MINIMAL MODEL PROGRAM FOR PROJECTIVE MORPHISMS
BETWEEN COMPLEX ANALYTIC SPACES

OSAMU FUJINO

ABSTRACT. We discuss the minimal model program for projective morphisms of complex
analytic spaces. Roughly speaking, we show that the results obtained by Birkar—Cascini-
Hacon—M°Kernan hold true for projective morphisms between complex analytic spaces.
We also treat some related topics.
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1. INTRODUCTION

This paper is the first step of the minimal model program for projective morphisms of
complex analytic spaces.

In [BCHM] and [HacM|, Birkar, Cascini, Hacon, and M°Kernan established many im-
portant results on the minimal model program for quasi-projective kawamata log terminal
pairs defined over the complex number field (see [BCHM, Theorems A, B, C, D, E, and
F]). Thus we can run the minimal model program with scaling.

Theorem 1.1 (Minimal model program with scaling, see [BCHM, Corollary 1.4.2]). Let
m: X =Y be a projective morphism of normal quasi-projective varieties. Let (X, A) be a
Q-factorial kawamata log terminal pair, where Kx + A is R-Cartier and A is w-big. Let
C be an effective R-divisor on X. If Kx + A + C is kawamata log terminal and m-nef,
then we can run the (Kx + A)-minimal model program over Y with scaling of C. The
output of this minimal model program is a log terminal model (resp. a Mori fiber space)
over Y when Kx + A is w-pseudo-effective (resp. not m-pseudo-effective).

Hence we can easily check:

Theorem 1.2 ([BCHM, Theorem 1.2]). Let (X,A) be a kawamata log terminal pair,
where Kx + A is R-Cartier. Let m: X — 'Y be a projective morphism of quasi-projective
varieties. If either A is w-big and Kx + A is m-pseudo-effective or Kx + A is w-big, then

(1) Kx + A has a log terminal model over Y,
(2) if Kx + A is w-big then Kx + A has a log canonical model over'Y, and
(3) if Kx + A is Q-Cartier, then

R(X)Y,Kx +A) == @m0 (Im(Kx + A)))

15 finitely generated as an Oy -algebra.

The main purpose of this paper is to generalize the results obtained in [BCHM] and
[HacM)| for projective morphisms of complex analytic spaces under some suitable assump-
tions. Omne of the main difficulties to translate [BCHM)] and [HacM] into the complex
analytic setting is to find a reasonable formulation. For the general understanding of the
theory of minimal models in the complex analytic setting, see [KM, Example 2.17]. To
the best knowledge of the author, the minimal model program for projective morphisms
between complex analytic spaces is not discussed in standard literature.

Remark 1.3 (Minimal model program for compact Kéhler threefolds). In a series of
papers (see [HPT], [HP2], and [CHP]), the theory of minimal models was generalized
for compact Kéhler threefolds (see also [HP3]). It is different from our direction and is
another complex analytic generalization of the minimal model program. The minimal
model theory for log surfaces in Fujiki’s class C was described in [Ful?]. Based on the
idea that the essence of the theory of minimal models is projectivity, we think that our
formulation in this paper is more natural than the minimal model program for compact
Kahler varieties.

Let us see an easy example.

Example 1.4. Let {P;}ren be a set of mutually distinct discrete points of Y := C? and
let m7: X — Y be the blow-up whose center is { P }ren. We put Ey := 7 () for every
k. Since the line bundle Ox (— Y oken Ek) is m-ample, 7 is a projective bimeromorphic
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morphism of smooth complex surfaces. In this case, there are infinitely many mutually
disjoint m-exceptional curves on X. Hence, there exists no naive generalization of the
minimal model program working for this projective bimeromorphic morphism 7: X — Y.

By Example [4, it seems to be reasonable and indispensable to fix a compact subset W
of Y with some good properties and only treat 7: X — Y over some open neighborhood of
W. We need some finiteness condition in order to formulate the minimal model program
for projective morphisms of complex analytic spaces. In this paper, we will mainly consider
a projective morphism 7: X — Y of complex analytic spaces and a compact subset W of
Y with the following properties:

(P1) X is a normal complex variety,

(P2) Y is a Stein space,

(P3) W is a Stein compact subset of Y, and

(P4) W N Z has only finitely many connected components for any analytic subset Z
which is defined over an open neighborhood of W.

Since we are trying to discuss the minimal model program, (P1) is indispensable. So
we almost always assume that X is a normal complex variety. We note that the Steinness
of Y, that is, (P2), is a substitute of the quasi-projectivity of Y in [BCHM] and that the
quasi-projectivity of Y is indispensable in [BCHM]. Let F be a coherent sheaf on X such
that m,F # 0. Then we see that I'(X, F) = ['(Y, 7.F) # 0 holds by Cartan’s Theorem
A. Here we need the Steinness of Y. We also note that the analytic space naturally
associated to an affine scheme is Stein. Let us explain (P3) and (P4). A compact subset
on an analytic space is said to be Stein compact if it admits a funiiamental system of Stein
open neighborhoods. Note that a holomorphically convex hull K of a compact subset K
on a Stein space is a Stein compact subset. Therefore, we can find many Stein compact
subsets on a given Stein space. If W satisfies (P3) and we are only interested in objects
defined over some open neighborhood of W, then we can freely replace Y with a small
Stein open neighborhood of W. The condition in (P4) is not so easy to understand and
looks somewhat artificial. However, it is a very natural condition. It is known that a Stein
compact subset W satisfies (P4) if and only if I'(W, Oy ) is noetherian by Siu’s theorem
(see [Si, Theorem 1]). If W is a Stein compact semianalytic subset, then it satisfies (P3)
and (P4). Thus we see that there are many Stein compact subsets satisfying (P4) on a
given Stein space Y. We consider the free abelian group Z;(X/Y; W) generated by the
projective integral curves C' on X such that 7(C) is a point of W. We take C1,Cy €
ZU(X)Y; W)@z R. If Cy - L = Cy - L holds for every £ € Pic (7~ }(U)) and every open
neighborhood U of W, then we write C; =y Cy. We set N1(X/Y; W) := Z1(X/Y; W) ®y
R/ =w. Then, by (P4), we can check that Ny(X/Y; W) is a finite-dimensional R-vector
space (see [Na3, Chapter II. 5.19. Lemma]). When N;(X/Y;W) is finite-dimensional,
we can define the Kleiman—Mori cone NE(X/Y; W) in Ni(X/Y;W) for m: X — Y and
W, that is, NE(X/Y; W) is the closure of the convex cone in N;(X/Y; W) generated by
projective integral curves C' on X such that 7(C') is a point in W. Without any difficulties,
we can establish Kleiman’s ampleness criterion in the complex analytic setting. We further
assume that there exists an R-divisor A on X such that (X, A) is kawamata log terminal.
Then we can formulate the cone theorem as usual

NE(X/Y;W) = NE(X/Y; W)k +a>0 + Z R;
J

and prove the contraction theorem for each (K y 4+ A)-negative extremal ray R; over some
open neighborhood of W. This is essentially due to Nakayama (see [Na2]). By the above
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observations, we recognize that (P1), (P2), (P3), and (P4) are reasonable. From now on,
we usually simply say that 7: X — Y and W satisfies (P) if it satisfies (P1), (P2), (P3),
and (P4).

Remark 1.5. Let D be an R-Cartier R-divisor on X. Then D > 0 on NE(X/Y; W)
means that D-C > 0 for every projective integral curve C' on X such that 7(C') is a point
in W. Unfortunately, however, D is not necessarily nef over some open neighborhood
of W even when D > 0 on NE(X/Y;W). This fact often causes troublesome problems
when we discuss the minimal model program for projective morphisms between complex
analytic spaces.

In this paper, we will prove:

Theorem 1.6 (Main theorem, see Theorem I3 below). Let m: X — Y be a projective
morphism of complex analytic spaces and let W be a compact subset of Y such thatm: X —
Y and W satisfies (P). Then Theorems A, B, C, D, E, and F in [BCHM)| hold true with
some suitable modifications.

For the precise statement, see Theorems @A, B, O, O, E, and E in Subsection 1 and
Theorem I3 below. To the best knowledge of the author, our results are new even
in dimension three. For projective morphisms of complex analytic spaces, the minimal
model program with scaling (see Theorem [T) becomes as follows.

Theorem 1.7 (Minimal model program with scaling for projective morphisms of complex
analytic spaces, see [BCHM, Corollary 1.4.2]). Let m: X — Y be a projective surjective
morphism of complex analytic spaces and let W be a compact subset of Y. Assume that
Y is Stein and that W is a Stein compact subset of Y such that I'(W, Oy ) is noetherian.
Let (X, A) be a kawamata log terminal pair such that A is w-big and that X is Q-factorial
over W. If C' is an effective R-divisor on X such that Kx + A 4+ C is kawamata log
terminal and it is nef over W. Then we can run the (Kx + A)-minimal model program
with scaling of C' over' Y around W. More precisely, we have a finite sequence of flips and
divisorial contractions over Y starting from (X, A):
(X, A) =: (X0, Ag) 5 (X1, A1) Z5 - 75 (X, A),

where Ajr1 = (p;)L\; for every i > 0, such that (X, An) is a log terminal model
(resp. has a Mori fiber space structure) over some open neighborhood of W when Kx + A
is w-pseudo-effective (resp. not w-pseudo-effective). We note that each step @; exists only
after shrinking Y around W switably. Hence we have to replace Y with a small Stein open
neighborhood of W' repeatedly in the above process.

By Theorem 074, we can prove:

Theorem 1.8 ([BCHM, Theorem 1.2]). Let (X,A) be a kawamata log terminal pair,
where Kx + A is R-Cartier. Let m: X — Y be a projective morphism of complex analytic
spaces and let W be a compact subset of Y such that m: X — Y and W satisfies (P). If
either A is m-big and Kx + A is w-pseudo-effective or Kx + A is m-big, then

(1) Kx + A has a log terminal model over some open neighborhood of W,

(2) if Kx + A is w-big then Kx + A has a log canonical model over some open neigh-

borhood of W, and
(3) if Kx + A is Q-Cartier, then

R(X/Y,Kx + A) = P mOx(|Im(Ex + A)))

meN
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15 a locally finitely generated graded Oy -algebra.

Of course, Theorem R is an analytic version of Theorem IA. We note that this paper
is not self-contained. If the proof is essentially the same as the original one for quasi-
projective varieties, then we will only explain how to modify arguments in [BCHM] and
[HacM) in order to make them work for projective morphisms between analytic spaces
satisfying (P). In this paper, we always assume that complex analytic spaces are Hausdorff
and second-countable.

1.9 (Motivation). Let us explain the motivation of this paper. We sometimes have to
consider the following setting when we study degenerations of algebraic varieties. Let
7m: X — A be a projective morphism from a complex manifold X onto a disc A = {z €
C||z| < 1} with connected fibers. Suppose that 7 is smooth over A\ {0} and Kx, ~g 0
for every z € A\ {0}, where X, = 77!(2), and that 7*0 is a reduced simple normal
crossing divisor on X. Roughly speaking, 7: X \771(0) — A\ {0} is a smooth projective
family of Calabi—Yau manifolds and 7: X — A is a semistable degeneration. Since A
is not a quasi-projective algebraic variety, we can not directly use [BCHMI] for the study
of m: X — A. By using the results established in this paper, after slightly shrinking A
around 0 repeatedly, we can construct a finite sequence of flips and divisorial contractions
starting from X:
X=Xy-»>X;-—>Xg-—>- - X,

over A such that X, is a minimal model of X over A. More precisely, X,, has only ter-
minal singularities and K, is Q-linearly trivial. The above result is a typical application
of our result in this paper, which is not covered by [BCHM]. It is a complex analytic
generalization of the semistable minimal model program established in [Fud].

1.10 (Background, see [Euf, 3.5, 3.6]). In the traditional framework of the minimal model
program, the most important and natural object is a quasi-projective kawamata log ter-
minal pair (see [KMM], [KM)], [Mafk], [BCHM], [HacM], and so on). From the Hodge
theoretic viewpoint, we think that there exists the following correspondence.

Kawamata log terminal pairs |<=| Pure Hodge structures

We have already used mixed Hodge structures on cohomology with compact support
systematically for the study of minimal models (see [Fu3], [Fu9], and so on). Then we
succeeded in greatly expanding the framework of the minimal model program. Roughly
speaking, we established the following correspondence.

Quasi-log schemes |<=| Mixed Hodge structures

For the details of this direction, see also [FuT3], [FFL], [Euld], and so on.
On the other hand, from the complex analytic viewpoint, we know the following corre-
spondence.

Kawamata log terminal pairs |<=-| [2 condition

Hence, it is natural to think that we can generalize the minimal model program for quasi-
projective kawamata log terminal pairs established in [BCHM]| and [HacM] to the one
in the complex analytic setting. We note that the projectivity plays a crucial role in
the theory of minimal models. Therefore, it is reasonable to discuss the minimal model
program for projective morphisms between complex analytic spaces. This naive idea is
now realized in this paper.
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Unfortunately, we have not established complex analytic methods to treat varieties
whose singularities are worse than kawamata log terminal singularities yet. Thus, it is a
challenging problem to consider some analytic generalization of the theory of quasi-log
schemes (see [Fn9, Chapter 6] and [FuTH]).

1.11 (How to use (P)). Before we see the main results in Subsection [, let us explain
how to use (P) for the reader’s convenience. Let m: X — Y be a projective morphism of
complex analytic spaces and let W be a compact subset of Y such that 7: X — Y and
W satisfies (P). We usually consider an R-divisor A on X such that Kx + A is R-Cartier.
It sometimes happens that some properties hold true only over an open neighborhood U
of W. Since W is a Stein compact subset of Y, we can always take a relatively compact
Stein open neighborhood Y’ of W in Y satisfying

WcY eUCcCY.

Of course, 7': X’ — Y’ and W satisfies (P), where X’ := 7= }(Y’) and 7’ := 7|x,. We
frequently replace 7: X — Y with #’: X’ — Y’ without mentioning it explicitly. We
note that the support of A is only locally finite by definition. In general, the support of
A may have infinitely many irreducible components. By construction, X’ is a relatively
compact open subset of X. Hence the support of A|x/ is finite. On the other hand, let V/
be a relatively compact open neighborhood of W in Y. Since Y is Stein, we can take an
Oka—Weil domain V' satisfying

WcvVvcVcV cVv cy.

By construction, V' can be seen as a complex analytic subspace of a polydisc. Hence we
can take a semianalytic Stein compact subset W’ such that

Wcvcvcw cv cv cy.
Note that W’ satisfies (P4) since it is semianalytic. Therefore, 7: X — Y and W’
satisfies (P) and W' contains a given relatively compact open neighborhood V' of W.
This argument is useful and indispensable when we try to check that some properties

hold true over an open neighborhood of W. For example, when we prove that Ky + A is

nef over some open neighborhood of W, we sometimes have to consider 7: X — Y and
w'.

1.1. Main results. Here, we state the main results of this paper. The following theorems
look very similar to those in [BCHM] although they treat complex analytic spaces.

Theorem A (Existence of pl-flips, [BCHM, Theorem Al). Let ¢: X — Z be an analytic

pl-flipping contraction for a purely log terminal pair (X, A). Then the flip o7: Xt — Z
of v always exists.

Theorem B (Special finiteness, [BCHM, Theorem B|). Let 7: X — Y be a projec-
tive morphism of complex analytic spaces and let W be a compact subset of Y such that
m: X =Y and W satisfies (P). Suppose that X is Q-factorial over W. Let'V be a finite-
dimensional affine subspace of WDivg(X), which is defined over the rationals, let S be
the sum of finitely many prime divisors and let A be a general m-ample Q-divisor on X
such that the number of the irreducible components of Supp A is finite. Let (X, ) be
a divisorial log terminal pair such that S < Ag. We fix a finite set € of prime divisors
on X. Then, after shrinking Y around W suitably, there are finitely many bimeromor-
phic maps ¢;: X --+ Z; over Y for 1 < i < k with the following property. If U is an
open neighborhood of W and ¢: X --+ Z is any weak log canonical model over W of
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(Kx + A)|r-1vy such that Z is Q-factorial over W, where A € Lgya(V;n= 1 (W), which
only contracts elements of € and which does not contract every component of S, then
there exists an index 1 < i < k such that, after shrinking Y and U around W suitably,
the induced bimeromorphic map &: Z; --+ Z is an isomorphism in a neighborhood of the
strict transform of S.

Theorem C (Existence of log terminal models, [BCHM, Theorem C]). Let 7: X — Y
be a projective surjective morphism of complex analytic spaces and let W be a compact
subset of Y such that m: X — Y and W satisfies (P). Suppose that (X, A) is kawamata
log terminal and that A is big over Y. If there exists an R-divisor D on X such that
Kx +A ~g D >0, then (X,A) has a log terminal model over some open neighborhood
of W.

Theorem D (Nonvanishing theorem, [BCHNM, Theorem D]). Let (X, A) be a kawamata
log terminal pair and let w: X — 'Y be a projective morphism of complex analytic spaces
such that 'Y 1is Stein. Assume that A is big over Y and that Kx + A is pseudo-effective
over Y. Let U be any relatively compact Stein open subset of Y. Then there exists a
globally R-Cartier R-divisor D on =Y (U) such that (Kx + A)|z-1y ~r D > 0.

Theorem E (Finiteness of models, [BCHM, Theorem E]). Let 7: X — Y be a projective
morphism of complex analytic spaces and let W be a compact subset of W such that
7: X =Y and W satisfies (P). We fix a general w-ample Q-divisor A > 0 on X such
that the number of the irreducible components of Supp A is finite. Let V be a finite-
dimensional affine subspace of WDivg(X) which is defined over the rationals. Suppose
that there is a kawamata log terminal pair (X, Ag). Then, after shrinking Y around W
suitably, there are finitely many bimeromorphic maps ;: X --+ Z; over Y for1 < j <l
with the following property. If U is an open neighborhood of W and ¢ : 7= (U) --» Z is a
weak log canonical model of (Kx + A)|—1 1y over W for some A € La(V;a~ (W), then
there exists an index 1 < j <1 and an isomorphism §: Z; — Z such that ¢ = {o); after
shrinking Y and U around W suitably.

Theorem F (Finite generation, [BCHM, Theorem F|). Let 7: X — Y be a projective
morphism of complex analytic spaces and let W be a compact subset of Y such thatm: X —
Y and W satisfies (P). Let (X,A = A+ B) be a kawamata log terminal pair, where
A >0 is a mw-ample Q-divisor and B > 0. We assume that the number of the irreducible
components of Supp A is finite. If Kx + A is pseudo-effective over Y, then

(1) After shrinking Y around W suitably, the pair (X,A) has a log terminal model
p: X -=» Z. In particular if Kx + A is Q-Cartier, then the log canonical ring

R(X/Y,Kx + A) = @D mOx(Im(Kx + A)))

meN

is a locally finitely generated graded Oy -algebra.

(2) Let V-C WDivg(X) be the vector space spanned by the components of A. Then,
after shrinking Y around W suitably, there is a constant 6 > 0 such that if G
is a prime divisor contained in the stable base locus of Kx + A over Y and = €
LA(V;7Y(W)) such that |2 —A| < 8, then G is contained in the stable base locus
of Kx +Z overY.

(3) Let V' C V be the smallest affine subspace of WDivg(X) containing A, which is
defined over the rationals. Then, after shrinkingY around W suitably, there exists
a constant n > 0 and a positive integer r > 0 such that if = € V' is any divisor
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and k is any positive integer such that |Z= — A| < n and k(Kx + Z)/r is Cartier,
then every component of Fix(k(Kx + Z)) is a component of the stable base locus
of Kx + A overY.

1.2. How to prove the main results. The formulation of Theorem O is not appropriate
for our inductive treatment of the main results in this paper. Therefore, we prepare a
somewhat artificial statement, which is a slight generalization of Theorem 0. We will use
it instead of Theorem O in the inductive proof of the main results.

Theorem G (Existence of good log terminal models). Let m: X — Y be a projective
surjective morphism of complex analytic spaces and let W be a compact subset of Y such
that 7: X — Y and W satisfies (P). Assume that 7: X — Y* — Y such that Y’ is
projective over Y. Suppose that (X, A) is kawamata log terminal and that A is big over
Y. If there exists an R-diwvisor D on X such that Kx+A ~g D > 0, then, after shrinking
Y around W suitably, there exist a bimeromorphic contraction ¢: X --» Z over Y such
that ¢ is (Kx + A)-negative, Z is Q-factorial over W, Kz + T is semiample over Y,
where T' = ¢, . This means that (Z,T') is a good log terminal model of (X, A) over Y”.

As an obvious remark, we have:

Remark 1.12. If we put Y’ = Y in Theorem @, then we obtain Theorem O as a special
case of Theorem G. Therefore, it is sufficient to prove Theorem G.

Note that Theorem [, refers to Theorem Al in the case when the dimension of X is n.
In [BCHM] and [HacM], Theorem A, Theorem B, Theorem C, Theorem D, Theorem E,
and Theorem F were proved by induction on n as follows.

e Theorem F,,_; implies Theorem A,,.

e Theorem E,_; implies Theorem B,,.

e Theorem A, and Theorem B,, imply Theorem C,,.

e Theorem D,,_1, Theorem B,, and Theorem C,, imply Theorem D,,.
e Theorem C,, and Theorem D,, imply Theorem E,,.

e Theorem C,, and Theorem D,, imply Theorem F,,.

Our strategy in this paper is essentially the same as that of [BCHM]. However, it is
slightly simpler. We first note that we can easily check:

e Theorem [, holds true for arbitrary n.
e Theorem G, implies Theorem 0O, for arbitrary n.

Hence it is sufficient to prove Theorem [, Theorem B, Theorem [E Theorem [H, and
Theorem G by induction on n as follows.

e Theorem B, _; implies Theorem [Al,.

e Theorem E,_; implies Theorem B,,.

e Theorem @A, and Theorem B, imply Theorem G,,.

e Theorem G, implies Theorem [H,.

e Theorem G, implies Theorem E,.
Although there are some new difficulties, the proof of each step is similar to the original
one in [BCHM) and [HacM]. Precisely speaking, we make great efforts to find a suitable
formulation in order to make the original proof work with only some minor modifications.

The correct statement of Theorem @ should be:

Theorem 1.13 (Main theorem). Theorems [A, B, [, [0, [B, [H, and [G hold true in any
dimension.
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1.3. Some other results. We have already known that many results follow from [BCHNMI].
We can prove that some of them hold true even in the complex analytic setting if we take
some suitable modifications.

Once we have Theorem O, it is not difficult to prove the existence of kawamata log
terminal flips in the complex analytic setting.

Theorem 1.14 (Existence of kawamata log terminal flips). Let (X, A) be a kawamata
log terminal pair. Let p: X — Z be a small projective surjective morphism of normal
complex varieties. Then the flip o*: XT — Z of ¢ always exists. This means that there
exists the following commutative diagram:

where
(1) ¢T: Xt — Z is a small projective morphism of normal complex varieties, and
(2) Kx+ + AT is pt-ample, where AT := ¢, A.

Note that (X, A™) is automatically a kawamata log terminal pair.

Remark 1.15. Theorem T4 generalizes Mori’s flip theorem (see [Mo3, (0.4.1) Flip The-
orem]). Roughly speaking, Mori coarsely classified three-dimensional flipping contractions
analytically and checked the existence of three-dimensional terminal flips.

The next one is a result on partial resolutions of singularities for complex varieties.

Theorem 1.16 (Existence of canonicalizations). Let X be a complex variety. Then there
exists a projective bimeromorphic morphism f: Z — X, which is the identity map over
a nonempty Zariski open subset where X has only canonical singularities, from a normal
complex variety Z with only canonical singularities such that Kz is f-ample.

If Kx + A is not pseudo-effective over Y, then we can run the minimal model program
with scaling to get a Mori fiber space.

Theorem 1.17 ([BCHM, Corollary 1.3.3]). Let m: X — Y be a projective morphism of
complex analytic spaces and let W be a compact subset of Y such that m: X — Y and W
satisfies (P). Let (X, A) be a divisorial log terminal pair such that X is Q-factorial over
W. Suppose that Kx + A is not pseudo-effective over Y. Then we can run a (Kx + A)-
minimal model program and finally obtain a Mori fiber space over some open neighborhood

of W.

We can prove the finite generation theorem for kawamata log terminal pairs in full
generality in the complex analytic setting.

Theorem 1.18 ([BCHM, Corollary 1.1.2]). Let (X, A) be a kawamata log terminal pair,
where Kx + A is Q-Cartier, and let m: X — Y be a projective morphism of complex
analytic spaces. Then

R(X/Y,Kx + A) = @D mOx(|m(Kx + A)))

is a locally finitely generated graded Oy -algebra.
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The original algebraic version of Theorem [T below was first obtained in [Fud] as an
application of [BCHMI.

Theorem 1.19 ([Fud, Theorem 1.3]). Let (X, A) be a divisorial log terminal pair and let
m: X = Y be a projective morphism onto a disc Y = {z € C||z|] < 1} with connected
fibers. Assume that (Kx + A)|r ~r 0 holds for an analytically sufficiently general fiber
F of m. We further assume that W is a Stein compact subset of Y such that T'(W, Oy ) is
noetherian and that X is Q-factorial over W. Then we can run the (Kx + A)-minimal
model program over Y in a neighborhood of W with ample scaling. More precisely, we
have a finite sequence of flips and divisorial contractions over'Y starting from (X, A):

(X, ) =1 (Xo, Ao) 2> (X1, A1) 25 -0 T80 (X, A),
where Aiyq1 = (p;)L\; for every i > 0, such that (X,,, A,,) is a log terminal model over
some open neighborhood of W. Moreover, Kx, + A, ~gr (7,)*D for some R-Cartier
R-divisor D on Y after shrinking Y around W suitably, where 7,,: X,, = Y. We note
that each step ; exists only after shrinking Y around W suitably.

Remark 1.20. In Theorem TI9, W = {z € C||z| < r} for 0 <r < 1 is a Stein compact
subset of Y such that I'(W, Oy) is noetherian.

The following theorem is an analytic version of dit blow-ups. In the recent developments
of the minimal model theory for higher-dimensional algebraic varieties, dlt blow-ups are
very useful and important.

Theorem 1.21 (DIt blow-ups, I). Let X be a normal complex variety and let A be an
effective R-divisor on X such that Kx + A is R-Cartier. Let U be any relatively compact
Stein open subset of X and let V' be any relatively compact open subset of U. Then we can
take a Stein compact subset W of U such that I'(W, Ox) is noetherian, V- C W, and, after
shrinking X around W suitably, we can construct a projective bimeromorphic morphism
f:Z — X from a normal complex variety Z with the following properties:

(1) Z is Q-factorial over W,

(2) a(E, X,A) < —1 for every f-exceptional divisor E on Z, and

(3) (Z,A%" + Supp A%l) is divisorial log terminal, where Kz + Ay = f*(Kx + A).

Note that if (X, A) is log canonical then Ay = A3' + Supp A%l holds.

We can use Theorem 21 for the study of log canonical singularities, which are not
necessarily algebraic. The following result is a generalization of Theorem IR for Kéahler
manifolds. When Y is a point, Theorem 22 is [Fu8, Theorem 1.8].

Theorem 1.22 (Finite generation for Kéhler manifolds, see [FuR]). Let 7: X — Y be a
proper morphism from a Kdhler manifold X to a complex analytic space Y. Let A be an
effective Q-divisor on X such that |A] =0 and that Supp A is a simple normal crossing
dwvisor on X. Then

R(X)Y,Kx + A) = (P mOx(|Im(Ex + A)))
meN
is a locally finitely generated graded Oy -algebra.
The assumption that |A] = 0 holds in Theorem 27 is very important. The following

conjecture is widely open even when 7: X — Y is a projective morphism between quasi-
projective varieties (see [FG2]).
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Conjecture 1.23. Let m: X — Y be a proper morphism from a Kahler manifold X to
a complex analytic space Y. Let A be a boundary Q-divisor on X such that Supp A is a
simple normal crossing divisor on X. Then

R(X/Y,Kx + A) = @D mOx(|m(Kx + A)))
meN
15 a locally finitely generated graded Oy -algebra.

