y and (KY + ∆Y )|U = KU + ∆U by adjunction. Note that U is
projective since φ ◦ f(U) = P . We consider the following short exact sequence:

0 → OY (−⌊∆Y ⌋) → OY (−⌊∆Y ⌋+ U) → OU(⌈−∆<1
U ⌉ − ⌊∆>1

U ⌋) → 0.

By the Kawamata–Viehweg vanishing theorem (see Theorem 5.1), R1f∗OY (−⌊∆Y ⌋) = 0.
Then we have the following commutative diagram:

0 // J (X,∆+ φ∗B) // JNLC(X,∆+ φ∗B) //
� _

��

f∗OU(⌈−∆<1
U ⌉ − ⌊∆>1

U ⌋) //
� _

��

0

0 // J (X,∆+ φ∗B) // OX
// OV

// 0,

where J (X,∆ + φ∗B) = f∗OY (−⌊∆Y ⌋) is the multiplier ideal sheaf of (X,∆ + φ∗B)
and JNLC(X,∆ + φ∗B) = f∗OY (−⌊∆Y ⌋ + U), which is called the non-lc ideal sheaf of
(X,∆+ φ∗B), is an ideal sheaf that defines the non-log canonical locus of (X,∆+ φ∗B).
Hence J := f∗OU(⌈−∆<1

U ⌉ − ⌊∆>1
U ⌋) is an ideal sheaf on V such that

OX/JNLC(X,∆+ φ∗B) = OV /J .

Therefore, since U is projective,(
V, (KX +∆+ φ∗B)|V , f : (U,∆U) → V

)
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gives a quasi-log scheme structure on [V, (KX + ∆ + φ∗B)|V ] (see [Fu10, Theorem 4.9])
such that E is a qlc stratum of [V, (KX +∆+ φ∗B)|V ] by construction. Then, by [Fu14,
Theorem 1.12], E is covered by rational curves ℓ with

0 < −(KX +∆+ φ∗B) · ℓ ≤ 2 dimE

and is uniruled. Since φ∗B · ℓ = 0, we obtain the desired statement. □

By combining Theorem 9.1 with a standard argument, we have the following theorem,
which is well known when f : X → Y is a projective morphism between quasi-projective
varieties.

Theorem 9.2 (see [BCHM, Theorem 3.8.1]). Let π : X → Y be a projective morphism
of complex analytic spaces and let W be a compact subset of Y such that π : X → Y and
W satisfies (P). Suppose that (X,∆) is a log canonical pair. Suppose that there is an
R-divisor ∆0 such that (X,∆0) is kawamata log terminal. If R is a (KX + ∆)-negative
extremal ray of NE(X/Y ;W ), then there exists a rational curve ℓ spanning R such that

0 < −(KX +∆) · ℓ ≤ 2 dimX.

Proof. By assumption, we can find R-divisors ∆i with limi→∞∆i = ∆ such that (X,∆i)
is kawamata log terminal. By replacing π by the contraction defined by the extremal ray
R, we may further assume that −(KX+∆) is π-ample. By Theorem 9.1, for some P ∈ Y ,
we can find a rational curve ℓi in π

−1(P ) such that

0 < −(KX +∆i) · ℓi ≤ 2 dimX

for every i ≫ 0. We note that π−1(P ) is projective. We take a π-ample Q-divisor A on
X such that −(KX +∆+A) is also π-ample. In particular, −(KX +∆i +A) is π-ample
for every i≫ 0. Hence

0 < A · ℓi = (KX +∆i + A) · ℓi − (KX +∆i) · ℓi < 2 dimX.

This means that the curves ℓi belong to a bounded family. Thus, possibly passing to a
subsequence, we may assume that ℓ = ℓi is constant. Therefore, we have

−(KX +∆) · ℓ = lim
i→∞

−(KX +∆i) · ℓ ≤ 2 dimX.

This is what we wanted. □

The following easy observation is very useful.

Theorem 9.3. Let (X,∆) be a log canonical pair. Let π : X → Y be a projective mor-
phism of complex analytic spaces and let W be a compact subset of Y such that π : X → Y
and W satisfies (P). We assume that there exists ∆0 on X such that (X,∆0) is kawamata
log terminal. Suppose that

π : X
g // Y ♭ h // Y

such that Y ♭ is projective over Y . Let H be a general h-ample Q-divisor on Y ♭ with H ·C >
2 dimX for every projective curve C such that h(C) is a point. Let R be a (KX+∆+g∗H)-
negative extremal ray of NE(X/Y ;W ) and let φR : X → Z be the contraction morphism
over Y associated to R. Then φR : X → Z is a contraction morphism over Y ♭, that is,
Z → Y factors through Y ♭.
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Proof. We note that we can see R as a (KX +∆)-negative extremal ray of NE(X/Y ;W )
since g∗H is nef over Y . Therefore, by Theorem 9.2, R is spanned by a rational curve ℓ on
X such that 0 < −(KX +∆) · ℓ ≤ 2 dimX. If g(ℓ) is a curve, then (KX +∆+ g∗H) · ℓ > 0
since ℓ ·g∗H > 2 dimX. Therefore, this means that g(ℓ) is a point. Hence, the contraction
morphism φR : X → Z exists over Y ♭. □
The next lemma is an easy consequence of Theorem 9.3. We will repeatedly use it in

the subsequent sections.

Lemma 9.4. Let π : X → Y be a projective morphism of complex analytic spaces and
let W be a compact subset of Y such that π : X → Y and W satisfies (P). Assume that
(X,∆) is divisorial log terminal and that X is Q-factorial over W . Suppose that

π : X
g // Y ♭ h // Y

such that Y ♭ is projective over Y . Let H be a general h-ample Q-divisor on Y ♭ with
H · C > 2 dimX for every projective curve C such that h(C) is a point. Let

(X0,∆0)
ϕ099K (X1,∆1)

ϕ199K · · ·
ϕi−199K (Xi,∆i)

ϕi99K · · ·
be a (KX +∆ + g∗H)-minimal model program over Y starting from (X0,∆0) := (X,∆).
Then it is a (KX +∆)-minimal model program over Y ♭.

Proof. We apply Theorem 9.3 to each extremal contraction. Then we can see that it is a
minimal model program over Y ♭. □
By combining Theorem 9.2 with Theorem 8.1, we have:

Theorem 9.5. Let π : X → Y be a projective morphism of complex analytic spaces and
let W be a compact subset of Y such that π : X → Y and W satisfies (P). Suppose that

π : X
g // Y ♭ h // Y

such that Y ♭ is projective over Y . Assume that (X,∆) is kawamata log terminal such
that ∆ is π-big. We further assume that KX + ∆ is g-nef. Then there exists an open
neighborhood U of W such that (KX +∆)|π−1(U) is semiample over h−1(U).

Proof. We take a relatively compact Stein open subset U ′ of Y and a Stein compact subset
W ′ of Y such that W ⊂ U ′ ⊂ W ′ and Γ(W ′,OY ) is noetherian. From now on, we will
freely shrink Y around W ′ suitably without mentioning it explicitly. Since ∆ is π-big,
there exists ∆′ such that ∆′ ∼R ∆, ∆′ = A+B, A ≥ 0, A is π-maple, B ≥ 0, and (X,∆′) is
kawamata log terminal. Let H be a general h-ample Q-divisor on Y ♭ with H ·C > 2 dimX
for every projective curve C such that h(C) is a point. Then KX+∆+g∗H is nef overW ′.
Hence 2(KX+∆+g∗H)− (KX+B) is π-ample. We apply Theorem 8.1 to KX+∆+g∗H
over U ′. Then there exists an open neighborhood U of W such that KX + ∆ + g∗H is
semiample over U . This implies that KX +∆ is semiample over h−1(U). □

10. Real linear systems, stable base loci, and augmented base loci

In the theory of minimal models, we have to treat R-divisors. Throughout this section,
we always assume that π : X → Y is a projective morphism of normal varieties and let
W be a Stein compact subset of Y . We further assume that Y is Stein for simplicity. An
R-divisor on X may have infinitely many irreducible components. Hence we frequently
have to restrict it to a relatively compact open subset of X in order to make the number
of the irreducible components finite.
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Let us start with the definition of real linear systems and stable base loci.

Definition 10.1 (Real linear systems and stable base loci). Let D be an R-divisor on X.
Then we put

|D/Y |R = {C ≥ 0 |C ∼R D}
and call it the real linear system associated to D over Y . We sometimes simply write |D|R
to denote |D/Y |R if there is no danger of confusion. The stable base locus of D over Y is
the Zariski closed subset B(D/Y ) given by the intersection of the support of the elements
of |D/Y |R. If |D/Y |R = ∅, then we put B(D/Y ) = X. Similarly, we consider

|D/Y |Q = {C ≥ 0 |C ∼Q D}.
and define the Zariski closed subset B(D/Y )Q as the intersection of the support of the
elements of |D/Y |Q. If |D/Y |Q = ∅, then we put B(D/Y )Q = X. We note that the
inclusion B(D/Y ) ⊂ B(D/Y )Q holds since |D/Y |Q ⊂ |D/Y |R.

We make an important remark on the definition of B(D/Y ) and B(D/Y )Q.

Remark 10.2 (see [BCHM, Remark 3.5.2]). In Definition 10.1, B(D/Y ) and B(D/Y )Q
are only defined as closed analytic subsets.

We will repeatedly use the following basic property of B(D/Y ) implicitly.

Lemma 10.3. Let U be any Stein open subset of Y . If D ∼R C ≥ 0, then D|π−1(U) ∼R
C|π−1(U) ≥ 0 obviously holds. Hence the inclusion

B(D|π−1(U)/U) ⊂ B(D/Y )|π−1(U)

always holds true.

Proof. This is obvious. □
When we treat Q-divisors, we need:

Lemma 10.4 (see [BCHM, Lemma 3.5.3]). Let D be an integral Weil divisor. Then we
have the following inclusions

B(D/Y )Q ⊃ B(D/Y ),

and
B(D|π−1(U)/U)Q ⊂ B(D/Y )|π−1(U)

for any relatively compact Stein open subset U of Y .

Proof. Since |D/Y |Q ⊂ |D/Y |R, the first inclusion B(D/Y )Q ⊃ B(D/Y ) is obvious.
We take x ∈ π−1(U) such that x ̸∈ B(D/Y )|π−1(U). Then, by the proof of [BCHM,
Lemma 3.5.3], we can check that x ̸∈ B(D|π−1(U)/U)Q. Hence the desired second inclusion
B(D|π−1(U)/U)Q ⊂ B(D/Y )|π−1(U) holds. □
Although it may be dispensable, as in the algebraic case, we have:

Lemma 10.5. Let A be any π-ample divisor on X and let U be any relatively compact
open subset of Y . Then B((D − εA)/Y )|π−1(U) is independent of ε if 0 < ε≪ 1.

Proof. It is sufficient to note that

B((D − ε1A)/Y ) ⊂ B((D − ε2A)/Y )

holds for 0 < ε1 < ε2 by definition. On a relatively compact open subset π−1(U), the loci
B((D − εA)/Y ) stabilize for sufficiently small ε > 0 (see Lemma 2.17). □
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Let us define augmented base loci.

Definition 10.6 (Augmented base loci). The augmented base locus of D over Y is the
Zariski closed subset

B+(D/Y ) :=
∩
ε>0

B((D − εA)/Y ),

where A is some π-ample divisor on X. It is not difficult to see that B+(D/Y ) is in-
dependent of the choice of A. We note that D is π-big if and only if B+(D/Y ) ⊊ X
holds.

We recall the definition of fixed divisors. We need it in Theorem F (3).

Definition 10.7. Let D be an integral Weil divisor on X. We put

|D| := {C ≥ 0 |C ∼ D}.

Then Fix(D) denotes the fixed divisor of D so that

|D| = |D − Fix(D)|+ Fix(D),

where the base locus of |D − Fix(D)| contains no divisors. If Fix(D) = 0, then D is said
to be mobile.

Since we are mainly interested in the minimal model program over some open neigh-
borhood of W , the following definition is useful.

Definition 10.8 (Stable base divisors). A divisor E defined on π−1(U), where U is an
open neighborhood of W , is called a stable base divisor of D near W if E|π−1(U ′) ⊂
B(D|π−1(U ′)/U

′) holds for any Stein open neighborhood U ′ of W with U ′ ⊂ U .

For our purposes, we have to reformulate [BCHM, Proposition 3.5.4] as follows. We
will use Lemma 10.9 in the proof of Theorem G.

Lemma 10.9 (see [BCHM, Proposition 3.5.4]). Let π : X → Y be a projective morphism
of normal complex varieties and let W be a Stein compact subset of Y . Let D ≥ 0 be an
R-divisor on X. Then, after replacing Y with a Stein open neighborhood of W suitably,
we can find R-divisors M and F on X such that

(1) M ≥ 0 and F ≥ 0,
(2) D ∼R M + F ,
(3) every component of SuppF is a stable base divisor of D near W ,
(4) if B is a component of SuppM , then some multiple is mobile.

Proof. The proof of [BCHM, Proposition 3.5.4, Lemma 3.5.5, and Lemma 3.5.6] works in
our setting with some minor modifications. As we mentioned above, an R-divisor on X
may have infinitely many irreducible components. Therefore, we have to replace Y with
a relatively compact open neighborhood of W in the proof of this lemma. For the details,
see the proof of [BCHM, Proposition 3.5.4]. □

11. Some basic definitions and properties, I

In this section, we will explain some basic definitions which are indispensable for the
main results and their proof.

Let us start with the definition of D-nonpositivity and D-negativity.
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Definition 11.1 ([BCHM, Definition 3.6.1]). Let ϕ : X 99K Z be a bimeromorphic con-
traction of normal complex varieties and let D be an R-Cartier R-divisor on X such that
D′ := ϕ∗D is also R-Cartier. We say that ϕ is D-nonpositive (resp. D-negative) if for
some common resolution p : V → X and q : V → Y , we may write

p∗D = q∗D′ + E

where E is effective and q-exceptional (resp. E is effective, q-exceptional, and the support
of E contains the strict transform of the ϕ-exceptional divisors).

The so-called negativity lemma (see, for example, [BCHM, Lemma 3.6.2]) holds true
in our complex analytic setting. This is because everything follows from the negative
definiteness of intersection form of contractible curves on surfaces (see, for example, [Matk,
Theorem 4-6-1]). Therefore, from now on, we will freely use the negativity lemma for
projective morphisms of normal complex varieties. Note that the results obtained in
[BCHM, Lemmas 3.6.2, 3.6.3, and 3.6.4] hold true in our complex analytic setting with
some obvious modifications.

Let us define semiample models and ample models following [BCHM].

Definition 11.2 ([BCHM, Definition 3.6.5]). Let π : X → Y be a projective morphism
of complex analytic spaces and let W be a compact subset of Y such that π : X → Y and
W satisfies (P). Let D be an R-Cartier R-divisor on X.
Let f : X 99K Z be a bimeromorphic contraction over Y after shrinking Y around W

suitably.

• We say that f : X 99K Z is a semiample model of D over some open neighborhood of
W if, after shrinking Y around W suitably, Z is a normal variety and is projective
over Y , f is D-nonpositive, and H := f∗D is semiample over Y .

Let g : X 99K Z be a meromorphic map over Y after shrinking Y around W suitably.

• We say that g : X 99K Z is the ample model of D over some open neighborhood of
W if, after shrinking Y around W suitably, Z is a normal variety and is projective
over Y , and there exists an ample R-divisor H over Y on Z such that if p : V → X
and q : V → Z resolve the indeterminacy of g then q is a contraction morphism
and we can write p∗D ∼R q∗H + E, where E ≥ 0 and B ≥ E holds for every
B ∈ |p∗D/Y |R.

The basic properties of semiample models and ample models are summarized as follows.

Lemma 11.3 (see [BCHM, Lemma 3.6.6]). Let π : X → Y be a projective morphism of
complex analytic spaces and let W be a compact subset of Y such that π : X → Y and W
satisfies (P). Let D be an R-Cartier R-divisor on X.

(1) If gi : X 99K Xi, i = 1, 2, are two ample models of D over some open neighborhood
of W , then there exists an isomorphism χ : X1 → X2 over some open neighborhood
of W such that g2 = χ ◦ g1.