Let X be a normal complex variety and let L C K be compact subsets of X. Assume
that X is Q-factorial at K. Unfortunately, however, X is not necessarily Q-factorial at
L. Therefore, the following theorem seems to be much more useful than we expected and
is indispensable.

Theorem 1.24 (Small Q-factorializations). Let m: X — Y be a projective morphism of
complex analytic spaces and let W be a compact subset of Y such that m: X — Y and
W satisfies (P). Suppose that there exists A such that (X,A) is kawamata log terminal.
Then, after shrinking Y around W suitably, there exists a small projective bimeromor-
phic contraction morphism f: Z — X from a normal complex variety Z such that Z is
projective over Y and is Q-factorial over W .

As an obvious corollary of Theorem 24 we have:

Corollary 1.25. Let w: X — Y be a projective morphism of complezx analytic spaces and
let W be a compact subset of Y such that m: X — Y and W satisfies (P). Let ¢: X --+ Z
be a log terminal model over W. Let W' be a Stein compact subset of Y such that W' C W
and that T'(W', Oy) is noetherian. Then there exists a log terminal model ¢': X --» Z'
over W' after shrinking Y around W' suitably.

We further assume that there is an open neighborhood U of W' such that U € W. Then
¢ X --» 7" is a log terminal model over some open neighborhood of W'.

We can also prove:

Theorem 1.26. Let (X, A) be a kawamata log terminal pair and let D be an integral Weil
divisor on X. Then @,,.n Ox(mD) is a locally finitely generated graded Ox-algebra.

Theorem is a complete generalization of [Kaw?2, Theorem 6.1] (see also [FuR, The-
orem 7.2]). The next result will be indispensable for further studies of the minimal model
program for projective morphisms of complex analytic spaces.

Theorem 1.27 (DIt blow-ups, II). Let m: X — Y be a projective morphism of complex
analytic spaces and let W be a compact subset of Y such that m: X —'Y and W satisfies
(P). Let A be an effective R-divisor on X such that Kx + A is R-Cartier. Then, after
shrinking Y around W suitably, we can construct a projective bimeromorphic morphism
f:Z — X from a normal complex variety Z with the following properties:

(1) Z is projective over Y and is Q-factorial over W,
(2) a(E, X,A) < —1 for every f-exceptional divisor E on Z, and
(3) (Z,A5' + Supp AZ') is divisorial log terminal, where Kz + Az = f*(Kx + A).

We note that Az = A3 + Supp A%l holds when (X, A) is log canonical.
We can generalize [Kawd, Theorem 1] as follows.

Theorem 1.28 (see [Bir2, Corollary 3.3]). Let m: X1 — Y and mo: Xo — Y be projective
morphisms such that Y is Stein and let W be a Stein compact subset of Y such that
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L(W, Oy) is noetherian. Let (X1,A1) and (X2, As) be two kawamata log terminal pairs
such that Kx, + A1 and Kx, + Ay are nef over W, X and Xo are Q-factorial over W, X
and X5 are isomorphic in codimension one, and Ay is the strict transform of Ay. Then,
after shrinking Y around W suitably, X1 and X5 are connected by a sequence of flops with
respect to Kx, + Ay.

Remark 1.29. Precisely speaking, the proof of Theorem shows that there exists an
effective Q-Cartier Q-divisor Dy on X such that (X, A+ D) is kawamata log terminal,
X7 and X, are connected by a finite sequence of flips with respect to Kx, +A; 4+ Dy, and
Kx, + A; is numerically trivial over W in each flip.

On the abundance conjecture, we have:

Theorem 1.30 (Abundance theorem, see Theorem P32). Assume that the abundance
conjecture holds for projective kawamata log terminal pairs in dimension n.

Letm: X —Y be a projective surjective morphism of complex analytic spaces and let W
be a compact subset of Y such that m: X — Y and W satisfies (P). Assume that Kx + A
is nef over Y and dim X — dimY = n. Then Kx + A is w-semiample over some open

netghborhood of W.

Remark 1.31. The abundance conjecture for projective kawamata log terminal pairs was
completely solved affirmatively in dimension < 3. Therefore, in Theorem 30, Ky + A is
m-semiample over some open neighborhood of W when dim X — dimY < 3. This result
seems to be new even when dim X = 3.

We make some remarks on the proof of our results in this paper.

Remark 1.32. We will use the fact that every extremal ray is spanned by a rational curve
of low degree (see [BCHM, Theorem 3.8.1] and Theorem B3) for the proof of Theorems A,
B, O, B, B, and Gl. Note that in [BCHM] it was only used for the proof of the finiteness of
negative extremal rays (see [BCHNM, Corollary 3.8.2]). However, it is well known as a part
of the cone theorem (see also Theorems 2 and [23). Therefore, [BCHM] is independent
of Mori’s bend and break technique, which relies on methods in positive characteristic.

Remark 1.33. We can easily reduce Theorem [ to the case where Y is a point. In this
case, X is projective and then Theorem [ becomes a special case of [BCHM, Theorem
D].
In [BP, Section 3], Paun proved a slightly weaker version of the nonvanishing theorem
for projective varieties (see [BP, Theorem 1.5]). The proof is complex analytic and is
independent of the theory of minimal models. By combining it with [CKP, Theorem 0.1
and Corollary 3.3], we can recover the nonvanishing theorem for projective varieties in
full generality (see [BCHM, Theorem D]). By adopting this approach, Theorem [ in this
paper becomes completely independent of the framework of the minimal model program.

Anyway, we can prove Theorem [ without any difficulties by using some known results.

Remark 1.34. In [Call], Cascini and Lazi¢ directly proved the finite generation of ad-
joint rings by using Hironaka’s resolution and the Kawamata—Viehweg vanishing theorem.
Their proof does not use the minimal model program. Then, in [Coll], Corti and Lazié¢ re-
covered many results on the minimal model program from [Call, Theorem A]. The author
does not know whether this approach works or not in our complex analytic setting.

Remark 1.35. In dimension three, some results were formulated and established in the
complex analytic setting (see, for example, [Kaw?], [Mo3]|, and [KM, Chapter 6]). It is
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not surprising because the theory of minimal models for 3-folds originally owes to the
study of various singularities (see, for example, [Mol], [Kaw?|, and [Mo3]). Although
the classification of surface singularities is indispensable for adjunction, we do not need
any classifications of higher-dimensional singularities in [BCHM]. Hence, we think that
the minimal model program in dimension > 4 has been formulated and studied only for
algebraic varieties.

We look at the organization of this paper. Section B is a long preliminary section,
where we will collect and explain some basic definitions and results on complex analytic
spaces. We think that the reader can understand that (P4) is reasonable. To the best
knowledge of the author, some of the results in this section seem to be new. In Section
B, we will explain singularities of pairs in the complex analytic setting. The definitions
of singularities become slightly complicated in the complex analytic setting. In Section
A, we will define Kleiman—Mori cones and establish Kleiman’s ampleness criterion in the
complex analytic setting. Here, the property (P4) plays a crucial role. Section B is a very
short section, where we explain only two vanishing theorems. From Section B to Section
B, we will establish several basepoint-free theorems, the cone and contraction theorem,
and so on, in the complex analytic setting. This part is essentially due to Nakayama (see
[NaZ]). We note that we have to treat R-divisors. Therefore, some parts are harder than
the classical setting discussed in [Na2]. In Section B, we will prove that every negative
extremal ray is spanned by a rational curve of low degree. Note that we need some
result obtained by Mori’s bend and break technique, which relies on methods in positive
characteristic. The result in this section will play an important role in the subsequent
sections. In Sections I and TA, we will prepare various basic definitions to establish
the main results of this paper. We closely follow the treatment of [BCHM]|. However,
we have to reformulate some of them in order to make them suitable for our complex
analytic setting. Hence we strongly recommend the reader to read these sections carefully.
In Section I3, we will explain the minimal model program with scaling in the complex
analytic setting in detail. It is very useful for various geometric applications. From Section
@ to Section M, we will prove Theorems A, B, O, O, E, E, and Gl. Although there are many
technical differences between the original proof for quasi-projective varieties (see [BCHMI|
and [HacM]) and the one given here in the complex analytic setting, the strategy of the
whole proof is the same. In some parts, we will only explain how to modify the original
proof in order to make it work in our complex analytic setting. In Section PO, we will
prove almost all the theorems given in Section . We think that the reader who is familiar
with the minimal model program for quasi-projective varieties can understand this section
without any difficulties. In the last three sections, we will treat some advanced topics.
In Section 2, we will briefly discuss a canonical bundle formula in the complex analytic
setting and prove Theorems T8 and T22. This section needs some deep results on the
theory of variations of Hodge structure. Hence the topic in Section 21 is slightly different
from the other sections. In Section 22, we will discuss the minimal model program with
scaling again. Then we will prove Theorem as an easy application. In Section P23, we
will explain how to reduce the abundance conjecture for projective morphisms between
complex analytic spaces to the original abundance conjecture for projective varieties (see
Theorem [=30). Note that we will only treat kawamata log terminal pairs in Section 3.
The abundance conjecture for log canonical pairs looks much harder than the one for
kawamata log terminal pairs.

As is well known, the recent developments of the theory of minimal models heavily
owe to many ideas and results obtained by Shokurov. They are scattered in his papers
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(see, for example, [Sh1l], [Sh2], and [Sh3]). In this paper, we will freely use them without
referring to Shokurov’s original papers.

Acknowledgments. The author was partially supported by JSPS KAKENHI Grant
Numbers JP19H01787, JP20H00111, JP21H00974. He would like to thank Hiromichi Tak-
agi for reading the first version of [BCHM)| with him at Nagoya in 2006. He thanks Yoshi-
nori Gongyo, Kenta Hashizume, Yuji Odaka, Keisuke Miyamoto, Shigeharu Takayama,
and Yuga Tsubouchi very much.

The set of integers (resp. rational numbers, real numbers, complex numbers) is de-
noted by Z (resp. Q, R, C). The set of nonnegative integers (resp. positive integers,
positive rational numbers, positive real numbers, nonnegative real numbers) is denoted

by N (reSp. Z>07 @>07 R>07 RZO)

2. PRELIMINARIES

In this section, we will collect some basic definitions and explain various standard re-
sults. We note that every complex analytic space in this paper is assumed to be Hausdorff
and second-countable. The books [BS], [Ei], and [GR] are standard references of complex
analytic geometry for algebraic geometers. A relatively new book by Noguchi (see [Nd])
is a very accessible textbook on several complex variables and complex analytic spaces.
Demailly’s book (see [D]) is also helpful and contains a proof of Grauert’s theorem on
direct images of coherent sheaves. We will freely use Serre’s GAGA principle (see, for
example, [Tay, Chapter 13] and [SGAT, Exposé XII]) throughout this paper.

Let us start with the definition of holomorphically convex hulls.

Definition 2.1 (Holomorphically convex hulls). Let X be an analytic space and let K
be a compact subset of X. The holomorphically conver hull K of K in X is the set

K= {x e X ‘|f(x)| < supl|f(z)] for every f € T'(X, (’)X)}.
zeK

We note that K ¢ K always holds by definition. A compact subset K of X is said to be
holomorphically conver in X if K = K holds.

Let us recall the definition of Stein spaces for the reader’s convenience. We note that
the analytic space naturally associated to an affine scheme is Stein

Definition 2.2 (Stein spaces). A complex analytic space X is said to be Stein if

(i) the global sections of Ox separate points in X,
(ii) for each z € X, the maximal ideal of Oy, is generated by a set of global sections
of Oy, and
(iii) X is holomorphically convex, that is, K is compact for every compact subset K
of X, where K is the holomorphically convex hull of K in X.

The notion of Stein compact subsets plays a crucial role in this paper.

Definition 2.3 (Stein compact subsets). A compact subset K of a complex analytic space
is called Stein compact if it admits a fundamental system of Stein open neighborhoods.

The notion of Oka—Weil domains is very useful when we construct desired Stein open
neighborhoods.
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Definition 2.4 (Oka—Weil domains, see [GR|, Chapter VII, Section A, 2. Definition]).
Let X be a complex analytic space. An Oka—Weil domain on X is a relatively compact
open subset W such that there exists a holomorphic map ¢ defined in a neighborhood
of W, and with values in C", such that |y is a biholomorphic mapping onto a closed
complex analytic subspace of a polydisc in C". We note that W itself is Stein.

By the following lemma, we know that we can find many Stein compact subsets on a
given Stein space.

Lemma 2.5. Let K be a compact subset of a Stein space X. Let K be a holomorphically
convex hull of K in X Then K is a Stein compact subset of X.

Proof. Since X is holomorphically convex, K is a compact subset of X. Let U be any
open subset of X with K C U. Then we can take an Oka—Weil domain W of X such that
K CW CW CU (see [GR, Chapter VII, Section A, 3. Proposition]). This means that
K admits a fundamental system of Stein open neighborhoods since W is a Stein space.
Hence K is a Stein compact subset of X. [l

Throughout this paper, we freely use Cartan’s Theorems A and B without mentioning
it explicitly. We include them here for the reader’s convenience.

Theorem 2.6 (Cartan’s Theorems). Let X be a Stein space and let F be a coherent sheaf
on X. Then

(1) (Cartan’s Theorem A). I'(X, F) generates F, at every point x € X, and
(2) (Cartan’s Theorem B). H(X,F) = 0 holds for every i > 0.

The following cohomological characterization of Stein spaces is useful and may help
algebraic geometers understand the definition of Stein spaces.

Theorem 2.7. Let X be a complex analytic space. Then X is Stein if and only if
HY(X,F) =0 for every coherent sheaf F on X.

Proof. If X is Stein, then H'(X,F) = 0 for every coherent sheaf F on X by Cartan’s
Theorem B. On the other hand, if H*(X,Z) = 0 for every coherent ideal sheaf Z on
X, then it is an easy exercise to check that (i) and (ii) in Definition E2 hold true.
Let K be a compact subset of X. Suppose that the holomorphically convex hull K of
K is not compact. Then we can take a discrete sequence {x}ren C K. Note that
V= {x |0 < k < 00} is a closed analytic subspace of X. Hence the defining ideal sheaf
Ty of V is a coherent sheaf on X. Thus H'(X,Zy) = 0 holds by assumption. This implies
that the natural map H°(X,Ox) — H°(X,Ox/Zy) is surjective. Therefore, we can take
f € H°(X,Ox) such that f(z,) =n. On the other hand,

n=|f(zn)] < sup|f(z)] < oo
zeK
for every n since x, € K. This is a contradiction. Thus, K is always compact, that is,

(iii) holds true. We finish the proof. O

As an easy consequence of Theorem 271, we have:

Theorem 2.8. Let f: Z — X be a finite morphism between complex analytic spaces. If
X is Stein, then so is Z.
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Proof. Let F be any coherent sheaf on Z. Since f: Z — X is finite, f.F is coherent and
HYZ,F) = H'(X, f.F) = 0 holds by the Steinness of X. Hence, by Theorem P72, Z is
Stein. O

We have already explained that every Stein space X has many good properties. Unfor-
tunately, however, I'(X, Ox) is not noetherian if X does not consist of only finitely many
points.

Example 2.9. Let X be a Stein space and let {P;}reny be a set of mutually distinct

discrete points of X. Then Z,, := {P,, P11, ...} can be seen as a closed analytic subspace

of X for every n € N. Let Z, be the defining ideal sheaf of Z,, on X. It is well known

that Z, is a coherent sheaf on X. We put a,, := I'(X,Z,) for every n. Then
aogalg...gang_...

is a strictly increasing sequence of ideals of I'(X, Ox). This means that I'(X, Ox) is not
noetherian.

Siu’s theorem clarifies the meaning of the condition in (P4).

Theorem 2.10 ([Si, Theorem 1]). Let K be a Stein compact subset of a complex analytic
space X. Then KNZ has only finitely many connected components for any analytic subset
Z which is defined over an open neighborhood of K if and only if

Ox(K) = I'(K,Oy) = lim I'(U, Ox),
KcU
where U runs through all the open neighborhoods of K, is noetherian.

Proof. For the details, see, for example, [BS, Chapter V, §3]. O
One point is a Stein compact subset satisfying (P4).

Example 2.11. Let X be a complex analytic space and let P be any point of X. Then
P is a Stein compact subset of X and Ox p = I'(P, Ox) is noetherian.

The Cantor set is a Stein compact subset which does not satisfy (P4).

Example 2.12. We note that C is Stein and that any open subset of C is also Stein since
it is holomorphically convex. We put X = {z € C||z| < 2} and consider the Cantor set C.
It is easy to see that C (C [0,1] C X) is a Stein compact subset of X and that X is Stein.
We can easily check that for any given z1, 25 € C there exists x3 & C with x5 € [z, 23]
Hence C does not satisfy (P4). Thus, I'(C, Ox) is not noetherian by Theorem 210 . More
explicitly, we put

a, = {f e I'(C,Ox) ‘f(z) =0 forany z € CN {O,Bin} }
for every n € N. Then we can check that a,, C a,,1 holds for every n € N. Therefore, we
get a strictly increasing sequence of ideals of I'(C, Ox):

4 Ca C--Ca, C---.
This implies that I'(C, Ox) is not noetherian.
We supplement Theorem Z3.

Theorem 2.13. Let f: Z — X be a finite morphism of complex analytic spaces such
that X is Stein. Let K be a Stein compact subset of X such that T'(K, Ox) is noetherian.
Then f~Y(K) is a Stein compact subset of Z such that T(f~1(K), Oyz) is noetherian.
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Proof. Since f is finite, f~1(K) is a compact subset of Z. Let {Uy}xca be a fundamental
system of Stein open neighborhoods of K. By Theorem 8, Z is Stein and f~1(Uy) is
also Stein for every A € A. Hence {f~'(Uy)}rea is a fundamental system of Stein open
neighborhoods of f~'(K). On the other hand, since f is finite, f.Oyz is a coherent sheaf
on X. By the Stein compactness of K, there exist a Stein open neighborhood U of K and
a surjection

(/)(E?N — f*OZ|U —0

for some positive integer N. This implies the surjection
IK,O0x)™N = I'(K, f,.0z) — 0.

Hnece I'(K, f.Oyz) is a finitely generated I'( K, Ox)-module. We note that I'(K, f.O) =
L(f~(K),Oz) and that T'(K,Ox) is noetherian. Thus, I'(f~'(K),Oy) is noetherian.
This means that f~'(K) is a Stein compact subset of Z such that ['(f~}(K),Oy) is
noetherian. O

Remark 2.14. Let 7: X — Y be a projective morphism between complex analytic spaces
and let W be a compact subset of Y such that 7: X — Y and W satisfies (P). As an easy
consequence of Theorems 228 and P13, we usually may assume that 7 is surjective and
that Y is a Stein variety by replacing Y with 7(X). For some purposes, we sometimes
replace Y with its normalization and further assume that Y is a normal Stein variety.
By taking the Stein factorization of 7: X — Y, we sometimes further assume that 7 has
connected fibers and that Y is a normal Stein variety, that is, 7: X — Y is a contraction
of normal complex varieties.

We note:

Definition 2.15. A proper morphism 7: X — Y of normal complex varieties is called a
contraction if T,Ox ~ Oy holds.

When we enlarge a given Stein compact subset satisfying (P4) slightly, we need the
following lemma.

Lemma 2.16. Let X be a Stein space and let K be a holomorphically convex com-
pact subset of X. If U 1is any open neighborhood of K, then there exists an Oka—
Weil domain V', defined by global holomorphic functions on X, such that K C V C
V c U. Note that V can be seen as a closed complex analytic subspace of a polydisc
A0,7) = {(z1,.-,20) | |zi] <7 for 1 <i<n} for somer > 0 and n € Zsy. We put
L:=VNAQ,r—¢) with0 < e <r. Then L is compact, semianalytic, and holomor-
phically convex in V. In particular, L is a Stein compact subset such that T'(L,Ox) is
noetherian. Furthermore, if U’ is a relatively compact open neighborhood of K in X, then
we can choose U, V, and L such that

KcUcLcVcVcUcX
holds.

Proof. For the existence of a desired Oka—Weil domain V', see, for example, [GR|, Chapter
VII, Section A, 3. Proposition|. By definition, L is obviously compact and semianalytic.
Since L is defined by |z1] < r —¢,...,|z4] < r — ¢ such that z; € I'(V,Oy) for every
i, it is easy to see that L is holomorphically convex in V. By Lemma A, L is Stein
compact. Since L is compact and semianalytic, it is well known that L satisfies (P4) (see,
for example, [BM1, Corollary 2.7 (2)]). Thus, I'(L, Ox) is noetherian by Theorem PI0.

]
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Or, by applying [F1, Théoreme (1,9)] to L, we obtain that I'(L, Ox) is noetherian. By the
above construction, the last statement is obvious. 0
We frequently use the following property of coherent sheaves on complex analytic spaces.
Lemma 2.17. Let F be a coherent sheaf on a complex analytic space X and let
FoCFHCFC---CF

be an increasing chain of coherent subsheaves. Then this chain is stationary over any
relatively compact subset of X.

Proof. See, for example, [Fi, 0.40. Proposition and Corollary]. O

Note that the arguments in [Kau, §2 Basic theorems on coherent O-modules| work for
Stein compact subsets K satisfying (P4) with obvious modifications.

Definition 2.18 (Ox-exhaustions, see [Kau, 2.9 Definition]). Let M be an Ox-module

on a complex analytic space X. An Ox-ezhaustion of M is an increasing sequence
MgCMyC---CMpC---CM

of coherent sub-O x-modules such that M = J, Mj.

Lemma 2.19 (see [Kau, 2.10 Proposition]). Let K be a Stein compact subset of a complex

analytic space X such that T'(K,Ox) is noetherian. Let M and M’ be Ox-modules on

X which admit Ox-exhaustions. If ¢: M — M’ is a surjective Ox-homomorphism, then
the induced map I'(K, M) — I'(K, M’) is surjective.

Proof. For the details, see the proof of [Kau, 2.10 Proposition]. Although K is a polydisc
in [Kal], the proof of [Kau, 2.10 Proposition] works in our setting. O

Since we are working on complex analytic spaces, we note:

Remark 2.20. Let F,, be a coherent sheaf on a complex analytic space X for every
m € N. Then the natural map

Prx. r.)-T (X, &y }"m)

meN meN
is not necessarily an isomorphism. Fortunately,

Prx F.)~T (K, ) ]—"m)

meN meN
holds for any compact subset K of X.
Example 2.21. Let X be a noncompact complex analytic space and let {z,, }men be a

discrete sequence of X. Let C(x,,) := (i4,, )«C be a skyscraper sheaf, where i, : x,, — X
is the inclusion map. Then @, .\ C(z,,) is a coherent sheaf on X. In this case,

r (X, @cuw) =[] c= ][] X .Clan)).

meN meN meN
Hence, the natural map

Pr(x,Clem) »T (X, &y C(m))

meN meN
is not an isomorphism.
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In this paper, we will have to treat graded Ox-algebras on a complex analytic spaces.
So we prepare some definitions and basic properties.

Definition 2.22 (see [Na3, Chapter II. §1. b. Spec and Proj|). Let X be a complex

analytic space and let C[z] = Clxy,---,2;] be the polynomial ring of [-variables z =
(1, ,2;). An Ox-algebra A is called of finite presentation if there exists a surjective
Ox-algebra homomorphism

O)([ZE]:OX[ZL‘l,"' ] OX ®(C [ }—»A

for some [ whose kernel is generated by a finite number of polynomials belonging to
H°(X,Ox)[z]. If Aly, is of finite presentation for an open covering X = J,, Uy, then
A is called locally of finite presentation.

The notion of locally finitely generated graded Ox-algebras is indispensable.

Definition 2.23 (Locally finitely generated graded Ox-algebras). Let X be a complex
analytic space. An Ox-algebra A = @, . An is called a finitely generated graded Ox -
algebra if there exists a surjective Ox-algebra homomorphism

Ox[z] = Ox[z1, -+ ;1] = Ox ®@c Clz] - A

for some [ such that x; is mapped to a homogeneous element of H°(X, A) for every i.
If A|y, is a finitely generated graded Op,-algebra for some open covering X = [ J,c, Ua,
then A is called a locally finitely generated graded Ox-algebra.

We note the following basic property of locally finitely generated graded O x-algebras.

Lemma 2.24 (see [Na3, Chapter II. 1.6. Corollary]). Let X be a complex analytic space
and let A= €D, o Am be a locally finitely generated graded Ox-algebra such that Ay, are
all coherent Ox-modules. Then A is locally of finite presentation.

Before we prove Lemma 224 we note:

Remark 2.25. Any locally finitely generated graded Ox-algebra A = @,y Am in this
paper satisfies the condition that A, is a coherent Ox-module for every m € N. We do
not treat the case where A,, is not a coherent Ox-module.

Let us prove Lemma 224

Proof of Lemma [2.Z4. We take an arbitrary point P € X and replace X with a small
Stein open neighborhood of P. Then we have an exact sequence
¢: Ox[z] = A—0

for x = (xy1,-+- ,2;) such that x; is mapped to a homogeneous element of H°(X, A) for
every ¢. We take a relatively compact Stein open neighborhood U of P and a Stein
compact subset K of Y such that U C K and I'(K, Oy) is noetherian. Then

H(K): Ox(K)z] - AK) =0
is exact by Lemma Z19. Since Ox(K) is noetherian, the kernel of ¢(K) is generated

by weighted homogeneous polynomials fi, ..., fx in Ox(K)[z]. Hence we obtain a Stein
open neighborhood U’ of K and a homomorphism

= (fi,-r, @OU’ —deg f;) = Our[2]
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of graded Oy [z]-modules such that the image of ¥(K) is (Ker ¢) (K). By construction,
there exists the following natural surjection

am: (Coker) =—— Ay |v

for every m € N, where (Cokert), is the degree m part of Cokert. By construction
again, we can check that (Cokerv), (K) ~ A,,(K) holds for every m € N. This implies
that the kernel of «,, is zero on U. Hence Ay is of finite presentation. Therefore, A is
locally of finite presentation. OJ

The lemma below is important and will be used repeatedly without mentioning it
explicitly. The proof is much harder than that of the corresponding statement for algebraic
varieties (see [ADHII, Corollary 1.1.2.6]).

Lemma 2.26. Let X be a complex analytic space and let A = @,y Am be a graded
Ox-algebra such that A, is a coherent Ox-module for every m and A(U) is an integral
domain for every nonempty connected open subset U of X. We put A@ .= D,en Adm-
Then A is a locally finitely generated graded Ox-algebra if and only if so is A,

Proof. Since Ox (U) is not necessarily noetherian, the proof is not so obvious.

Step 1. We assume that A@ is a locally finitely generated graded Ox-algebra. We take
an arbitrary point P € X. By shrinking X around P, there exists a surjective Ox-algebra
homomorphism

(21) OX[CC] - OX[xla e 7xl] - A(d)

for some [ such that z; is mapped to a homogeneous element of H°(X, A(d)) for every 1.
We take an open neighborhood U of P € X and a Stein compact subset K of X such
that P € U C K and that K satisfies (P4). Without loss of generality, we may assume

that K is connected. Since Ox|z1,--- , x| and AW admit Ox-exhaustions, we obtain the
surjection
(2.2) Ox(K)[z1, -+ 1] = AD(K) =0

induced by (20). This means that A@ (K) is a finitely generated graded Ox (K )-algebra.
Note that Ox (K) is noetherian and that A(K) is an integral domain. Therefore, we see
that A(K) is a finitely generated graded O(K)-algebra (see, for example, [Call; Lemma
2.25 (ii)] and [ADHII, Proposition 1.1.2.5]). Since K is a Stein compact subset, for any
nonnegative integer m, A,,(K) generates A,,, for every z € K. Hence we can find a
surjective Op-algebra homomorphism

Ouly] = Ovulyr, - el = Alu

for some k such that y; is mapped to a homogeneous element of H°(U, A) for every j.
This means that A is a locally finitely generated graded Ox-algebra.