(2) If f : X 99K Z is a semiample model of D over some open neighborhood of W ,
then, after shrinking Y around W suitably, the ample model g : X 99K Z ′ of D
over some open neighborhood of W exists and g = h ◦ f , where h : Z → Z ′ is a
contraction morphism and f∗D ∼R h

∗H holds such that H is an R-divisor on Z ′

which is ample over some open neighborhood of W .
(3) If f : X 99K Z is a bimeromorphic map over some open neighborhood of W , then

f is the ample model of D over some open neighborhood of W if and only if f is a
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semiample model of D over some open neighborhood of W and f∗D is ample over
some open neighborhood of W .

Proof. For the details, see the proof of (1), (3), and (4) in [BCHM, Lemma 3.6.6]. □
The definition of weak log canonical models and log terminal models becomes subtle in

our complex analytic setting.

Definition 11.4 ([BCHM, Definition 3.6.7]). Let π : X → Y be a projective morphism
of complex analytic spaces and let W be a compact subset of Y . Suppose that KX +∆
is log canonical and let ϕ : X 99K Z be a bimeromorphic contraction of normal complex
varieties over Y after shrinking Y around W suitably, where Z is projective over Y . We
set Γ = ϕ∗∆.

(i) Z is a weak log canonical model for KX +∆ over W if ϕ is (KX +∆)-nonpositive
over some open neighborhood of W and KZ + Γ is nef over W .

(ii) Z is a weak log canonical model for KX + ∆ over some open neighborhood of W
if, after shrinking Y around W suitably, ϕ is (KX +∆)-nonpositive and KZ +Γ is
nef over Y .

(iii) Z is a log terminal model for KX +∆ over W if ϕ is (KX +∆)-negative over some
open neighborhood of W , (Z,Γ) is divisorial log terminal, KZ + Γ is nef over W ,
and Z is Q-factorial over W .

(iv) Z is a log terminal model for KX +∆ over some open neighborhood of W if, after
shrinking Y around W suitably, ϕ is (KX + ∆)-negative, (Z,Γ) is divisorial log
terminal, KZ + Γ is nef over Y , and Z is Q-factorial over W .

(v) Z is a good log terminal model for KX +∆ over some open neighborhood of W if,
after shrinking Y around W suitably, ϕ is (KX +∆)-negative, (Z,Γ) is divisorial
log terminal, KZ + Γ is semiample over Y , and Z is Q-factorial over W .

We further assume that π : X → Y and W satisfies (P).

(vi) Z is the log canonical model for KX +∆ over some open neighborhood of W if ϕ
is the ample model of KX +∆ over some open neighborhood of W .

We give some remarks on Definitions 11.2 and 11.4.

Remark 11.5 (see [BCHM, Remark 3.6.8]). A log terminal model is sometimes simply
called a log minimal model or a minimal model.

Remark 11.6. In Definitions 11.2 and 11.4 , we only require that f : X 99K Z, g : X 99K
Z, and ϕ : X 99K Z exist after replacing Y with a small open neighborhood ofW suitably.
If there is no danger of confusion, then we simply say that ϕ : X 99K Z is a log terminal
model (weak log canonical model, log canonical model, and so on) for KX + ∆ over Y
when it is a log terminal model (weak log canonical model, log canonical model, and so
on) for KX +∆ over some open neighborhood of W .

In our complex analytic setting, the definition of Mori fiber spaces becomes as follows.

Definition 11.7 (Mori fiber spaces). Let (X,∆) be a divisorial log terminal pair. Let
π : X → Y be a projective morphism of complex analytic spaces and let W be a compact
subset of Y such that π : X → Y and W satisfies (P). Let f : X → Z be a projective
morphism of normal complex varieties over Y . Then f : (X,∆) → Z is a Mori fiber space
over Y if

(i) X is Q-factorial over W ,
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(ii) f is a contraction morphism associated to a (KX + ∆)-negative extremal ray of
NE(X/Y ;W ), and

(iii) dimZ < dimX.

The following definition is essentially the same as [BCHM, Definition 1.1.4]. However,
we need some modifications since we treat only curves mapped to points in W by π.

Definition 11.8 ([BCHM, Definition 1.1.4]). Let π : X → Y be a projective morphism of
complex analytic spaces such that X is a normal variety and let W be a compact subset
of Y . Let V be a finite-dimensional affine subspace of the real vector space WDivR(X)
spanned by the prime divisors on X. We fix an R-divisor A ≥ 0 on X such that SuppA
has only finitely many irreducible components and define

VA = {∆ |∆ = A+B,B ∈ V },
LA(V ; π−1(W )) = {∆ = A+B ∈ VA |KX +∆ is log canonical at π−1(W ) and B ≥ 0},

EA,π(V ;W ) =

{
∆ ∈ LA(V ; π−1(W ))

∣∣∣∣ KX +∆ is pseudo-effective over
some open neighborhood of W

}
,

N ♯
A,π(V ;W ) = {∆ ∈ LA(V ; π−1(W )) |KX +∆ is nef over W}, and

NA,π(V ;W ) =

{
∆ ∈ LA(V ; π−1(W ))

∣∣∣∣ KX +∆ is nef over some open
neighborhood of W

}
.

Given a bimeromorphic contraction ϕ : X 99K Z after shrinking Y around W suitably,
define

W♯
ϕ,A,π(V ;W ) =

{
∆ ∈ EA,π(V ;W )

∣∣∣∣ ϕ is a weak log canonical model for (X,∆)
over W

}
,

and

Wϕ,A,π(V ;W ) =

{
∆ ∈ EA,π(V ;W )

∣∣∣∣ ϕ is a weak log canonical model for (X,∆)
over some open neighborhood of W

}
.

Given a meromorphic map ψ : X 99K Z after shrinking Y around W suitably, define

Aψ,A,π(V ;W ) =

{
∆ ∈ EA,π(V ;W )

∣∣∣∣ ψ is the ample model for (X,∆)
over some open neighborhood of W

}
.

We make some elementary remarks.

Remark 11.9. By the same argument as in the proof of Lemma 3.5, we can check that
LA(V ; π−1(W )) in Definition 11.8 is a polytope. We further assume that A is a Q-divisor
and that V is defined over the rationals. Then LA(V ; π−1(W )) is a rational polytope.

Remark 11.10. By definition, it is easy to see that N ♯
A,π(V ;W ) and W♯

ϕ,A,π(V ;W ) are

closed subsets of LA(V ; π−1(W )).

We note the following elementary fact.

Remark 11.11. In Definition 11.8, let S be an effective R-divisor on X such that SuppS
has only finitely many irreducible components. If SuppA and SuppB have no common
irreducible components for every B ∈ V , then

LS+A(V ; π−1(W )) = LS(VA; π−1(W ))

holds. Of course, if SuppS and SuppB have no common irreducible components for every
B ∈ V , then

LS+A(V ; π−1(W )) = LA(VS; π−1(W ))
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holds.
From now on, we assume that S is reduced. We put

V ′ := {B ∈ V | SuppB and SuppS have no common irreducible components}.

Then V ′ is an affine subspace of V such that

LS+A(V ; π−1(W )) = LS+A(V ′; π−1(W )) = LA(V ′
S; π

−1(W ))

There are no difficulties to adapt [BCHM, Lemmas 3.6.9, 3.6.10, and 3.6.11] to our
complex analytic setting. Roughly speaking, they are easy consequences of the negativity
lemma. Hence we omit the details here. On the other hand, [BCHM, Lemma 3.6.12] is
subtle and needs some reformulation for our purposes. We will discuss it in Section 12.

11.12 (see [BCHM, Lemmas 3.7.3, 3.7.4, and 3.7.5]). Note that [BCHM, Lemmas 3.7.3,
3.7.4, and 3.7.5] are very important. We need them to reduce various problems for log
canonical pairs to simpler ones for kawamata log terminal pairs. We state them here
explicitly in our complex analytic setting for the sake of completeness. In the following
three lemmas 11.13, 11.14, and 11.15, we assume that π : X → Y is a projective morphism
of complex analytic spaces such that X is a normal variety and Y is Stein and that W is
a Stein compact subset of Y .

Lemma 11.13 (see [BCHM, Lemma 3.7.3]). Let V be a finite-dimensional affine subspace
of WDivR(X) and let A ≥ 0 be a π-big R-divisor on X. Let C ⊂ LA(V ; π−1(W )) be a
polytope.

If B+(A/Y ) does not contain any non-kawamata log terminal centers of (X,∆) for
every ∆ ∈ C, then, after shrinking Y aroundW suitably, we can find a general π-ample Q-
divisor A′ on X, a finite-dimensional affine subspace V ′ of WDivR(X), and a translation

L : WDivR(X) → WDivR(X),

by an R-divisor T with T ∼R 0 such that L(C) ⊂ LA′(V ′; π−1(W )) and (X,∆ − A) and
(X,L(∆)) have the same non-kawamata log terminal centers. Furthermore, if A is a
Q-divisor, then we may assume that T ∼Q 0 holds.

Lemma 11.14 (see [BCHM, Lemma 3.7.4]). Let V be a finite-dimensional affine subspace
of WDivR(X), which is defined over the rationals, and let A be a general π-ample Q-
divisor on X. Let S be a finite sum of prime divisors on X such that each irreducible
component of S intersects with π−1(W ). Suppose that there exists a divisorial log terminal
pair (X,∆0) with S = ⌊∆0⌋ and let G ≥ 0 be any divisor whose support does not contain
any non-kawamata log terminal centers of (X,∆0).
Then, after shrinking Y around W suitably, we can find a general π-ample Q-divisor

A′ on X, and affine subspace V ′ of WDivR(X), which is defined over the rationals, and
a rational affine linear isomorphism

L : VS+A → V ′
S+A′

such that

• L preserves Q-linear equivalence,
• L (LS+A(V ; π−1(W ))) is contained in the interior of LS+A′(V ′; π−1(W )),
• for any ∆ ∈ L (LS+A(V ; π−1(W ))), KX+∆ is divisorial log terminal and ⌊∆⌋ = S,
and

• for any ∆ ∈ L (LS+A(V ; π−1(W ))), the support of ∆ contains the support of G.
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Lemma 11.15 (see [BCHM, Lemma 3.7.5]). Let (X,∆ = A+B) be a log canonical pair,
where A ≥ 0 and B ≥ 0.
If A is π-big and B+(A/Y ) does not contain any non-kawamata log terminal centers

of (X,∆) and there exists a kawamata log terminal pair (X,∆0), then we can find a
kawamata log terminal pair (X,∆′ = A′ + B′), where A′ ≥ 0 is a general π-ample Q-
divisor on X, B′ ≥ 0, and KX + ∆′ ∼R KX + ∆. If in addition A is a Q-divisor, then
KX +∆′ ∼Q KX +∆.

Here we omit the proof of Lemmas 11.13, 11.14, and 11.15. This is because there are
no difficulties to translate the proof of [BCHM, Lemmas 3.7.3, 3.7.4, and 3.7.5] into our
complex analytic setting.

In this paper, we are mainly interested in kawamata log terminal pairs (X,∆) such that
∆ is big over Y . For such pairs, we have some good properties.

Lemma 11.16 ([BCHM, Lemma 3.9.3]). Let π : X → Y be a projective morphism of
complex analytic spaces and let W be a compact subset of Y such that π : X → Y and W
satisfies (P). Suppose that (X,∆) is a kawamata log terminal pair, where ∆ is π-big. If
ϕ : X 99K Z is a weak log canonical model of KX +∆ over W , then

(1) ϕ is a weak log canonical model of KX +∆ over some open neighborhood of W ,
(2) ϕ is a semiample model over some open neighborhood of W ,
(3) after shrinking Y around W suitably, there exists a contraction morphism h : Z →

Z ′ such that KZ + Γ ∼R h
∗H, for some R-divisor H on Z ′, which is ample over

Y , where Γ = ϕ∗∆, and
(4) the ample model ψ : X 99K Z ′ of KX+∆ over some open neighborhood of W exists.

Proof. Throughout this proof, we will freely shrink Y around W without mentioning it
explicitly. We put Γ = ϕ∗∆. Then (Z,Γ) is kawamata log terminal by the negativity
lemma. Since ∆ is big, we can write Γ ∼R A + B such that A is ample over Y , A ≥ 0,
B ≥ 0, and (Z,A + B) is kawamata log terminal. Then, by Theorem 8.3, we can check
that KZ + Γ is semiample over Y . This means that ϕ is a weak log canonical model of
KX + ∆ over Y and that KZ + Γ is semiample over Y . Hence we obtain (1) and (2).
Since KZ + Γ is semiample over Y , we get a contraction morphism h : Z → Z ′ such that
ψ := h ◦ ϕ : X 99K Z ′ is the ample model of (X,∆) (see Lemma 11.3 (2)). Therefore, we
have (3) and (4). □
The following theorem is very important.

Theorem 11.17 ([BCHM, Theorem 3.11.1]). Let π : X → Y be a projective morphism
of complex analytic spaces and let W be a compact subset of Y such that π : X → Y and
W satisfies (P). Let V be a finite-dimensional affine subspace of WDivR(X), which is
defined over the rationals. Fix a π-ample Q-divisor A on X. Suppose that there exists a
kawamata log terminal pair (X,∆0). Then NA,π(V ;W ) = N ♯

A,π(V ;W ) holds and the set

of hyperplanes R⊥ is finite in LA(V ; π−1(W )), as R ranges over the set of extremal rays

of NE(X/Y ;W ). In particular, NA,π(V ;W ) = N ♯
A,π(V ;W ) is a rational polytope.

Sketch of Proof of Theorem 11.17. By Theorem 8.3, KX+∆ is semiample over some open
neighborhood of W for every ∆ ∈ N ♯

A,π(V ;W ). In particular, KX + ∆ is nef over some

open neighborhood of W . This implies that NA,π(V ;W ) = N ♯
A,π(V ;W ) holds. On the

other hand, the proof of [BCHM, Theorem 3.11.1] works by Theorem 7.3. Hence we see

that R⊥ is finite in LA(V ; π−1(W )) and N ♯
A,π(V ;W ) is a rational polytope. □
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We prepare an easy lemma.

Lemma 11.18. In Theorem 11.17, we consider ∆1,∆2 ∈ LA(V ; π−1(W )). Let fi : X →
Zi be a contraction morphism between normal varieties over Y such that KX+∆i ∼R f

∗
i Di

for some gi-ample R-divisor Di on Zi, where gi : Zi → Y is the structure morphism, for
i = 1, 2. Then the following conditions are equivalent.

(i) ∆1 and ∆2 belong to the same interior of a unique face of N ♯
A,π(V ;W ).

(ii) Z1 and Z2 are isomorphic over some open neighborhood of W .

Proof. We note that ∆1,∆2 ∈ N ♯
A,π(V ;W ). If (ii) holds, then (i) obviously holds true.

From now on, we will prove (ii) under the assumption that (i) holds. Let Z be the image
of the map (f1, f2) : X → Z1 ×Y Z2 given by x 7→ (f1(x), f2(x)) Let pi : Z → Zi be the
projection for i = 1, 2. We take any point zi ∈ g−1

i (W ). Then we can easily see that
p−1
i (zi) is a point by (i). By using the Stein factorization (see, for example, [BS, Chapter
III, Corollary 2.13]), pi : Z → Zi is an isomorphism over some open neighborhood of
g−1
i (W ). Hence Z1 and Z2 are isomorphic over some open neighborhood of W . This is
what we wanted. □
As an easy consequence of Theorem 11.17, we have:

Corollary 11.19 ([BCHM, Corollary 3.11.2]). Let π : X → Y be a projective morphism
of complex analytic spaces and let W be a compact subset of Y such that π : X → Y
and W satisfies (P). Let V be a finite-dimensional affine subspace of WDivR(X), which
is defined over the rationals. Fix a general π-ample Q-divisor A on X. Suppose that
there exists a kawamata log terminal pair (X,∆0). Let ϕ : X 99K Z be any bimeromorphic
contraction over Y . Then we obtain:

(1) Wϕ,A,π(V ;W ) = W♯
ϕ,A,π(V ;W ) holds and Wϕ,A,π(V ;W ) is a rational polytope.

Moreover, we have:

(2) There are finitely many contraction morphisms fi : Z → Zi over Y , 1 ≤ i ≤ k,
such that if f : Z → Z ′ is any contraction morphism over Y and there is an R-
divisor D on Z ′, which is ample over Y , such that KZ+Γ := ϕ∗(KX+∆) ∼R f

∗D
for some ∆ ∈ Wϕ,A,π(V ;W ), then there is an index 1 ≤ i ≤ k and an isomorphism
η : Zi → Z ′ such that f = η ◦ fi.

Note that in (2) we require that fi, f , D, and η exist only after shrinking Y around W
suitably.

The proof of [BCHM, Corollary 3.11.2] works with some minor modifications.

Sketch of Proof of Corollary 11.19. Note that LA(V ; π−1(W )) is a rational polytope. There-
fore, its span is an affine subspace of VA, which is defined over the rationals. By replacing
V , we may assume that LA(V ; π−1(W )) spans VA. To prove that W♯

ϕ,A,π(V ;W ) is a ra-

tional polytope, we may work locally about a divisor ∆ ∈ W ♯
ϕ,A,π(V ;W ). By Lemma

11.14, we may assume that (X,∆) is kawamata log terminal. In this case, (Z,Γ) is au-
tomatically kawamata log terminal. We put C := ϕ∗A. Then C is big over Y . Let
V † ⊂ WDivR(Z) be the image of V . By Lemmas 11.13 and 11.14, we can reduce the
problem to the case where C is a ψ-ample Q-divisor and Γ belongs to the interior of
LC(V †;ψ−1(W )), where ψ : Z → Y is the structure morphism. By Theorem 11.17,

N ♯
C,ψ(V

†,W ) = NC,ψ(V
†,W ) is a rational polytope. Hence we can easily check that

W♯
ϕ,A,π(V ;W ) = Wϕ,A,π(V ;W ) holds and W♯

ϕ,A,π(V ;W ) is a rational polytope. Thus we
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obtain (1). Let f : Z → Z ′ be a contraction morphism over some open neighborhood of
W such that ϕ∗(KX +∆) = KZ +Γ ∼R f

∗D for some ψ′-ample R-divisor D on Z ′, where
ψ′ : Z ′ → Y is the structure morphism. Then Γ belongs to the interior of a unique face G
of N ♯

C,ψ(V
†;W ) = NC,ψ(V

†;W ). Note that ∆ belongs to the interior of a unique face F

of W♯
ϕ,A,π(V ;W ) = Wϕ,A,π(V ;W ) and G is determined by F . Thus we can check that (2)

holds true by Lemma 11.18. □
11.20 (see [BCHM, Lemma 3.10.11]). When we run a minimal model program, we have
to check that several properties are preserved by flips and divisorial contractions.

Let π : X → Y be a projective morphism between complex analytic spaces and let
W be a compact subset of Y such that π : X → Y and W satisfies (P). Assume that
(X,∆) is divisorial log terminal and that X is Q-factorial over W . Let φ : X → Z be a
bimeromorphic contraction morphism over Y associated to a (KX+∆)-negative extremal
ray R of NE(X/Y ;W ). Let A be a π-big R-divisor on X such that B+(A/Y ) does not
contain any non-kawamata log terminal centers of (X,∆).

Lemma 11.21 (Divisorial contractions). In the above setting, we further assume that φ is
divisorial. Then, after shrinking Y around W suitably, we have the following properties.

(1) Z is Q-factorial over W .
(2) (Z,Γ) is divisorial log terminal, where Γ := φ∗∆.
(3) Exc(φ) is a prime divisor on X.
(4) ρ(Z/Y ;W ) = ρ(X/Y ;W )− 1.
(5) B+(φ∗A/Y ) does not contain any non-kawamata log terminal centers of (Z,Γ).

Lemma 11.22 (Flips). In the above setting, we further assume that φ is a flipping con-
traction and that the flip φ+ : X+ → Z of φ exists.

X

φ
��@

@@
@@

@@
@

ϕ //_______ X+

φ+
}}||
||
||
||

Z

Then, after shrinking Y and W suitably, we have the following properties.

(1) X+ is Q-factorial over W .
(2) (X+,∆+) is divisorial log terminal, where ∆+ := ϕ∗∆.
(3) ρ(X+/Y ;W ) = ρ(Z/Y ;W ) + 1 = ρ(X/Y ;W ).
(4) X+ is projective over Y .
(5) B+(ϕ∗A/Y ) does not contain any non-kawamata log terminal centers of (X+,∆+).

Proof of Lemmas 11.21 and 11.22. The proof for algebraic varieties works with only some
obvious modifications even in the complex analytic setting. Here, we will only prove (5).
There are no difficulties to prove the other properties. Let f : X 99K X ′ denote the
divisorial contraction φ : X → Z in Lemma 11.21 or the flip ϕ : X 99K X+ in Lemma
11.22. We will freely shrink Y around W suitably without mentioning it explicitly. We
take a general π′-ample Q-divisor C on X ′, where π′ : X ′ → Y is the structure morphism.
We may assume that B((A−εf−1

∗ C)/Y ) does not contain any non-kawamata log terminal
centers of (X,∆) for some 0 < ε < 1. Therefore, we have an effective R-divisor D on X
such that D ∼R A−εf−1

∗ C and that (X,∆′ := ∆+ε′D) is a divisorial log terminal pair for
0 < ε′ ≪ 1. Note that if 0 < ε′ ≪ 1 then R is still a (KX +∆′)-negative extremal ray of
NE(X/Y ;W ). Therefore, (X ′, f∗∆

′ = f∗∆+ ε′f∗D) is still a divisorial log terminal pair.
Hence the support of f∗D contains no non-kawamata log terminal centers of (X ′, f∗∆).
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Since f∗A ∼R f∗D + εC, B+(f∗A/Y ) contains no non-kawamata log terminal centers of
(X ′, f∗∆

′). This is what we wanted. □

12. Some basic definitions and properties, II

In this section, we will treat [BCHM, Lemma 3.6.12] in the complex analytic setting.
We change the formulation suitable for our complex analytic setting. The main result of
this section is Lemma 12.3. For the proof of Lemma 12.3, we prepare two lemmas.

Let us start with small projective Q-factorializations (see Theorem 1.24).

Lemma 12.1 (Small projective Q-factorializations). Assume that Theorem Gn holds true.
Let π : X → Y be a projective morphism between complex analytic spaces with dimX =

n and let W be a compact subset of Y such that π : X → Y and W satisfies (P). Assume
that (X,∆) is kawamata log terminal. Then, after shrinking Y around W suitably, there
exists a small projective bimeromorphic contraction morphism f : X ′ → X such that X ′

is projective over Y and that X ′ is Q-factorial over W .

Proof. Throughout this proof, we will freely shrink Y around W suitably without men-
tioning it explicitly. By taking a resolution, we have a bimeromorphic contraction mor-
phism g : V → X such that V is smooth, V is projective over Y , and Exc(g) and
Exc(g) ∪ Supp g−1

∗ ∆ are simple normal crossing divisors on V . Then we can take an
R-divisor ∆V on V such that (V,∆V ) is kawamata log terminal and that KV + ∆V =
g∗(KX + ∆) + E, where E ≥ 0 and SuppE = Exc(g). We take a general π-ample
Q-divisor H on X such that KX + ∆ + H ∼R D ≥ 0. We apply Theorem Gn to
KV +∆V +g

∗H ∼R g
∗D+E ≥ 0. Then we get a bimeromorphic contraction ϕ : V 99K X ′

over X such that X ′ is Q-factorial over W , X ′ is projective over Y , and KX′ + Γ is nef
over Y , where Γ := ϕ∗∆V . By the negativity lemma, we see that f : X ′ → X is small.
This is what we wanted. □
By combining Lemma 12.1 with Theorem 8.2, we have:

Lemma 12.2. Assume that Theorem Gn holds true.
Let π : X → Y be a projective morphism between complex analytic spaces with dimX =

n and let W be a compact subset of Y such that π : X → Y and W satisfies (P). Let
ϕ : X 99K Z be a bimeromorphic contraction of normal complex varieties over Y such that
(Z,∆Z) is kawamata log terminal for some ∆Z. We consider the following commutative
diagram:

V
p

~~~~
~~
~~
~~ q

��@
@@

@@
@@

@

X

π
  @

@@
@@

@@
@

ϕ //_______ Z

π′
��~~
~~
~~
~~

Y

where p and q are projective bimeromorphic morphisms and V is a normal complex variety.
Let H be an R-Cartier R-divisor on Z such that H ′ := p∗q

∗H is also R-Cartier. Let B
be an R-Cartier R-divisor on X such that B is numerically equivalent to H ′ over W .
Then ϕ∗B := q∗p

∗B is R-Cartier over some open neighborhood of W and is numerically
equivalent to H over W .

Proof. It is sufficient to prove that ϕ∗B is R-Cartier over some open neighborhood of
W , equivalently, ϕ∗B is R-Cartier at any point z of (π′)−1(W ). We will freely shrink Y
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around W without mentioning it explicitly. By applying Lemma 12.1 to π′ : Z → Y , we
can construct a small projective bimeromorphic contraction morphism f : Z ′ → Z such
that Z ′ is projective over Y and that Z ′ is Q-factorial over W . By replacing V , we may
assume that q : V → Z factors through Z ′. Hence we have the following commutative
diagram.

V
p

~~}}
}}
}}
}

  A
AA

AA
AA

X ′

ϕ
''P

PPPPPPP
ϕ′

//_______ Z ′

f

��
Z

Since Z ′ is Q-factorial overW , we may assume that ϕ′
∗B is R-Cartier R-divisor on Z ′. We

put KZ′ +∆Z′ = f ∗(KZ +∆Z). Then (Z ′,∆Z′) is kawamata log terminal since f is small.
Note that ϕ′

∗B is numerically equivalent to f ∗H over W by construction. Therefore, ϕ′
∗B

is numerically trivial over z for any z ∈ (π′)−1(W ). Since f : Z ′ → Z is bimeromorphic,
by replacing Z with a small Stein open neighborhood of some z ∈ (π′)−1(W ), we can take
Θ on Z ′ such that (Z ′,Θ) is kawamata log terminal and that −(KZ′ + Θ) is ample over
Z. Hence, by Theorem 8.2, ϕ∗B is R-Cartier at z. Note that W is compact. Therefore,
this means that ϕ∗B is R-Cartier over some open neighborhood of W . This is what we
wanted. □
The following lemma is essentially the same as [BCHM, Lemma 3.6.12]. We note that

we do not assume that A is π-ample in Lemma 12.3 (see Remark 12.4 below).

Lemma 12.3 ([BCHM, Lemma 3.6.12]). Let π : X → Y be a projective morphism of
complex analytic spaces and let W be a compact subset of Y such that π : X → Y and
W satisfies (P) and that X is Q-factorial over W and has only kawamata log terminal
singularities. Let ϕ : X 99K Z be a bimeromorphic contraction over Y and let A be an
effective R-divisor on X such that SuppA has only finitely many irreducible components.
We assume one of the following conditions:

(i) Z is Q-factorial over W , or
(ii) Theorem Gn holds, where n = dimX.

If V is any finite-dimensional affine subspace of WDivR(X) such that LA(V ; π−1(W ))

spans WDivR(X) modulo numerical equivalence over W and W♯
ϕ,A,π(V ;W ) intersects the

interior of LA(V ; π−1(W )), then

W♯
ϕ,A,π(V ;W ) = Aϕ,A,π(V ;W )

holds, where Aϕ,A,π(V ;W ) is the closure of Aϕ,A,π(V ;W ).

Let us prove Lemma 12.3.

Proof of Lemma 12.3. It is easy to see that

W♯
ϕ,A,π(V ;W ) ⊃ Aϕ,A,π(V ;W )

holds. Since W♯
ϕ,A,π(V ;W ) is closed, it follows that

W♯
ϕ,A,π(V ;W ) ⊃ Aϕ,A,π(V ;W ).

In order to prove the opposite inclusion, it is sufficient to prove that a dense subset of
W♯

ϕ,A,π(V ;W ) is contained in Aϕ,A,π(V ;W ).
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From now on, we will freely shrink Y around W suitably without mentioning it explic-
itly. We take ∆ belonging to the interior of W♯

ϕ,A,π(V ;W ). We put Γ := ϕ∗∆. Then (Z,Γ)

is a weak log canonical model of (X,∆) overW by definition. Since LA(V ; π−1(W )) spans
WDivR(X) modulo numerical equivalence overW , we can find ∆0 ∈ LA(V ; π−1(W )) such
that ∆0 −∆ is numerically equivalent over W to µ∆ for some µ > 0. We consider

∆′ := ∆ + ε ((∆0 −∆)− µ∆) = (1− ε)ν∆+ ε∆0,

where

ν =
1− ε− εµ

1− ε
< 1.

Hence, ∆′ is numerically equivalent to ∆ over W and if ε > 0 is sufficiently small then
∆′ is effective. Since (X, ν∆) is kawamata log terminal, it follows that (X,∆′) is also
kawamata log terminal. We put Γ′ := ϕ∗∆

′. If (i) holds, then KZ + Γ′ is obviously
R-Cartier. If (ii) holds, then we can check that KZ + Γ′ is R-Cartier by Lemma 12.2.

Let H be a general π′-ample Q-divisor on Z, where π′ : Z → Y is the structure mor-
phism. Let p : U → X and q : U → Z resolve the indeterminacy locus of ϕ. We put
H ′ := p∗q

∗H. It is obvious that ϕ is H ′-nonpositive. We take ∆1 ∈ LA(V ; π−1(W )) such
that B := ∆1 −∆ is numerically equivalent to ηH ′ over W for some η > 0. By replacing
H with ηH, we may assume that η = 1. If (i) holds, then ϕ∗B is obviously R-Cartier. If
(ii) holds, then we can check that ϕ∗B is R-Cartier by Lemma 12.2. Therefore, we obtain
that ϕ is (KX + ∆ + λB)-nonpositive and ϕ∗(KX + ∆ + λB) is ample over Y for every
λ > 0. On the other hand, we have

∆ + λB = ∆+ λ(∆1 −∆) = (1− λ)∆ + λ∆1 ∈ LA(V ; π−1(W ))

for every λ ∈ [0, 1]. This implies that ϕ is the ample model of KX +∆ + λB over Y for
every λ ∈ (0, 1]. □

We close this section with a useful remark.

Remark 12.4. In Lemma 12.3, we further assume that A = S + A′, where S is reduced
and A′ ≥ 0 is a general π-ample Q-divisor on X, and that V is defined over the rationals.
We put

V ′ := {B ∈ V | SuppB and SuppS have no common irreducible components}

as in Remark 11.11. Hence V ′ is also defined over the rationals. Then we have

W♯
ϕ,S+A′,π(V ;W ) = W♯

ϕ,S+A′,π(V
′;W ) = W♯

ϕ,A′,π(V
′
S;W )

= Wϕ,A′,π(V
′
S;W ) = Wϕ,S+A′,π(V

′;W ) = Wϕ,S+A′,π(V ;W )

by Remark 11.11 and Corollary 11.19 (1). In particular,

W♯
ϕ,S+A′,π(V ;W ) = Wϕ,S+A′,π(V ;W )

is a rational polytope since W♯
ϕ,A′,π(V

′
S;W ) = Wϕ,A′,π(V

′
S;W ) is a rational polytope by

Corollary 11.19 (1).

13. Minimal model program with scaling

In this section, we will explain the minimal model program with scaling. It is very
important for various geometric applications.
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13.1 (Minimal model program with scaling). Let π : X → Y be a projective morphism
of complex analytic spaces and let W be a compact subset of Y such that π : X → Y and
W satisfies (P). Precisely speaking, X is a normal complex variety, Y is a Stein space,
and W is a Stein compact subset of Y such that Γ(W,OY ) is noetherian. Let (X,∆) be
a divisorial log terminal pair such that X is Q-factorial over W and let C be an effective
R-Cartier R-divisor on X such that (X,∆+C) is log canonical and that KX +∆+C is
nef over W . We assume that one of the following conditions hold.

(i) ∆ = S + A + B, S = ⌊∆⌋, A ≥ 0 is π-big, B+(A/Y ) does not contain any
non-kawamata log terminal centers of (X,∆), and B ≥ 0.

(ii) C is π-big and B+(C/Y ) does not contain any non-kawamata log terminal centers
of (X,∆).

We recall the following elementary fact for the reader’s convenience.

Remark 13.2. Assume that (X,∆) and (X,∆ + C) are both log canonical and that C
is effective. Then V is a non-kawamata log terminal center of (X,∆) if and only if V is a
non-kawamata log terminal center of (X,∆+ εC) for every 0 < ε < 1.

Although we have already treated more general lemmas, we explicitly state an easy
lemma for the sake of completeness.

Lemma 13.3. Suppose that (i) holds true. Then, after shrinking Y around W suitably,
we can find ∆′ such that KX + ∆ ∼R KX + ∆′, ∆′ = A′ + B′, A′ ≥ 0 is a π-ample
Q-divisor, B′ ≥ 0, and (X,∆′) is kawamata log terminal. Suppose that (ii) holds true.
Then, after shrinking Y around W suitably, for any 0 < ε < 1, there exists ∆′ such that
KX + ∆ + εC ∼R KX + ∆′, ∆′ = A′ + B′, A′ ≥ 0 is a π-ample Q-divisor, B′ ≥ 0, and
(X,∆′) is kawamata log terminal.

Proof. Throughout this proof, we will freely shrink Y around W without mentioning it
explicitly. We assume that (i) holds. By the assumption on B+(A/Y ), we can write
A ∼R A1 + A2 such that A1 is a π-ample Q-divisor on X and A2 does not contain any
non-kawamata log terminal centers of (X,∆). Then KX + S +A+B ∼R KX + S +B +
(1−α)A+αA2+αA1 such that (X,S+B+(1−α)A+αA2) is divisorial log terminal for
some positive rational number α with 0 < α ≪ 1. By replacing A and B with αA1 and
B + (1 − α)A + αA2, respectively, we may assume that A itself is a π-ample Q-divisor.
Since βS + 1

2
A is π-ample for some rational number β with 0 < β ≪ 1, we can take

A3 ∼Q βS + 1
2
A such that KX + (1− β)S + 1

2
A+B +A3 is kawamata log terminal. If we

put A′ = 1
2
A and B′ = (1− β)S + 1

2
A + B + A3, then ∆′ = A′ + B′ satisfies the desired

properties. From now on, we assume that (ii) holds. We note that V is a non-kawamata
log terminal center of (X,∆) if and only if V is a non-kawamata log terminal center of
(X,∆+ εC) for 0 < ε < 1. Therefore, we can apply the above argument to ∆+ εC. Thus
we have a desired divisor ∆′ on X. □

We put

λ := inf{µ ∈ R≥0 |KX +∆+ µC is nef over W}.
If λ = 0, equivalently, KX + ∆ is nef over W , then we stop. In this case, (X,∆) itself
is a log terminal model of (X,∆) over W . If further (i) holds true, then (X,∆) is a
log terminal model of (X,∆) over some open neighborhood of W by Theorem 8.3 (see
also Lemma 11.16). Moreover, it is a good log terminal model of (X,∆) over some open
neighborhood of W .
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Lemma 13.4. If λ > 0 holds, then there exists a (KX + ∆)-negative extremal ray R of
NE(X/Y ;W ) such that (KX +∆+ λC) ·R = 0.

Proof. If (i) holds, then there are only finitely many (KX +∆)-negative extremal rays by
Theorems 7.2 and 7.3. Hence it is not difficult to find a desired extremal ray R. If (ii)
holds, then we consider KX +∆+ εC for 0 < ε≪ 1. By Lemma 13.3, after shrinking Y
aroundW suitably, KX+∆+εC ∼R KX+∆′ such that (X,∆′) is kawamata log terminal,
∆′ = A′ + B′, A′ ≥ 0 is a π-ample Q-divisor, and B′ ≥ 0. Hence, by Theorem 7.3, there
are only finitely many (KX +∆ + εC)-negative extremal rays. Thus, we can easily take
a desired extremal ray R. □
From now on, we assume that λ > 0 holds. Let φ : X → Z be the extremal contraction

over Y defined by R (see Theorems 7.2 and 7.3). We note that in general the contraction
morphism φ : X → Z over Y exists only after shrinking Y around W suitably. If φ is not
birational, then we have a Mori fiber space over Y (see Definition 11.7) and we stop.

Lemma 13.5. Assume that Theorem Gn holds true.
Let φ : X → Z be a flipping contraction associated to a (KX+∆)-negative extremal ray

R of NE(X/Y ;W ) with dimX = n. Then the flip φ+ : X+ → Z exists.

Proof. For the details, see Theorem 17.9 and its proof. □
If φ is birational, then either φ is divisorial and we replace X by Z or φ is small, that

is, flipping, and we replace X by the flip X+ (see Lemmas 11.21 and 11.22). In either
case, KX +∆+ λC is nef over W and KX +∆ is divisorial log terminal. Hence we may
repeat the process under the assumption that Theorem Gn holds true for n = dimX. In
this way, we obtain a sequence of flips and divisorial contractions starting from X0 := X:

X0

ϕ099K X1

ϕ199K · · ·
ϕi−199K Xi

ϕi99K Xi+1

ϕi+199K · · · ,
and a real numbers

1 ≥ λ =: λ0 ≥ λ1 ≥ · · ·
such that KXi

+∆i + λiCi is nef over W , where ∆i := (ϕi−1)∗∆i−1 and Ci := (ϕi−1)∗Ci−1

for every i ≥ 1. We note that each step ϕi exists only after shrinking Y around W
suitably. We can easily check that each step of this minimal model program preserves the
conditions (i) and (ii) by the negativity lemma (see, for example, Lemmas 11.21, 11.22
and [BCHM, Lemma 3.10.11]). The above minimal model program is usually called the
minimal model program with scaling over Y around W . We sometimes simply say that
it is a (KX + ∆)-minimal model program with scaling. If (i) holds true and B+(A/Y )
does not contain any non-kawamata log terminal centers of (X,∆+C), then this minimal
model program always terminates after finitely many steps under the assumption that
Theorem E holds true.

Theorem 13.6. Assume that Theorem Gn and Theorem En hold true, where n = dimX.
Suppose that (i) holds. We further assume that B+(A/Y ) does not contain any non-

kawamata log terminal centers of (X,∆ + C). Then the minimal model program with
scaling explained above always terminates after finitely many steps.

Proof. By the proof of Lemma 13.3, we may assume that ∆ = A+B, A ≥ 0 is a π-ample
Q-divisor, B ≥ 0, (X,∆) is kawamata log terminal, and (X,∆+C) is still log canonical.
By construction, after shrinking Y around W suitably, (Xi,∆i + λiCi) is a weak log
canonical model of (X,∆+ λiC) over W for every i. By Theorem En and the negativity
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lemma (see [BCHM, Lemma 3.10.12]), we know that there are no infinite sequences of
flips and divisorial contractions. This is what we wanted. □
If C is π-ample, then we can run a minimal model program with scaling of C by (ii). We

conjecture that the minimal model program with scaling always terminates after finitely
many steps. Unfortunately, however, this conjecture is still widely open. The following
easy lemma is useful for some geometric applications (see [Fu4]).

Lemma 13.7. Assume that Theorem Gn and Theorem En hold true, where n = dimX.
Let π : X → Y be a projective morphism of complex analytic spaces and let W be a

compact subset of Y such that π : X → Y and W satisfies (P). Let (X,∆) be a divisorial
log terminal pair such that X is Q-factorial over W and let C ≥ 0 be a π-ample R-divisor
on X such that (X,∆ + C) is log canonical and that KX + ∆ + C is nef over W . We
consider a (KX+∆)-minimal model program with scaling of C over Y around W starting
from (X0,∆0) := (X,∆):

X0

ϕ099K X1

ϕ199K · · ·
ϕi−199K Xi

ϕi99K Xi+1

ϕi+199K · · · ,
with

1 ≥ λ =: λ0 ≥ λ1 ≥ · · ·
such that KXi

+ ∆i + λiCi is nef over W , ∆i := (ϕi−1)∗∆i−1, and Ci := (ϕi−1)∗Ci−1 for
every i ≥ 1. We further assume that KX +∆ is π-pseudo-effective. Then there exists i0
such that KXi0

+∆i0 ∈ Mov(Xi0/Y ;W ).

Proof. If the minimal model program terminates after finitely many steps, then Ki0 +∆i0

is nef overW for some i0 sinceKX+∆ is π-pseudo-effective. This means thatKXi0
+∆i0 ∈

Mov(Xi0/Y ;W ).
From now on, we assume that the minimal model program does not terminate. We put

λ∞ := limi→∞ λi ≥ 0. If λ∞ > 0, then the given minimal model program can be seen as a
(KX+∆+ λ∞

2
C)-minimal model program with scaling of C. Without loss of generality, we

may assume that C does not contain any non-kawamata log terminal centers of (X,∆+C)
since C is π-ample. Hence, by Theorem 13.6, it must terminate. This is a contradiction.
Therefore, we may assume that λ∞ = 0. By replacing (X,∆) with (Xi0 ,∆i0) for some
i0, we may further assume that every step of the (KX +∆)-minimal model program is a
flip. Let Gi be a Q-divisor on Xi such that Gi is ample over Y . We assume that GiX → 0
in N1(X/Y ;W ) for i → ∞, where GiX is the strict transform of Gi on X. We note
that KXi

+∆i+λiCi+Gi is ample over some open neighborhood of W for every i. Since
X 99K Xi is an isomorphism in codimension one, the strict transform KX+∆+λiC+GiX

is in Mov(X/Y ;W ) for every i. By taking i → ∞, we obtain KX +∆ ∈ Mov(X/Y ;W ).
This is what we wanted. □
Anyway, if Theorem Gn and Theorem En hold true, then we can run the minimal model

program with scaling explained in this section in dimension n, although we do not know
whether it terminates or not.

14. Nonvanishing theorem; Dn

One of the most difficult results in [BCHM] is the nonvanishing theorem (see [BCHM,
Theorem D]). Fortunately, we can generalize it for projective morphisms of complex va-
rieties without any difficulties. For a completely different approach to the nonvanishing
theorem (see [BCHM, Theorem D]), see [BP, Section 3] and [CKP, Theorem 0.1 and
Corollary 3.3].
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Theorem 14.1 (Nonvanishing theorem, [BCHM, Theorem D]). Let (X,∆) be a kawamata
log terminal pair and let π : X → Y be a projective morphism of complex varieties such
that Y is Stein. Assume that ∆ is big over Y and that KX + ∆ is pseudo-effective over
Y . Let U be any relatively compact Stein open subset of Y . Then there exists a globally
R-Cartier R-divisor D on π−1(U) such that (KX +∆)|π−1(U) ∼R D ≥ 0.