Step 2. As in Step [, we take an arbitrary point P € X and shrink X around P. Then
there exists a surjective O x-algebra homomorphism

(23) Ox[l'] = Ox[$1, s ,l’l] - ./4

for some [ such that z; is mapped to a homogeneous element of H°(X, A) for every i. In
this case, it is easy to see that there exists a surjective O x-algebra homomorphism

Ox[y] = Ox[yh'" ;yk} - »A(d)
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for some & such that y; is mapped to a homogeneous element of H°(X, A@D) for every j
(see, for example, [Call, Lemma 2.25 (i)] and [ADHI, Proposition 1.1.2.4]). Hence A@

==

is a locally finitely generated graded Ox-algebra.
We finish the proof. d

In order to construct flips and log canonical models in the category of complex analytic
spaces, we need the notion of Projan. For the details of Projan, see [Na3, §1.b. Spec and
Proj].

Remark 2.27 (Projan). Let X be a complex analytic space and let A =@, A be a
locally finitely generated graded Ox-algebra such that A, is a coherent Ox-modules for
every m. Then we can define an analytic space Projany A which is proper over X. More
generally, we can define Projany A under a weaker assumption that A is locally of finite
presentation. Let F be a coherent Ox-module. We note that Projany Sym F is usually

denoted by Py (F), where Sym F = €, _, Sym™ F.

Now we can define projective morphisms of complex analytic spaces.

meN

Definition 2.28. Let 7: X — Y be a proper morphism of complex analytic spaces and let
L be aline bundle on X. Then L is said to be m-very ample or relatively very ample over' Y
if £ is m-free, that is, 7*m, L — L is surjective, and the induced morphism X — Py (f.L)
over Y is a closed embedding. A line bundle £ on X is called w-ample or ample over Y
if for any point y € Y there are an open neighborhood U of y and a positive integer m
such that L[ .1y is relatively very ample over U. Let D be a Cartier divisor on X.
Then we say that D is m-very ample, m-free, and w-ample if the line bundle Ox (D) is
so, respectively. We note that 7 is said to be projective when there exists a m-ample line
bundle on X.

For the basic properties of m-ample line bundles, see [BS, Chapter IV] and [Na3, Chapter
II. §1. c. Ample line bundles].

Definition 2.29 (Semiampleness). Let 7: X — Y be a proper morphism of complex
analytic spaces and let £ be a line bundle on X. If there exit an open covering ¥ =
U,ea Ux and positive integers my such taht L2 -1, ) is 7|z-1,)-free for every X € A,
then L is called w-semiample or relatively semiample over Y. Let D be a Cartier divisor
on X. If Ox(D) is m-semiample, then D is called 7-semiample or relatively semiample
over Y.

Here, we recall the precise definition of bimeromorphic maps for the sake of complete-
ness.

Definition 2.30 (Meromorphic maps). A meromorphic map f: X --+ Y of complex
analytic varieties is defined by the graph I'y C X xY such that I'; is a subvariety of X xY
and that the first projection is an isomorphism over a Zariski open dense subset of X. Note
that a Zariski open subset is the complement of an analytic subset. If further the second
projection I'y — Y is proper and is an isomorphism over a Zariski open dense subset of
Y, then f: X --» Y is called a bimeromorphic map. We say that a bimeromorphic map
f: X --» Y of normal complex varieties is a bimeromorphic contraction if f~1 does not
contract any divisors. If in addition f~! is also a bimeromorphic contraction, then we say
that f is a small bimeromorphic map. Let f: X — Y be a bimeromorphic morphism of
complex normal varieties, equivalently, f: X --+ Y is a bimeromorphic map of normal
complex varieties and the first projection I'y — X is an isomorphism. Then, we put
Exc(f) := {x € X | f is not an isomorphism at z} and call it the exceptional locus of f.
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Remark 2.31. Let X be a complex analytic space and let U be a Zariski open subset
of X. Let V be a Zariski open subset of U. Unfortunately, V' is not necessarily a Zariski
open subset of X. This is because the analytic subset ' := U \ V of U can not always be
extended to an analytic subset of X.

In this paper, we discuss the minimal model program. Therefore, we need Q-divisors
and R-divisors.

Definition 2.32 (Divisors, Q-divisors, and R-divisors). Let X be a normal complex vari-
ety. A prime divisor on X is an irreducible and reduced closed subvariety of codimension
one. An R-divisor D on X is a formal sum

D = Z CLiDi,

where D; is a prime divisor on X with D; # D, for ¢ # j, a;, € R for every 7, and the
support

Supp D := U D;
a; 70
is a closed analytic subset of X. In other words, the formal sum ), a;D; is locally finite.
If a; € Z (resp. a; € Q) for every i, then D is called a divisor (resp. Q-divisor) on X.
Note that a divisor is sometimes called an integral Weil divisor in order to emphasize the
condition that a; € Z for every i. If 0 < a; < 1 (resp. a; < 1) holds for every ¢, then an
R-divisor D is called a boundary (resp. subboundary) R-divisor.

Let D = )", a;D; be an R-divisor on X such that D; is a prime divisor for every i with
D; # D; for i # j. The round-down | D] of D is defined to be the divisor

|D] = la;| Di.

The round-up and the fractional part of D are defined to be
[D] :=—|-D|, and {D}:=D—|D],
respectively. We put

D'=>"D; DY:=) aD;, and D*':=) a;D;

a;=1 a;<1 a;>1

We sometimes use

D, = Z a;D;, and D_ :=— Z a;D; > 0.
a; >0 a; <0
By definition, D = D, — D_ holds.

Let D be an R-divisor on X and let  be a point of X. If D is written as a finite R-linear
(resp. Q-linear) combination of Cartier divisors on some open neighborhood of x, then D
is said to be R-Cartier at x (resp. Q-Cartier at z). If D is R-Cartier (resp. Q-Cartier) at «
for every x € X, then D is said to be R-Cartier (resp. Q-Cartier). Note that a Q-Cartier
R-divisor D is automatically a Q-Cartier Q-divisor by definition. If D is a finite R-linear
(resp. Q-linear) combination of Cartier divisors on X, then we sometimes say that D is a
globally R-Cartier R-divisor (resp. globally Q-Cartier Q-divisor).

Example 2233 below shows a big difference between divisors on algebraic varieties and
those on complex analytic spaces.
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Example 2.33 (Weierstrass). Let D be a divisor on C. We note that Supp D may
be any discrete subset of C. By the classical Weierstrass theorem, we can construct a
meromorphic function f on C such that div(f) = D.

Definition 2.34. Let X be a normal variety. A real vector space spanned by the prime
divisors on X is denoted by WDivg(X). It has a canonical basis given by the prime
divisors. Let D be an element of WDivg(X). Then the sup norm of D with respect to
this basis is denoted by |D]|. Note that an R-divisor D is an element of WDivg(X) if and
only if Supp D has only finitely many irreducible components.

We need the notion of semiample Q-divisors.

Definition 2.35 (Relatively semiample Q-divisors). Let 7: X — Y be a projective mor-
phism of complex analytic spaces such that X is a normal variety. A Q-Cartier Q-divisor
D on X is called a m-semiample Q-divisor on X if it is a finite Q- ¢-linear combination of
m-semiample Cartier divisors on X.

The following lemma is very important.

Lemma 2.36. Let m: X — Y be a projective morphism of complex analytic spaces such
that X is a normal complex variety and let D be a w-semiample Q-diwvisor on X. Then
D,.cn mOx (mD)]) is a locally finitely generated graded Oy-algebra. In particular, if £
is a m-ample line bundle on X, then @, . L™ is a locally finitely generated graded
Oy -algebra.

Proof. Throughout this proof, we fix a point y € Y and repeatedly shrink Y around y.
In Step M, we will reduce the problem to the case where Ox (D) is m-ample. In Step B, we
will prove the desired finite generation.

Step 1. By shrinking Y around y, we may assume that there exists a positive integer d
such that Ox(dD) is m-free. By Lemma P28, we may further assume that Ox (D) is w-free
by replacing D with dD. We consider a contraction morphism over Y associated to Ox (D)
and take the Stein factorization. Then there exist a contraction morphism ¢: X — Z
over Y with ¢,0Ox ~ Oz and some m-ample line bundle £ on Z, where m5: Z — Y is
the structure morphism, such that Ox (D) ~ ¢*L. Since m,0Ox(mD) =~ (7).L®™ holds
for every m, we may further assume that Ox (D) is m-ample by replacing X and Ox (D)
with Z and L, respectively.

Step 2. From now on, we assume that Ox (D) is m-ample. By Lemma P28, we may
further assume that Ox(D) is m-very ample. Therefore, after shrinking Y around y
suitably, there exists the following commutative diagram

Y

such that Ox (D) ~ t*piOpn(1). We put N := p;Opn(1). Then there exists a positive
integer mg such that (p;).N®" — 1.0x(mD) is surjective for every m > mgy. We note
that

(P1) N 2= (p1)2p30pn (1) = Oy [Xo, -+, X m,
where Oy [Xo, -+, Xy]m is the degree m part of Oy [Xy, -+, Xy]. Since m.Ox(mD) is a
coherent Oy-module for every 0 < m < my, after replacing Y with a small Stein open
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neighborhood of y if necessary, we see that there is a surjective Oy-algebra homomorphism

OY[XCH T aXNaXN-i-la e 7XN+M] - @W*Ox(mD)

meN

for some M such that each X; is mapped to an element of H(Y, 7,Ox(m;D)) for some
m; € N. This means that @, . m.Ox(mD) is a locally finitely generated graded Oy-
algebra.

By Step 0 and Step B, @,y 7:Ox(|mD]) and @, m.LE™ are both locally finitely
generated graded Oy-algebras. U

For almost all applications, we may assume that any R-divisor has finitely many com-
ponents by the following lemma.

Lemma 2.37. Let D be an R-Cartier R-divisor (resp. Q-divisor) on a normal complex
variety X . Let U be any relatively compact open subset of X. Then D is a finite R-linear
(Q-linear) combination of Cartier divisors in a neighborhood of U, that is, D is a globally
R-Cartier R-divisor (globally Q-Cartier Q-divisor) in a neighborhood of U.

Proof. Without loss of generality, we may assume that D is a finite R-linear combination
of prime divisors by shrinking X. We write D = Zle a;D;, where a; € R and D; is a
prime divisor for every ¢ with D; # D, for i # j. We consider the following R-vector
space
V={x1D1+ -+ 21Dy | z; € R for every i} ~ R¥.

We take an arbitrary point x € X. Then there exists an open neighborhood U, of x such
that D]y, is a finite R-linear combination of Cartier divisors. Hence we can find an affine
subspace V* of V defined over the rationals such that D € V* and that any member of
V* is R-Cartier in a neighborhood of x. Since U is relatively compact, there exists an
affine subspace X of V' defined over the rationals such that D € ¥ and that every element
of ¥ is R-Cartier in a neighborhood of U. Hence, by the standard argument, we can write
D as a finite R-linear combination of Cartier divisors in a neighborhood of U. When D
is a Q-divisor, it can be written as a finite QQ-linear combination of Cartier divisors in a
neighborhood of U. Thus, we get the desired statement. U

The definition of Q-factoriality is very subtle.

Definition 2.38 (Q-factoriality, see [Na2, Definition 4.13]). Let X be a normal complex
variety and let K be a compact subset of X. Then X is said to be Q-factorial at K if
every prime divisor defined on an open neighborhood U of K is Q-Cartier at any point
r e K.

Let 7: X — Y be a projective morphism and let W be a compact subset of Y. If X is
Q-factorial at 7=*(W), then we usually say that X is Q-factorial over W.

Remark 2.39. Let 7: X — Y be a projective morphism and let W be a compact subset
of Y. We take a compact subset W’ of Y with W’ C W. It is very important to note that
X is not necessarily Q-factorial over W’ even if X is Q-factorial over . This is because
there may exist a divisor defined over an open neighborhood of 7=*(W’) which can not
be extended to a divisor defined over an open neighborhood of 71 (W).

We adopt the following definition of linear, Q-linear, and R-linear equivalences in this
paper. Although it may be somewhat artificial, it is sufficient for our minimal model
program for projective morphisms of complex analytic spaces.
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Definition 2.40 (Linear, Q-linear, and R-linear equivalences). Two R-divisors D; and
D are said to be linearly equivalent if Dy — D5 is a principal Cartier divisor. The linear
equivalence is denoted by D; ~ D,. Two R-divisors D; and D, are said to be R-linearly
equivalent (resp. Q-linearly equivalent) if Dy — Dy is a finite R-linear (resp. Q-linear) com-
bination of principal Cartier divisors. When D is R-linearly (resp. Q-linearly) equivalent
to Dy, we write Dy ~g Dy (resp. Dy ~q D).

Example 2.41. Let X be a noncompact complex manifold with dim X = 1. Then it
is known that X is always Stein. We assume that H?(X,Z) = 0 holds. Let D be an
R-divisor on X such that Supp D is finite. Then D ~p 0, that is, D is R-linearly trivial.
On the other hand, if Supp D is not finite, then D is not necessarily R-linearly trivial in
the sense of Definition Z40. As in Example 2233, if D is an integral Weil divisor on X,
then D ~ 0 always holds.

We will use the following lemma in the proof of Theorem H (3).

Lemma 2.42 (see [Kaw?2, Lemma 1.12] and [Na3, Chapter II. 2.12. Lemmal). Let X be a
normal complex variety with only rational singularities and let K be a compact subset of
X. Let D; be an integral Weil divisor on X such that D; is Q-Cartier at K for1 <i <k.
Then there exists a positive integer m such that mD; is Cartier on some open neighborhood
of K for every 1 <i <k.

Proof. We take an arbitrary pint z € K. By [Na3, Chapter II. 2.12. Lemma] (see [Kaw?2,
Lemma 1.12]), there exists a positive integer m, such that m,D; is Cartier at x for
1 <14 < k. This means that there exists an open neighborhood U, of x such that m,D;
is Cartier on U, for every 1 < i < k. Since K is compact, we can take a positive integer
m and an open neighborhood U of K such that mD; is Cartier for every 1 < i < k. This
is what we wanted. [

In this paper, we usually consider the case where the base space Y is Stein and the
morphism 7: X — Y is projective. In this setting, we have many good properties.

Remark 2.43. Let 7: X — Y be a projective morphism from a normal complex variety
X to a Stein space Y. We take a m-ample line bundle A on X. Let wy be the canonical
sheaf of X (see Definition BTl below). Since there exists a sufficiently large positive integer
m such that
H(X,wx ® A®™) ~ H(Y, 7. (wx ® A®™)) # 0
and
HY(X, A®™) ~ H(Y, 7, A®™) £ 0,

we can always take a Weil divisor Kx on X satisfying wx ~ Ox(Kx). As usual, we call
it the canonical divisor of X. More generally, let £ be a line bundle (resp. reflexive sheaf

of rank one) on X. By the same argument as above, we can take a Cartier (resp. Weil)
divisor D on X such that £ ~ Ox (D).

2.44 (Ample, semiample, big, pseudo-effective, and nef R-divisors). In our framework of
the minimal model program for projective morphisms of complex analytic spaces, we have
to use R-divisors. Hence we need the following definitions: Definitions 2243, 2744, 2747,
and 2748. We state them explicitly here for the sake of completeness.

Definition 2.45 (Ample and semiample Q-divisors and R-divisors, see Definition PZ33).
Let m: X — Y be a projective morphism of complex analytic spaces. A finite R.q-
linear (resp. Qso-linear) combination of m-ample Cartier divisors is called a m-ample R-
divisor (resp. m-ample Q-divisor). A finite Ry q-linear (resp. Qso-linear) combination of
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m-semiample Cartier divisors is called a w-semiample R-divisor (resp. m-semiample Q-
divisor).

In this paper, we adopt the following definition of big R-divisors.

Definition 2.46 (Bigness). Let 7: X — Y be a projective morphism of complex analytic
spaces such that X is a normal complex variety. When Y is Stein, an R-divisor D is said
to be big over Y or w-big if D ~g A+ B, where A is a m-ample R-divisor and B is an
effective R-divisor. In general, if D| -1y is big over U for any Stein open subset of Y,
then D is said to be big over Y or m-big. We note that D is not necessarily R-Cartier.

Definition 2.47 (Pseudo-effective R-divisors). Let m: X — Y be a projective morphism
of complex analytic spaces such that X is a normal complex variety. An R-Cartier R-
divisor D on X is said to be pseudo-effective over Y or m-pseudo-effective if D + A is big
over Y for every m-ample R-divisor A on X.

Definition 2.48 (Nefness). Let 7: X — Y be a projective morphism of complex analytic
spaces such that X is a normal complex variety and let W be a compact subset of Y. Let
D be an R-Cartier R-divisor on X. If D - C' > 0 for every projective integral curve C' on
X such that 7(C) is a point, then D is said to be m-nef or nef over Y. If D-C > 0 for
every projective integral curve C' on X such that 7(C) is a point of W, then D is said to
be nef over W or m-nef over W.

Let us recall the definition of analytically meagre subsets. As we saw in Remark 2231,
the notion of Zariski open subsets does not work well in the category of complex analytic
spaces. So we frequently have to use analytically meagre subsets.

Definition 2.49 (Analytically meagre subsets). A subset S of a complex analytic space
X is said to be analytically meagre if

sc v,

neN

where each Y, is a locally closed analytic subset of X of codimension > 1.

Definition 2.50 (Analytically sufficiently general points and fibers). Let X be a complex
analytic space. We say that a property P holds for an analytically sufficiently general
point € X when P holds for every point x contained in X \ S for some analytically
meagre subset S of X.

Let f: X — Y be a morphism of analytic spaces. Similarly, we say that a property P
holds for an analytically sufficiently general fiber of f: X — Y when P holds for f~(y)
for every y € Y \ S, where S is some analytically meagre subset of Y.

We sometimes use the notion of general m-ample Q-divisors.

Definition 2.51. Let m: X — Y be a projective morphism from a normal variety X to a
Stein space Y. Let A be a m-ample Q-divisor on X. We say that A is a general m-ample
Q-divisor on X if there exist

(i) a large and divisible positive integer k such that kA is w-very ample,
(i) a finite-dimensional linear subspace V of H°(X, Ox(kA)) which generates Ox(kA),
and
(iii) some analytically meagre subset S of A := (V' \ {0})/C*,

such that A = 1A’ for some A’ € A\ S. Note that A ~ PV for some N € N.
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Remark 2.52. Let 7: X — Y be a projective morphism from a normal complex variety
X to a Stein space Y. Let 0: Z — X be a projective bimeromorphic morphism from a
smooth variety Z and let ¥ be a simple normal crossing divisor on Z. Let {p;};en be a
set of points of X. Let A be a general m-ample Q-divisor in the sense of Definition ZZaTl.
Then, by Bertini’s theorem (see [Man, (II.5) Theorem| and [FuTl, Theorem 3.2]), we may
assume that 0,14 = 0*A holds, ¥ + A’ is a simple normal crossing divisor on Z, where

A= %A’ as in Definition 2251, and p; &€ Supp A for every ¢, and so on.

The final result in this section is a very useful lemma. We will repeatedly use this
lemma in the subsequent sections.

a projective morphism of complex varieties such that X is normal and that 'Y s Stein.
Let D be a globally R-Cartier R-divisor, that is, a finite R-linear combination of Cartier
divisors on X. Let F' be an analytically sufficiently general fiber of m: X — Y. Assume
that D' := D|p ~g B > 0 holds for some R-divisor B' on F. Then there exists a globally
R-Cartier R-divisor B on X such that D ~r B > 0.

We closely follow the proof of [HasH, Lemma 2.10]. In the proof of Lemma P53, we
will freely use the semicontinuity theorem and the base change theorem described in [BS,
Chapter III], whose proof is much harder than the proof of the corresponding statements

Definition 2.54 (litaka—Kodaira dimensions). Let X be a normal projective variety and
let D be a Q-Cartier Q-divisor on X. Then x(X, D) denotes the litaka—Kodaira dimension
of D.

Proof of Lemma [ZZ23. We can take a nonempty Zariski open subset U of Y such that
m: X — Y is flat over U.

Step 1. We fix a representation D = """ ;D; of D as a finite R-linear combination
of Cartier divisors. Since F'is an analytically sufficiently general fiber of 7: X — Y we
may assume that D;|r are well defined as integral Weil divisors for all i. For any closed
point y € U, the fiber of 7 over y is denoted by X,,. For any p = (p1,...,p,) € Q", we
set D, = > - piD;. We fix a positive integer k, such that k,D) is Cartier. For every
p € Q" and every m € Z~, we put

Spm = {2 € U | dim H*(X,, Ox, (mkpDp|x,)) =0} .

Then Spm = 0 holds or U \ Sy, = () is analytically meagre by the upper semicontinuity
theorem. We set

J = {(p, m) |p S Qnam € Z>07Sp,m 7é ®}7

W= () Spm
(p,m)eJ

Then U \ W is analytically meagre. Hence Y \ W is also analytically meagre. We may
assume that ' = X, for some yy € W since F' is an analytically sufficiently general fiber
of m: X — Y. Then, for any Q-Cartier Q-divisor D,, associated to p’ = (pi,...,p)) € Q",
an inequality x(F, Dy |p) > 0 holds if and only if D,y ~g Ep for some E, > 0. Indeed,
k(F, Dy |r) > 0if and only if yo & Sy, for some m. By the above definitions of W and J,
the condition yo & Sy is equivalent to Sy, = 0 since yo € W. Since k, D, is a Cartier
divisor and Y is Stein, by the construction of Sp ., it is easy to check that Sy, = () for
some m if and only if Dy ~g Ep for some E, > 0.

and put
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Step 2. From our assumption that D' ~r B’ > 0, there are positive real numbers
ai,...,as, effective integral Weil divisors Fy,..., E, on F, real numbers by,...,b;, and
meromorphic functions ¢y, ..., ¢; on F such that

n s t
i=1 j=1 k=1

holds as R-divisors on F'. We consider the following set

{v’ = ((rDi> (@)), (Bh)k) € R™ x (Rs0) x R > wiDilp = > aiE;+ Y b - div(gbk)},

i=1 j=1 k=1
which contains v := ((ri)i, (a;)j, (bk)k) Since all D;|r are well defined as integral Weil
divisors, we can find positive real numbers ay, . .., oy, and rational points vy, ..., v, in the

above set such that 250:1 a; =1 and 250:1 ayv; = v. This shows that there are Q-Cartier
Q-divisors DU, ..., D) on X such that 31>, oy D® = D and &(F, DU|z) > 0 for every
1 <1< ly. We note that each DU is a finite Q-linear combination of Cartier divisors by
construction. By the argument in Step [, for every 1 < [ < [y, there exists a Q-divisor
E® >0 on X with DO ~g EO. We put B = 3", oy E®. Then we have D ~g B > 0.

We finish the proof. dJ
We close this section with an important remark on [BCHM, Lemma 3.2.1].

Remark 2.55. In [BCHM)|, [BCHM), Lemma 3.2.1] plays a crucial role. We think that the
quasi-projectivity is indispensable in the framework of [BCHM] since we have to assume
that U is quasi-projective in [BCHM, Lemma 3.2.1]. Let m: X — U be a projective
morphism of normal complete algebraic varieties with connected fibers such that X is a
smooth projective variety and Pic(U) = {0}. Let D be a Cartier divisor on X such that
—D is effective, D # 0, and 7(D) C U. Then there exists no effective R-divisor B on X
satisfying D ~g ¢ B > 0. This means that [BCHM, Lemma 3.2.1] does not always hold
true without assuming the quasi-projectivity of U.

3. SINGULARITIES OF PAIRS

In this section, we will define singularities of pairs in the complex analytic setting. The
definition is essentially the same as the one for algebraic varieties.

Definition 3.1 (Singularities of pairs). Let X be a normal complex variety. The canonical
sheaf wy of X is the unique reflexive sheaf whose restriction to Xy, is isomorphic to the
sheaf Q% | where X, is the smooth locus of X and n = dim X. Let A be an R-divisor
on X. We say that Kx + A is R-Cartier at x € X if there exist an open neighborhood
U, of x and a Weil divisor Ky, on U, with Oy, (Ky,) ~ wx|y, such that Ky, + Ay, is
R-Cartier at . We simply say that Kx + A is R-Cartier when Ky + A is R-Cartier at
any point z € X. Unfortunately, we can not define Ky globally with Ox(Kx) ~ wyx. It
only exists locally on X. However, we use the symbol Kx as a formal divisor class with
an isomorphism Ox (K x) ~ wy and call it the canonical divisor of X if there is no danger
of confusion.

Let f: Y — X be a proper bimeromorphic morphism between normal complex varieties.
Suppose that Kx + A is R-Cartier in the above sense. We take a small Stein open subset
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U of X where Ky + Aly is a well-defined R-Cartier R-divisor on U. In this situation, we
can define Ky-1yy and Ky such that f,Ky-1) = Ky. Then we can write

K-y = f(Kv + Aly) + Ey

as usual. Note that Ey is a well-defined R-divisor on f~!(U) such that f,Ey = Aly.
Then we have the following formula

Ky = f(Kx +A)+ > a(E,X,A)E
E

as in the algebraic case. We note that ) . a(E, X, A)E is a globally well-defined R-divisor
on Y such that (3, a(E,X,A)E)|;-1y = Ey although Kx and Ky are well defined
only locally.

If A is a boundary R-divisor and a(F, X, A) > —1 holds for any f: Y — X and every f-
exceptional divisor F, then (X, A) is called a log canonical pair. If (X, A) is log canonical
and a(E, X,A) > —1 for any f: Y — X and every f-exceptional divisor £, then (X, A)
is called a purely log terminal pair. If (X, A) is purely log terminal and |A] = 0, then
(X, A) is called a kawamata log terminal pair. When A = 0 and a(E, X,0) > 0 (resp. > 0)
for any f: Y — X and every f-exceptional divisor F, we simply say that X has only
canonical singularities (resp. terminal singularities).

Let X be a normal variety and let A be an effective R-divisor on X such that Kx + A
is R-Cartier. The image of E with a(E, X,A) < —1 for some f: Y — X is called a
non-kawamata log terminal center of (X, A). The image of £ with a(E, X,A) = —1 for
some f:Y — X such that (X, A) is log canonical around general points of f(F) is called
a log canonical center of (X,A). When (X, A) is log canonical, a closed subset of X is a
log canonical center of (X, A) if and only if it is a non-kawamata log terminal center of
(X, A) by definition. In the above setting, (X, A) is kawamata log terminal if and only if
there are no non-kawamata log terminal centers of (X, A).

Remark 3.2. If we only assume that A is a subboundary R-divisor on X in the above
definition of log canonical pairs and kawamata log terminal pairs, then (X, A) is said to
be a sub log canonical pair and sub kawamata log terminal pair, respectively. We will use
sub log canonical pairs and sub kawamata log terminal pairs in Section EII.

Remark 3.3. Let X be a normal algebraic variety and let A be an R-divisor on X such
that Kx + A is R-Cartier. Let X® be the complex analytic space naturally associated
to X and let A*" be the R-divisor on X associated to A. Then (X?", A*") is terminal,
canonical, kawamata log terminal, purely log terminal, and log canonical in the sense of
Definition B if and only if (X, A) is terminal, canonical, kawamata log terminal, purely
log terminal, and log canonical in the usual sense, respectively. For the details, see, for
example, [Mafk, Proposition 4-4-4].

In this paper, we need the following local definition of log canonical singularities and
kawamata log terminal singularities.