Proof. By Lemma 2.37 , (KX+∆)|π−1(U) is a globally R-Cartier R-divisor on π−1(U). We
take an analytically sufficiently general fiber F of π : X → Y . Then (F,∆|F ) is kawamata
log terminal, (KX + ∆)|F = KF + ∆|F , ∆|F is big, and KF + ∆|F is pseudo-effective.
Hence, by the nonvanishing theorem for projective varieties (see [BCHM, Theorem D]),
there exists an effective R-divisorD′ on F such thatKF+∆|F ∼R D

′ ≥ 0. By Lemma 2.53,
we can find a globally R-Cartier R-divisor D on π−1(U) with (KX +∆)|π−1(U) ∼R D ≥ 0.
This is what we wanted. □

Remark 14.2. In [BCHM, Section 6], Birkar, Cascini, Hacon, and McKernan proved
[BCHM, Theorem Dn] by using [BCHM, Theorems Bn, Cn, and Dn−1].

We close this section with a very important conjecture.

Conjecture 14.3 (Nonvanishing conjecture). Let X be a smooth projective variety such
that KX is pseudo-effective. Then there exists a positive integer m such that

H0(X,OX(mKX)) ̸= 0.

For the details of Conjecture 14.3, see [Has]. Note that if Conjecture 14.3 holds true then
the existence problem of minimal models for projective log canonical pairs is completely
solved (see [Has]).

15. Existence of analytic pl-flips; Fn−1 ⇒ An

In this section, we will see that [HacM] works with some minor modifications for pro-
jective morphisms between complex analytic spaces.

Let us start with the definition of analytic pl-flipping contractions.

Definition 15.1 (Analytic pl-flipping contractions). Let (X,∆) be a purely log terminal
pair and let φ : X → Z be a projective morphism of complex varieties. Then φ is called
an analytic pl-flipping contraction if ∆ is a Q-divisor and

(i) φ is small,
(ii) −(KX +∆) is φ-ample,
(iii) S = ⌊∆⌋ is irreducible and −S is φ-ample, and
(iv) a(KX +∆) ∼ bS holds for some positive integers a and b.

Remark 15.2. Here, we replaced the condition that the relative Picard number is one in
the usual definition of pl-flipping contractions for algebraic varieties with (iv) in Definition
15.1. This is because the definition of relative Picard numbers is not so clear in the setting
of Definition 15.1. Moreover, (iv) is sufficient for the proof of the existence of pl-flips.

We can define analytic pl-flips.

Definition 15.3 (Analytic pl-flip). Let φ : (X,∆) → Z be an analytic pl-flipping con-
traction as in Definition 15.1. The flip of φ : (X,∆) → Z is a small projective morphism
φ+ : X+ → Z from a normal complex variety X+ such that KX+ + ∆+ is φ+-ample,
where ∆+ is the strict transform of ∆. This flip is sometimes called the (analytic) pl-flip
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of φ : (X,∆) → Z. It is not difficult to see that the existence of φ+ : (X+,∆+) → Z is
equivalent to the condition that⊕

m∈N

φ∗OX(⌊m(KX +∆)⌋)

is a locally finitely generated graded OZ-algebra. The flip φ+ of φ is nothing but

X+ = ProjanZ
⊕
m∈N

φ∗OX(⌊m(KX +∆)⌋) → Z.

We prepare an easy but important lemma.

Lemma 15.4. Let φ : (X,∆) → Z be an analytic pl-flipping contraction as in Definition
15.1. We put T := φ(S). Then T is normal and φ : S → T has connected fibers, that is,

OT
∼−→ φ∗OS holds. Hence, for any open subset U of Z such that T |U is connected, T |U

and S|φ−1(U) are normal irreducible varieties.

Proof. In this proof, we do not need (iv) in Definition 15.1. We will only use (i), (ii),
and (iii). We note that φ is bimeromorphic by (i). We consider the following short exact
sequence

0 → OX(−S) → OX → OS → 0.

Since−S−(KX+∆) is φ-ample and (X,∆) is purely log terminal, we obtainR1φ∗OX(−S) =
0. This implies that

0 → OY (−T ) = φ∗OX(−S) → OY → φ∗OS → 0

is exact. Hence we get OT
∼−→ φ∗OS. Therefore, T is normal and φ : S → T has

connected fibers. Note that every normal complex variety is locally irreducible. Thus,
T |U is a normal irreducible complex variety. So, S|φ−1(U) is also a normal irreducible
variety. □
15.5 (Theorem Fn−1 ⇒ Theorem An). From now on, let us see how to modify some
arguments in [HacM].

Step 1 (see [HacM, Section 3]). Let φ : (X,∆) → Z be an analytic pl-flipping contraction
with dimX = n. In order to prove the existence of the flip of φ, it is sufficient to check
that ⊕

m∈N

φ∗OX(⌊m(KX +∆)⌋)

is a locally finitely generated graded OZ-algebra. Therefore, we take an arbitrary point
z ∈ Z and assume that Z is a Stein open neighborhood of z by shrinking Z (see Lemma
15.4). We can always take a Stein compact subsetW of Z containing z such that Γ(W,OZ)
is noetherian.

The preliminary results in [HacM, Section 3] hold with some minor modifications with
the aid of Lemma 2.26 . Hence, the existence problem of the flip φ+ can be reduced to
the condition that the restricted algebra is a finitely generated graded Oφ(S)-algebra.

Step 2 (see [HacM, Section 4]). As in Step 1, we consider a projective morphism π : X →
Z of normal complex varieties such that Z is Stein and that there exists a Stein compact
subset W of Z such that Γ(W,OZ) is noetherian. We take a relatively compact Stein
open neighborhood U of W in Z. Then every argument in [HacM, Section 4] works
in a neighborhood of π : π−1(U) → U . This means that we can define multiplier ideal
sheaves (see [HacM, Definition-Lemma 4.2]) and check the basic properties. Then we
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can establish [HacM, Theorem 4.1] for π : π−1(U) → U . All we need here are a relative
Kawamata–Viehweg vanishing theorem and a suitable resolution theorem for complex
analytic spaces.

Step 3 (see [HacM, Section 5]). Let us see [HacM, Section 5]. As in Step 2, we work over a
neighborhood of π : π−1(U) → U . Then we can define asymptotic multiplier ideal sheaves
(see [HacM, Definition-Lemma 5.2]) with the aid of Lemma 2.17. Thus, we can establish
[HacM, Theorem 5.3], which is the main result of [HacM, Section 5], for π : π−1(U) → U .
We note that the topics in [HacM, Sections 4 and 5] are independent of the theory of
minimal models.

Step 4 (see [HacM, Section 6]). The main result of [HacM, Section 6], which is [HacM,
Theorem 6.3], is a consequence of [HacM, Theorems 4.1 and 5.3]. Therefore, we can
formulate and prove it for π−1(U) → U without any difficulties, where U is a sufficiently
small relatively compact Stein open neighborhood of a given Stein compact subset W of
Z with z ∈ W . We note that we do need the assumption that Γ(W,OZ) is noetherian in
Steps 2, 3, and 4.

Step 5 (see [HacM, Section 7]). We can formulate [HacM, Theorem 7.1] in a neighborhood
of π−1(W ) → W . By taking a Stein open neighborhood U of W suitably, we can use
Theorem Fn−1 and the results in the previous sections for π−1(U) → U . In this step, we
need the assumption that Γ(W,OZ) is noetherian in order to apply Theorem Fn.

Step 6 (see [HacM, Section 8]). Note that [HacM, Section 8] is an easy consequence of
[HacM, Section 7]. Therefore, we need no new ideas. Hence we obtain that⊕

m∈N

φ∗OX(⌊m(KX +∆)⌋)

is a locally finitely generated graded OZ-algebra for every n-dimensional analytic pl-
flipping contraction φ : (X,∆) → Z under the assumption that Theorem Fn−1 holds.

Anyway, we have understood that Theorem Fn−1 implies Theorem An, that is, the
existence of analytic pl-flips in dimension n follows from Theorem Fn−1. This is a very
important step of the whole proof of the main theorem (see Theorems 1.6 and 1.13).

16. Special finiteness; En−1 ⇒ Bn

This section corresponds to [BCHM, Section 4]. We will check that the arguments in
[BCHM, Section 4] can work with some minor obvious modifications. We do not need no
new ideas here.

16.1 (Theorem En−1 ⇒ Theorem Bn). Let us see [BCHM, Section 4] and make some
comments.

Step 1. In [BCHM, Lemmas 4.1, 4.2, and 4.3], some elementary results are prepared.
Although they are formulated for quasi-projective varieties, there are no difficulties to
translate them into our complex analytic setting. Of course, we are interested in the
situation where π : X → Y is a projective morphism of complex analytic spaces and W is
a compact subset of Y such that π : X → Y and W satisfies (P) and consider everything
over some Stein open neighborhood of W .

We make an important remark for the reader’s convenience.
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Remark 16.2. When we formulate [BCHM, Lemma 4.1] for our complex analytic setting,
there are no differences between the notion of weak log canonical models over W and that
of weak log canonical models over some open neighborhood of W by Theorem 8.3.

Step 2. The main result in [BCHM, Section 4] is [BCHM, Lemma 4.4], where we prove
Theorem Bn under the assumption that Theorem En−1 holds. We note that we can use
Lemma 11.14 instead of [BCHM, Lemma 3.7.4]. In the proof of [BCHM, Lemma 4.4], Yi is
Q-factorial for every i by assumption. In our complex analytic setting, the corresponding
condition becomes the one that Zi is Q-factorial over W for every i. Therefore, (i) in
Lemma 12.3 is satisfied. Thus, we can use Lemma 12.3 instead of [BCHM, Lemma 3.6.12]
and check that the arguments in the proof of [BCHM, Lemma 4.4] can be adapted for our
complex analytic setting.

Hence we see that Theorem En−1 implies Theorem Bn.

We close this section with a remark.

Remark 16.3. Theorem B is not in the first version of [BCHM] circulated in 2006, where
the special termination, which is a more traditional approach originally due to Shokurov,
is used. In [HacK], Hacon adopts the special termination instead of the special finiteness.
For the details, see [HacK, 8.A Special termination] (see also [Fu3]).

17. Existence of log terminal models; An and Bn ⇒ Gn

This section corresponds to [BCHM, Section 5]. This part is not difficult once we know
the existence of analytic pl-flips (see Theorem A) and the special finiteness (see Theorem
B). Precisely speaking, we prove Theorem Gn, which is a slight generalization of Theorem
Cn, under the assumption that Theorem An and Theorem Bn hold true.

17.1 (Theorem An and Theorem Bn ⇒ Theorem Gn). Note that [BCHM, Lemmas 5.1,
5.2, 5.4, 5.5, and 5.6] hold true for our complex analytic setting with only minor suitable
modifications. Since [BCHM, Section 5] is easily accessible for everyone who studies the
minimal model program, there are no difficulties to translate it into our complex analytic
setting.

The first lemma is an easy consequence of Theorem Bn.

Lemma 17.2 (see [BCHM, Lemma 5.1]). Assume that Theorem Bn holds true.
Let π : X → Y be a projective morphism between complex analytic spaces with

π : X
g // Y ♭ h // Y

such that Y ♭ is projective over Y and let W be a compact subset of Y such that π : X → Y
andW satisfies (P). Let H be a general h-ample Q-divisor on Y ♭ satisfying H ·ℓ > 2 dimX
for every projective curve ℓ such that h(ℓ) is a point. Suppose that X is Q-factorial over
W with dimX = n,

KX +∆+ C = KX + S + A+B + C

is nef over W and is divisorial log terminal with A ≥ 0, B ≥ 0, and C ≥ 0, where S
is a finite sum of prime divisors, and B+(A/Y ) does not contain any non-kawamata log
terminal centers of (X,∆+C). Then any sequence of flips and divisorial contractions for
the (KX + ∆ + g∗H)-minimal model program with scaling over Y around W which does
not contract S, is eventually disjoint from S.



66 OSAMU FUJINO

Proof. Although we made the formulation suitable for our complex analytic setting, the
proof of [BCHM, Lemma 5.1] works. The desired statement is an almost direct conse-
quence of Theorem Bn. For the details, see the proof of [BCHM, Lemma 5.1]. □

We note that the (KX +∆+ g∗H)-minimal model program over Y in Lemma 17.2 can
be seen as a (KX +∆)-minimal model program over Y ♭ by Lemma 9.4.

Lemma 17.3 (see [BCHM, Lemma 5.2]). Assume that Theorem An and Theorem Bn
hold true.

Let π : X → Y be a projective morphism between complex analytic spaces with

π : X
g // Y ♭ h // Y

such that Y ♭ is projective over Y and let W be a compact subset of Y such that π : X → Y
andW satisfies (P). Let H be a general h-ample Q-divisor on Y ♭ satisfying H ·ℓ > 2 dimX
for every projective curve ℓ such that h(ℓ) is a point. Suppose that X is Q-factorial over
W with dimX = n, (X,∆ + C = S + A + B + C) is a divisorial log terminal pair such
that ⌊∆⌋ = S, A ≥ 0 is big over Y , B+(A/Y ) does not contain any non-kawamata log
terminal centers of (X,∆+C) with B ≥ 0 and C ≥ 0. Suppose that there is an R-divisor
D ≥ 0 whose support is contained in S and a real number α ≥ 0 such that

KX +∆+ g∗H ∼R D + αC.

If KX +∆+ C is nef over W , then, after shrinking Y around W suitably, there is a log
terminal model ϕ : X 99K Z for KX +∆+ g∗H over W , where ϕ is a bimeromorphic con-
traction over Y ♭, such that B+(ϕ∗A/Y ) does not contain any non-kawamata log terminal
centers of (Z,Γ := ϕ∗∆).

Proof. We can run the (KX + ∆ + g∗H)-minimal model program over Y around W ex-
plained in Section 13. As usual, we put

λ := inf{t ∈ R≥0 |KX +∆+ g∗H + tC is nef over W}.

If λ = 0, there is nothing to do. Otherwise, we can find a (KX+∆+g∗H)-negative extremal
ray R of NE(X/Y ;W ) such that (KX + ∆ + g∗H + λC) · R = 0. Let φR : X → W be
the contraction morphism over Y associated to R. By Theorem 9.3, φR is a contraction
morphism over Y ♭. Since λ > 0, C · R > 0. Hence we have D · R < 0. In particular,
φR is always birational. When φR is divisorial, we can replace everything with its image.
When φR is small, we can see it as an analytic pl-flipping contraction because D · R < 0
and SuppD ⊂ S = ⌊∆⌋. Therefore, by Theorem An, we know that the flip φ+

R : X
+ → Z

exists. In this case, we replace X with X+. Note that we have to replace Y with
a relatively compact Stein open neighborhood of W in each step. Then the condition
B+(A/Y ) does not contain any non-kawamata log terminal centers of (X,∆) is preserved
by Lemmas 11.21 and 11.22. By construction, this minimal model program is not an
isomorphism in a neighborhood of S. Hence it terminates by Lemma 17.2 and Theorem
Bn. Thus, we finally get a log terminal model ϕ : X 99K Z. By Lemma 9.4, the above
minimal model program can be seen as a (KX + ∆)-minimal model program over Y ♭.
Therefore, the bimeromorphic contraction ϕ : X 99K Z is a bimeromorphic contraction
over Y ♭. □

We need the notion of neutral models in our complex analytic setting.
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Definition 17.4 (see [BCHM, Definition 5.3]). Let π : X → Y be a projective morphism
between complex analytic spaces with

π : X
g // Y ♭ h // Y

such that Y ♭ is projective over Y and letW be a compact subset of Y such that π : X → Y
andW satisfies (P). Let H be a general h-ample Q-divisor on Y ♭ satisfying H ·ℓ > 2 dimX
for every projective curve ℓ such that h(ℓ) is a point. Let (X,∆ = A+B) be a divisorial
log terminal pair with A ≥ 0 and B ≥ 0 such that X is Q-factorial over W and let D be
an effective R-divisor on X. A neutral model over Y ♭ for (X,∆+ g∗H) with respect to A
and D is any bimeromorphic map f : X 99K Z over Y ♭ such that

• f is a bimeromorphic contraction,
• the only divisors contracted by f are components of D,
• Z is Q-factorial over W and is projective over Y ,
• B+(f∗A/Y ) does not contain any non-kawamata log terminal centers of (Z,Γ :=
f∗∆), and

• KZ + Γ + g∗ZH is divisorial log terminal and is nef over W , where gZ : Z → Y ♭ is
the structure morphism.

Lemma 17.5 (see [BCHM, Lemma 5.4]). Assume that Theorem An and Theorem Bn
hold true.

Let π : X → Y be a projective morphism between complex analytic spaces with

π : X
g // Y ♭ h // Y

such that Y ♭ is projective over Y and let W be a compact subset of Y such that π : X → Y
andW satisfies (P). Let H be a general h-ample Q-divisor on Y ♭ satisfying H ·ℓ > 2 dimX
for every projective curve ℓ such that h(ℓ) is a point. Let (X,∆ = A+B) be a divisorial
log terminal pair and let D be an R-divisor, where A ≥ 0 is big over Y , B ≥ 0, D ≥ 0,
and D and A have no common components. If

(1) KX +∆+ g∗H ∼ D,
(2) X is smooth and G is a simple normal crossing divisor on X such that Supp(∆+

D) = G, and
(3) B+(A/Y ) does not contain any non-kawamata log terminal centers of (X,G),

then, after shrinking Y around W suitably, (X,∆ + g∗H) has a neutral model over Y ♭

with respect to A and D.

Proof. Although our formulation is slightly different from [BCHM, Lemma 5.4], the proof
of [BCHM, Lemma 5.4] works by using Lemma 17.3 instead of [BCHM, Lemma 5.2]. We
note that we have to shrink Y around W in each step of the proof. For the details, see
the proof of [BCHM, Lemma 5.4]. □
Lemma 17.6 (see [BCHM, Lemma 5.5]). Let π : X → Y be a projective morphism between
complex analytic spaces with

π : X
g // Y ♭ h // Y

such that Y ♭ is projective over Y and let W be a compact subset of Y such that π : X → Y
andW satisfies (P). Let H be a general h-ample Q-divisor on Y ♭ satisfying H ·ℓ > 2 dimX
for every projective curve ℓ such that h(ℓ) is a point. Let (X,∆ = A+B) be a divisorial
log terminal pair such that X is Q-factorial over W and let D be an R-divisor, where
A ≥ 0 is big over Y , B ≥ 0, and D ≥ 0. If every component of D is either semiample
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over Y or a stable base divisor of KX + ∆ + g∗H near W and f : X 99K Z is a neutral
model over Y ♭ for (X,∆+ g∗H) with respect to A and D, then f is a log terminal model
over U for some open neighborhood U of W . Moreover, KZ +Γ+ g∗ZH is semiample over
U , where Γ := f∗∆ and gZ : Z → Y ♭ is the structure morphism.

Proof. The proof of [BCHM, Lemma 5.5] works with only some minor modifications. In
the proof of this lemma, we have to shrink Y around W repeatedly. We note that KZ +Γ
is nef over h−1(W ) if and only if KZ + Γ + g∗ZH is nef over W . We also note that
KZ + Γ + g∗ZH is semiample over some open neighborhood of W when KZ + Γ + g∗ZH is
nef over W . For the details, see the proof of [BCHM, Lemma 5.5]. □

By using the above lemmas, there are no difficulties to prove Theorem Gn under the
assumption that Theorem An and Theorem Bn hold true.

Lemma 17.7 (see [BCHM, Lemma 5.6]). Theorem An and Theorem Bn imply Theorem
Gn.

Proof. The proof of [BCHM, Lemma 5.6] works in our setting by using Lemmas 17.5 and
17.6 instead of [BCHM, Lemmas 5.4 and 5.5]. We note that we can use Lemma 10.9
instead of [BCHM, Proposition 3.5.4]. As usual, we have to replace Y with a relatively
compact Stein open neighborhood of W finitely many times in the proof of this lemma.
For the details, see the proof of [BCHM, Lemma 5.6]. □

Finally, we explicitly state the following obvious result for the sake of completeness.

Lemma 17.8. Theorem Gn implies Theorem Cn for every n.

Proof. It is sufficient to put Y ♭ = Y and apply Theorem Gn. □
Anyway, we see that Theorem Gn and Theorem Cn hold under the assumption that

Theorem An and Theorem Bn are true.

We need the existence theorem of Q-factorial divisorial log terminal flips, which is an
easy consequence of Theorem G, in order to run minimal model programs.

Theorem 17.9 (Existence of Q-factorial divisorial log terminal flips). Assume that The-
orem Gn holds true.

Let π : X → Y be a projective morphism of complex analytic spaces with dimX = n
and let W be a compact subset of Y such that π : X → Y and W satisfies (P). We
further assume that (X,∆) is divisorial log terminal and that X is Q-factorial over W .
Let φ : X → Z be a small projective bimeromorphic contraction morphism associated
to a (KX + ∆)-negative extremal ray R of NE(X/Y ;W ), that is, φ : (X,∆) → Z is a
flipping contraction associated to R. Then, after shrinking Y around W suitably, the flip
φ+ : X+ → Z always exists.

X

φ
��@

@@
@@

@@
@

ϕ //_______ X+

φ+
}}||
||
||
||

Z

This means that

(1) φ+ : X+ → Z is a small projective bimeromorphic contraction morphism, and
(2) KX+ +∆+ is φ+-ample, where ∆+ := ϕ∗∆.

Moreover, (X+,∆+) is divisorial log terminal, X+ is Q-factorial over W , and the equality
ρ(X+/Y ;W ) = ρ(X/Y ;W ) holds.
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Proof. We will freely shrink Y around W . We note that (X, (1 − ε)∆) is kawamata log
terminal and −(KX + (1 − ε)∆) is φ-ample for some 0 < ε ≪ 1. We take a general
πZ-ample Q-divisor A on Z, where πZ : Z → Y is the structure morphism, such that
(X, (1− ε)∆ + φ∗A) is kawamata log terminal and KX + (1− ε)∆ + φ∗A ∼R D ≥ 0. By
Theorem Gn, (X, (1 − ε)∆) has a good log terminal model over Z. Hence φ : (X, (1 −
ε)∆) → Z has a flip ϕ : X 99K X+. We can easily see that φ+ : (X+,∆+) → Z is the flip
of φ : (X,∆) → Z and satisfies all the desired properties. □
We close this section with an almost obvious remark, which may be useful for some

applications.

Remark 17.10. In Theorem 17.9, (X,∆) is assumed to be a divisorial log terminal pair.
There are no difficulties to see that the existence of flips (see Theorem 17.9) also holds
true under a slightly weaker assumption that (X,∆) is log canonical and that there exists
∆0 such that (X,∆0) is kawamata log terminal.

18. Finiteness of models; Gn ⇒ En

This section corresponds to [BCHM, Section 7], where Theorem En is proved under the
assumption that Theorem Cn and Theorem Dn hold true. In our complex analytic setting,
in Section 14, we have already checked that the nonvanishing theorem (see Theorem D)
holds true in any dimension by reducing it to the original nonvanishing theorem formulated
for algebraic varieties (see [BCHM, Theorem D]). Therefore, we can freely use Theorem
D here. In this section, we will use Theorem Gn, which is slightly stronger than Theorem
Cn, for the proof of Theorem En.

18.1 (Theorem Gn ⇒ Theorem En). Let us see [BCHM, Section 7] in detail.

Step 1. The proof of [BCHM, Lemma 7.1] is well known and can work for our complex
analytic setting. Note that it is sufficient to assume that Theorem Gn holds true since
we can freely use Theorem D in arbitrary dimension as mentioned above. The correct
formulation of [BCHM, Lemma 7.1] for our complex analytic setting is as follows.

Lemma 18.2 (see [BCHM, Lemma 7.1]). Assume that Theorem Gn holds.
Let π : X → Y be a projective morphism of complex analytic spaces with dimX = n

and let W be a compact subset of Y such that π : X → Y and W satisfies (P). Let V be a
finite-dimensional affine subspace of WDivR(X), which is defined over the rationals. Fix
a general π-ample Q-divisor A on X. Let C ⊂ LA(V ; π−1(W )) be a rational polytope such
that if ∆ ∈ C then (X,∆) is kawamata log terminal at π−1(W ).

Then, after shrinking Y around W suitably, there are finitely many bimeromorphic
maps ϕi : X 99K Zi over Y , 1 ≤ i ≤ k, with the property that if ∆ ∈ C ∩ EA,π(V ;W ), then
there exists an index 1 ≤ i ≤ k such that ϕi is a log terminal model of KX +∆ over some
open neighborhood of W .

Proof. We have already proved Theorem D in any dimension. We can use Lemma 11.14
instead of [BCHM, Lemma 3.7.4]. Therefore, by using Theorem Gn instead of [BCHM,
Theorem Cn], we see that the proof of [BCHM, Lemma 7.1] works in our complex analytic
setting. Precisely speaking, we formulate Theorem Gn in order to make the proof of
[BCHM, Lemma 7.1] work in the complex analytic setting. For the details, see the proof
of [BCHM, Lemma 7.1]. □
Step 2. The proof of [BCHM, Lemma 7.2] uses [BCHM, Lemma 3.6.12]. In our case, we
can use Lemma 12.3 instead of [BCHM, Lemma 3.6.12]. We note that (ii) in Lemma 12.3,
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which is nothing but Theorem Gn, is satisfied by assumption. As in Step 1, it is sufficient
to assume Theorem Gn since we can freely use Theorem D in any dimension.

Lemma 18.3 ([BCHM, Lemma 7.2]). Assume that Theorem Gn holds true.
Let π : X → Y be a projective morphism of complex analytic spaces with dimX = n

and let W be a compact subset of Y such that π : X → Y and W satisfies (P). Suppose
that there is a kawamata log terminal pair (X,∆0). We fix a general π-ample Q-divisor A
on X. Let V be a finite-dimensional affine subspace of WDivR(X) which is defined over
the rationals. Let C ⊂ LA(V ; π−1(W )) be a rational polytope.

Then, after shrinking Y around W suitably, there are finitely many bimeromorphic
contractions ψj : X 99K Zj over Y , 1 ≤ j ≤ l, such that if ψ : X 99K Z is a weak log
canonical model of KX +∆ over W for some ∆ ∈ C then there exist an index 1 ≤ j ≤ l
and an isomorphism ξ : Zj → Z over some open neighborhood of W such that ψ = ξ ◦ ψj
holds.

Proof. If we use Lemma 18.2, Corollary 11.19, and Lemma 12.3 instead of [BCHM, Lemma
7.1], [BCHM, Corollary 3.11.2], and [BCHM, Lemma 3.6.12], then the proof of [BCHM,
Lemma 7.2] works in our complex analytic setting. The idea is as follows. By using
Lemma 11.14 and so on, we can reduce the problem to the case where we can use Lemma
12.3. Let ψ : X 99K Z be a weak log canonical model over W . Then we can take ∆′ such
that ψ : X 99K Z is an ample model of (X,∆′). Then, by Lemma 18.2 and Corollary
11.19, we obtain all the desired properties. For the details, see the proof of [BCHM,
Lemma 7.2]. □
Step 3. The final step is obvious.

Lemma 18.4 ([BCHM, Lemma 7.3]). Theorem Gn implies Theorem En.

Proof. We note that LA(V ; π−1(W )) is a rational polytope. Therefore, it is sufficient to
put C = LA(V ; π−1(W )) in Lemma 18.3. □

Hence we see that Theorem En holds under the assumption that Theorem Gn holds
true. This is what we wanted.

By the above arguments, we think that the reader can understand the reason why we
prepared Theorem G, Corollary 11.19, and Lemma 12.3.

19. Finite generation; Gn ⇒ Fn

This section corresponds to [BCHM, Section 8]. Note that [BCHM, Section 8] is a very
short section, which consists of only one lemma (see [BCHM, Lemma 8.1]). The proof of
Theorem Fn given below is slightly more complicated than the original algebraic version
in [BCHM, Section 8]. This is because we formulated everything only over some open
neighborhood of a given compact subset of the base space.

19.1 (Theorem Gn ⇒ Theorem Fn). Here, we will prove Theorem Fn under the assump-
tion that Theorem Gn holds true.

First, we will prove (1). In the proof of (1), we will freely shrink Y around W suitably
without mentioning it explicitly. If KX +∆ is π-pseudo-effective, then KX +∆ ∼R D ≥ 0
by Theorem D. Hence, by Theorem Gn, (X,∆) has a good log terminal model (Z,Γ) over
Y . Hence KZ +Γ is semiample over Y . We take any point y ∈ Y . By applying the above
result to π : X → Y with W := {y}. Then we see that there exits an open neighborhood
Uy of y such that (X,∆) has a good log terminal model over Uy. By this observation, we
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obtain that R(X/Y,KX +∆) is a locally finitely generated graded OY -algebra. Thus, we
get (1) in Theorem Fn.

From now on, we will prove (2). Let µ : X 99K Z be a good log terminal model for
KX+∆ over Y after shrinking Y aroundW (see Theorem Gn). Since G is a prime divisor
contained in the stable base locus of KX +∆ over Y , G is µ-exceptional. We take a small
positive real number δ such that if ||Ξ−∆|| < δ then (Z, µ∗Ξ) is kawamata log terminal and
a(G,X,Ξ) < a(G, Y, µ∗Ξ). If KX+Ξ is not π-pseudo-effective, then B((KX+Ξ)/Y ) = X.
Therefore, G ⊂ B((KX + Ξ)/Y ) is obvious. Hence we may assume that KX + Ξ is π-
pseudo-effective. We take any point y of Y . Then there exists an open neighborhood Uy
of y such that (Z, µ∗Ξ) has a good log terminal model over Uy by Theorem Gn. This
means that (X,Ξ) has a good log terminal model over Uy. Hence we can easily check that
G|π−1(Uy) ⊂ B((KX + Ξ)|π−1(Uy)/Uy). Therefore, G|π−1(Uy) ⊂ B((KX + Ξ)/Y ). Thus, we
obtain that G ⊂ B((KX + Ξ)/Y ) holds since y is any point of Y . This is (2).

Finally, we will prove (3). We take a good log terminal model µ : X 99K Z of KX +
∆ over Y after shrinking Y around W (see Theorem Gn). By Corollary 11.19 (1),

Wµ,A,π(V
′;W ) = W♯

µ,A,π(V
′;W ) is a rational polytope and ∆ ∈ Wµ,A,π(V

′;W ). Therefore,
we may assume that KZ + µ∗Ξ is nef over Y for every Ξ ∈ Wµ,A,π(V

′;W ) after shrinking
Y around W again. Hence, after shrinking Y around W suitably, there exists a positive
constant η such that if Ξ ∈ V ′ and ||Ξ−∆|| < η then (Z, µ∗Ξ) is kawamata log terminal
and KZ + µ∗Ξ is semiample over Y . By Theorem 3.12, Z has only rational singularities.
Since Z is Q-factorial over W , there is a positive integer l such that if m(KZ +µ∗Ξ) is an
integral Weil divisor then lm(KZ + µ∗Ξ) is Cartier over some open neighborhood of W
(see Lemma 2.42). By replacing Y with a small open neighborhood ofW , we may assume
that lm(KZ + µ∗Ξ) is Cartier on Z. Therefore, by Theorem 6.4, there exists r > 0 such
that rm(KZ+µ∗Ξ) is free over Y when m(KZ+µ∗Ξ) is an integral Weil divisor. It follows
that if k(KX +Ξ)/r is Cartier then every component of Fix(k(KX +Ξ)) is contracted by
µ and so every component is in B((KX +∆)/Y ). We finish the proof of (3) in Theorem
Fn.

In Section 21, we will prove Theorems 1.18 and 1.22, which are much more general than
the finite generation in Theorem F (1).

20. Proof of theorems

In this section, we will prove theorems. Note that we postpone the proof of Theorems
1.18 and 1.22 until Section 21 because it needs some deep results from the theory of
variations of Hodge structure. Theorem 1.28 will be proved in Section 22 after we explain
some supplementary results on the minimal model program with scaling. Theorem 1.30
(see Theorem 23.2) will be treated in Section 23. Note that the proof of Theorem 1.30
uses Theorem 1.18.

Let us start with the proof of Theorems 1.6 and 1.13, which is now almost obvious.

Proof of Theorems 1.6 and 1.13. As we explained in Subsection 1.2, we will prove The-
orems A, B, C, D, E, F, and G by induction on dimX. In Section 14, we established
Theorem D in arbitrary dimension. We use induction on n = dimX. When n = 0, all
the statements are trivially true. From now on, we assume that Theorems A, B, C, E, F,
G hold true when dimX ≤ n − 1. In Section 15, we proved Theorem A in dimX = n.
In Section 16, we obtained Theorem B in dimX = n. Hence we can prove Theorem G
in dimX = n by Section 17. Note that Theorem Cn is a very special case of Theorem
Gn (see Lemma 17.8). By Sections 18 and 19, we have Theorems E and F in dimX = n,
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respectively. This means that we have established Theorems A, B, C, D, E, F, and G in
arbitrary dimension. □

From now on, we can freely use Theorems A, B, C, D, E, F, and G in arbitrary dimen-
sion. Therefore, we can freely use the minimal model program with scaling explained in
Section 13.

Proof of Theorem 1.7. In this theorem, we only treat kawamata log pairs. Therefore, we
do not need any extra assumptions on non-kawamata log terminal centers. We can freely
use the minimal model program with scaling explained in Section 13. Note that the
pseudo-effectivity over Y is preserved by the minimal model program. Therefore, this
theorem is a special case of the minimal model program with scaling under the condition
(i) explained in Section 13. We also note that the termination of the minimal model
program follows from Theorem E (see the proof of Theorem 13.6). □

Theorem 1.8 is a direct generalization of [BCHM, Theorem 1.2] in the complex analytic
setting.

Proof of Theorem 1.8. Throughout this proof, we will freely shrink Y around W suitably
without mentioning it explicitly. By Theorems D and C, (X,∆) has a log terminal model
over Y . This is (1). By Lemma 11.16 (2), ϕ is a semiample model over Y . By Lemma
11.16 (3) and (4), we know that (X,∆) has a log canonical model over Y when KX +∆
is π-big. This is (2). We take an arbitrary point y ∈ Y . It is sufficient to prove (3) over
some open neighborhood of y ∈ Y . Hence we may take a Stein compact subset W of Y
such that y ∈ W and that Γ(W,OY ) is noetherian, and shrink Y and enlarge W suitably
without mentioning it explicitly (see Lemma 2.16). We take a positive integer a such that
a(KX +∆) and a(KZ + Γ) are both Cartier. Since a(KZ + Γ) is semiample over Y ,⊕

m∈N

π∗OX(ma(KX +∆)) ≃
⊕
m∈N

(πZ)∗OZ(ma(KZ + Γ)),

where πZ : Z → Y is the structure morphism, is a locally finitely generated graded OY -