Definition 3.4. Let X be a normal complex variety and let A be an effective R-divisor
on X. We say that (X, A) is log canonical (resp. kawamata log terminal) at x € X if
there exits an open neighborhood U, of x such that (U,,A|y,) is a log canonical pair
(resp. kawamata log terminal pair). We note that (X, A) is log canonical (resp. kawa-
mata log terminal) in the sense of Definition BT if and only if (X, A) is log canonical
(resp. kawamata log terminal) at any point x of X.
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Let K be a compact subset of X. Then we say that (X, A) is log canonical (resp. kawa-
mata log terminal) at K if (X, A) is log canonical (resp. kawamata log terminal) at any
point z of K. We note that (X, A) is log canonical (resp. kawamata log terminal) at K if
and only if there exits an open neighborhood U of K such that (U, A|y) is log canonical
(resp. kawamata log terminal).

The following lemma is very fundamental.

Lemma 3.5 ([BCHM, Lemma 3.7.2]). Let X be a normal complex variety and let V be a
finite-dimensional affine subspace of WDivg(X), which is defined over the rationals. Let
K be a compact subset of X. Then

LV;K):={A eV |Kx+ A islog canonical at K}

18 a rational polytope. Moreover, there exists an open neighborhood U of K such that
(U, Aly) is log canonical for every A € L(V; K).

Proof. We note that the set of divisors A such that Kx + A is R-Cartier at K forms an
affine subspace V'’ of V. Since V is defined over the rationals, we can easily see that V'
is also defined over the rationals (see the proof of Lemma 2237). Hence, by replacing V/
with V’, we may assume that Ky + A is R-Cartier at K for every A € V. Since V is
finite-dimensional, there is an open neighborhood U’ of K such that Kx + A is R-Cartier
on U’ for every A € V. By replacing X with U’, we may assume that Ky + A is R-
Cartier for every A € V. Let © be the union of the support of any element of V. By
shrinking X around K, we can take a projective birational morphism f: Y — X from a
smooth complex variety Y such that Exc(f) and Exc(f) U Supp f, 'O are simple normal
crossing divisors on Y. Thus, we can easily check that £(V; K) is a rational polytope.
Let Aq,..., Ay be the vertices of L(V; K). Then (X, A;) is log canonical on some open
neighborhood U; of K for every i. We put U := ﬂle U;. Then (X, A) is log canonical on
U for every A € L(V; K). Hence U is a desired open neighborhood of K. U

We note the following elementary property. We explicitly state it for the sake of com-
pleteness.

Lemma 3.6. Let (X,A) be a log canonical pair and let C' be an effective R-Cartier R-
divisor on X such that (X, A + C) is log canonical. Let € be any positive real number
such that 0 < e < 1. Then V is a log canonical center of (X, A) if and only if V is a log
canonical center of (X, A+ (1 —¢)C).

Proof. This is obvious by definition. 0

The definition of divisorial log terminal pairs is very subtle. We adopt the following
definition, which is suitable for our purposes.

Definition 3.7 (Divisorial log terminal pairs). Let X be a normal complex variety and
let A be a boundary R-divisor on X such that Kx 4+ A is R-Cartier. If there exists a
proper bimeromorphic morphism f: Y — X from a smooth complex variety Y such that
Exc(f) and Exc(f) U Supp f;*A are simple normal crossing divisors on Y and that the
discrepancy coefficient a(E, X, A) > —1 holds for every f-exceptional divisor F, then
(X, A) is called a divisorial log terminal pair.

Remark 3.8. By definition, we can easily check that a divisorial log terminal pair is a log
canonical pair. Let (X, A) be a kawamata log terminal pair and let U be any relatively
compact open subset of X. Then we can easily check that (U, Aly) is a divisorial log
terminal pair.
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The morphism f in Definition B71 can be taken as a composite of blow-ups over any
relatively compact open subset.

Lemma 3.9. Let (X, A) be a divisorial log terminal pair. Then there exists a morphism
o: Z — X such that, for any relatively compact open subset X' of X,

g:=0lp1xn: Z' =0 (X') => X'

is a composite of a finite sequence of blow-ups, Exc(g) and Exc(g) USupp g, *A are simple
normal crossing divisors on Z', a(E, X', Alx:) > —1 holds for every g-exceptional divisor
E. In particular, we can take an effective divisor F' on Z' such that Exc(g) = F and that
—F' is g-very ample.

Proof. Tt is sufficient to apply the resolution of singularities explained in [BM2, Sections
12 and 13]. For the details, see [BM2, Theorems 13.3 and 12.4]. See also [Ko2, 3.44
(Analytic spaces)], [W], and [Ka3, Theorem 10.45 and Proposition 10.49]. O

Our definition of divisorial log terminal pairs is compatible with the usual definition of
divisorial log terminal pairs for algebraic varieties.

Lemma 3.10. Let X be a normal algebraic variety and let A be an R-divisor on X such
that Kx + A is R-Cartier. Let X* be the complex analytic space naturally associated

to X and let A* be the R-divisor on X associated to A. Then (X, A) is divisorial log
terminal in the usual sense if and only if (X*, A*") is divisorial log terminal in the sense

of Definition B1.

Sketch of Proof of Lemma BID. If (X, A) is divisorial log terminal in the usual sense, then
it is obvious that (X", A*") is divisorial log terminal in the sense of Definition B7. From
now on, we assume that (X**, A*") is divisorial log terminal in the sense of Definition
B Let f: Y — X® be a projective morphism from a smooth complex variety as in
Definition B2. We put Z’' := f(Exc(f)), which is a closed analytic subset of X*". Then
X*\ Z" is smooth and the support of A*|xan z is a simple normal crossing divisor on
X\ Z'. We can check that if g: V' — X is a projective bimeromorphic morphism from
a smooth complex variety V' and E is a prime divisor on V such that g(£) C Z’ then
a(E, X,A) > —1 holds by the proof of [KNM, Proposition 2.40]. Let Z be the smallest
closed algebraic subset of X such that X \ Z is smooth and the support of Alx\z is a
simple normal crossing divisor on X \ Z. Then Z C Z’ holds by definition. Hence, as in
the proof of [Mafk, Proposition 4-4-4], we see that (X, A) is divisorial log terminal in the
usual sense. O

Of course, Definition B7 is not analytically local.

Example 3.11. Let X be a smooth algebraic surface and let C' be an irreducible curve
on X with only one singular point P. Assume that P is a node. It is obvious that
(X\ P, C|x\p) is divisorial log terminal, but (X, C) is not divisorial log terminal. However,
there exists a small open neighborhood U of P such that (U, C|y) is divisorial log terminal
in the sense of Definition BZ. Note that C|y is a simple normal crossing divisor on U if
U is a small open neighborhood of P in X.

The final theorem in this section is more or less well known to the experts. We will use
it in the proof of Theorem H (3).

Theorem 3.12 (see [KMM), Theorem 1-3-6] and [Na3, Chapter VIIL. §1}). If (X, A) is
divisorial log terminal, then X has only rational singularities.
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Proof. The arguments in [Fn9, 3.14 Elkik—Fujita vanishing theorem] work with some minor
modifications if we use Grothendieck duality for proper morphisms of complex analytic
spaces (see [RRV]]). We note that we have necessary vanishing theorems in the complex
analytic setting (see Section B below). O

4. CONES

In this short section, we will define various cones and explain Kleiman’s ampleness
criterion for projective morphisms between complex analytic spaces.

Throughout this section, let 7: X — Y be a projective morphism of complex analytic
spaces and let W be a compact subset of Y. Let Z;(X/Y; W) be the free abelian group
generated by the projective integral curves C' on X such that 7(C) is a point of W. Let U
be any open neighborhood of W. Then we can consider the following intersection pairing

- Pie(r ' (U)) x Zy(X/)Y; W) = Z

given by £ -C € Z for L € Pic(r~}(U)) and C € Z;(X/Y;W). We say that L is
m-numerically trivial over W when £ - C = 0 for every C € Z;(X/Y;W). We take
L1, Ly € Pic(z~Y(U)). If £L;@L5" is m-numerically trivial over W, then we write £; =y Ly
and say that £; is numerically equivalent to Lo over W. We put

AU,W) = Pic(7~1(U)) /J=w
and define

AYX/Y; W) = lim AU, W),
wcuU
where U runs through all the open neighborhoods of W. The following lemma due to
Nakayama is a key result of the minimal model program for projective morphisms between

complex analytic spaces.

Lemma 4.1 ([Na3, Chapter II. 5.19. Lemma]). Assume that WNZ has only finitely many
connected components for every analytic subset Z defined over an open neighborhood of
W. Then AYX/Y ;W) is a finitely generated abelian group.

Proof. For the details, see the proof of [Na3, Chapter II. 5.19. Lemmal]. U

Remark 4.2. Note that [Na3, Chapter II. 5.19. Lemma], that is, Lemma B0 above, is
a correction of [Na2, Proposition 4.3 and Lemma 4.4]. In Lemma B, TV is not assumed
to be Stein compact. Here, we only assume that W is a compact subset of Y satisfying

(P4).

Under the assumption of Lemma B, we can define the relative Picard number p(X/Y; W)
to be the rank of A'(X/Y;W). We put

NYX/)Y; W) = A(X/Y; W) @z R.
Let Ay (X/Y; W) be the image of
Zy(X/Y;W) = Homyg, (A"(X/Y; W), Z)
given by the above intersection pairing. Then we set
M(X/Y; W) = A(X/Y; W) @z R.
As usual, we can define the Kleiman-Mori cone

NE(X/Y; W)
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of m: X — Y over W, that is, NE(X/Y;W) is the closure of the convex cone in
N1(X/Y; W) spanned by the projective integral curves C' such that 7(C) is a point of
W. We also define Amp(X/Y; W) to be the cone in N'(X/Y; W) generated by line bun-
dles L such that L|.-1(yy is m-ample for some open neighborhood U of W. An element
¢ € NYX/Y; W) is called m-nef over W or nef over W if ¢ > 0 on NE(X/Y;W). Even
when ( is nef over W, it is not clear whether ( is nef over some open neighborhood of W
or not.

Remark 4.3 (see [Lé, Theorem 1.2]). There exist a projective surjective morphism of
algebraic varieties 7: X — Y and an R-Cartier R-divisor D on X such that {y €
Y| D|x, is nef} is not Zariski open. This means that the nefness is not an open con-
dition. For a criterion of openness of a family of nef line bundles, see [Mwi].

On the other hand, for ¢ € N'(X/Y; W), (|x,, is ample for every w € W if and only if
¢ is ample over some open neighborhood of W. This is because the ampleness is an open
condition (see, for example, [KN, Proposition 1.41] and [NaZ, Proposition 1.4]). Note
that Kleiman’s ampleness criterion holds true in our complex analytic setting.

Theorem 4.4 (Kleiman’s criterion, see [Na2, Proposition 4.7]). Let m: X — Y be a
projective morphism between complex analytic spaces and let W be a compact subset of Y
such that W satisfies (P4). Then we have

Amp(X/Y;W) = {¢ € N (X/Y;W)|( >0 on NE(X/Y; W)\ {0}}.

Sketch of Proof of Theorem [.4. We note that the ample cone is an open convex cone in
NY(X/Y;W). Hence we can easily check that it is contained in the right hand side.
Therefore, it is sufficient to prove the opposite inclusion. We take a m-ample Cartier
divisor A on X. Let ¢ be an element of N*(X/Y; W) such that ¢ > 0 on NE(X/Y; W)\
{0}. Then ¢ —cA > 0 on NE(X/Y;W) \ {0} for some small positive rational number
e. This implies that (¢ — €A)|r-1(y) is nef for every w € W. Since A|;-1(,) is ample,
Clr1w) = (( = €A)|r-1(w) + Alz-1(w) is ample for every w € W. We note that we can
use Kleiman’s ampleness criterion on 71 (w) since 7—!(w) is projective. Hence, by the
standard argument (see, for example, [FMi, Section 6]), we can write ¢ as a finite Ry ,-
linear combination of m-ample Cartier divisors over some open neighborhood of W. This
is what we wanted. U

We can define movable cones in our complex analytic setting (see [Kaw?2, Section 2]).

Definition 4.5 (see [Fud, Definition 2.1]). Let 7: X — Y be a projective morphism of
complex analytic spaces and let W be a compact subset of Y such that X is a normal
complex variety. A Cartier divisor D on 7~ *(U), where U is some open neighborhood of
W, is called m-mowvable over W if m,Or-1(y)(D) # 0 and if the cokernel of the natural
homomorphism 77,011 (D) = Or-1y(D) has a support of codimension > 2. We
define Mov(X/Y; W) as the closure of the convex cone in N'(X/Y; W) generated by the
classes of m-movable Cartier divisors over W. Note that Mov(X/Y; W) is usually called
the movable cone of m: X — Y and W.

We can easily see that a kind of negativity lemma holds.

Lemma 4.6 (Negativity lemma, see [Fuld, Lemma 3.8]). Let 7: X — Y be a projective
bimeromorphic contraction morphism of normal complex varieties and let W be a compact
subset of Y. Let E be an R-Cartier R-divisor on X such that E € Mov(X/Y;W). Let U
be any open subset of Y with U C W. If —m,El|y is effective, then —E|-1yy is effective.



34 OSAMU FUJINO

Proof. For the details, see the proof of [Fuld, Lemma 3.8]. O

]

We will use Lemma B3 in order to terminate minimal model programs with scaling.

5. VANISHING THEOREMS

In this section, we will treat some vanishing theorems. Fortunately, the necessary van-
ishing theorems have already been established. We explain only two vanishing theorems
here for the reader’s convenience. The first one is the Kawamata—Viehweg vanishing
theorem for projective morphisms between complex varieties.

Theorem 5.1 (Kawamata—Viehweg vanishing theorem for projective morphisms of com-
plex varieties). Let X be a smooth complex variety and let m: X — Y be a projective
morphism of complex varieties. Assume that D is an R-divisor on X such that D 1is
m-nef and w-big and that Supp{D} is a simple normal crossing divisor on X. Then
R'7n,Ox(Kx + [D]) =0 for every i > 0.

Sketch of Proof of Theorem b, When D is a Q-divisor, this statement is well known.
It follows from [Na2, Theorem 3.4|, [Fufl, Corollary 1.4}, and so on. Let y € Y be any
point. It is sufficient to prove that Rim,Ox(Kx + [D]) = 0 holds for 7 > 0 on some open
neighborhood U, of y. Therefore, we will freely shrink ¥ around y without mentioning it
explicitly. We take a projective bimermorphic morphism f: Z — X and can reduce the
problem to the case where D is a Q-divisor which is ample over Y. This reduction step
is well known (see, for example, Step 2 in the proof of [Na2, Theorem 3.4], the proof of
[KNMNM, Theorem 1-2-3], and so on). Hence we obtain the desired vanishing theorem. [

The second one is essentially the same as the first one. However, we think that this
formulation is useful for some applications.

Theorem 5.2. Let (X,A) be a divisorial log terminal pair and let m: X — Y be a

projective morphism of complex varieties. Let D be a Q-Cartier integral Weil divisor on
X such that D — (Kx + A) is m-ample. Then R'm,Ox(D) = 0 holds for every i > 0.

Sketch of Proof of Theorem B2. By Lemma B and Theorem B, the proof of [KMM,
Theorem 1-2-5] works. For the details, see [KNMM]. O

The reader can find various useful vanishing theorems for projective morphisms between
complex varieties in [Fuf], [FMal], [Mafm], [Full], and so on.

6. BASEPOINT-FREE THEOREMS, I

In this section, we will collect some necessary basepoint-free theorems for Cartier divi-
SOTS.

Let us start with Shokurov’s nonvanishing theorem for smooth projective varieties,
which can be proved by using Hironaka’s resolution of singularities and the Kawamata—
Viehweg vanishing theorem.

Theorem 6.1 (Shokurov’s nonvanishing theorem). Let X be a smooth projective variety
and let D be a nef Cartier divisor on X. Let A be an R-divisor on X such that pD+A—K x
is ample for some positive integer p, [A] > 0, and Supp{A} is a simple normal crossing
divisor. Then there exists some positive integer mq such that H*(X, Ox(mD + [A])) # 0
holds for every integer m > my.
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Sketch of Proof of Theorem 1. By perturbing the coefficients of A slightly, we may as-
sume that A is a Q-divisor. Then this statement is a special case of [KNMM, Theorem
2-1-1] because pD + A — Kx is automatically nef and big. For the details, see the proof
of [KMM, Theorem 2-1-1]. O

The following formulation of the basepoint-free theorem is suitable for our purposes
in this paper. It is the well-known Kawamata—Shokurov basepoint-free theorem when
m: X — Y is algebraic.

Theorem 6.2 (Basepoint-free theorem). Let m: X — Y be a projective morphism from
a normal complex variety to a complex analytic space Y and let A be an R-divisor on X
such that (X, A) is divisorial log terminal. Let D be a m-nef Cartier divisor on X such
that aD — (Kx + A) is w-ample for some positive integer a. Then, for any relatively
compact open subset U of Y, there exists a positive integer mg, which depends on U, such
that

7T*7T*Ox<mD) — Ox(mD)

1s surjective over U for every integer m > my.

Sketch of Proof of Theorem B2. By Lemma B and Theorem B, the proof of [KMM,
Theorem 3-1-1] works over U. Note that we can not consider the generic fiber of 771(U) —
U since it is a projective morphism of complex analytic spaces. Therefore, we apply
Theorem B to an analytically sufficiently general fiber of 7=}(U) — U when we prove
1.0x(mD) # 0 for every large positive integer m. For the details, see the proof of [KNMM),
Theorem 3-1-1]. O

Remark 6.3. If (X, A) is kawamata log terminal in Theorem 62, then the same statement
holds under a slightly weaker assumption that aD — (Ky + A) is m-nef and 7-big. This
is almost obvious by the proof of Theorem B2 (see also the proof of [KMM, Theorem
3-1-1)).

In this paper, the following variant of the basepoint-free theorem is indispensable.
Theorem B4 is Kollar’s effective basepoint-freeness for projective morphisms of complex
analytic spaces.

Theorem 6.4 (Effective basepoint-free theorem, see [BCHM, Theorem 3.9.1]). Fiz a
positive integer n. Then there exists a positive integer m with the following properties.
Letm: X — Y be a projective morphism from a normal complex variety X to a complex
analytic space Y and let D be a w-nef Cartier divisor on X such that D — (Kx + A) is
m-nef and w-big, where (X, A) is kawamata log terminal with dim X = n.
Then, mD 1is m-free, that is,

m'1.Ox(mD) — Ox(mD)
18 surjective.

Sketch of Proof of Theorem [64. It is sufficient to prove the statement over any small
relatively compact Stein open subset U of Y. We will freely replace ¥ with a small open
subset without mentioning it explicitly. By the standard argument (see, for example,
the proof of [BCHM, Theorem 3.9.1]), we may further assume that D — (Kx + A) is 7-
ample and that Kx 4+ A is Q-Cartier. The modified basepoint-freeness method explained
in [Kaol, 2.1] works with some minor modifications. Note that we treat a projective
morphism 7: X — Y. Therefore, when we prove that some sheaf is not zero, we restrict
it to an analytically sufficiently general fiber. We can not use the generic fiber since we
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consider projective morphisms between complex analytic spaces. For the details, see [Kall,
Section 2]. O

Theorem B3 below is essentially due to Nakayama (see [Na2, Theorem 4.10]), which
will play a crucial role in this paper.

Theorem 6.5 (see [Na2, Theorem 4.10]). Let m: X — Y be a projective surjective mor-
phism between complex analytic spaces and let W be a Stein compact subset of Y and let
(X, A) be a kawamata log terminal pair. Let D be a Cartier divisor on X. Assume that
D is nef over W, that is, D-C > 0 for every projective curve C such that w(C') is a point
of W. We further assume that aD — (Kx + A) is w-ample for some positive real number
a. Then there exist an open neighborhood U of W and a positive integer my such that

W*W*Ox(mD) — Ox(mD)
s surjective over U for every integer m > my.

Before we prove Lemma B3, we prepare an easy lemma. We describe it for the sake of
completeness.

Lemma 6.6. Letm: X — Y be a projective surjective morphism between complex varieties
and let L be a line bundle on X. Assume that L|-1¢,) is nef for some yo € Y. Then
there exists an analytically meagre subset S such that L], is nef for every y € Y\ S.

Proof of Lemma 8. We take a m-ample line bundle H on X. Then L£%" @ H| -1, is
ample for every n € Z-o. For each n, there exist a positive integer m, and an open
neighborhood U, of yy such that

T, (£®nmn R H@mn) —y [LOnmn ® fH®mn

is surjective on 7~1(U,,) since L®" @ H is ample over some open neighborhood of yq (see,
for example, [Na2, Proposition 1.4]). We put

Fy = Coker (7*m, (L2 @ HO™m) — LE @ HE™)

Then m,F, is a coherent sheaf on Y and S, := Supp F,, is a closed analytic subset of
Y with yo € S,. By construction, L& @ H®™ is r-free over Y \ S,. In particular,
L2 @H is m-nef over Y\ S,. We put S := U, c;_, Su- If (L @ H) |r-1(y) is nef for every
n € Zso, then L|;-1(,) is nef. Therefore, § is the desired analytically meagre subset of
Y. O

Let us see the proof of Theorem BE3.

Sketch of Proof of Theorem . Let B be a Cartier divisor on X such that B is nef over
W and let A be any m-ample R-divisor on X. Then A+ B is m-ample over some open neigh-
borhood of W. By this easy observations, we see that the usual proof of the basepoint-free
theorem (see Sketch of Proof of Theorem B2) works over some open neighborhood U of
W. We note that we can use the nonvanishing theorem (see Theorem B1) on an analyti-
cally sufficiently general fiber by Lemma EG. Of course, we may have to replace U with
a smaller open neighborhood of W finitely many times throughout the proof. 0J

We will treat some basepoint-free theorems for R-Cartier divisors in Section B.
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7. CONE AND CONTRACTION THEOREM

This section will be devoted to the cone and contraction theorem for projective mor-
phisms of complex analytic spaces.

Let us start with the rationality theorem. We need the following formulation. The
proof is essentially the same as that for algebraic varieties.

Theorem 7.1 (Rationality theorem, see [NaZ, Theorem 4.11]). Let 7: X — Y be a
projective morphism of complex analytic spaces and let W be a compact subset of Y such
thatm: X —Y and W satisfies (P). Let A be an effective Q-divisor on X such that (X, A)
is divisorial log terminal and that a(Kx + A) is Cartier in a neighborhood of 7=*(W) for
some positive integer a. Let H be a w-ample Cartier divisor on X. Assume that Kx + A
s not w-nef over W. Then

r:=max{t € R|H +t(Kx + A) is m-nef over W}

is a positive rational number. Furthermore, expressing r/a = u/v with u,v € Zso and
(u,v) =1, we have v < a(d + 1), where d = max,cw dim 7 (w).

Sketch of Proof of Theorem [T. The proof of [KNMM, Theorem 4-1-1] works with some
minor modifications. As usual, we will freely replace Y with a relatively compact Stein
open neighborhood of W throughout this proof. By an easy reduction argument, we may
further assume that H is w-very ample. We put

M(z,y) :=xH + ya(Kx + A)

and
A(z,y) := Supp (Coker 7*m,.Ox (M (z,y)) = Ox(M(z,y))) .

It is not difficult to see that A(z,y) is the same subset of X for (z,y) sufficiently large
and 0 < ya — zr < 1. We call it Ag. Moreover, let I C Z? be the set of (z,y) for which
0 < ya—ar < 1 and A(z,y) = Ag. Then I contains all sufficiently large (x,y) with
0 < ya —ar < 1 (for the details, see Claim 1 in the proof of [Fu3, Theorem 15.1]). If
r & Qorv>r(d+1), then we can find (2, y’) sufficiently large and 0 < y'a —2'r < 1 with
A(2',y) € Ap (for the details, see the proof of [KMM, Theorem 4-1-1] or Step 7-Step
11 in [KM, Section 3.4]). This is a contradiction. Hence, we get the desired properties
of r. We note that we can not consider generic fibers. Therefore, when we check that
some sheaf is not a zero sheaf in the above argument, we restrict it to an analytically
sufficiently general fiber. O

It is very well known that the cone and contraction theorem is a consequence of the
rationality theorem (see Theorem [) and the basepoint-free theorem (see Theorem B3).

Theorem 7.2 (Cone and contraction theorem, see [Na2, Theorem 4.12]). Let (X, A) be a
divisorial log terminal pair. Let m: X — 'Y be a projective morphism of complex analytic
spaces and let W be a compact subset of Y such that m: X — Y and W satisfies (P).
Then we have
NE(X/Y;W) = NE(X/Y; W)k sas0+ Y R
j
with the following properties.

(1) Let A be a m-ample R-divisor on X. Then there are only finitely many R;’s
included in (Kx + A+ A)<o. In particular, the R;’s are discrete in the half space
(Kx +A)o.
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(2) Let R be a (Kx + A)-negative extremal ray. Then, after shrinking Y around W
suitably, there exists a contraction morphism ¢r: X — Z over Y satisfying:
(i) Let C be a projective integral curve on X such that w(C') is a point in W.
Then pgr(C) is a point if and only if [C] € R.
(ii) Oz — (pr).Ox.
(iii) Let L be a line bundle on X such that L - C = 0 for every curve C' with
[C] € R. Then there is a line bundle M on Z such that L ~ @M.

Sketch of Proof of Theorem [7.3. When K x+A is Q-Cartier in a neighborhood of 7= (1),
we have the desired properties as a consequence of the rationality theorem (see Theorem
[1) and the basepoint-free theorem (see Theorem B3). This part is well known (for the
details, see, for example, [KNMM, Theorem 4-2-1]). From now on, we assume that Kx + A
is R-Cartier but is not Q-Cartier. As usual, we will freely shrink Y around W without
mentioning it explicitly. By the standard argument, we can find effective Q-divisors
Aq, ..., A, on X and positive real numbers rq, ..., r; with Zle r; = 1 such that Kx + A,
is Q-Cartier and (X, A;) is divisorial log terminal for every ¢ and that Zle riA; = A
holds. Let R be a (Kx + A)-negative extremal ray of NE(W/Y;W). Then there exists
some i such that R is a (Kx + A;,)-negative extremal ray of NE(X/Y;W). We have
already known that extremal rays are discrete in the half space (Kx + A;) <o for every i
since Kx + A; is Q-Cartier. Hence it is not difficult to see that all the desired properties
hold true even when Ky + A is only R-Cartier. U

In this paper, we sometimes treat log canonical pairs. Thus, we need:

Theorem 7.3. Let (X,A) be a log canonical pair. Let m: X — Y be a projective mor-
phism of complex analytic spaces and let W be a compact subset of Y such thatm: X — Y
and W satisfies (P). We assume that there exists Ay on X such that (X, Ay) is kawamata
log terminal. Let A be a m-ample R-divisor on X. Then there are only finitely many
(Kx + A + A)-negative extremal rays of NE(X/Y; W).

Let R be a (Kx + A)-negative extremal ray of NE(X/Y;W). Then the contraction
morphism ¢r: X — Z associated to R as in Theorem [13 (2) exists.

Proof. We take a sufficiently small positive rational number ¢ and consider
Kx4+A+A=Kx+(1—-e)A+cAo+ (A—c(Ag—A)).

Since ¢ is sufficiently small, A — e(Ag — A) is still 7-ample. On the other hand, the

pair (X, (1 —e)A 4 €/\y) is kawamata log terminal. Hence, by Theorem [ (1), there are

only finitely many (Kx + A + A)-negative extremal rays. Let R be a (Kx + A)-negative

extremal ray of NE(X/Y;W). Then we can see it as a (Kx + (1 — €)A 4+ eAg)-negative

extremal ray for some small positive rational number . Therefore, by Theorem 2 (2),
we have the desired contraction morphism ¢pp: X — Z. 0

8. BASEPOINT-FREE THEOREMS, 11

In this section, we will treat basepoint-free theorems for R-divisors. We note that the
use of R-divisors is indispensable in the theory of minimal models.