algebra (see Lemma 2.36). Therefore, by Lemma 2.26 , R(X/Y,KX + ∆) is a locally
finitely generated graded OY -algebra. This is (3). □

The existence of kawamata log terminal flips is a direct consequence of Theorem 1.8
(2).

Proof of Theorem 1.14. We take a point z ∈ Z and consider a small Stein open neigh-
borhood U of z ∈ Z. Then (X+,∆+)|(φ+)−1(U) is nothing but the log canonical model of
(X,∆)|φ−1(U) over U . Therefore, after shrinking U around z suitably, it exists by Theorem
1.8 (2) and is unique. Hence the desired flip φ+ : (X+,∆+) → Z exists globally. □

The existence of canonicalizations for complex variety is new.

Proof of Theorem 1.16. We take a point x ∈ X. Over some open neighborhood U of x ∈
X, there exist a projective bimeromorphic morphism π : V → U and a log canonical model
π′ : V ′ → U of π : V → U by Theorem 1.8 (2). Note that π′ is projective bimeromorphic,
KV ′ is π′-ample, and V ′ has only canonical singularities. We can easily check that π′

is an isomorphism over a nonempty Zariski open subset where U has only canonical
singularities. We also note that π′ : V ′ → U is usually called a canonical model of V over
U and is unique. Thus, the desired model f : Z → X exists globally. □
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When KX +∆ is not pseudo-effective, we see that we can always run a minimal model
program and finally get a Mori fiber space.

Proof of Theorem 1.17. As usual, we will repeatedly shrink Y around W without men-
tioning it explicitly. We take a π-ample Q-divisor C on X such that KX +∆+ C is nef
over Y and that (X,∆+ (1 + a)C) is a divisorial log terminal pair for some positive real
number a. We run a (KX +∆)-minimal model program with scaling of C. Since KX +∆
is not pseudo-effective, KX +∆+ εC is still not pseudo-effective for some 0 < ε≪ 1. We
can see the above minimal model program as a (KX +∆+ εC)-minimal model program
with scaling of C. By Theorem 13.6, this minimal model program always terminates and
then we finally get a Mori fiber space structure over Y . This is what we wanted. □

We note that Theorems 1.19 and 1.21 for quasi-projective varieties are not treated in
[BCHM]. We also note that a key ingredient of the proof of Theorems 1.19 and 1.21 is
Lemma 13.7.

Proof of Theorem 1.19. Throughout this proof, we will freely shrink Y aroundW suitably
without mentioning it explicitly. By Lemma 2.53, there exists a globally R-Cartier R-
divisor B on X such that KX + ∆ ∼R B ≥ 0. Since (KX + ∆)|F ∼R 0, we see that
π(B) ⊊ Y holds. Hence we can write KX + ∆ ∼R π∗D + B′, where D is an R-Cartier
R-divisor on Y , B′ is an effective R-Cartier R-divisor on X such that π(B′) ⊊ Y and
that SuppB′ does not contain any fibers of π. Without loss of generality, we may assume
that π(B′) ⊊ W by shrinking Y around W suitably. We take a general π-ample Q-divisor
C ≥ 0 on X such that (X,∆ + C) is divisorial log terminal and that KX + ∆ + C is
nef over Y . Then we run a (KX +∆)-minimal model program with scaling of C over Y
around W starting from X0 := X:

X0 99K X1 99K · · · 99K Xi 99K · · · .

In this case, any divisorial contraction contracts an irreducible component of SuppB′.
By Lemma 13.7, we finally obtain (Xm,∆m) such that KXm + ∆m ∈ Mov(Xm/Y ;W ).
By Zariski’s lemma, we can check that KXm + ∆m ∼R (πm)

∗D holds. This is what we
wanted. □

In the proof of Theorem 1.21, Lemma 4.6 plays an important role.

Proof of Theorem 1.21. We will freely shrink X suitably without mentioning it explicitly.
By taking a resolution of singularities, we have a projective bimeromorphic morphism
π : Y → X from a complex variety Y such that π−1(U) is smooth and Exc(π) and Exc(π)∪
Suppπ−1

∗ ∆ are simple normal crossing divisors on π−1(U). Let E be any π-exceptional
divisor such that π(E) ∩ U ̸= ∅. Then, by enlarging V suitably, we may assume that
π(E) ∩ V ̸= ∅. By Lemma 2.16, we can take a Stein compact subset W of U such that
Γ(W,OX) is noetherian and that V ⊂ W . We write KY + ∆Y = π∗(KX + ∆). Let
∆Y =

∑
i ai∆i be the irreducible decomposition. We put

Θ =
∑

0<ai<1

ai∆i +
∑
ai≥1

∆i.

Then we have KY +Θ = π∗(KX +∆)+F such that −π∗F is effective. Let C be a general
π-ample Q-divisor on Y such that (Y,Θ+C) is divisorial log terminal and KY +Θ+C is
nef overW . We run a (KY +Θ)-minimal model program with scaling of C over X around
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W . We put (Y0,Θ0) := (Y,Θ), F0 := F , and C0 := C. Then we obtain a sequence of flips
and divisorial contractions starting from (Y0,Θ0):

(Y0,Θ0)
ϕ099K (Y1,Θ1)

ϕ199K · · ·
ϕi−199K (Yi,Θi)

ϕi99K,
where Θi+1 := (ϕi)∗Θi, Ci+1 := (ϕi)∗Ci, and Fi+1 := (ϕi)∗Fi, for every i, and a sequence
of real numbers

1 ≥ λ0 ≥ λ1 ≥ · · · ≥ λi ≥ · · · ≥ 0

such that KYi +Θi + λiCi is nef over W . By Lemma 13.7, we can prove that KYm +Θm

is in Mov(Ym/X;W ) for some m. By the negativity lemma (see Lemma 4.6), we see that
−Fm ≥ 0 over V . Hence, −Fm is effective over some open neighborhood of W . We put
Z := Ym, f : Z → X, and KZ + ∆Z = f ∗(KX + ∆). Then, (Z,∆Z) has all the desired
properties. □
We have already proved Theorem 1.24 in Section 12.

Proof of Theorem 1.24. We have already known that Theorem Gn holds true for every n.
Therefore, Theorem 1.24 is nothing but Lemma 12.1. □
By Theorem 1.24, Corollary 1.25 is almost obvious.

Proof of Corollary 1.25. We note that Z has only kawamata log terminal singularities over
some open neighborhood of W . We apply Theorem 1.24 to Z → Y and W ′. Then, after
shrinking Y aroundW ′ suitably, there exists a small projective bimeromorphic contraction
morphism Z ′ → Z such that Z ′ is projective over Y and is Q-factorial over W ′. Hence
the induced bimeromorphic contraction ϕ′ : X 99K Z ′ satisfies the desired properties. □
The argument in the proof of Theorem 1.26 is more or less well known.

Proof of Theorem 1.26. We take an arbitrary point x ∈ X. It is sufficient to prove that⊕
m∈N OX(mD) is a finitely generated graded OX-algebra on some open neighborhood

of x. By shrinking X around x and replacing D with a linearly equivalent integral Weil
divisor, we may assume that D is effective. We take a relatively compact Stein open
neighborhood U of x and a Stein compact subset W of X such that U ⊂ W and that
Γ(W,OX) is noetherian. By Theorem 1.24, after shrinking X around W , there exists a
small projective bimeromorphic morphism f : Z → X from a normal complex variety Z
such that Z is Q-factorial over W . We put KZ + ∆Z = f ∗(KX + ∆). Then (Z,∆Z) is
kawamata log terminal. Let DZ be the strict transform of D on Z. By shrinking X around
W , we may assume that DZ is Q-Cartier. We take a small rational number ε such that
(Z,∆Z+εDZ) is still kawamata log terminal. From now on, we will freely shrinkX around
W without mentioning it explicitly. We take a general f -ample Q-divisor H on Z such
that KZ+∆Z+εDZ+H is nef over W and (Z,∆Z+εDZ+H) is kawamata log terminal.
We run a (KZ+∆Z+ εDZ)-minimal model program with scaling of H over X around W .
Then we get a finite sequence of flips starting from (Z0,∆Z0 + εDZ0) := (Z,∆Z + εDZ):

Z0

ϕ099K Z1

ϕ199K · · ·
ϕi−199K Zi

ϕi99K · · ·
ϕm−199K Zm,

such that ∆Zi
:= (ϕi−1)∗∆Zi−1

and DZi
:= (ϕi−1)∗DZi−1

for every i ≥ 1 and that KZm +
∆Zm + εDZm is nef over W . Note that KZm +∆Zm = f ∗

m(KX +∆) holds by construction,
where fm : Zm → X is the structure morphism. Since fm is bimeromorphic, we can
take an effective Q-divisor B on Zm such that −B is fm-ample and that (Zm,∆Zm +
B) is kawamata log terminal. Hence, by Theorem 6.5, DZm is semiample over X. By
considering a contraction morphism Zm → Z ′ over X associated to DZm , we obtain a
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small projective bimeromorphic contraction morphism f ′ : Z ′ → X from a normal variety
Z ′ and an integral Weil divisor D′ on Z ′ such that D′ is ample over X and that f ′

∗D
′ = D

holds. Since f ′ is small, we obtain f ′
∗OZ′(mD′) = OX(mD) for every m ∈ N. Since D′

is ample over X,
⊕

m∈N f
′
∗OZ′(mD′) is a locally finitely generated graded OX-algebra by

Lemma 2.36. This means that
⊕

m∈N OX(mD) is a finitely generated graded OX-algebra
on some open neighborhood of x. This is what we wanted. □
Now there are no difficulties to prove Theorem 1.27.

Proof of Theorem 1.27. We take an open neighborhood U of W and a Stein compact
subset W ′ of Y such that U ⊂ W ′ and that Γ(W ′,OY ) is noetherian. Throughout this
proof, we will freely shrink Y suitably without mentioning it explicitly. Let A be a general
π-ample Q-divisor on X satisfying that A ·C > 2 dimX for every projective curve C on X
such that π(C) is a point. We take a resolution g : X ′ → X such that Supp g−1

∗ ∆∪Exc(g)
and Exc(g) are simple normal crossing divisors on X ′ and that π′ : X ′ → Y is projective.
We write KX′+∆X′ = g∗(KX+∆). Let ∆X′ =

∑
i ai∆

′
i be the irreducible decomposition.

We put

Θ =
∑

0<ai<1

ai∆
′
i +
∑
ai≥1

∆′
i.

Then we can write KX′ +Θ = g∗(KX +∆) + F such that −g∗F ≥ 0. We take a general
π′-ample Q-divisor H on X ′ such that KX′ + Θ + g∗A + H is nef over Y . We run a
(KX′ +Θ+ g∗A)-minimal model program over Y around W ′ with scaling of H. Then we
obtain a sequence of flips and divisorial contractions starting from (X ′,Θ0) := (X ′,Θ):

(X ′
0,Θ0)

ϕ099K (X ′
1,Θ1)

ϕ199K · · ·
ϕi−199K (X ′

i,Θi)
ϕi99K,

where Θi+1 := (ϕi)∗Θi, Hi+1 := (ϕi)∗Hi, and Fi+1 := (ϕi)∗Fi, for every i, and a sequence
of real numbers

1 ≥ λ0 ≥ λ1 ≥ · · · ≥ λi ≥ · · · ≥ 0

such that KX′
i
+ Θi + g∗iA + λiHi is nef over W ′, where gi : X

′
i → X. We note that

by Lemma 9.4 the above minimal model program can be seen as a (KX′ + Θ)-minimal
model program over X. By Lemma 13.7 and its proof, we can check that KX′

m
+ Θm

is in Mov(X ′
m/X; π−1(W ′)) for some m. By applying the negativity lemma (see Lemma

4.6) to gm : X ′
m → X, we can check that −Fm is effective on (π ◦ gm)−1(U). If Ym is not

Q-factorial over W , then we replace Ym with its small projective Q-factorialization by
Theorem 1.24. Hence we obtain a desired f : Z → X. □

21. A canonical bundle formula in the complex analytic setting

In this section, we will quickly discuss a canonical bundle formula in the complex
analytic setting and prove Theorems 1.18 and 1.22. We need some deep results from the
theory of variations of Hodge structure.

Let us start with a generalization of Kollár’s famous torsion-freeness.

Theorem 21.1 (Torsion-freeness, see [Tak]). Let π : X → Y be a proper morphism from
a Kähler manifold X onto a complex analytic space Y . Then Riπ∗ωX is torsion-free for
every i.

If Y is projective in Theorem 21.1, then X is a compact Kähler manifold. In this
case, there are no difficulties to prove Theorem 21.1. Unfortunately, however, we have
to treat the case where Y is a general noncompact complex analytic space. Hence the
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proof of Theorem 21.1 is much harder than that of Kollár’s original torsion-freeness. For
the details, see [Tak] (see also [Fu6], and [Matm]). By combining Steenbrink’s geometric
description of canonical extensions of Hodge filtrations (see [St1] and [St2]) with Theorem
21.1, we have:

Theorem 21.2 (Hodge filtrations, see [Na3, Chapter V. 3.7. Theorem (4)]). Let π : X →
Y be a proper morphism from a Kähler manifold X onto a smooth variety Y . Assume
that there exists a simple normal crossing divisor ΣY on Y such that π is smooth over
Y \ ΣY . Then Riπ∗ωX/Y is characterized as the upper canonical extension of the bottom
Hodge filtration for every i.

The proof of [Na1, Theorem 1] works in the above complex analytic setting once we
know the torsion-freeness (see Theorem 21.1). For the details of Nakayama’s argument,
we recommend the interested reader to see [Fu2, Subsection 3.1] and [FF, §7] although
they treat much more general settings than Nakayama’s.

In order to discuss a canonical bundle formula, we recall the definition of discriminant
Q-divisors.

Definition 21.3. Let f : X → Y be a proper surjective morphism from a normal variety
X onto a smooth variety Z with f∗OX ≃ OZ . Let Θ be a Q-divisor on X such that
KX + Θ is Q-Cartier and that (X,Θ) is sub kawamata log terminal over a nonempty
Zariski open subset of Z. Let P be a prime divisor on Z. We put

bP := max {t ∈ Q | (X,Θ+ tf ∗P ) is sub log canonical over general points of P} .

Then we set BZ :=
∑

P (1−bP )P , where P runs over prime divisors on Z, and call BZ the
discriminant Q-divisor of f : (X,Θ) → Z. We can easily check that BZ is a well-defined
Q-divisor on Z satisfying ⌊BZ⌋ ≤ 0. Let µ : Z ′ → Z be a projective bimeromorphic
morphism from a smooth variety Z ′. We consider the following commutative diagram:

X

f

��

X ′

f ′

��

σoo

Z Z ′,µ
oo

where X ′ is the normalization of the main component of X ×Z Z
′. We define Θ′ by

KX′+Θ′ = σ∗(KX+Θ). We call f ′ : (X ′,Θ′) → Z ′ the induced fibration of f : (X,Θ) → Z
by µ : Z ′ → Z. We can define the discriminant Q-divisor BZ′ of f ′ : (X ′,Θ′) → Z ′. By
construction, we see that σ∗BZ′ = BZ .

The following theorem is a generalization of Ambro’s result in the complex analytic
setting (see [A, Theorem 0.2]).

Theorem 21.4. Let f : X → Z be a proper morphism from a Kähler manifold X onto a
smooth complex variety Z with f∗OX ≃ OZ. Let g : Z → Y be a projective morphism to a
Stein space Y . Let Θ be a Q-divisor on X such that KX +Θ ∼Q f

∗D for some Q-Cartier
Q-divisor D on Z, SuppΘ is a simple normal crossing divisor on X, Θ = Θ<1 holds over
general points of Z, and rank f∗OX(⌈−Θ<1⌉) = 1. Let y be any point of Y . By replacing
Y with a relatively compact Stein open neighborhood of y suitably, we have a commutative
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diagram:

X

f

��

X ′

f ′

��

σoo

Z Z ′
µ

oo

with the following properties.

(1) µ : Z ′ → Z is a projective bimeromorphic morphism from a smooth variety Z ′.
(2) X ′ is a desingularization of X ×Z Z

′ such that X ′ is Kähler with KX′ + Θ′ =
σ∗(KX +∆).

(3) Let BZ′ be the discriminant Q-divisor of f ′ : (X ′,Θ′) → Z ′. We write σ∗D =
KZ′ + BZ′ +MZ′. Then MZ′ is nef over Y . Note that MZ′ is usually called the
moduli Q-divisor of f ′ : (X ′,Θ′) → Z ′.

(4) Let ν : Z ′′ → Z ′ be any projective bimeromorphic morphism from a smooth variety
Z ′′. Then we can define f ′′ : (X ′′,Θ′′) → Z ′′, BZ′′, andMZ′′ as in (3) with ν∗µ∗D =
KZ′′ + BZ′′ + MZ′′. In this situation, after shrinking Y with a slightly smaller
relatively compact Stein open neighborhood of y again, ν∗MZ′ = MZ′′ holds with
ν∗KZ′′ = KZ′ and ν∗BZ′′ = BZ′.

Proof. For the details, see [A, Section 5]. Although they treat much more general setting
than Ambro’s, [Fu13] and [FH] may help the reader understand the proof of this theorem.
We note that Ambro’s argument in [A] is different from Kawamata’s in [Kaw4] and is
closer to Mori’s (see [Mo2, Section 5, Part II] and [Fu1, Section 4]). □

21.5 (A canonical bundle formula in the complex analytic setting, see [FMo]). Let f : X →
Z be a proper morphism from a Kähler manifold X onto a smooth variety Z with f∗OX ≃
OZ and let g : Z → Y be a projective morphism such that Y is Stein. Let ∆ be an effective
Q-divisor on X such that Supp∆ is a simple normal crossing divisor on X and that ⌊∆⌋ =
0. Suppose that κ(F, (KX +∆)|F ) = 0 holds for an analytically sufficiently general fiber
F of f : X → Z. We fix an arbitrary point y ∈ Y . From now on, we sometimes replace
Y with a smaller relatively compact Stein open neighborhood of y without mentioning it
explicitly. Since κ(F, (KX + ∆)|F ) = 0, we obtain g∗ (f∗OX(m(KX +∆))⊗A) ̸= 0 for
some divisible positive integer m and some g-ample line bundle A on Z. Hence we can
write KX +∆ ∼Q f

∗D +B such that

(a) D is a Q-Cartier Q-divisor on Z,
(b) f∗OX(⌊iB+⌋) ≃ OZ holds for every i ≥ 0, and
(c) codimZ f(SuppB−) ≥ 2.

We take a projective bimeromorphic morphism ψ : X† → X from a smooth variety X†

such that Exc(ψ)∪Suppψ−1
∗ ∆∪Suppψ−1

∗ B is contained in a simple normal crossing divisor

on X†. We put KX† +∆† = ψ∗(KX +∆) and consider KX† +∆†