Theorem 8.1 (Basepoint-free theorem for R-divisors, see [BCHM, Theorem 3.9.1]). Let
m: X =Y be a projective morphism of normal complex variety X to a complex analytic
space Y and let W be a Stein compact subset of Y such that m: X =Y and W satisfies
(P). Let D be a m-nef R-divisor on X such that aD — (Kx + A) is m-nef and w-big for
some positive real number a, where (X, A) is kawamata log terminal.
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Then there exists an open neighborhood U of W such that D| -1y is semiample over

U.

Sketch of Proof of Theorem B1. By replacing D with aD, we may assume that a = 1.
We take a small Stein open neighborhood U’ of W and a Stein compact subset W’ of Y
such that I'(W’, Oy) is noetherian and U’ C W’. Throughout this proof, we will freely
shrink Y around W’ without mentioning it explicitly. By the standard argument (see, for
example, the proof of [BCHM, Theorem 3.9.1]), we may further assume that D—(Kx+A)
is m-ample and Kx + A is Q-Cartier. We take a small m-ample Q-divisor A on X such
that D — (Kx + A+ A) is still m-ample. By the cone theorem (see Theorem 2 (1)), there
are only finitely many (K x + A + A)-negative extremal rays of NE(X/Y; W’). Hence, we
can write D = Zle r;D;, where r; is a positive real number, D; is a Q-Cartier QQ-divisor
on X which is nef over W', and D; — (Kx + A) is m-ample for every i (for the details,
see the proof of [BCHM, Theorem 3.9.1]). We replace Y with U’. Then, by the usual
basepoint-free theorem (see Theorem BE2), D;|,-1(y) is semiample over U for some U and
every 4. This implies that D1 is semiample over U. 0

We used the cone theorem (see Theorem [2) in the above proof of Theorem Bl So it
is much deeper than the usual basepoint-free theorem for Cartier divisors (see Theorem
By combining Lemma B3 with the argument in the proof of Theorem BT, we have:

Theorem 8.2. Let m: X — Y be a projective bimeromorphic contraction morphism of
complex analytic spaces and let y € Y be a point. Let D be an R-Cartier R-divisor on X
such that D is numerically trivial over y, that is, D - C' = 0 for every projective curve C
on X such that 7(C) = y. Assume that aD — (Kx + A) is m-nef for some positive real
number a, where (X, A) is a kawamata log terminal pair. Then 7.D is R-Cartier at y.

Proof. We put W = {y}. Then W is a Stein compact subset of Y such that T'(W, Oy)
is noetherian. We will freely shrink Y around W without mentioning it explicitly. As
in the proof of Theorem K, we may assume that a = 1 and D — (Kx + A) is m-ample.
By using the cone theorem as in the proof of Theorem B, we can write D = Zle r; D,
where r; is a positive real number, D; is numerically trivial over y, and D; — (Kx + A)
is m-ample for every ¢. By replacing D; with m;D; for some positive integer m;, we may
further assume that D; is a Cartier divisor on X for every i. Then, by Theorem B3, 7, D;
is Q-Cartier for every i. Hence m,D is R-Cartier. This is what we wanted. O

The final theorem in this section is suitable for our framework of the minimal model
program. We only assume that Ky + A is R-Cartier and is nef over W in Theorem B=3.
The conclusion says that it is semiample over some open neighborhood of W'.

Theorem 8.3. Let m: X — Y be a projective morphism of complex analytic spaces and
let W be a compact subset of Y such that m: X — Y and W satisfies (P). Let (X, A)
be a log canonical pair. Assume that there exists Ag such that (X, Ag) is kawamata log
terminal. We further assume that A = A+ B, where A is w-ample, A >0, and B > 0. If
Kx + A is nef over W, then there exists an open neighborhood U of W such that Kx + A
1s semiample over U.

Proof. Throughout this proof, we will shrink Y around W suitably without mentioning
it explicitly. By assumption, we can take A’ such that (X, A’) is kawamata log terminal
and Kx + A’ ~g Kx + A. Hence, by replacing A with A’, we may assume that (X, A) is
kawamata log terminal. Then (X, B) is kawamata log terminal and 2(Kx +A)— (Kx+ B)
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is ample over Y. We take a general m-ample Q-divisor H on X such that (X, B + H)
is kawamata log terminal and that 2(Kx + A) — (Kx + B + H) is still ample over Y.
As in the proof of [BCHM, Theorem 3.9.1], by using Theorem 3, we take positive
real numbers 7, ..., and Q-divisors Ay, ..., A such that Kx + A; is nef over W and
2(Kx + A;) — (Kx + B+ H) is ample over Y for every i and that >.¥  A; = A. By
Theorem 63, we obtain that Kx + A; is m-semiample for every 7. This means that Kx+A
is semiample over Y. This is what we wanted. 0

We close this section with conjectures related to Theorem B23.

Conjecture 8.4. Let (X,A) be a log canonical pair and let m: X — Y be a projective
morphism of complex analytic spaces. We put

N:={y €Y |(Kx + A)|r1(y) is nef}.
Then N s open.

If we can establish the minimal model program for projective morphisms between com-
plex analytic spaces in funn generality, then we see that Conjecture B4 holds true.

Remark 8.5. In Conjecture B4, it is sufficient to prove that 91 contains an open neigh-
borhood of y; under the assumption that (Kx + A)|;-1(,) is nef. We take an open
neighborhood U of 1y and a Stein compact subset W of Y such that yo € U C W and
that T'(W, Oy) is noetherian. We will freely shrink Y around W. By Theorem "1, we
can reduce the problem to the case where X is Q-factorial over W and (X, A) is divisorial
log terminal. Then we run a (Kx + A)-minimal model program over Y around W. Note
that Kx 4+ A is m-pseudo-effective since (Kx + A)|z-1(y,) is nef. If the above minimal
model program terminates after finitely many steps, then it is easy to see that Kx + A
is nef over some open neighborhood of y5. Hence Conjecture B4 would be absolutely
correct.

Conjecture B4 is also related to the following abundance conjecture for projective mor-
phisms of complex analytic spaces.

Conjecture 8.6 (Abundance conjecture). Let (X,A) be a log canonical pair and let
m: X = Y be a projective morphism of complex analytic spaces. Assume that Kx + A
is m-nef, that is, (Kx + A) - C > 0 for every projective integral curve C' on X such that
7(C) is a point. Then Kx + A is w-semiample.

As is well known, the abundance conjecture (see Conjecture B8) is widely open even
when Y is a point. We will treat the abundance conjecture in Section Z3.

9. LENGTHS OF EXTREMAL RATIONAL CURVES

In this paper, we will repeatedly use the fact that every extremal ray is spanned by a
rational curve of low degree, which is essentially due to Kawamata (see [Kaw3, Theorem
1]). Note that Kawamata’s result comes from the result obtained by Mori’s bend and
break technique, which relies on methods in positive characteristic.

Theorem 9.1 (see [Kaw3, Theorem 1] and [FuT4, Theorem 1.12]). Let (X, A) be a kawa-
mata log terminal pair and let p: X — Z be a projective morphism of complex analytic
spaces such that —(Kx + A) is p-ample. Let P be an arbitrary point of Z. Let E be
any positive-dimensional irreducible component of ¢~ (P). Then E is covered by possibly
singular rational curves ¢ with

0<—(Kx+A)-¢£<2dimFE.
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In particular, E is uniruled.

Here, we quickly reduce Theorem B to [EuTd, Theorem 1.12]. So we use the framework
of quasi-log schemes.

Proof of Theorem @. If ¢(X) = P, then £ = X holds. In this case, the statement
follows from [Euld, Theorem 1.12] since [X, Kx + A] is a quasi-log scheme. From now
on, we may assume that ¢(X) # P. We shrink Z around P. Then we can take an
effective R-Cartier divisor B on Z such that (X, A + ¢*B) is kawamata log terminal
outside ¢'(P) and that E is a log canonical center of (X, A + ¢*B). We consider the
non-kawamata log terminal locus V' := Nklt(X, A + ¢*B). Note that p(V) = P. Let
f:Y — X be a projective bimeromorphic morphism from a smooth variety Y such that
Ky + Ay = f*(Kx + A + ¢*B) and that Supp Ay is a simple normal crossing divisor
on Y. We put U := AJ! and (Ky + Ay)|y = Ky + Ay by adjunction. Note that U is
projective since ¢ o f(U) = P. We consider the following short exact sequence:

0— Oy(—LAyJ) — Oy(—LAyJ + U) — OU((—AEI—I - LA;IJ) — 0.

By the Kawamata-Viehweg vanishing theorem (see Theorem E), R' f,Oy(—|Ay|) = 0.
Then we have the following commutative diagram:

0—=J(X,A+¢"B) —= Ine(X, A+ ¢*B) — LOu([-AF'] - [A']) —=0

OHJ(X,A—FQO*B) Ox Oy 0,

where J(X,A + ¢*B) = f.Oy(—|Ay]) is the multiplier ideal sheaf of (X, A + ¢*B)
and Inpe(X, A 4+ ¢*B) = f.Oy(—|Ay] + U), which is called the non-lc ideal sheaf of
(X, A+ ¢*B), is an ideal sheaf that defines the non-log canonical locus of (X, A + ¢*B).
Hence J := f.Op([—AF'] — [ A7) is an ideal sheaf on V' such that

Ox/Inuc(X, A+ 9"B) =0y /J.
Therefore, since U is projective,
(V7 (KX + A+ QO*B>|V,_]C2 (U7AU> — V)

gives a quasi-log scheme structure on [V, (Kx + A + ¢*B)|v] (see [Eull, Theorem 4.9))
such that F is a qglc stratum of [V, (Kx + A + ¢*B)|y] by construction. Then, by [FuT4,
Theorem 1.12], E is covered by rational curves ¢ with

0<—(Kx+A+¢"B)-{<2dimFE

and is uniruled. Since p*B - ¢ = 0, we obtain the desired statement. U

By combining Theorem B with a standard argument, we have the following theorem,
which is well known when f: X — Y is a projective morphism between quasi-projective
varieties.

Theorem 9.2 (see [BCHM, Theorem 3.8.1]). Let m: X — Y be a projective morphism
of complex analytic spaces and let W be a compact subset of Y such that m: X — Y and
W satisfies (P). Suppose that (X, A) is a log canonical pair. Suppose that there is an
R-divisor Ag such that (X, Ag) is kawamata log terminal. If R is a (Kx + A)-negative
extremal ray of NE(X/Y; W), then there exists a rational curve { spanning R such that

0<—(Kx+A)-¢<2dimX.
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Proof. By assumption, we can find R-divisors A; with lim; .. A; = A such that (X, A;)
is kawamata log terminal. By replacing 7 by the contraction defined by the extremal ray
R, we may further assume that —(Kx +A) is m-ample. By Theorem B, for some P € Y,
we can find a rational curve ¢; in 7—!(P) such that

for every i > 0. We note that 7~(P) is projective. We take a m-ample Q-divisor A on
X such that —(Kx + A+ A) is also m-ample. In particular, —(Kx + A; + A) is m-ample
for every 7 > 0. Hence

This means that the curves ¢; belong to a bounded family. Thus, possibly passing to a
subsequence, we may assume that ¢ = ¢; is constant. Therefore, we have

—(Kx+A)-{=1lim —(Kx+A;) £ <2dim X.
11— 00
This is what we wanted. U
The following easy observation is very useful.

Theorem 9.3. Let (X,A) be a log canonical pair. Let m: X — Y be a projective mor-
phism of complex analytic spaces and let W be a compact subset of Y such thatw: X —Y
and W satisfies (P). We assume that there exists Ay on X such that (X, Ay) is kawamata
log terminal. Suppose that

XLy ey
such that Y? is projective overY . Let H be a general h-ample Q-divisor on Y with H-C' >
2dim X for every projective curve C' such that h(C) is a point. Let R be a (Kx+A+g*H)-

negative extremal ray of NE(X/Y ;W) and let or: X — Z be the contraction morphism

over Y associated to R. Then op: X — Z is a contraction morphism over Y?, that is,
Z =Y factors through Y.

Proof. We note that we can see R as a (Kx + A)-negative extremal ray of NE(X/Y; W)
since g*H is nef over Y. Therefore, by Theorem U2, R is spanned by a rational curve ¢ on
X such that 0 < —(Kx +A)-¢ <2dim X. If g(¢) is a curve, then (Kx +A+¢*H)-{ >0
since £-g*H > 2dim X. Therefore, this means that g(¢) is a point. Hence, the contraction
morphism ¢p: X — Z exists over Y. U

The next lemma is an easy consequence of Theorem B3. We will repeatedly use it in
the subsequent sections.

Lemma 9.4. Let m: X — Y be a projective morphism of complex analytic spaces and
let W be a compact subset of Y such that m: X — Y and W satisfies (P). Assume that
(X, A) is divisorial log terminal and that X is Q-factorial over W. Suppose that

X ey Lty
such that Y’ is projective over Y. Let H be a general h-ample Q-divisor on Y° with

H-C >2dim X for every projective curve C such that h(C') is a point. Let

(X07 AO) _d)_o') (Xl, Al) —(z)—l-) PR ?Z:_; (XZ,AZ) _¢i¢_) .

be a (Kx + A+ ¢g*H)-minimal model program over Y starting from (Xo, Ag) := (X, A).
Then it is a (Kx + A)-minimal model program over Y.
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Proof. We apply Theorem B3 to each extremal contraction. Then we can see that it is a
minimal model program over Y. U

By combining Theorem B2 with Theorem BT, we have:

Theorem 9.5. Let m: X — Y be a projective morphism of complex analytic spaces and
let W be a compact subset of Y such that m: X —Y and W satisfies (P). Suppose that

XLy oy

such that Y? is projective over Y. Assume that (X, A) is kawamata log terminal such
that A is m-big. We further assume that Kx + A is g-nef. Then there exists an open
neighborhood U of W such that (Kx + A)|z—1() is semiample over h='(U).

Proof. We take a relatively compact Stein open subset U’ of Y and a Stein compact subset
W’ of Y such that W C U’ ¢ W’ and I'(W’, Oy) is noetherian. From now on, we will
freely shrink Y around W’ suitably without mentioning it explicitly. Since A is 7-big,
there exists A’ such that A" ~g A, A" = A+ B, A >0, Ais m-maple, B > 0, and (X, A’) is
kawamata log terminal. Let H be a general h-ample Q-divisor on Y with H-C > 2dim X
for every projective curve C' such that h(C') is a point. Then Kx+ A+ g¢*H is nef over W’.
Hence 2(Kx +A+g*H)— (Kx + B) is m-ample. We apply Theorem BT to Kx +A+¢*H
over U’. Then there exists an open neighborhood U of W such that Kx + A + ¢*H is
semiample over U. This implies that Kx + A is semiample over h~1(U). U

10. REAL LINEAR SYSTEMS, STABLE BASE LOCI, AND AUGMENTED BASE LOCI

In the theory of minimal models, we have to treat R-divisors. Throughout this section,
we always assume that 7: X — Y is a projective morphism of normal varieties and let
W be a Stein compact subset of Y. We further assume that Y is Stein for simplicity. An
R-divisor on X may have infinitely many irreducible components. Hence we frequently
have to restrict it to a relatively compact open subset of X in order to make the number
of the irreducible components finite.

Let us start with the definition of real linear systems and stable base loci.

Definition 10.1 (Real linear systems and stable base loci). Let D be an R-divisor on X.
Then we put
|D/Y g ={C >0]C ~g D}
and call it the real linear system associated to D over Y. We sometimes simply write |D|g
to denote | D/Y|g if there is no danger of confusion. The stable base locus of D over Y is
the Zariski closed subset B(D/Y") given by the intersection of the support of the elements
of |D/Y|g. If |D/Y|g = 0, then we put B(D/Y') = X. Similarly, we consider
D/Y]o={C>0|C ~q D).

and define the Zariski closed subset B(D/Y)q as the intersection of the support of the
elements of |D/Y|q. If |D/Y|qg = 0, then we put B(D/Y)gy = X. We note that the
inclusion B(D/Y') € B(D/Y ) holds since |D/Y|g C |D/Y .

We make an important remark on the definition of B(D/Y') and B(D/Y)g.

Remark 10.2 (see [BCHM, Remark 3.5.2]). In Definition M, B(D/Y) and B(D/Y )q
are only defined as closed analytic subsets.

We will repeatedly use the following basic property of B(D/Y") implicitly.
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Lemma 10.3. Let U be any Stein open subset of Y. If D ~g C > 0, then D| -1y ~r
Clz—1w) = 0 obviously holds. Hence the inclusion
B(D|z-11)/U) € B(D/Y)|z-1w)
always holds true.
Proof. This is obvious. O
When we treat Q-divisors, we need:

Lemma 10.4 (see [BCHM, Lemma 3.5.3]). Let D be an integral Weil divisor. Then we
have the following inclusions

B(D/Y)qe 2 B(D/Y),
and
B(D|r-1w)/U)o C B(D/Y)|z-1)
for any relatively compact Stein open subset U of Y.
Proof. Since |D/Y|qo C |D/Y|g, the first inclusion B(D/Y)qg D B(D/Y) is obvious.
We take x € 7 }(U) such that z ¢ B(D/Y)|z-1w). Then, by the proof of [BCHM,

Lemma 3.5.3], we can check that z & B(D|,-1()/U)q. Hence the desired second inclusion
B(D|z-11)/U)q C B(D/Y)|z-1(1y holds. 0

Although it may be dispensable, as in the algebraic case, we have:

Lemma 10.5. Let A be any m-ample divisor on X and let U be any relatively compact
open subset of Y. Then B((D —€A)/Y )|z-1(v) is independent of ¢ if 0 < e < 1.

Proof. 1t is sufficient to note that
B((D—-2A)/Y) CB((D—2A4)/Y)

holds for 0 < &; < &3 by definition. On a relatively compact open subset 7=(U), the loci
B((D —€A)/Y) stabilize for sufficiently small € > 0 (see Lemma 27171). O

Let us define augmented base loci.

Definition 10.6 (Augmented base loci). The augmented base locus of D over Y is the
Zariski closed subset
(D/Y):=B((D—cA)/Y),
e>0
where A is some m-ample divisor on X. It is not difficult to see that B (D/Y) is in-
dependent of the choice of A. We note that D is m-big if and only if B, (D/Y) C X
holds.

We recall the definition of fized divisors. We need it in Theorem H (3).
Definition 10.7. Let D be an integral Weil divisor on X. We put
|D|:={C >0|C ~ D}.
Then Fix(D) denotes the fized divisor of D so that
|D| = |D — Fix(D)| + Fix(D),

where the base locus of |D — Fix(D)| contains no divisors. If Fix(D) = 0, then D is said
to be mobile.
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Since we are mainly interested in the minimal model program over some open neigh-
borhood of W, the following definition is useful.

Definition 10.8 (Stable base divisors). A divisor E defined on 7~'(U), where U is an
open neighborhood of W, is called a stable base divisor of D near W if E| -1y C
B(D|z-1(/U’) holds for any Stein open neighborhood U’ of W with U’ C U.

For our purposes, we have to reformulate [BCHM, Proposition 3.5.4] as follows. We
will use Lemma I in the proof of Theorem G.

Lemma 10.9 (see [BCHM, Proposition 3.5.4]). Let m: X — Y be a projective morphism
of normal complex varieties and let W be a Stein compact subset of Y. Let D > 0 be an
R-divisor on X. Then, after replacing Y with a Stein open neighborhood of W suitably,
we can find R-divisors M and F on X such that

(1) M >0 and F > 0,

(2) D~g M+ F,

(3) every component of Supp F' is a stable base divisor of D near W,

(4) if B is a component of Supp M, then some multiple is mobile.

Proof. The proof of [BCHM, Proposition 3.5.4, Lemma 3.5.5, and Lemma 3.5.6] works in
our setting with some minor modifications. As we mentioned above, an R-divisor on X
may have infinitely many irreducible components. Therefore, we have to replace Y with
a relatively compact open neighborhood of W in the proof of this lemma. For the details,
see the proof of [BCHM, Proposition 3.5.4]. O

11. SOME BASIC DEFINITIONS AND PROPERTIES, I

In this section, we will explain some basic definitions which are indispensable for the
main results and their proof.
Let us start with the definition of D-nonpositivity and D-negativity.

Definition 11.1 ([BCHM, Definition 3.6.1]). Let ¢: X --» Z be a bimeromorphic con-
traction of normal complex varieties and let D be an R-Cartier R-divisor on X such that
D' := ¢.D is also R-Cartier. We say that ¢ is D-nonpositive (resp. D-negative) if for
some common resolution p: V' — X and ¢: V — Y, we may write

p*D=q¢" D'+ FE
where F is effective and g-exceptional (resp. F is effective, g-exceptional, and the support
of E contains the strict transform of the ¢-exceptional divisors).

The so-called negativity lemma (see, for example, [BCHM, Lemma 3.6.2]) holds true
in our complex analytic setting. This is because everything follows from the negative
definiteness of intersection form of contractible curves on surfaces (see, for example, [Mafk,
Theorem 4-6-1]). Therefore, from now on, we will freely use the negativity lemma for
projective morphisms of normal complex varieties. Note that the results obtained in
[BCHM, Lemmas 3.6.2, 3.6.3, and 3.6.4] hold true in our complex analytic setting with
some obvious modifications.

Let us define semiample models and ample models following [BCHMI.

Definition 11.2 ([BCHM, Definition 3.6.5]). Let 7: X — Y be a projective morphism
of complex analytic spaces and let W be a compact subset of Y such that 7: X — Y and
W satisfies (P). Let D be an R-Cartier R-divisor on X.

Let f: X --» Z be a bimeromorphic contraction over Y after shrinking Y around W
suitably.
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e Wesay that f: X --» Z is a semiample model of D over some open neighborhood of
W if, after shrinking Y around W suitably, Z is a normal variety and is projective
over Y, f is D-nonpositive, and H := f,D is semiample over Y.

Let g: X --» Z be a meromorphic map over Y after shrinking Y around W suitably.

e We say that g: X --» Z is the ample model of D over some open neighborhood of
W if, after shrinking Y around W suitably, Z is a normal variety and is projective
over Y, and there exists an ample R-divisor H over Y on Z such that if p: V — X
and q: V — Z resolve the indeterminacy of g then ¢ is a contraction morphism
and we can write p*D ~p ¢*H + E, where F > 0 and B > FE holds for every
B € |p*D/Y|r.

The basic properties of semiample models and ample models are summarized as follows.

Lemma 11.3 (see [BCHM, Lemma 3.6.6]). Let m: X — Y be a projective morphism of

complex analytic spaces and let W be a compact subset of Y such that m: X =Y and W
satisfies (P). Let D be an R-Cartier R-divisor on X.

(1) If g;: X --+ X, i = 1,2, are two ample models of D over some open neighborhood
of W, then there exists an isomorphism x: X1 — Xo over some open neighborhood
of W such that go = x o g1.

(2) If f: X --» Z is a semiample model of D over some open neighborhood of W,
then, after shrinking Y around W suitably, the ample model g: X --+ Z' of D
over some open neighborhood of W exists and g = h o f, where h: Z — Z' is a
contraction morphism and f,D ~r h*H holds such that H is an R-divisor on Z'
which is ample over some open neighborhood of W'.

(3) If f: X --» Z is a bimeromorphic map over some open neighborhood of W, then
f is the ample model of D over some open neighborhood of W if and only if f is a
semiample model of D over some open neighborhood of W and f.D is ample over
some open neighborhood of W.

Proof. For the details, see the proof of (1), (3), and (4) in [BCHM, Lemma 3.6.6]. O

The definition of weak log canonical models and log terminal models becomes subtle in
our complex analytic setting.

Definition 11.4 ([BCHM, Definition 3.6.7]). Let 7: X — Y be a projective morphism
of complex analytic spaces and let W be a compact subset of Y. Suppose that Kx + A
is log canonical and let ¢: X --+ Z be a bimeromorphic contraction of normal complex

varieties over Y after shrinking Y around W suitably, where Z is projective over Y. We
set I' = ¢, A.

(i) Z is a weak log canonical model for Kx + A over W if ¢ is (K x + A)-nonpositive
over some open neighborhood of W and Kz + I is nef over W.

(i) Z is a weak log canonical model for Kx + A over some open neighborhood of W
if, after shrinking Y~ around W suitably, ¢ is (Kx + A)-nonpositive and Kz + 1T is
nef over Y.

(iii) Z is a log terminal model for Kx + A over W if ¢ is (Kx + A)-negative over some
open neighborhood of W, (Z,T") is divisorial log terminal, Kz + I is nef over W,
and Z is Q-factorial over W.

(iv) Z is a log terminal model for Kx + A over some open neighborhood of W if, after
shrinking Y around W suitably, ¢ is (Kx + A)-negative, (Z,T") is divisorial log
terminal, K7 + I" is nef over Y, and Z is Q-factorial over W.
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(v) Z is a good log terminal model for Kx + A over some open neighborhood of W if,
after shrinking Y around W suitably, ¢ is (Kx + A)-negative, (Z,I') is divisorial
log terminal, K7 + I' is semiample over Y, and Z is Q-factorial over W.
We further assume that 7: X — Y and W satisfies (P).

(vi) Z is the log canonical model for Kx + A over some open neighborhood of W if ¢
is the ample model of Kx + A over some open neighborhood of W.

We give some remarks on Definitions IT4 and [T-4.

Remark 11.5 (see [BCHM, Remark 3.6.8]). A log terminal model is sometimes simply
called a log minimal model or a minimal model.

Remark 11.6. In Definitions T2 and 14 , we only require that f: X --» Z, g: X --»
Z, and ¢: X --» Z exist after replacing Y with a smaller open neighborhood of W
suitably. If there is no danger of confusion, then we simply say that ¢: X --+ Z is a log
terminal model (weak log canonical model, log canonical model, and so on) for Kx + A
over Y when it is a log terminal model (weak log canonical model, log canonical model,
and so on) for Kx + A over some open neighborhood of W.

In our complex analytic setting, the definition of Mori fiber spaces becomes as follows.

Definition 11.7 (Mori fiber spaces). Let (X, A) be a divisorial log terminal pair. Let
m: X — Y be a projective morphism of complex analytic spaces and let W be a compact
subset of Y such that 7: X — Y and W satisfies (P). Let f: X — Z be a projective
morphism of normal complex varieties over Y. Then f: (X,A) — Z is a Mori fiber space
over Y if

(i) X is Q-factorial over W,
(ii) f is a contraction morphism associated to a (Kx + A)-negative extremal ray of
NE(X/Y; W), and
(ili) dim Z < dim X.
The following definition is essentially the same as [BCHM, Definition 1.1.4]. However,
we need some modifications since we treat only curves mapped to points in W by 7.

Definition 11.8 ([BCHM), Definition 1.1.4]). Let 7: X — Y be a projective morphism of
complex analytic spaces such that X is a normal variety and let W be a compact subset
of Y. Let V be a finite-dimensional affine subspace of the real vector space WDivg(X)
spanned by the prime divisors on X. We fix an R-divisor A > 0 on X such that Supp A
has only finitely many irreducible components and define

Va={A|A=A+B,BeV},
LA(V;n{(W))={A=A+ B € Va|Kx + A is log canonical at 7' (W) and B > 0},

Ear(ViIW) = {A € La(Vim (W) Kx + A is pseudo-effective over } ’

some open neighborhood of W
Nﬁ,ﬂ(V; W) ={Ac L,(V;7n Y (W))|Kx + A is nef over W}, and

NA’W(V; W) = {A c £A<V; 7T_1(W)) Kx + A is nef over some open } .

neighborhood of W

Given a bimeromorphic contraction ¢: X --+ Z after shrinking Y around W suitably,
define

Wi 4 (ViW) = {A € Ean(V; W)

¢ is a weak log canonical model for (X, A)
over W ’



48 OSAMU FUJINO

and

W¢,A’W(V; W) = {A € gAm(V; W)

¢ is a weak log canonical model for (X, A)
over some open neighborhood of W '

Given a meromorphic map ¥: X --+ Z after shrinking Y around W suitably, define
1 is the ample model for (X, A) }

over some open neighborhood of W

A¢’A,W(V; W) = {A € EAJF(V; W)

We make some elementary remarks.

Remark 11.9. By the same argument as in the proof of Lemma B3, we can check that
LA(V;7m Y(W)) in Definition ITH is a polytope. We further assume that A is a Q-divisor
and that V is defined over the rationals. Then L£4(V;7 !(W)) is a rational polytope.

Remark 11.10. By definition, it is easy to see that NQ’W(V; W) and Wi,A,ﬂ'(‘/; W) are
closed subsets of L4(V;7 1(W)).

We note the following elementary fact.

Remark 11.11. In Definition T8, let S be an effective R-divisor on X such that Supp S
has only finitely many irreducible components. If Supp A and Supp B have no common
irreducible components for every B € V', then

Lsia(Vim (W) = Ls(VasmH(W))
holds. Of course, if Supp S and Supp B have no common irreducible components for every
B €V, then

Lsia(Vim (W) = La(Vss7H(W))
holds.

From now on, we assume that S is reduced. We put
V' :={B € V|Supp B and Supp S have no common irreducible components}.
Then V' is an affine subspace of V' such that
Lsia(Vim (W) = Lopa(Visn (W) = La(VisnH (W)

There are no difficulties to adapt [BCHM, Lemmas 3.6.9, 3.6.10, and 3.6.11] to our
complex analytic setting. Roughly speaking, they are easy consequences of the negativity
lemma. Hence we omit the details here. On the other hand, [BCHM, Lemma 3.6.12] is
subtle and needs some reformulation for our purposes. We will discuss it in Section 2.

11.12 (see [BCHM), Lemmas 3.7.3, 3.7.4, and 3.7.5]). Note that [BCHM, Lemmas 3.7.3,
3.7.4, and 3.7.5] are very important. We need them to reduce various problems for log
canonical pairs to simpler ones for kawamata log terminal pairs. We state them here
explicitly in our complex analytic setting for the sake of completeness. In the following
three lemmas T3, ITT4, and ITTA, we assume that 7: X — Y is a projective morphism
of complex analytic spaces such that X is a normal variety and Y is Stein and that W is
a Stein compact subset of Y.

Lemma 11.13 (see [BCHM, Lemma 3.7.3]). Let V' be a finite-dimensional affine subspace
of WDivg(X) and let A > 0 be a w-big R-divisor on X. Let C C LA(V;77 Y (W)) be a
polytope.
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If BL.(A/Y) does not contain any non-kawamata log terminal centers of (X,A) for
every A € C, then, after shrinking Y around W suitably, we can find a general m-ample Q-
divisor A" on X, a finite-dimensional affine subspace V' of WDivg(X), and a translation

L: WDivg(X) — WDivg(X),

by an R-divisor T with T ~g 0 such that L(C) C La(V';77Y(W)) and (X,A — A) and
(X, L(A)) have the same non-kawamata log terminal centers. Furthermore, if A is a
Q-divisor, then we may assume that T ~qg 0 holds.

Lemma 11.14 (see [BCHM, Lemma 3.7.4]). Let V' be a finite-dimensional affine subspace
of WDivg(X), which is defined over the rationals, and let A be a general m-ample Q-
dwisor on X. Let S be a finite sum of prime divisors on X such that each irreducible
component of S intersects with 7= (W). Suppose that there exists a divisorial log terminal
pair (X, Ag) with S = |Ag| and let G > 0 be any divisor whose support does not contain
any non-kawamata log terminal centers of (X, Ay).

Then, after shrinking Y around W suitably, we can find a general m-ample Q-divisor
A" on X, and affine subspace V' of WDivg(X), which is defined over the rationals, and
a rational affine linear isomorphism

L: VS+A — V,S/'-i-A’
such that

e L preserves Q-linear equivalence,

o L(Lsia(V;m Y (W))) is contained in the interior of Lo (V'; 7 H(W)),

o forany A € L(Lsia(V;m Y W))), Kx+A is divisorial log terminal and |A] = S,
and

o for any A € L (Lsya(V;7 1 (W))), the support of A contains the support of G.

Lemma 11.15 (see [BCHM, Lemma 3.7.5]). Let (X, A = A+ B) be a log canonical pair,
where A >0 and B > 0.

If A is m-big and B (A/Y) does not contain any non-kawamata log terminal centers
of (X,A) and there exists a kawamata log terminal pair (X,Ay), then we can find a
kawamata log terminal pair (X,A" = A"+ B'), where A" > 0 is a general m-ample Q-
divisor on X, B > 0, and Kx + A" ~g Kx + A. If in addition A is a Q-divisor, then
Ky + A" ~g Kx +A.

Here we omit the proof of Lemmas [T 13, ITT4, and IITTA. This is because there are
no difficulties to translate the proof of [BCHM, Lemmas 3.7.3, 3.7.4, and 3.7.5] into our
complex analytic setting.

In this paper, we are mainly interested in kawamata log terminal pairs (X, A) such that
A is big over Y. For such pairs, we have some good properties.

Lemma 11.16 ([BCHM, Lemma 3.9.3]). Let m: X — Y be a projective morphism of
complex analytic spaces and let W be a compact subset of Y such that m: X —Y and W
satisfies (P). Suppose that (X, A) is a kawamata log terminal pair, where A is w-big. If
¢: X --+ Z is a weak log canonical model of Kx + A over W, then

(1) ¢ is a weak log canonical model of Kx + A over some open neighborhood of W,

(2) ¢ is a semiample model over some open neighborhood of W,

(3) after shrinking Y around W suitably, there exists a contraction morphism h: Z —
7" such that Kz + T ~g h*H, for some R-divisor H on Z', which is ample over
Y, where I' = ¢, A, and
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(4) the ample model: X --+ Z' of Kx+ A over some open neighborhood of W exists.

Proof. Throughout this proof, we will freely shrink Y around W without mentioning it
explicitly. We put I' = ¢,A. Then (Z,T") is kawamata log terminal by the negativity
lemma. Since A is big, we can write I' ~g A + B such that A is ample over Y, A > 0,
B >0, and (Z, A + B) is kawamata log terminal. Then, by Theorem B3, we can check
that Kz + I is semiample over Y. This means that ¢ is a weak log canonical model of
Kx + A over Y and that Kz + I is semiample over Y. Hence we obtain (1) and (2).
Since Kz + I' is semiample over Y, we get a contraction morphism h: Z — Z’ such that
Y :=ho¢: X --» Z' is the ample model of (X, A) (see Lemma IT33 (2)). Therefore, we
have (3) and (4). O

The following theorem is very important.

Theorem 11.17 ([BCHM, Theorem 3.11.1]). Let m: X — Y be a projective morphism
of complex analytic spaces and let W be a compact subset of Y such that m: X —'Y and
W satisfies (P). Let V' be a finite-dimensional affine subspace of WDivg(X), which is
defined over the rationals. Fix a m-ample Q-divisor A on X. Suppose that there exists a
kawamata log terminal pair (X, Ag). Then Na.(V; W) = /\/:ELTF(V; W) holds and the set
of hyperplanes R+ is finite in L4(V;7 Y(W)), as R ranges over the set of extremal rays
of NE(X/Y;W). In particular, Na(V; W) = Nﬁm(v; W) is a rational polytope.

Sketch of Proof of Theorem [IT1.17. By Theorem B3, Kx+ A is semiample over some open
neighborhood of W for every A € Ngm(v; W). In particular, Kx + A is nef over some
open neighborhood of W. This implies that N4 ,(V; W) = Nf,m(v; W) holds. On the
other hand, the proof of [BCHM, Theorem 3.11.1] works by Theorem [Z3. Hence we see
that Rt is finite in L4(V;771(W)) and me(v; W) is a rational polytope. O

We prepare an easy lemma.

Lemma 11.18. In Theorem [IT.17, we consider Ay, Ay € LA(V;7 Y (W)). Let fi: X —
Z; be a contraction morphism between normal varieties over Y such that Kx+A; ~g fiD;
for some g;-ample R-divisor D; on Z;, where g;: Z; — Y 1is the structure morphism, for
t = 1,2. Then the following conditions are equivalent.

(i) Ay and Ay belong to the same interior of a unique face of./\/'fm(‘/; W).

(ii) Zy and Zy are isomorphic over some open neighborhood of W .

Proof. We note that Ay, Ay € /\/'fm(V; W). If (ii) holds, then (i) obviously holds true.
From now on, we will prove (ii) under the assumption that (i) holds. Let Z be the image
of the map (f1, f2): X — Zy Xy Zy given by x + (fi(x), f2(x)) Let p;: Z — Z; be the
projection for 7 = 1,2. We take any point z; € g; Y(W). Then we can easily see that
p; *(z) is a point by (i). By using the Stein factorization (see, for example, [BS, Chapter
I1I, Corollary 2.13]), p;: Z — Z; is an isomorphism over some open neighborhood of

“1(W). Hence Z;, and Z, are isomorphic over some open neighborhood of W. This is

3
what we wanted. O

As an easy consequence of Theorem IITT7, we have:

Corollary 11.19 ([BCHM, Corollary 3.11.2]). Let 7: X — Y be a projective morphism
of complex analytic spaces and let W be a compact subset of Y such that m: X — Y
and W satisfies (P). Let V' be a finite-dimensional affine subspace of WDivg(X), which
is defined over the rationals. Fix a general m-ample Q-divisor A on X. Suppose that
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there exists a kawamata log terminal pair (X, Ag). Let ¢: X --+ Z be any bimeromorphic
contraction over Y. Then we obtain:

(1) Wya-(V; W) = W27A7W(V; W) holds and Wy a-(V; W) is a rational polytope.
Moreover, we have:

(2) There are finitely many contraction morphisms fi: Z — Z; over Y, 1 < i < k,
such that if f: Z — Z' is any contraction morphism over Y and there is an R-
divisor D on Z', which is ample over Y, such that Kz +T = ¢.(Kx+A) ~g f*D
for some A € Wy 4 -(V; W), then there is an index 1 < i < k and an isomorphism
n: Z; — Z' such that f =no f;.

Note that in (2) we require that f;, f, D, and n exist only after shrinking Y around W
suitably.

The proof of [BCHMI, Corollary 3.11.2] works with some minor modifications.

Sketch of Proof of Corollary IT19. Note that £4(V; 7= (W)) is a rational polytope. There-
fore, its span is an affine subspace of V4, which is defined over the rationals. By replacing
V', we may assume that £4(V;7~1(W)) spans V4. To prove that WgAJ(V; W) is a ra-
tional polytope, we may work locally about a divisor A € W};AJ(V; W). By Lemma
[TT4, we may assume that (X, A) is kawamata log terminal. In this case, (Z,1") is au-
tomatically kawamata log terminal. We put C' := ¢,A. Then C is big over Y. Let
VT C WDivg(Z) be the image of V. By Lemmas [1TI3 and [I1d, we can reduce the
problem to the case where C' is a Y-ample Q-divisor and I' belongs to the interior of
LoV~ (W)), where ¢: Z — Y is the structure morphism. By Theorem 117,
Ngﬂp(VT,W) = Ngy(VT,W) is a rational polytope. Hence we can easily check that
WiyA’ﬂ(V; W) = Wy a-(V; W) holds and ngA’ﬂ(V; W) is a rational polytope. Thus we
obtain (1). Let f: Z — Z' be a contraction morphism over some open neighborhood of
W such that ¢.(Kx +A) = Kz +T ~g f*D for some v¢’-ample R-divisor D on Z’, where
W' Z" — Y is the structure morphism. Then I' belongs to the interior of a unique face G
of /\/'gﬂ/,(VT; W) = Ney(VT; W). Note that A belongs to the interior of a unique face F
of WiA’W(V; W) =Wy a,(V;W) and G is determined by F'. Thus we can check that (2)
holds true by Lemma ITTX. U

11.20 (see [BCHM, Lemma 3.10.11]). When we run a minimal model program, we have
to check that several properties are preserved by flips and divisorial contractions.

Let m: X — Y be a projective morphism between complex analytic spaces and let
W be a compact subset of YV such that 7: X — Y and W satisfies (P). Assume that
(X, A) is divisorial log terminal and that X is Q-factorial over W. Let ¢: X — Z be a
bimeromorphic contraction morphism over Y associated to a (Kx + A)-negative extremal
ray R of NE(X/Y;W). Let A be a 7-big R-divisor on X such that B, (A4/Y) does not
contain any non-kawamata log terminal centers of (X, A).

Lemma 11.21 (Divisorial contractions). In the above setting, we further assume that ¢ is
diwvisorial. Then, after shrinking Y around W suitably, we have the following properties.

(1) Z is Q-factorial over W.

(2) (Z,T) is divisorial log terminal, where I" := @, A.
(3) Exc(p) is a prime divisor on X.

E4; p(Z)Y ;W) =p(X/Y; W) —1.
d

B, (p.A/Y) does not contain any non-kawamata log terminal centers of (Z,T).
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Lemma 11.22 (Flips). In the above setting, we further assume that ¢ is a flipping con-
traction and that the flip o™ : X+ — Z of ¢ exists.

Then, after shrinking Y and W suitably, we have the following properties.

(1) X* is Q-factorial over W.

(2) (X, A") is divisorial log terminal, where AT := ¢, A.

(3) p(XT/YIW) = p(Z/Y5W) 4+ 1 = p(X/Y; W),

(4) X is projective overY .

(5) BL(¢«A/Y) does not contain any non-kawamata log terminal centers of (X+, AT).

Proof of Lemmas I1Z1 and I1-23. The proof for algebraic varieties works with only some
obvious modifications even in the complex analytic setting. Here, we will only prove (5).
There are no difficulties to prove the other properties. Let f: X --» X’ denote the
divisorial contraction ¢: X — Z in Lemma IIT21 or the flip ¢: X --» XT in Lemma
IT22. We will freely shrink Y around W suitably without mentioning it explicitly. We
take a general n’-ample Q-divisor C' on X', where n’: X’ — Y is the structure morphism.
We may assume that B((A—ef;1C)/Y) does not contain any non-kawamata log terminal
centers of (X, A) for some 0 < ¢ < 1. Therefore, we have an effective R-divisor D on X
such that D ~g A—ef'C and that (X, A’ := A+¢'D) is a divisorial log terminal pair for
0 <& < 1. Note that if 0 < ¢’ < 1 then R is still a (Kx + A’)-negative extremal ray of
NE(X/Y; W). Therefore, (X', f,A" = f.A + &'f.D) is still a divisorial log terminal pair.
Hence the support of f,D contains no non-kawamata log terminal centers of (X', f.A).
Since f.A ~r f.D +eC, B, (f+A/Y) contains no non-kawamata log terminal centers of
(X', feA"). This is what we wanted. O

12. SOME BASIC DEFINITIONS AND PROPERTIES, II

In this section, we will treat [BCHM, Lemma 3.6.12] in the complex analytic setting,.
We change the formulation suitable for our complex analytic setting. The main result of
this section is Lemma IZ3. For the proof of Lemma 223, we prepare two lemmas.

Let us start with small projective Q-factorializations (see Theorem [24).

Lemma 12.1 (Small projective Q-factorializations). Assume that Theorem G, holds true.

Let m: X — Y be a projective morphism between complex analytic spaces with dim X =
n and let W be a compact subset of Y such that m: X — Y and W satisfies (P). Assume
that (X, A) is kawamata log terminal. Then, after shrinking Y around W suitably, there
exists a small projective bimeromorphic contraction morphism f: X' — X such that X'
is projective over Y and that X' is Q-factorial over W.

Proof. Throughout this proof, we will freely shrink Y around W suitably without men-
tioning it explicitly. By taking a resolution, we have a bimeromorphic contraction mor-
phism ¢g: V' — X such that V is smooth, V is projective over Y, and Exc(g) and
Exc(g) U Supp g; 'A are simple normal crossing divisors on V. Then we can take an
R-divisor Ay on V such that (V,Ay) is kawamata log terminal and that Ky + Ay =
9" (Kx + A) + E, where E > 0 and Supp £ = Exc(g). We take a general m-ample
Q-divisor H on X such that Kx + A+ H ~g D > 0. We apply Theorem G, to
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Ky+Ay+9g"H ~g gD+ FE > 0. Then we get a bimeromorphic contraction ¢: V' --+ X’
over X such that X’ is Q-factorial over W, X' is projective over Y, and Ky + I' is nef
over Y, where I := ¢,Ay. By the negativity lemma, we see that f: X’ — X is small.
This is what we wanted. U

By combining Lemma 21 with Theorem B2, we have:

Lemma 12.2. Assume that Theorem [d,, holds true.

Let m: X —'Y be a projective morphism between complex analytic spaces with dim X =
n and let W be a compact subset of Y such that m: X — Y and W satisfies (P). Let
¢: X --+ Z be a bimeromorphic contraction of normal complex varieties over' Y such that
(Z,Az) is kawamata log terminal for some Ayz. We consider the following commutative
diagram:

where p and q are projective bimeromorphic morphisms and V' is a normal complex variety.
Let H be an R-Cartier R-divisor on Z such that H' := p,q*H is also R-Cartier. Let B
be an R-Cartier R-divisor on X such that B is numerically equivalent to H' over W.
Then ¢.B := q.p*B is R-Cartier over some open neighborhood of W and is numerically
equivalent to H over W.

Proof. 1t is sufficient to prove that ¢,B is R-Cartier over some open neighborhood of
W, equivalently, ¢, B is R-Cartier at any point z of (7/)~}(WW). We will freely shrink YV
around W without mentioning it explicitly. By applying Lemma 20 to 7': Z — Y, we
can construct a small projective bimeromorphic contraction morphism f: Z' — Z such
that Z’ is projective over Y and that Z’ is Q-factorial over W. By replacing V', we may
assume that ¢: V' — Z factors through Z’. Hence we have the following commutative
diagram.

V
VRN
X/:__;/__>Z/

\\\\ f

Since Z' is Q-factorial over W, we may assume that ¢/ B is R-Cartier R-divisor on Z’. We
put Kz + Ay = f*(Kz+ Ayz). Then (Z', Ay) is kawamata log terminal since f is small.
Note that ¢, B is numerically equivalent to f*H over W by construction. Therefore, ¢! B
is numerically trivial over z for any z € (7/)~'(W). Since f: Z' — Z is bimeromorphic,
by replacing Z with a small Stein open neighborhood of some z € (7')~}(W), we can take
© on Z' such that (7', 0) is kawamata log terminal and that —(Kz + ©) is ample over
7. Hence, by Theorem B2, ¢, B is R-Cartier at z. Note that W is compact. Therefore,
this means that ¢, B is R-Cartier over some open neighborhood of W. This is what we
wanted. U
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The following lemma is essentially the same as [BCHM, Lemma 3.6.12]. We note that
we do not assume that A is m-ample in Lemma [2Z3 (see Remark 24 below).

Lemma 12.3 ([BCHM, Lemma 3.6.12]). Let m: X — Y be a projective morphism of
complex analytic spaces and let W be a compact subset of Y such that m: X — Y and
W satisfies (P) and that X is Q-factorial over W and has only kawamata log terminal
singularities. Let ¢: X --+ Z be a bimeromorphic contraction over Y and let A be an
effective R-divisor on X such that Supp A has only finitely many irreducible components.
We assume one of the following conditions:

(i) Z is Q-factorial over W, or

(ii) Theorem G, holds, where n = dim X.
If V is any finite-dimensional affine subspace of WDivg(X) such that L4(V;7 1 (W))
spans WDivg (X)) modulo numerical equivalence over W and Wg’A,W(V; W) intersects the
interior of La(V; 7Y (W)), then

WE (Vi W) = Ay ax(V; W)
holds, where Ay a.(V; W) is the closure of Ay a-(V;W).
Let us prove Lemma I23.
Proof of Lemma TZZ3. 1t is easy to see that
Wi 4 (ViW) D Ay ax(V: W)
holds. Since Wi ax (VW) is closed, it follows that
Wi ax(ViW) D Ay 4 (Vi W),

In order to prove the opposite inclusion, it is sufficient to prove that a dense subset of
Wﬁ,’Am(V; W) is contained in Ay 4 - (V; W).

From now on, we will freely shrink Y around W suitably without mentioning it explic-
itly. We take A belonging to the interior of Wi,A,ﬂ(V? W). Weput I' := ¢,A. Then (Z,T)
is a weak log canonical model of (X, A) over W by definition. Since £4(V;7~!(W)) spans
WDivg (X) modulo numerical equivalence over W, we can find Ay € L4(V; 7~ 1(WW)) such
that Ay — A is numerically equivalent over W to uA for some p > 0. We consider

A =A+e((Ag—A) — pA) = (1 —e)vA + ey,

where .

—e—€u
TR
Hence, A’ is numerically equivalent to A over W and if € > 0 is sufficiently small then
A’ is effective. Since (X,rA) is kawamata log terminal, it follows that (X, A’) is also
kawamata log terminal. We put IV := ¢,A’. If (i) holds, then K7 + I" is obviously
R-Cartier. If (ii) holds, then we can check that Kz + I is R-Cartier by Lemma [22.

Let H be a general n’-ample Q-divisor on Z, where n’': Z — Y is the structure mor-
phism. Let p: U — X and ¢q: U — Z resolve the indeterminacy locus of ¢. We put
H' := p.q*H. Tt is obvious that ¢ is H'-nonpositive. We take A; € L4(V; 71 (W)) such
that B := A; — A is numerically equivalent to nH' over W for some 1 > 0. By replacing
H with nH, we may assume that n = 1. If (i) holds, then ¢, B is obviously R-Cartier. If
(ii) holds, then we can check that ¢.B is R-Cartier by Lemma 2. Therefore, we obtain

v 1.
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that ¢ is (Kx + A + AB)-nonpositive and ¢.(Kx + A + AB) is ample over Y for every
A > 0. On the other hand, we have

A+AB=A+ANA —A)= (1= NA+AA; € Lu(Vim H(W))

for every A € [0, 1]. This implies that ¢ is the ample model of Kx + A + AB over Y for
every A € (0, 1]. O

We close this section with a useful remark.

Remark 12.4. In Lemma [Z3, we further assume that A =S + A’, where S is reduced
and A’ > 0 is a general m-ample Q-divisor on X, and that V' is defined over the rationals.
We put

V' :={B € V |Supp B and Supp S have no common irreducible components}
as in Remark ITT1. Hence V"’ is also defined over the rationals. Then we have
ng,SJrA/,fr(V; W) = st,SJrA/,ﬂ(V/; W) = Wjﬁ,A',w(VS/'; W)
= Woax(Ves W) = Wy sha (VW) = We s a2 (Vi W)
by Remark ITT1 and Corollary IT19 (1). In particular,
Wi s a(ViW) = Wosiaa (Vi W)

is a rational polytope since W}; wa (Ve W) = Wy a-(Vs; W) is a rational polytope by
Corollary T4 (1).

13. MINIMAL MODEL PROGRAM WITH SCALING

In this section, we will explain the minimal model program with scaling. It is very
important for various geometric applications.

13.1 (Minimal model program with scaling). Let 7: X — Y be a projective morphism
of complex analytic spaces and let W be a compact subset of Y such that 7: X — Y and
W satisfies (P). Precisely speaking, X is a normal complex variety, Y is a Stein space,
and W is a Stein compact subset of Y such that I'(W, Oy) is noetherian. Let (X, A) be
a divisorial log terminal pair such that X is Q-factorial over W and let C' be an effective
R-Cartier R-divisor on X such that (X, A + C) is log canonical and that Ky + A + C' is
nef over W. We assume that one of the following conditions hold.
i) A=5+A+B, 5 =|A], A>0is m-big, B;(A4/Y) does not contain any
non-kawamata log terminal centers of (X, A), and B > 0.

(ii) C is m-big and B, (C/Y") does not contain any non-kawamata log terminal centers
of (X, A).

We recall the following elementary fact for the reader’s convenience.
Remark 13.2. Assume that (X, A) and (X, A 4 C) are both log canonical and that C

is effective. Then V' is a non-kawamata log terminal center of (X, A) if and only if V' is a
non-kawamata log terminal center of (X, A + eC) for every 0 < e < 1.

Although we have already treated more general lemmas, we explicitly state an easy
lemma for the sake of completeness.
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Lemma 13.3. Suppose that (i) holds true. Then, after shrinking Y around W suitably,
we can find A" such that Kx + A ~g Kx + A/, Al = A+ B, A > 0 is a m-ample
Q-divisor, B' > 0, and (X, A’) is kawamata log terminal. Suppose that (ii) holds true.
Then, after shrinking Y around W suitably, for any 0 < e < 1, there exists A" such that
Ky +A+cC~p Kx +A", AN =A"+B", A >0 is a m-ample Q-divisor, B’ > 0, and
(X, A") is kawamata log terminal.

Proof. Throughout this proof, we will freely shrink Y around W without mentioning it
explicitly. We assume that (i) holds. By the assumption on B, (A/Y), we can write
A ~gp A; 4+ Ay such that A; is a m-ample Q-divisor on X and As does not contain any
non-kawamata log terminal centers of (X, A). Then Kx + S+ A+ B ~r Kx + S+ B+
(1—a)A+aAs+aA; such that (X, S+ B+ (1 —a)A+ aA,) is divisorial log terminal for
some positive rational number o with 0 < o < 1. By replacing A and B with aA; and
B+ (1 — a)A + @A, respectively, we may assume that A itself is a m-ample Q-divisor.
Since BS + %A is m-ample for some rational number § with 0 < f < 1, we can take
Az ~g S+ 3 A such that Kx + (1 —8)S + A+ B+ Aj; is kawamata log terminal. If we
put A’ = 1A and B' = (1 — 8)S + A + B+ As, then A’ = A’ 4+ B’ satisfies the desired
properties. From now on, we assume that (ii) holds. We note that V' is a non-kawamata
log terminal center of (X, A) if and only if V' is a non-kawamata log terminal center of
(X, A+eC) for 0 < € < 1. Therefore, we can apply the above argument to A +eC. Thus
we have a desired divisor A’ on X. O

We put
A:=inf{p € Rso| Kx + A+ puC is nef over W}.

If A =0, equivalently, Ky + A is nef over W, then we stop. In this case, (X,A) itself
is a log terminal model of (X, A) over W. If further (i) holds true, then (X,A) is a
log terminal model of (X, A) over some open neighborhood of W by Theorem B=3 (see
also Lemma I118). Moreover, it is a good log terminal model of (X, A) over some open
neighborhood of W.

Lemma 13.4. If A > 0 holds, then there exists a (Kx + A)-negative extremal ray R of
NE(X/Y; W) such that (Kx + A+ AXC)- R =0.

Proof. 1f (i) holds, then there are only finitely many (K y + A)-negative extremal rays by
Theorems and 3. Hence it is not difficult to find a desired extremal ray R. If (ii)
holds, then we consider Kx + A 4+ eC for 0 < ¢ < 1. By Lemma 33, after shrinking Y
around W suitably, Ky + A+eC ~g Kx+ A’ such that (X, A’) is kawamata log terminal,
A=A+ B, A >0is a mample Q-divisor, and B’ > 0. Hence, by Theorem [3, there
are only finitely many (Kx + A + eC)-negative extremal rays. Thus, we can easily take
a desired extremal ray R. OJ

From now on, we assume that A > 0 holds. Let ¢: X — Z be the extremal contraction
over Y defined by R (see Theorems 2 and [Z3). We note that in general the contraction
morphism ¢: X — Z over Y exists only after shrinking Y around W suitably. If ¢ is not
birational, then we have a Mori fiber space over Y (see Definition [1—1) and we stop.