+ ∼Q ψ

∗f ∗D+ψ∗B+∆†
−.

By replacing f : X → Z with f ◦ ψ : X† → Z, we may further assume that the support
of Θ := ∆ − B is a simple normal crossing divisor on Z. We apply Theorem 21.4
to f : (X,Θ) → Z. Then we have a projective bimeromorphic morphism µ : Z ′ → Z
satisfying the properties in Theorem 21.4. By Hironaka’s flattening theorem (see [Hi]),
we can take a projective bimeromorphic morphism p : Z1 → Z from a smooth variety
such that the main component of X ×Z Z1 is flat over Z1. We may further assume that
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p : Z1 → Z factors through Z ′. Then we consider the following big commutative diagram:

X

f

��

X1
αoo

f1
��

X2

f2
��

βoo X ′′γoo

f ′′

��
Z

g

����
��
��
��

Z1

��

p
oo Z2

}}||
||
||
||

Z ′′

ν
vvmmm

mmm
mmm

mmm
mmm

m

Y Z ′
µ

``AAAAAAAA

where X1 is the main component of X×ZZ1, X2 is the normalization of X1, and γ : X
′′ →

X2 is a proper bimeromorphic morphism from a smooth variety X ′′. We put h := α ◦ β ◦
γ : X ′′ → X and KX′′+∆′′ = h∗(KX+∆). We may assume that there exist simple normal
crossing divisors ΣX′′ and ΣZ′′ on X ′′ and Z ′′, respectively, such that f ′′ : X ′′ → Z ′′ is
smooth over Z ′′\ΣZ′′ , ΣX′′ is relatively simple normal crossing over Z ′′\ΣZ′′ , (f ′′)−1ΣZ′′ ⊂
ΣX′′ , and Supp∆′′∪Supph∗B is contained in ΣX′′ . Since KX+∆ ∼Q f

∗D+B, we obtain
KX′′ +∆′′ ∼Q (f ′′)∗p∗D + h∗B. We can write

∆′′
− + (f ′′)∗p∗D + h∗B = (f ′′)∗D′′ +B′′

such that codimZ′′ f ′′(SuppB′′
−) ≥ 2 and that f ′′

∗OX′′(⌊iB′′
+⌋) ≃ OZ′′ for every i ≥ 0,

where B′′ = B′′
+ −B′′

− as usual. Hence, we can write

KX′′ +∆′′
+ ∼Q (f ′′)∗(KZ′′ +BZ′′ +MZ′′) +B′′.

By construction, we can check that

(d) MZ′′ = µ∗MZ′ is nef over Y , and
(e) SuppBZ′′ ⊂ ΣZ′′ , BZ′′ is effective, and ⌊BZ′′⌋ = 0.

We put π := g ◦ f : X → Y and π′′ : X ′′ → Y . Let k be a divisible positive integer. Then

π∗OX(k(KX +∆)) ≃ π′′
∗OX′′(k(KX′′ +∆′′))

≃ π′′
∗OX′′(k(KX′′ +∆′′

+ +B′′
−))

≃ π′′
∗OX′′((f ′′)∗(k(KZ′′ +BZ′′ +MZ′′)) + kB′′

+)

≃ g′′∗OZ′′(k(KZ′′ +BZ′′ +MZ′′)),

where g′′ : Z ′′ → Y . Here, we used the fact that ∆′′
− +B′′

− is effective and h-exceptional.

Remark 21.6. In [FMo], we used Kawamata’s positivity theorem (see [Kaw4, Theorem
2]) to prove the nefness of the moduli part MZ′ . In Theorem 21.4, we adopted Ambro’s
formulation of klt-trivial fibrations (see Theorem 21.4 and [A]) instead of [Kaw4, Theorem
2].

Let us go to the proof of Theorems 1.18 and 1.22.

Proof of Theorems 1.18 and 1.22. Let y be any point of Y . Throughout this proof, we
will feely replace Y with a relatively compact Stein open neighborhood of y. In Theorem
1.18, by taking a resolution of singularities, we may assume that X is smooth and Supp∆
is a simple normal crossing divisor on X. Let f : X 99K Z be the Iitaka fibration with
respect to KX + ∆ over Y . By replacing X and Z, we may assume that Z is a smooth
variety and is projective over Y and that f is a morphism with f∗OX ≃ OZ . We use the
canonical bundle formula discussed in 21.5. Then, by Lemma 2.26, it is sufficient to prove
that ⊕

m∈N

g′′∗OZ′′(mk(KZ′′ +BZ′′ +MZ′′))
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is a locally finitely generated graded OY -algebra. By construction, KZ′′ + BZ′′ +MZ′′ is
big over Y . We can find ∆Z′′ such that (Z ′′,∆Z′′) is kawamata log terminal and that

a(KZ′′ +BZ′′ +MZ′′) ∼ b(KZ′′ +∆Z′′)

for some positive integers a and b. Hence, by Lemma 2.26 again, it is sufficient fo prove
that ⊕

m∈N

g′′∗OZ′′(⌊m(KZ′′ +∆Z′′)⌋)

is a locally finitely generated graded OY -algebra. Since KZ′′+∆Z′′ is big over Y , it follows
from Theorem 1.8 (3). Therefore, we get the desired result. □

22. Minimal model program with scaling revisited

In this section, we will discuss the minimal model program with scaling again for future
usage. The original results for algebraic varieties are not covered by [BCHM]. Here, we
will closely follow the presentation of [Bir1] and [Bir2].

Let us recall the definition of extremal curves.

Definition 22.1 (Extremal curves). Let π : X → Y be a projective morphism of complex
analytic spaces and let W be a compact subset of Y such that π : X → Y and W satisfies
(P). A curve Γ on X is called extremal over W if the following properties hold.

(i) Γ generates an extremal ray R of NE(X/Y ;W ).
(ii) There exists a π-ample Cartier divisor H on X such that

H · Γ = min{H · ℓ},
where ℓ ranges over curves generating R.

The following theorem is very useful when we run the minimal model program with
scaling.

Theorem 22.2 (see [Fu9, Theorem 4.7.2]). Let π : X → Y be a projective morphism
of complex analytic spaces and let W be a compact subset of Y such that π : X → Y
and W satisfies (P). Let V be a finite-dimensional affine subspace of WDivR(X), which
is defined over the rationals. Assume that there is an R-divisor ∆0 on X such that
(X,∆0) is kawamata log terminal. We fix an R-divisor ∆ ∈ L(V ; π−1(W )). Then we can
find positive real numbers α and δ, which depend on (X,∆) and V , with the following
properties.

(1) If Γ is any extremal curve over W and (KX +∆) · Γ > 0, then (KX +∆) · Γ > α.
(2) If D ∈ L(V ; π−1(W )), ||D −∆|| < δ, and (KX +D) · Γ ≤ 0 for an extremal curve

Γ over W , then (KX +∆) · Γ ≤ 0.
(3) Let {Rt}t∈T be any set of extremal rays of NE(X/Y ;W ). Then

NT := {D ∈ L(V ; π−1(W )) | (KX +D) ·Rt ≥ 0 for every t ∈ T}
is a rational polytope in V . In particular,

N ♯
π(V ;W ) = {∆ ∈ L(V ; π−1(W )) |KX +∆ is nef over W}

is a rational polytope.

Proof. This theorem is a formal consequence of Theorem 9.2 and Theorem 7.3. More
precisely, (1) easily follows from Theorem 9.2. We can check that (2) holds true by using
(1). By (2) and Theorem 7.3, we can prove (3). For the details, see, for example, the
proof of [Fu9, Theorem 4.7.2]. □
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By Theorem 22.2 (3) and Theorem 9.2, we can prove:

Theorem 22.3 (see [Fu9, Theorem 4.7.3]). Let π : X → Y be a projective morphism of
complex analytic spaces and let W be a compact subset of Y such that π : X → Y and
W satisfies (P). Let (X,∆) be a log canonical pair and let H be an effective R-Cartier
R-divisor on X such that (X,∆+H) is log canonical and that KX+∆+H is nef over W .
Assume that there exists ∆0 such that (X,∆0) is kawamata log terminal. Then, either
KX +∆ is nef over W or there is a (KX +∆)-negative extremal ray R of NE(X/Y ;W )
such that (KX +∆+ λH) ·R = 0, where

λ := inf{t ∈ R≥0 |KX +∆+ tH is nef over W}.
Of course, KX +∆+ λH is nef over W .

Proof. The proof of [Fu9, Theorem 4.7.3] works without any modifications. □
By Theorems 22.2 and 22.3, the minimal model program with scaling explained in

Section 13 becomes much more useful.

22.4 (Minimal model program with scaling). Let π : X → Y be a projective morphism
of complex analytic spaces and let W be a compact subset of Y such that π : X → Y
and W satisfies (P). Let (X,∆) be a log canonical pair such that X is Q-factorial over
W . Assume that there exists ∆0 such that (X,∆0) is kawamata log terminal. Let H
be an effective R-Cartier R-divisor on X such that (X,∆+H) is log canonical and that
KX +∆+H is nef over W . By Theorem 22.3, we can take a (KX +∆)-negative extremal
ray R of NE(X/Y ;W ) such that (KX + ∆ + λH) · R = 0 if (KX + ∆) is not nef over
W . We can consider the contraction morphism φR : X → Z associated to R over some
open neighborhood of W by Theorem 7.3. By Remark 17.10, we know that the desired
flip always exists. We note that we can always find ∆′

0 such that (X,∆′
0) is kawamata log

terminal and that R is a (KX + ∆′
0)-negative extremal ray of NE(X/Y ;W ). Therefore,

we can run a minimal model program similar to the one explained in Section 13. We
call it the (KX + ∆)-minimal model program with scaling of H over Y around W . We
sometimes simply say that it is the minimal model program with scaling if there is no
danger of confusion.

It is well known that Theorem 1.28 is an easy consequence of the minimal model
program with scaling. The main ingredient of the following proof of Theorem 1.28 is
Theorem 22.2 (2).

Proof of Theorem 1.28. Throughout this proof, we will freely shrink Y aroundW suitably
without mentioning it explicitly. Let H2 be a general π2-ample Q-divisor on X2 and let
H1 be its strict transform on X1. Then there is a small positive real number δ such that
(X1,∆1+δH1) is kawamata log terminal. We take a general π1-ample Q-divisor H ′

1 on X1

such that (X2,∆2 + δH2 + δ′H ′
2) is kawamata log terminal for some positive real number

δ′, where H ′
2 is the strict transform of H ′

1. If δ is sufficiently small, KX1 +∆1+δH1+δ
′H ′

1

is nef over W . We can run the (KX1 + ∆1 + δH1)-minimal model program with scaling
over Y around W (see 22.4). After finitely many flips, we finally end up with X2. On the
other hand, by Theorem 22.2 (2), we see that each step is a flop with respect to KX1 +∆1

if δ is sufficiently small. Therefore, we obtain the desired statement. □

23. On abundance conjecture

In this final section, we will treat the abundance conjecture for kawamata log terminal
pairs in the complex analytic setting.
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Let us recall the following famous conjecture, which is one of the most difficult conjec-
tures in the theory of minimal models.

Conjecture 23.1 (Abundance conjecture for projective kawamata log terminal pairs).
Let (X,∆) be a projective kawamata log terminal pair such that KX + ∆ is nef. Then
KX +∆ is semiample.

The main result of this section is as follows.

Theorem 23.2 (see Theorem 1.30). Assume that Conjecture 23.1 holds in dimension n.
Let π : X → Y be a projective surjective morphism of normal complex varieties with

dimX−dimY = n and let (X,∆) be a kawamata log terminal pair. Assume that KX+∆
is π-nef. Let W be a Stein compact subset of Y such that Γ(W,OY ) is noetherian. Then
KX +∆ is π-semiample over some open neighborhood of W .

Theorem 23.2 says that we can reduce the abundance conjecture for projective mor-
phisms of complex analytic spaces to the original abundance conjecture for projective
varieties. Before we prove Theorem 23.2, we prepare some lemmas. The following lemma
is Wilson’s theorem (see [La1, Theorem 2.3.9]) for projective morphisms of complex vari-
eties.

Lemma 23.3. Let f : Z → Y be a projective morphism from a smooth complex variety Z
onto a normal Stein variety Y and let D be a Cartier divisor on X such that D is nef and
big over Y . Let y be any point of Y . Then, by replacing Y with any relatively compact
Stein open neighborhood of y, there exist a positive integer m0 and an effective Cartier
divisor B on Z such that OZ(mD −B) is f -free.

Proof. We can take an f -very ample Cartier divisor H on Z after replacing Y with any
relatively compact Stein open neighborhood of y. Since D is big over Y , there exists a
positive integerm0 such thatm0D ∼ A+B, A is f -ample, B ≥ 0, and A−(KX+(n+1)H)
is f -ample with n = dimZ. Then, Rif∗OZ(mD −B − iH) = 0 holds for every i > 0 and
every m ≥ m0 since mD−B− iH−KX ∼ A− (KX+(n+1)H)+(n+1− i)H is f -ample
for 0 < i ≤ n + 1 (see, for example, Theorem 5.1). Therefore, by Castelnuovo–Mumford
regularity (see, for example, [La2, Example 1.8.24]), we obtain that OZ(mD−B) is f -free
for every m ≥ m0. □
As an easy consequence, we obtain:

Lemma 23.4. Let f : Z → Y be a projective morphism from a smooth complex variety
Z onto a normal Stein variety Y and let D be a Cartier divisor on X such that D is nef
and big over Y . Assume that

R(Z,D) :=
⊕
m∈N

f∗OZ(mD)

is a locally finitely generated graded OY -algebra. Then D is f -semiample.

Lemma 23.4 is well known for normal projective varieties (see, for example, [La1, The-
orem 2.3.15]).

Proof of Lemma 23.4. By taking the Stein factorization, we may assume that f∗OZ ≃ OY .
Suppose that, for every positive integer m, f ∗f∗OZ(mD) → OZ(mD) is not surjective
at z ∈ Z. We take an open neighborhood U of f(z) and a Stein compact subset W of
Y such that f(z) ∈ U ⊂ W and that OY (W ) = Γ(W,OY ) is noetherian. If we make
U and W sufficiently small, then Γ

(
W,
⊕

m∈N f∗OZ(mD)
)
≃
⊕

m∈N f∗OZ(mD)(W ) is a
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finitely generated OY (W )-algebra. Therefore, there exists a positive integer l such that⊕
m∈N f∗OZ(mlD)(W ) is generated by f∗OZ(lD)(W ). Let V be a relatively compact

Stein open neighborhood of W . Then, by Lemma 23.3, there exist k > 0 and g ∈
Γ(f−1(V ),OZ(klD)) = Γ(V, f∗OZ(klD)) such that C = (g = 0) is an effective divisor
on f−1(V ) with multz C < k. On the other hand, since f∗OZ(klD)(W ) is generated
by f∗OZ(lD)(W ), multz C ≥ k holds. It is a contradiction. This means that D is f -
semiample. □

Let us prove Theorem 23.2.

Proof of Theorem 23.2. In Step 1, we will reduce the problem to the case where KX +∆
is Q-Cartier. Then, in Step 2, we will prove that it is semiample by using the finite
generation of log canonical rings.

Step 1. We take a Stein open neighborhood U of W and a Stein compact subset W ′

such that U ⊂ W ′ and that Γ(W ′,OY ) is noetherian. By Theorem 22.2, after shrinking Y
around W ′, we can find Q-divisors ∆1, . . . ,∆l on X such that KX +∆ =

∑
i ri(KX +∆i),

(X,∆i) is kawamata log terminal, KX +∆i is nef over W
′, and ri ∈ R>0 with

∑
i ri = 1.

Therefore, it is sufficient to prove thatKX+∆i is semiample over some open neighborhood
ofW . Hence, from now on, we may further assume thatKX+∆ isQ-Cartier. Moreover, we
may assume that there exists a positive integer k such that k(KX+∆) is Cartier. Without
loss of generality, we may assume that π∗OX ≃ OY by taking the Stein factorization.

Step 2. Let F be an analytically sufficiently general fiber of π : X → Y . Then (F,∆|F ) is
kawamata log terminal with KF +∆|F = (KX +∆)|F . Hence, by assumption, KF +∆|F
is semiample. We put L = k(KX + ∆). From now on, we will freely replace Y with a
smaller Stein open neighborhood of W without mentioning it explicitly. We consider a
meromorphic map g : X 99K Z0 over Y associated to π∗π∗OX(mL) → OX(mL) for some
sufficiently large and divisible positive integer m such that dimZ0 = dimY + κ(F,KF +
∆|F ). As in the proof of [Kaw1, Proposition 2.1], by using Hironaka’s flattening theorem
(see [Hi]), and so on, we can construct the following commutative diagram:

X

g

���
�
� X1

µ0oo

g1

��

X2
µ1oo

g2

��

X3
µ2oo

g3

��

X ′µ3oo

ϕ

��
Z0 Z1π0

oo Zπ1
oo Z Z

which satisfies the following conditions.

(i) All the varieties in the diagram are projective over Y .
(ii) X1, X

′, Z1, and Z are smooth, and X3 is normal.
(iii) µ0, µ1, µ2, µ3, and π1 are projective bimeromorphic morphisms, g1, g2, g3 and

ϕ are surjective morphisms with connected fibers, and π0 is a generically finite
surjective morphism.

(iv) g2 is flat, µ2 is finite, and g3 is equidimensional.
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We put µ := µ0 ◦ µ1 ◦ µ2 ◦ µ3 : X
′ → X. Then we finally get the following commutative

diagram:

X ′

ϕ

  A
AA

AA
AA

A
µ

~~||
||
||
||

X

π
  B

BB
BB

BB
B Z

f~~}}
}}
}}
}}

Y

such that

(a) X ′ and Z are projective over Y ,
(b) X ′ and Z are smooth,
(c) µ is bimeromorphic and ϕ is a surjective morphism with connected fibers, and
(d) there exists a Cartier divisor D on Z such that D is nef and big over Y with

aµ∗L ∼ bϕ∗D for some positive integers a and b.

For the details, see the proof of [Kaw1, Proposition 2.1]. Since R(X/Y,KX+∆) is a locally
finitely generated graded OY -algebra by Theorem 1.18, R(Z,D) is also a locally finitely
generated graded OY -algebra by Lemma 2.26. Hence, by Lemma 23.4, D is f -semiample.
This means that L is π-semiample.

Anyway, KX +∆ is a finite R>0-linear combination of semiample Cartier divisors over
some open neighborhood of W . This is what we wanted. □

The abundance conjecture for log canonical pairs in the complex analytic setting seems
to be much more difficult than the one for kawamata log terminal pairs.
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