Lemma 13.5. Assume that Theorem [d,, holds true.
Let : X — Z be a flipping contraction associated to a (Kx + A)-negative extremal ray
R of NE(X/Y; W) with dim X = n. Then the flip p*: XT — Z euxists.

Proof. For the details, see Theorem 9 and its proof. O
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If ¢ is birational, then either ¢ is divisorial and we replace X by Z or ¢ is small, that
is, flipping, and we replace X by the flip X (see Lemmas IT21 and I122). In either
case, Kx + A + \C'is nef over W and Kx + A is divisorial log terminal. Hence we may
repeat the process under the assumption that Theorem @&, holds true for n = dim X. In
this way, we obtain a sequence of flips and divisorial contractions starting from X, := X:

Xo 2 X, st xS X,

and a real numbers
1> A= >N >

such that KXZ. + Az + )\101 is nef over W, where Az = (¢i—1)*Ai—1 and Cz = <¢i—1)*ci—l
for every ¢ > 1. We note that each step ¢; exists only after shrinking Y around W
suitably. We can easily check that each step of this minimal model program preserves the
conditions (i) and (ii) by the negativity lemma (see, for example, Lemmas [T21], [T22
and [BCHM, Lemma 3.10.11]). The above minimal model program is usually called the
manimal model program with scaling over Y around W. We sometimes simply say that
it is a (Kx + A)-minimal model program with scaling. If (i) holds true and B, (A/Y)
does not contain any non-kawamata log terminal centers of (X, A+ '), then this minimal
model program always terminates after finitely many steps under the assumption that
Theorem H holds true.

Theorem 13.6. Assume that Theorem [d, and Theorem B, hold true, where n = dim X .

Suppose that (i) holds. We further assume that B (A/Y) does not contain any non-
kawamata log terminal centers of (X,A + C). Then the minimal model program with
scaling explained above always terminates after finitely many steps.

Proof. By the proof of Lemma [[373, we may assume that A = A+ B, A > 0 is a m-ample
Q-divisor, B > 0, (X, A) is kawamata log terminal, and (X, A 4+ C) is still log canonical.
By construction, after shrinking Y around W suitably, (X;, A; + A\;C;) is a weak log
canonical model of (X, A + X\;C) over W for every i. By Theorem H, and the negativity
lemma (see [BCHM, Lemma 3.10.12]), we know that there are no infinite sequences of
flips and divisorial contractions. This is what we wanted. 0

If C is m-ample, then we can run a minimal model program with scaling of C' by (ii). We
conjecture that the minimal model program with scaling always terminates after finitely
many steps. Unfortunately, however, this conjecture is still widely open. The following
easy lemma is useful for some geometric applications (see [Fud]).

Lemma 13.7. Assume that Theorem [G,, and Theorem B, hold true, where n = dim X .

Let m: X — Y be a projective morphism of complex analytic spaces and let W be a
compact subset of Y such that m: X —Y and W satisfies (P). Let (X, A) be a divisorial
log terminal pair such that X is Q-factorial over W and let C > 0 be a m-ample R-divisor
on X such that (X, A+ C) is log canonical and that Kx + A + C is nef over W. We
consider a (K x + A)-minimal model program with scaling of C over' Y around W starting
from (Xo, Ag) := (X, A):

Xo 2 X, st xS x,

with
12)\:/\02)\12
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such that Kx, + A; + NC; is nef over W, A; = (¢i—1)«Di—1, and C; := (¢;—1).Ci_1 for
every i > 1. We further assume that Kx + A is w-pseudo-effective. Then there exists ig
such that Kx, + A, € Mov(X,,/Y; W).

Proof. If the minimal model program terminates after finitely many steps, then K;, + A;,
is nef over W for some iq since Ky + A is m-pseudo-effective. This means that K Xi, +A,, €
Mov(X;,/Y; W).

From now on, we assume that the minimal model program does not terminate. We put
Moo = lim; oo A; > 0. If Ao > 0, then the given minimal model program can be seen as a
(Kx+A+ ’%"C’ )-minimal model program with scaling of C'. Without loss of generality, we
may assume that C' does not contain any non-kawamata log terminal centers of (X, A+C)
since C' is m-ample. Hence, by Theorem [3M, it must terminate. This is a contradiction.
Therefore, we may assume that A\, = 0. By replacing (X, A) with (X;,,4,;,) for some
ip, we may further assume that every step of the (Kx 4+ A)-minimal model program is a
flip. Let G; be a Q-divisor on X; such that G; is ample over Y. We assume that G;x — 0
in NY(X/Y;W) for i — oo, where G;x is the strict transform of G; on X. We note
that Kx, +A; + \;C; + G; is ample over some open neighborhood of W for every 7. Since
X --» X, is an isomorphism in codimension one, the strict transform Kx +A+\,C+G;x
is in Mov(X/Y; W) for every i. By taking i — oo, we obtain Kx + A € Mov(X/Y;W).
This is what we wanted. 0

Anyway, if Theorem G, and Theorem E, hold true, then we can run the minimal model
program with scaling explained in this section in dimension n, although we do not know
whether it terminates or not.

14. NONVANISHING THEOREM; [,

One of the most difficult results in [BCHM] is the nonvanishing theorem (see [BCHM,
Theorem DJ). Fortunately, we can generalize it for projective morphisms of complex va-
rieties without any difficulties. For a completely different approach to the nonvanishing
theorem (see [BCHM), Theorem DJ), see [BP, Section 3] and [CKP, Theorem 0.1 and
Corollary 3.3].

Theorem 14.1 (Nonvanishing theorem, [BCHM, Theorem D). Let (X, A) be a kawamata
log terminal pair and let m: X — Y be a projective morphism of complex varieties such
that Y 1s Stein. Assume that A is big over Y and that Kx + A is pseudo-effective over

Y. Let U be any relatively compact Stein open subset of Y. Then there exists a globally
R-Cartier R-divisor D on m=*(U) such that (Kx 4+ A)|z-1) ~r D > 0.

Proof. By Lemma 237 , (Kx 4+ A)| -1 (1) is a globally R-Cartier R-divisor on 7~'(U). We
take an analytically sufficiently general fiber F' of 7: X — Y. Then (F, Alr) is kawamata
log terminal, (Kx + A)|r = Kr 4+ Alp, Alp is big, and Kr + Alr is pseudo-effective.
Hence, by the nonvanishing theorem for projective varieties (see [BCHNM, Theorem D)),
there exists an effective R-divisor D’ on F' such that Kp+A|r ~g D' > 0. By Lemma 253,
we can find a globally R-Cartier R-divisor D on 7~ '(U) with (Kx + A)|-1) ~r D > 0.
This is what we wanted. 0

Remark 14.2. In [BCHM, Section 6], Birkar, Cascini, Hacon, and M°Kernan proved
[BCHM, Theorem D,,] by using [BCHM, Theorems B,,, C,,, and D,,_].

We close this section with a very important conjecture.



MMP FOR PROJECTIVE MORPHISMS 59

Conjecture 14.3 (Nonvanishing conjecture). Let X be a smooth projective variety such
that Kx is pseudo-effective. Then there exists a positive integer m such that

H(X, Ox(mKx)) # 0.

For the details of Conjecture [A73, see [Has]. Note that if Conjecture holds true then
the existence problem of minimal models for projective log canonical pairs is completely
solved (see [Has]).

15. EXISTENCE OF ANALYTIC PL-FLIPS; H,_; = [Al,

In this section, we will see that [HacM| works with some minor modifications for pro-
jective morphisms between complex analytic spaces.
Let us start with the definition of analytic pl-flipping contractions.

Definition 15.1 (Analytic pl-flipping contractions). Let (X, A) be a purely log terminal
pair and let ¢: X — Z be a projective morphism of complex varieties. Then ¢ is called
an analytic pl-flipping contraction if A is a Q-divisor and
(i) ¢ is small,
(ii) —(Kx + A) is g-ample,
(iii) S = |A] is irreducible and —S is p-ample, and
(iv) a(Kx + A) ~ bS holds for some positive integers a and b.

Remark 15.2. Here, we replaced the condition that the relative Picard number is one in
the usual definition of pl-flipping contractions for algebraic varieties with (iv) in Definition
I, This is because the definition of relative Picard numbers is not so clear in the setting
of Definition I5. Moreover, (iv) is sufficient for the proof of the existence of pl-flips.

We can define analytic pl-flips.

Definition 15.3 (Analytic pl-flip). Let ¢: (X,A) — Z be an analytic pl-flipping con-
traction as in Definition Ihl. The flip of ¢: (X, A) — Z is a small projective morphism
et Xt — Z from a normal complex variety X such that Kx+ + AT is ¢T-ample,
where A™ is the strict transform of A. This flip is sometimes called the (analytic) pl-flip
of : (X,A) = Z. Tt is not difficult to see that the existence of ¢*: (XT AT) — 7 is
equivalent to the condition that

P o.Ox(Im(Kx +A)))

meN
is a locally finitely generated graded Oz-algebra. The flip ot of ¢ is nothing but

X" = Projan, @ 0. Ox(Im(Kx +A)]) — Z.
meN
We prepare an easy but important lemma.

Lemma 15.4. Let ¢: (X,A) — Z be an analytic pl-flipping contraction as in Definition
a2, We put T := p(S). Then T is normal and ¢: S — T has connected fibers, that is,

Or — ¢.Og holds. Hence, for any open subset U of Z such that T|y is connected, Ty
and S|,y are normal irreducible varieties.

Proof. In this proof, we do not need (iv) in Definition I51. We will only use (i), (ii),
and (iii). We note that ¢ is bimeromorphic by (i). We consider the following short exact
sequence

0— OX(—S) — OX — Os — 0.
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Since —S—(K x+A) is p-ample and (X, A) is purely log terminal, we obtain R'¢,Ox(—S) =
0. This implies that

0= Oy(-T) = p.0x(=5) = Oy = .05 — 0

is exact. Hence we get O — ¢,0g. Therefore, T is normal and ¢: S — T has
connected fibers. Note that every normal complex variety is locally irreducible. Thus,
T'|y is a normal irreducible complex variety. So, S|,-1(y) is also a normal irreducible
variety. U

15.5 (Theorem H, ; = Theorem [Al,). From now on, let us see how to modify some
arguments in [HacM].

Step 1 (see [HacM, Section 3]). Let ¢: (X, A) — Z be an analytic pl-flipping contraction
with dim X = n. In order to prove the existence of the flip of ¢, it is sufficient to check

that

P #.Ox (Im(Kx + A)))

meN
is a locally finitely generated graded Oz-algebra. Therefore, we take an arbitrary point
z € Z and assume that Z is a Stein open neighborhood of z by shrinking Z (see Lemma
[54). We can always take a Stein compact subset W of Z containing z such that I'(W, Oy)
is noetherian.

The preliminary results in [HacM, Section 3| hold with some minor modifications with

the aid of Lemma . Hence, the existence problem of the flip ¢+ can be reduced to
the condition that the restricted algebra is a finitely generated graded O, s)-algebra.

Step 2 (see [HacM, Section 4]). As in Step [, we consider a projective morphism 7: X —
Z of normal complex varieties such that Z is Stein and that there exists a Stein compact
subset W of Z such that I'(W, Oz) is noetherian. We take a relatively compact Stein
open neighborhood U of W in Z. Then every argument in [HacM, Section 4] works
in a neighborhood of 7: 7=}(U) — U. This means that we can define multiplier ideal
sheaves (see [HacM|, Definition-Lemma 4.2]) and check the basic properties. Then we
can establish [HacM, Theorem 4.1] for 7: 7= 1(U) — U. All we need here are a relative
KawamataViehweg vanishing theorem and a suitable resolution theorem for complex
analytic spaces.

Step 3 (see [HacM, Section 5]). Let us see [HacM, Section 5]. As in Step B, we work over a
neighborhood of m: 771(U) — U. Then we can define asymptotic multiplier ideal sheaves
(see [HacM, Definition-Lemma 5.2]) with the aid of Lemma P-T7. Thus, we can establish
[HacM, Theorem 5.3], which is the main result of [HacM, Section 5], for 7: 7~ (U) — U.
We note that the topics in [HacM, Sections 4 and 5] are independent of the theory of
minimal models.

Step 4 (see [HacM, Section 6]). The main result of [HacM, Section 6], which is [HacM),
Theorem 6.3], is a consequence of [HacM, Theorems 4.1 and 5.3]. Therefore, we can
formulate and prove it for 771(U) — U without any difficulties, where U is a sufficiently
small relatively compact Stein open neighborhood of a given Stein compact subset W of
Z with z € W. We note that we do need the assumption that I'(W, Oz) is noetherian in
Steps B, B, and @.

Step 5 (see [HacM, Section 7]). We can formulate [HacM, Theorem 7.1] in a neighborhood
of 7=Y(W) — W. By taking a Stein open neighborhood U of W suitably, we can use
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Theorem H, _; and the results in the previous sections for 71 (U) — U. In this step, we
need the assumption that I'(WW, Oz) is noetherian in order to apply Theorem H,,.

Step 6 (see [HacM, Section 8]). Note that [HacM, Section 8] is an easy consequence of
[HacM, Section 7]. Therefore, we need no new ideas. Hence we obtain that

D ¢.0x(Im(Ex + A)))

meN

is a locally finitely generated graded (Oz-algebra for every m-dimensional analytic pl-
flipping contraction ¢: (X, A) — Z under the assumption that Theorem H,_; holds.

Anyway, we have understood that Theorem [, ; implies Theorem [, that is, the
existence of analytic pl-flips in dimension n follows from Theorem E, ;. This is a very
important step of the whole proof of the main theorem (see Theorems [T and [T3).

16. SPECIAL FINITENESS; H,_; = B,

This section corresponds to [BCHM, Section 4]. We will check that the arguments in
[BCHM, Section 4] can work with some minor obvious modifications. We do not need no
new ideas here.

16.1 (Theorem H,_; = Theorem B,). Let us see [BCHM, Section 4] and make some
comments.

Step 1. In [BCHM, Lemmas 4.1, 4.2, and 4.3|, some elementary results are prepared.
Although they are formulated for quasi-projective varieties, there are no difficulties to
translate them into our complex analytic setting. Of course, we are interested in the
situation where 7: X — Y is a projective morphism of complex analytic spaces and W is
a compact subset of Y such that 7: X — Y and W satisfies (P) and consider everything
over some Stein open neighborhood of W.

We make an important remark for the reader’s convenience.

Remark 16.2. When we formulate [BCHM, Lemma 4.1] for our complex analytic setting,
there are no differences between the notion of weak log canonical models over W and that
of weak log canonical models over some open neighborhood of W by Theorem EZ33.

Step 2. The main result in [BCHMI, Section 4] is [BCHNM, Lemma 4.4], where we prove
Theorem B,, under the assumption that Theorem E,_; holds. We note that we can use
Lemma T4 instead of [BCHM, Lemma 3.7.4]. In the proof of [BCHM, Lemma 4.4}, Y; is
Q-factorial for every ¢ by assumption. In our complex analytic setting, the corresponding
condition becomes the one that Z; is Q-factorial over W for every i. Therefore, (i) in
Lemma I3 is satisfied. Thus, we can use Lemma 23 instead of [BCHM, Lemma 3.6.12]
and check that the arguments in the proof of [BCHNM, Lemma 4.4] can be adapted for our
complex analytic setting.

Hence we see that Theorem [B,,_; implies Theorem B,,.
We close this section with a remark.

Remark 16.3. Theorem B is not in the first version of [BCHMI] circulated in 2006, where
the special termination, which is a more traditional approach originally due to Shokurov,
is used. In [HacKI]], Hacon adopts the special termination instead of the special finiteness.
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17. EXISTENCE OF LOG TERMINAL MODELS; [A, AND B, = @,

This section corresponds to [BCHM, Section 5]. This part is not difficult once we know
the existence of analytic pl-flips (see Theorem @A) and the special finiteness (see Theorem
B). Precisely speaking, we prove Theorem G, which is a slight generalization of Theorem
,,, under the assumption that Theorem [Al, and Theorem B, hold true.

17.1 (Theorem @A, and Theorem B,, = Theorem G,,). Note that [BCHM, Lemmas 5.1,
5.2, 5.4, 5.5, and 5.6] hold true for our complex analytic setting with only minor suitable
modifications. Since [BCHM, Section 5] is easily accessible for everyone who studies the
minimal model program, there are no difficulties to translate it into our complex analytic
setting.

The first lemma is an easy consequence of Theorem B,,.

Lemma 17.2 (see [BCHM, Lemma 5.1]). Assume that Theorem [B,, holds true.
Let m: X — Y be a projective morphism between complex analytic spaces with

XLy oy

such that Y’ is projective over Y and let W be a compact subset of Y such thatm: X —Y
and W satisfies (P). Let H be a general h-ample Q-divisor on Y” satisfying H- > 2dim X
for every projective curve ¢ such that h({) is a point. Suppose that X is Q-factorial over
W with dim X = n,

Kx+A+C=Kx+S+A+B+C

is nef over W and 1is divisorial log terminal with A > 0, B > 0, and C > 0, where S
is a finite sum of prime divisors, and B (A/Y") does not contain any non-kawamata log
terminal centers of (X, A+C). Then any sequence of flips and divisorial contractions for
the (Kx + A + ¢g*H)-minimal model program with scaling over Y around W which does
not contract S, is eventually disjoint from S.

Proof. Although we made the formulation suitable for our complex analytic setting, the
proof of [BCHM, Lemma 5.1] works. The desired statement is an almost direct conse-
quence of Theorem B,,. For the details, see the proof of [BCHM, Lemma 5.1]. O

We note that the (Kx + A + ¢* H)-minimal model program over Y in Lemma 72 can
be seen as a (Kx + A)-minimal model program over Y’ by Lemma H4.
Lemma 17.3 (see [BCHM, Lemma 5.2]). Assume that Theorem @A, and Theorem B,
hold true.

Let m: X — Y be a projective morphism between complex analytic spaces with
XLy Loy

such that Y’ is projective over Y and let W be a compact subset of Y such thatm: X =Y
and W satisfies (P). Let H be a general h-ample Q-divisor on Y” satisfying H- > 2dim X
for every projective curve ¢ such that h({) is a point. Suppose that X is Q-factorial over
W with dim X =n, (X, A+C =8+ A+ B+ C) is a divisorial log terminal pair such
that |A] =S, A > 0 is big over Y, BL(A/Y') does not contain any non-kawamata log
terminal centers of (X, A+ C) with B > 0 and C > 0. Suppose that there is an R-divisor
D > 0 whose support is contained in S and a real number o > 0 such that

Kx+A+g¢"H ~g D+ aC.
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If Kx + A+ C is nef over W, then, after shrinking Y around W suitably, there is a log
terminal model ¢: X --+ Z for Kx + A+ g*H over W, where ¢ is a bimeromorphic con-

traction over Y, such that B, (¢,A/Y) does not contain any non-kawamata log terminal
centers of (Z,1' 1= ¢ A).

Proof. We can run the (Kx + A + ¢*H)-minimal model program over Y around W ex-
plained in Section [3. As usual, we put

A=inf{t € Rso| Kx + A+ ¢g"H + tC is nef over W}.

If A = 0, there is nothing to do. Otherwise, we can find a (K x+A+g¢g* H)-negative extremal
ray R of NE(X/Y; W) such that (Kx + A+ ¢g*H + \C) - R = 0. Let pp: X — W be
the contraction morphism over Y associated to R. By Theorem B33, ¢ is a contraction
morphism over Y°. Since A > 0, C - R > 0. Hence we have D - R < 0. In particular,
g is always birational. When ¢ is divisorial, we can replace everything with its image.
When ppg is small, we can see it as an analytic pl-flipping contraction because D - R < 0
and Supp D C S = |A|. Therefore, by Theorem @, we know that the flip pf: XT — Z
exists. In this case, we replace X with X*. Note that we have to replace Y with
a relatively compact Stein open neighborhood of W in each step. Then the condition
B, (A/Y) does not contain any non-kawamata log terminal centers of (X, A) is preserved
by Lemmas IT21 and IT22A. By construction, this minimal model program is not an
isomorphism in a neighborhood of S. Hence it terminates by Lemma [’ and Theorem
B,. Thus, we finally get a log terminal model ¢: X --» Z. By Lemma B4, the above
minimal model program can be seen as a (Ky + A)-minimal model program over Y”.
Therefore, the bimeromorphic contraction ¢: X --» Z is a bimeromorphic contraction
over Y. U

We need the notion of neutral models in our complex analytic setting.

Definition 17.4 (see [BCHM, Definition 5.3]). Let 7: X — Y be a projective morphism
between complex analytic spaces with
X ey Lty
such that Y is projective over Y and let W be a compact subset of Y such that 7: X — Y
and W satisfies (P). Let H be a general h-ample Q-divisor on Y satisfying H-£ > 2dim X
for every projective curve ¢ such that h(¢) is a point. Let (X, A = A+ B) be a divisorial
log terminal pair with A > 0 and B > 0 such that X is Q-factorial over W and let D be
an effective R-divisor on X. A neutral model over Y” for (X, A + g*H) with respect to A
and D is any bimeromorphic map f: X --» Z over Y” such that
e f is a bimeromorphic contraction,
e the only divisors contracted by f are components of D,
e 7/ is Q-factorial over W and is projective over Y,
e B, (f.A/Y) does not contain any non-kawamata log terminal centers of (Z,1" :=
f+A), and
e Kz +T + g, H is divisorial log terminal and is nef over W, where gz: Z — Y” is
the structure morphism.

Lemma 17.5 (see [BCHM, Lemma 5.4]). Assume that Theorem @A, and Theorem B,
hold true.
Let m: X — Y be a projective morphism between complex analytic spaces with

XLy My
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such that Y’ is projective over Y and let W be a compact subset of Y such thatw: X — Y
and W satisfies (P). Let H be a general h-ample Q-divisor on Y” satisfying H- > 2dim X
for every projective curve ¢ such that h(¢) is a point. Let (X,A = A+ B) be a divisorial
log terminal pair and let D be an R-divisor, where A > 0 is big over Y, B >0, D > 0,
and D and A have no common components. If

(1) Kx+A+¢g*H~ D,

(2) X is smooth and G is a simple normal crossing divisor on X such that Supp(A +

D) =G, and

(3) B+ (A/Y) does not contain any non-kawamata log terminal centers of (X, G),
then, after shrinking Y around W suitably, (X, A + g*H) has a neutral model over Y’
with respect to A and D.

Proof. Although our formulation is slightly different from [BCHM, Lemma 5.4], the proof
of [BCHM, Lemma 5.4] works by using Lemma '3 instead of [BCHM, Lemma 5.2]. We
note that we have to shrink Y around W in each step of the proof. For the details, see
the proof of [BCHM, Lemma 5.4]. O

Lemma 17.6 (see [BCHM, Lemma 5.5)). Let m: X — Y be a projective morphism between
complex analytic spaces with

XLy oy

such that Y’ is projective over Y and let W be a compact subset of Y such thatm: X —Y
and W satisfies (P). Let H be a general h-ample Q-divisor on Y’ satisfying H-¢ > 2dim X
for every projective curve £ such that h(¢) is a point. Let (X,A = A+ B) be a divisorial
log terminal pair such that X 1s Q-factorial over W and let D be an R-divisor, where
A >0 s big over Y, B> 0, and D > 0. If every component of D is either semiample
over Y or a stable base divisor of Kx + A+ ¢g*H near W and f: X --+» Z is a neutral
model over Y for (X, A+ g*H) with respect to A and D, then f is a log terminal model
over U for some open neighborhood U of W. Moreover, Kz +1'+ g, H is semiample over
U, where I := f.A and gz: Z — Y’ is the structure morphism.

Proof. The proof of [BCHM, Lemma 5.5] works with only some minor modifications. In
the proof of this lemma, we have to shrink Y around W repeatedly. We note that Kz + 1"
is nef over h='(W) if and only if Kz + ' + g5 H is nef over W. We also note that
Kz + 1"+ g3, H is semiample over some open neighborhood of W when K, + 1"+ g, H is
nef over W. For the details, see the proof of [BCHM, Lemma 5.5]. O

By using the above lemmas, there are no difficulties to prove Theorem G, under the
assumption that Theorem @A, and Theorem B, hold true.

Lemma 17.7 (see [BCHM, Lemma 5.6]). Theorem A, and Theorem B, imply Theorem
d,.

Proof. The proof of [BCHM, Lemma 5.6] works in our setting by using Lemmas ['7H and
78 instead of [BCHM, Lemmas 5.4 and 5.5]. We note that we can use Lemma M9
instead of [BCHM, Proposition 3.5.4]. As usual, we have to replace Y with a relatively
compact Stein open neighborhood of W finitely many times in the proof of this lemma.
For the details, see the proof of [BCHM, Lemma 5.6]. O

Finally, we explicitly state the following obvious result for the sake of completeness.

Lemma 17.8. Theorem [@,, implies Theorem [0, for every n.
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Proof. 1t is sufficient to put Y* =Y and apply Theorem G,. 0J

Anyway, we see that Theorem &, and Theorem O, hold under the assumption that
Theorem [Al, and Theorem B,, are true.

We need the existence theorem of Q-factorial divisorial log terminal flips, which is an
easy consequence of Theorem @G, in order to run minimal model programs.

Theorem 17.9 (Existence of Q-factorial divisorial log terminal flips). Assume that The-
orem [, holds true.

Let m: X — Y be a projective morphism of complex analytic spaces with dim X = n
and let W be a compact subset of Y such that m: X — Y and W satisfies (P). We
further assume that (X, A) is divisorial log terminal and that X is Q-factorial over W.
Let o: X — Z be a small projective bimeromorphic contraction morphism associated
to a (Kx + A)-negative extremal ray R of NE(X/Y; W), that is, ¢: (X,A) — Z is a
flipping contraction associated to R. Then, after shrinking Y around W suitably, the flip
ot Xt — 7 always exists.

This means that

(1) pt: Xt — Z is a small projective bimeromorphic contraction morphism, and

(2) Kx+ + AT is pt-ample, where AT := ¢, A.
Moreover, (X, A™") is divisorial log terminal, X+ is Q-factorial over W, and the equality
p(XT/Y ;W) = p(X/Y; W) holds.

Proof. We will freely shrink Y around W. We note that (X, (1 —¢)A) is kawamata log
terminal and —(Kyx + (1 — €)A) is p-ample for some 0 < ¢ < 1. We take a general
mz-ample Q-divisor A on Z, where 7z: Z — Y is the structure morphism, such that
(X, (1 —e)A + ¢*A) is kawamata log terminal and Kx + (1 —e)A + ¢*A ~g D > 0. By
Theorem G, (X, (1—¢)A) has a good log terminal model over Z. Hence (X, (1—¢)A) has
a log canonical model ¢: X --» XT over Z. We can easily see that o*: (X AT) = Z
is the flip of p: (X, A) — Z and satisfies all the desired properties. O

We close this section with an almost obvious remark, which may be useful for some
applications.

Remark 17.10. In Theorem 79, (X, A) is assumed to be a divisorial log terminal pair.
There are no difficulties to see that the existence of flips (see Theorem I79) also holds
true under a slightly weaker assumption that (X, A) is log canonical and that there exists
Ag such that (X, A) is kawamata log terminal.

18. FINITENESS OF MODELS; &, = [,

This section corresponds to [BCHM, Section 7], where Theorem E,, is proved under the
assumption that Theorem C,, and Theorem D,, hold true. In our complex analytic setting,
in Section [, we have already checked that the nonvanishing theorem (see Theorem D)
holds true in any dimension by reducing it to the original nonvanishing theorem formulated
for algebraic varieties (see [BCHNM, Theorem D]). Therefore, we can freely use Theorem
[ here. In this section, we will use Theorem @,,, which is slightly stronger than Theorem
Q,,, for the proof of Theorem [E,.
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18.1 (Theorem @, = Theorem H,). Let us see [BCHM, Section 7] in detail.

Step 1. The proof of [BCHM, Lemma 7.1] is well known and can work for our complex
analytic setting. Note that it is sufficient to assume that Theorem &, holds true since
we can freely use Theorem D in arbitrary dimension as mentioned above. The correct
formulation of [BCHM, Lemma 7.1] for our complex analytic setting is as follows.

Lemma 18.2 (see [BCHM, Lemma 7.1]). Assume that Theorem [G,, holds.

Let m: X — Y be a projective morphism of complex analytic spaces with dim X = n
and let W be a compact subset of Y such that m: X —Y and W satisfies (P). Let V be a
finite-dimensional affine subspace of WDivg(X), which is defined over the rationals. Fix
a general T-ample Q-divisor A on X. Let C C L4(V; 7 Y(W)) be a rational polytope such
that if A € C then (X, A) is kawamata log terminal at 7=*(W).

Then, after shrinking Y around W suitably, there are finitely many rational maps
Gi: X --» Z; over Y, 1 < i < k, with the property that if A € CNEA-(V; W), then
there exists an index 1 < i < k such that ¢; is a log terminal model of Kx + A over some
open neighborhood of W .

Proof. We have already proved Theorem [ in any dimension. We can use Lemma [1T14
instead of [BCHM, Lemma 3.7.4]. Therefore, by using Theorem G, instead of [BCHM,
Theorem C,,|, we see that the proof of [BCHM, Lemma 7.1] works in our complex analytic
setting. Precisely speaking, we formulate Theorem @, in order to make the proof of
[BCHM), Lemma 7.1] work in the complex analytic setting. For the details, see the proof
of [BCHM, Lemma 7.1]. O

Step 2. The proof of [BCHM, Lemma 7.2] uses [BCHM, Lemma 3.6.12]. In our case, we
can use Lemma 23 instead of [BCHM, Lemma 3.6.12]. We note that (ii) in Lemma [273,
which is nothing but Theorem G, is satisfied by assumption. As in Step [, it is sufficient
to assume Theorem G, since we can freely use Theorem [ in any dimension.

Lemma 18.3 ([BCHM, Lemma 7.2]). Assume that Theorem [G,, holds true.

Let m: X — Y be a projective morphism of complex analytic spaces with dim X = n
and let W be a compact subset of Y such that m: X — Y and W satisfies (P). Suppose
that there is a kawamata log terminal pair (X, Ag). We fiz a general m-ample Q-divisor A
on X. Let 'V be a finite-dimensional affine subspace of WDivg(X) which is defined over
the rationals. Let C C L4(V; 7 (W) be a rational polytope.

Then, after shrinking Y around W suitably, there are finitely many bimeromorphic
contractions ¥;: X --» Z; over Y, 1 < j < [, such that if Y: X --» Z is a weak log
canonical model of Kx + A over W for some A € C then there exist an indexr 1 < j <1
and an isomorphism §: Z; — Z over some open neighborhood of W such that ¢ = £ o 9,
holds.

Proof. 1f we use Lemma 82, Corollary [T19, and Lemma 23 instead of [BCHM), Lemma
7.1], [BCHM, Corollary 3.11.2], and [BCHM, Lemma 3.6.12], then the proof of [BCHM,
Lemma 7.2] works in our complex analytic setting. The idea is as follows. By using
Lemma ITT4 and so on, we can reduce the problem to the case where we can use Lemma
[23. Let ¢: X --» Z be a weak log canonical model over W. Then we can take A’ such
that ¢: X --» Z is an ample model of (X, A’). Then, by Lemma IX2 and Corollary
[TT9, we obtain all the desired properties. For the details, see the proof of [BCHM,
Lemma 7.2]. O

Step 3. The final step is obvious.
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Lemma 18.4 ([BCHM, Lemma 7.3]). Theorem [Q,, implies Theorem [H,,.

Proof. We note that L£4(V;7 !'(WW)) is a rational polytope. Therefore, it is sufficient to
put C = L4(V;7(W)) in Lemma [Z3. O

Hence we see that Theorem E, holds under the assumption that Theorem @&, holds
true. This is what we wanted.

By the above arguments, we think that the reader can understand the reason why we
prepared Theorem G, Corollary IT 19, and Lemma [23.

19. FINITE GENERATION; d, = [H,

This section corresponds to [BCHM, Section 8]. Note that [BCHM), Section 8] is a very
short section, which consists of only one lemma (see [BCHM), Lemma 8.1]). The proof of
Theorem H, given below is slightly more complicated than the original algebraic version
in [BCHM, Section 8]. This is because we formulated everything only over some open
neighborhood of a given compact subset of the base space.

19.1 (Theorem @, = Theorem H,). Here, we will prove Theorem [H, under the assump-
tion that Theorem &G, holds true.

First, we will prove (1). In the proof of (1), we will freely shrink Y around W suitably
without mentioning it explicitly. If Kx + A is m-pseudo-effective, then Kx + A ~g D >0
by Theorem D. Hence, by Theorem G,,, (X, A) has a good log terminal model (Z,I") over
Y. Hence Kz + 1T is semiample over Y. We take any point y € Y. By applying the above
result to 7: X — Y with W := {y}. Then we see that there exits an open neighborhood
U, of y such that (X, A) has a good log terminal model over U,. By this observation, we
obtain that R(X/Y, Kx + A) is a locally finitely generated graded Oy-algebra. Thus, we
get (1) in Theorem H,.

From now on, we will prove (2). Let u: X --+ Z be a good log terminal model for
Kx+A over Y after shrinking Y around W (see Theorem &,,). Since G is a prime divisor
contained in the stable base locus of Kx + A over Y, G is u-exceptional. We take a small
positive real number § such that if [E—A| < § then (Z, u.Z) is kawamata log terminal and
a(G, X, E) < a(G,Y, u1,.E). If Kx+Z is not m-pseudo-effective, then B((Kx+=)/Y) = X.
Therefore, G C B((Kx + Z)/Y) is obvious. Hence we may assume that Ky + = is 7-
pseudo-effective. We take any point y of Y. Then there exists an open neighborhood U,
of y such that (Z, u.E) has a good log terminal model over U, by Theorem @,. This
means that (X, Z) has a good log terminal model over U,,. Hence we can easily check that
Glr1w,) C B(Kx +Z)|z1@,)/Uy). Therefore, G|-11,) C B((Kx + Z)/Y). Thus, we
obtain that G C B((Kx + Z)/Y) holds since y is any point of Y. This is (2).

Finally, we will prove (3). We take a good log terminal model p: X --» Z of Kx +
A over Y after shrinking Y around W (see Theorem @G,). By Corollary IT19 (1),
Wya-(ViW) = Wﬁ}AJ(V’; W) is a rational polytope and A € W, 4 -(V'; W). Therefore,
we may assume that K + p.Z is nef over Y for every = € W, 4 .(V’; W) after shrinking
Y around W again. Hence, after shrinking Y around W suitably, there exists a positive
constant n such that if = € V’ and |2 — A| < n then (Z, u.Z) is kawamata log terminal
and Kz + u.= is semiample over Y. By Theorem B2, Z has only rational singularities.
Since Z is Q-factorial over W, there is a positive integer [ such that if m(Kz + p.Z) is an
integral Weil divisor then Im(Kz + p.=) is Cartier over some open neighborhood of W
(see Lemma P747). By replacing Y with a small open neighborhood of W, we may assume
that Im(Kyz + p.Z) is Cartier on Z. Therefore, by Theorem B4, there exists r > 0 such
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that rm(Kz+ u.2) is free over Y when m(K 7+ p.Z) is an integral Weil divisor. It follows
that if k(K x + Z)/r is Cartier then every component of Fix(k(Kx + =Z)) is contracted by
p and so every component is in B((Kx + A)/Y). We finish the proof of (3) in Theorem
[E,,.

In Section 21, we will prove Theorems I8 and 22, which are much more general than
the finite generation in Theorem H (1).

20. PROOF OF THEOREMS

In this section, we will prove theorems. Note that we postpone the proof of Theorems
T8 and 22 until Section EI because it needs some deep results from the theory of
variations of Hodge structure. Theorem will be proved in Section 22 after we explain
some supplementary results on the minimal model program with scaling. Theorem =30
(see Theorem P32) will be treated in Section Z3. Note that the proof of Theorem =30
uses Theorem ITIS.

Let us start with the proof of Theorems I8 and T3, which is now almost obvious.

Proof of Theorems @ and TI3. As we explained in Subsection 2, we will prove The-
orems @A, B, O, O, E, B, and @ by induction on dim X. In Section [, we established
Theorem @ in arbitrary dimension. We use induction on n = dim X. When n = 0, all
the statements are trivially true. From now on, we assume that Theorems &, B, O, [, E,
G hold true when dim X < n — 1. In Section I3, we proved Theorem A in dim X = n.
In Section @@, we obtained Theorem B in dim X = n. Hence we can prove Theorem G
in dim X = n by Section . Note that Theorem O, is a very special case of Theorem
G, (see Lemma I7R). By Sections [8 and [, we have Theorems H and H in dim X = n,
respectively. This means that we have established Theorems A, B, O, D, B, E, and G in
arbitrary dimension. 0

From now on, we can freely use Theorems [A, B, O, O, E, [, and @& in arbitrary dimen-
sion. Therefore, we can freely use the minimal model program with scaling explained in
Section 3.

Proof of Theorem [I.7]. In this theorem, we only treat kawamata log pairs. Therefore, we
do not need any extra assumptions on non-kawamata log terminal centers. We can freely
use the minimal model program with scaling explained in Section I3. Note that the
pseudo-effectivity over Y is preserved by the minimal model program. Therefore, this
theorem is a special case of the minimal model program with scaling under the condition
(i) explained in Section [3. We also note that the termination of the minimal model
program follows from Theorem B (see the proof of Theorem [31). O

Theorem R is a direct generalization of [BCHM, Theorem 1.2] in the complex analytic
setting.

Proof of Theorem 8. Throughout this proof, we will freely shrink ¥ around W suitably
without mentioning it explicitly. By Theorems D and 0, (X, A) has a log terminal model
over Y. This is (1). By Lemma ITI8 (2), ¢ is a semiample model over Y. By Lemma
T4 (3) and (4), we know that (X, A) has a log canonical model over Y when Kx + A
is m-big. This is (2). We take an arbitrary point y € Y. It is sufficient to prove (3) over
some open neighborhood of y € Y. Hence we may take a Stein compact subset W of Y
such that y € W and that I'(W, Oy) is noetherian, and shrink Y and enlarge W suitably
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without mentioning it explicitly (see Lemma PZI8). We take a positive integer a such that
a(Kx + A) and a(Kz 4+ T') are both Cartier. Since a(Kz +I') is semiample over Y,

@ m.Ox(ma(Kx + A)) ~ @(Wz)*oz(ma(KZ +1)),

meN meN

where mz: Z — Y is the structure morphism, is a locally finitely generated graded Oy-
algebra (see Lemma 2238). Therefore, by Lemma , RIX/Y,Kx + A) is a locally
finitely generated graded Oy-algebra. This is (3). O

The existence of kawamata log terminal flips is a direct consequence of Theorem [H

(2).

Proof of Theorem [[-14. We take a point z € Z and consider a small Stein open neigh-
borhood U of z € Z. Then (X, A")|,+)-1(y is nothing but the log canonical model of
(X, A)|,-1y over U. Therefore, after shrinking U around z suitably, it exists by Theorem
8 (2) and is unique. Hence the desired flip ¢*: (X, AT) — Z exists globally. O

The existence of canonicalizations for complex variety is new.

Proof of Theorem I 1d. We take a point z € X. Over some open neighborhood U of x €
X, there exist a projective bimeromorphic morphism 7: V' — U and a log canonical model
7 V' = Uof m: V. — U by Theorem [ (2). Note that 7’ is projective bimeromorphic,
Ky is w’-ample, and V' has only canonical singularities. We can easily check that 7’
is an isomorphism over a nonempty Zariski open subset where U has only canonical
singularities. We also note that 7’': V' — U is usually called a canonical model of V' over
U and is unique. Thus, the desired model f: Z — X exists globally. U

When Kx + A is not pseudo-effective, we see that we can always run a minimal model
program and finally get a Mori fiber space.

Proof of Theorem [I.T7. As usual, we will repeatedly shrink Y around W without men-
tioning it explicitly. We take a m-ample Q-divisor C' on X such that Kx + A + C' is nef
over Y and that (X, A + (1 +a)C) is a divisorial log terminal pair for some positive real
number a. We run a (Kx + A)-minimal model program with scaling of C'. Since Kx + A
is not pseudo-effective, Kx + A + eC is still not pseudo-effective for some 0 < ¢ < 1. We
can see the above minimal model program as a (Kx + A 4 eC)-minimal model program
with scaling of C'. By Theorem 34, this minimal model program always terminates and
then we finally get a Mori fiber space structure over Y. This is what we wanted. U

We note that Theorems IT9 and 21 for quasi-projective varieties are not treated in
[BCHM]. We also note that a key ingredient of the proof of Theorems [T and 2T is
Lemma 372

Proof of Theorem IT19. Throughout this proof, we will freely shrink Y around W suitably
without mentioning it explicitly. By Lemma P53, there exists a globally R-Cartier R-
divisor B on X such that Ky + A ~g B > 0. Since (Kx + A)|r ~r 0, we see that
m(B) € Y holds. Hence we can write Kx + A ~g 7D + B’, where D is an R-Cartier
R-divisor on Y, B’ is an effective R-Cartier R-divisor on X such that 7(B’) C Y and
that Supp B’ does not contain any fibers of 7. Without loss of generality, we may assume
that 7(B’) C W by shrinking Y around W suitably. We take a general m-ample Q-divisor
C' > 0 on X such that (X, A + C) is divisorial log terminal and that Kx + A + C' is
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nef over Y. Then we run a (Kx + A)-minimal model program with scaling of C' over Y
around W starting from X, := X:

XO ___)Xl ___)...___)XZ. ——> ..

In this case, any divisorial contraction contracts an irreducible component of Supp B'.
By Lemma [37, we finally obtain (X,,,A,,) such that Kx,, + A, € Mov(X,,/Y;W).
By Zariski’s lemma, we can check that Kx, + A, ~g (m,)*D holds. This is what we
wanted. U

In the proof of Theorem 21, Lemma B8 plays an important role.

Proof of Theorem IZ1. We will freely shrink X suitably without mentioning it explicitly.
By taking a resolution of singularities, we have a projective bimeromorphic morphism
7:Y — X from a complex variety Y such that 7#=1(U) is smooth and Exc(r) and Exc(m)U
Supp 7, 'A are simple normal crossing divisors on 7~!(U). Let E be any m-exceptional
divisor such that 7(E) N U # (). Then, by enlarging V' suitably, we may assume that
m(E) NV # (. By Lemma P18, we can take a Stein compact subset W of U such that
I'(W,Ox) is noetherian and that V-.C W. We write Ky + Ay = 7%(Kx + A). Let
Ay = >, a;A; be the irreducible decomposition. We put

0= > aAi+) A
0<a;<1 a;>1
Then we have Ky +0 = 7*(Kx + A) + F such that —m,F is effective. Let C be a general
m-ample Q-divisor on Y such that (Y, 0 + C) is divisorial log terminal and Ky +© + C' is
nef over W. We run a (Ky + ©)-minimal model program with scaling of C' over X around
W. We put (Yo, ©p) := (Y,0), Fy := F, and Cj := C. Then we obtain a sequence of flips
and divisorial contractions starting from (Yp, ©y):

(Y, 00) 2> (v1,01) 25 25 (v, 0) -2,
where ;11 1= (0;)«0;, Civ1 = (0:)C;, and Fiiq = (¢;)«F;, for every i, and a sequence
of real numbers
12N> 2N2>-20

such that Ky, + ©; + \;C; is nef over W. By Lemma 374, we can prove that Ky, + ©O,,
is in Mov(Y,,/X; W) for some m. By the negativity lemma (see Lemma B8), we see that
—F,, > 0 over V. Hence, —F,, is effective over some open neighborhood of W. We put
Z =Y, [:Z = X,and Kz + Ay = f*(Kx + A). Then, (Z,Az) has all the desired
properties. O

We have already proved Theorem in Section 2.

Proof of Theorem [I.24. We have already known that Theorem &G, holds true for every n.
Therefore, Theorem is nothing but Lemma 2. U

By Theorem 24, Corollary 23 is almost obvious.

Proof of Corollary IZ4. We note that Z has only kawamata log terminal singularities over
some open neighborhood of W. We apply Theorem to Z — Y and W’. Then, after
shrinking Y around W' suitably, there exists a small projective bimeromorphic contraction
morphism Z' — Z such that Z’ is projective over Y and is Q-factorial over W’. Hence
the induced bimeromorphic contraction ¢': X --+ Z’ satisfies the desired properties. [

The argument in the proof of Theorem is more or less well known.
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Proof of Theorem IZd. We take an arbitrary point z € X. It is sufficient to prove that
D, ,eny Ox(mD) is a finitely generated graded Ox-algebra on some open neighborhood
of z. By shrinking X around x and replacing D with a linearly equivalent integral Weil
divisor, we may assume that D is effective. We take a relatively compact Stein open
neighborhood U of x and a Stein compact subset W of X such that U C W and that
(W, Ox) is noetherian. By Theorem 24, after shrinking X around W, there exists a
small projective bimeromorphic morphism f: Z — X from a normal complex variety Z
such that Z is Q-factorial over W. We put Kz + Ay = f*(Kx + A). Then (Z,Ay) is
kawamata log terminal. Let Dz be the strict transform of D on Z. By shrinking X around
W, we may assume that Dy is Q-Cartier. We take a small rational number ¢ such that
(Z, Az+eDy) is still kawamata log terminal. From now on, we will freely shrink X around
W without mentioning it explicitly. We take a general f-ample Q-divisor H on Z such
that Kz + Az +eDyz+ H is nef over W and (Z, Az +eDy+ H) is kawamata log terminal.
We run a (K7 + Az +eDz)-minimal model program with scaling of H over X around W.
Then we get a finite sequence of flips starting from (Zy, Ay, +eDz,) := (Z,Az +eDy):

Z o, 7 RN A Hi, 0y T,

such that Ay, = (¢i—1)«Az,_, and Dy, = (¢i—1)«Dz,_, for every i > 1 and that K, +
Ay +eDy is nef over W. Note that Kz, + Ay, = f} (Kx + A) holds by construction,
where f,,: Z,, — X is the structure morphism. Since f,, is bimeromorphic, we can
take an effective Q-divisor B on Z,, such that —B is f,,-ample and that (Z,,, Az, +
B) is kawamata log terminal. Hence, by Theorem B3, Dy is semiample over X. By
considering a contraction morphism Z,, — Z’ over X associated to Dz _, we obtain a
small projective bimeromorphic contraction morphism f’: Z’ — X from a normal variety
7' and an integral Weil divisor D’ on Z’ such that D’ is ample over X and that f. D' = D
holds. Since f’ is small, we obtain f.Oz (mD’) = Ox(mD) for every m € N. Since D’
is ample over X, @, .y fiOz (mD’) is a locally finitely generated graded Ox-algebra by
Lemma 2236. This means that €, .y Ox(mD) is a finitely generated graded Ox-algebra
on some open neighborhood of x. This is what we wanted. 0

Now there are no difficulties to prove Theorem I—Z4.

Proof of Theorem [I.Z7. We take an open neighborhood U of W and a Stein compact
subset W’ of Y such that U C W’ and that I'(W’, Oy) is noetherian. Throughout this
proof, we will freely shrink Y suitably without mentioning it explicitly. Let A be a general
m-ample Q-divisor on X satisfying that A-C' > 2dim X for every projective curve C' on X
such that 7(C) is a point. We take a resolution g: X’ — X such that Supp g; ' AUExc(g)
and Exc(g) are simple normal crossing divisors on X’ and that 7’': X’ — Y is projective.
We write Kx'+Ax: = g*(Kx+A). Let Axs = ). a;,AA] be the irreducible decomposition.

We put
0= > wA+) AL
0<a;<1 a;>1
Then we can write Ky, + 0 = ¢g*(Kx + A) + F such that —g.F" > 0. We take a general
7'-ample Q-divisor H on X’ such that Ky, + © + ¢g*A + H is nef over Y. We run a
(Kx/ + © + g*A)-minimal model program over Y around W' with scaling of H. Then we
obtain a sequence of flips and divisorial contractions starting from (X, 0) := (X', 9):

(X(/)v ®0> _¢—O—) (X{, @1) —qb_l-) e (_bl___; (leu @z) _Qii_),
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where 0,11 := (¢;):0;, Hir1 := (¢;)«H;, and Fiiq := (¢;)+F;, for every i, and a sequence
of real numbers
1222 2N2>2--20

such that Kx; + ©; + g; A + A\;H; is nef over W’ where g;: X! — X. We note that
by Lemma B4 the above minimal model program can be seen as a (Kx/ + ©)-minimal
model program over X. By Lemma 372 and its proof, we can check that Kx/ + ©,,
is in Mov(X/,/X;7~Y(W")) for some m. By applying the negativity lemma (see Lemma
A8) to g,: X! — X, we can check that —F,, is effective on (7 o g,,)"}(U). If Y,, is not
Q-factorial over W, then we replace Y,, with its small projective QQ-factorialization by
Theorem T24. Hence we obtain a desired f: Z — X. U

21. A CANONICAL BUNDLE FORMULA IN THE COMPLEX ANALYTIC SETTING

In this section, we will quickly discuss a canonical bundle formula in the complex
analytic setting and prove Theorems [CT8 and 2. We need some deep results from the
theory of variations of Hodge structure.

Let us start with a generalization of Kollar’s famous torsion-freeness.

Theorem 21.1 (Torsion-freeness, see [Tak]). Let m: X — Y be a proper morphism from
a Kdhler manifold X onto a complex analytic space Y. Then Rim,wx is torsion-free for
every i.

If Y is projective in Theorem P11, then X is a compact Kahler manifold. In this
case, there are no difficulties to prove Theorem PI1. Unfortunately, however, we have
to treat the case where Y is a general noncompact complex analytic space. Hence the
proof of Theorem PT71 is much harder than that of Kollar’s original torsion-freeness. For
the details, see [Tak] (see also [Fuf], and [Matml]). By combining Steenbrink’s geometric
description of canonical extensions of Hodge filtrations (see [St1] and [St2]) with Theorem
2T, we have:

Theorem 21.2 (Hodge filtrations, see [Na3, Chapter V. 3.7. Theorem (4)]). Let m: X —
Y be a proper morphism from a Kahler manifold X onto a smooth variety Y. Assume
that there exists a simple normal crossing divisor Xy on Y such that m is smooth over
Y\ Xy. Then Riﬂ'*wX/y 1s characterized as the upper canonical extension of the bottom
Hodge filtration for every 1.

The proof of [Nal, Theorem 1] works in the above complex analytic setting once we
know the torsion-freeness (see Theorem ZI71). For the details of Nakayama’s argument,
we recommend the interested reader to see [Fu2, Subsection 3.1] and [E'H, §7] although
they treat much more general settings than Nakayama’s.

In order to discuss a canonical bundle formula, we recall the definition of discriminant
Q-divisors.

Definition 21.3. Let f: X — Y be a proper surjective morphism from a normal variety
X onto a smooth variety Z with f,Ox ~ Oz. Let © be a Q-divisor on X such that
Kx 4+ O is Q-Cartier and that (X,©) is sub kawamata log terminal over a nonempty
Zariski open subset of Z. Let P be a prime divisor on Z. We put

bp :=max{t € Q| (X,0 +tf*P) is sub log canonical over general points of P} .

Then we set By := ) »(1—0bp)P, where P runs over prime divisors on Z, and call B the
discriminant Q-divisor of f: (X,0) — Z. We can easily check that By is a well-defined
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Q-divisor on Z satisfying |Bz| < 0. Let u: Z' — Z be a projective bimeromorphic
morphism from a smooth variety Z’. We consider the following commutative diagram:

XX

1

Z <17,
N

where X’ is the normalization of the main component of X x; Z’. We define ©’ by
Kx+0 =0 (Kx+0). Wecall f': (X',0") — Z’ the induced fibration of f: (X,0) — Z
by p: Z' — Z. We can define the discriminant Q-divisor Bz of f': (X', ©") — Z'. By
construction, we see that o,B; = By.

The following theorem is a generalization of Ambro’s result in the complex analytic
setting (see [Al, Theorem 0.2]).

Theorem 21.4. Let f: X — Z be a proper morphism from a Kahler manifold X onto a
smooth complex variety Z with f,Ox ~ Oy. Let g: Z — Y be a projective morphism to a
Stein space Y. Let © be a Q-divisor on X such that Kx +© ~q f*D for some Q-Cartier
Q-divisor D on Z, Supp © is a simple normal crossing divisor on X, © = O<! holds over
general points of Z, and rank f,Ox([—O<']) = 1. Let y be any point of Y. By replacing
Y with a relatively compact Stein open neighborhood of y suitably, we have a commutative
diagram:

with the following properties.

(1) p: Z' — Z is a projective bimeromorphic morphism from a smooth variety Z'.

(2) X" is a desingularization of X Xz Z' such that X' is Kdhler with Kx + 0 =
o* (KX + A)

(3) Let By be the discriminant Q-divisor of f': (X',0") — Z'. We write 0*D =
Kz + By + My, Then My is nef over Y. Note that Mz is usually called the
moduli Q-divisor of f': (X',0") — Z'.

(4) Letv: Z" — Z' be any projective bimeromorphic morphism from a smooth variety
Z". Then we can define f": (X", 0") — Z", Bzn, and Mz» as in (3) with v*u*D =
Kz 4+ Bgin + Mgn. In this situation, after shrinking Y with a slightly smaller
relatively compact Stein open neighborhood of y again, v*My = Mzn holds with
V*KZN = KZ’ and V*BZ// = BZ”

Proof. For the details, see [Al, Section 5]. Although they treat much more general setting
than Ambro’s, [FuT3] and [FH] may help the reader understand the proof of this theorem.
We note that Ambro’s argument in [A] is different from Kawamata’s in [Kawd] and is
closer to Mori’s (see [Ma2, Section 5, Part I1] and [Fiill, Section 4]). O

21.5 (A canonical bundle formula in the complex analytic setting, see [FMd]). Let f: X —
Z be a proper morphism from a Kahler manifold X onto a smooth variety Z with f,Ox ~
Oz and let g: Z — Y be a projective morphism such that Y is Stein. Let A be an effective
Q-divisor on X such that Supp A is a simple normal crossing divisor on X and that |A] =
0. Suppose that x(F, (Kx + A)|r) = 0 holds for an analytically sufficiently general fiber
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Fof f: X — Z. We fix an arbitrary point y € Y. From now on, we sometimes replace
Y with a smaller relatively compact Stein open neighborhood of y without mentioning it
explicitly. Since k(F, (Kx + A)|r) = 0, we obtain g, (f.Ox(m(Kx + A)) ® A) # 0 for
some divisible positive integer m and some g-ample line bundle A on Z. Hence we can
write Kx + A ~q f*D + B such that

(a) D is a Q-Cartier Q-divisor on Z,
(b) f+Ox([iBy]) ~ O holds for every i > 0, and
(c) codimy f(Supp B_) > 2.

We take a projective bimeromorphic morphism ¢: X' — X from a smooth variety X'
such that Exc(¢)USupp ¢, ' AUSupp ;! B is contained in a simple normal crossing divisor
on XT. We put Kyt + Al = ¢*(Kx + A) and consider Kyt + Al ~g ¢*f*D+4*B+ Al .
By replacing f: X — Z with fo: X' — Z, we may further assume that the support
of ® := A — B is a simple normal crossing divisor on Z. We apply Theorem 214
to f: (X,0©) — Z. Then we have a projective bimeromorphic morphism u: 2 — Z
satisfying the properties in Theorem PI4. By Hironaka’s flattening theorem (see [Hi]),
we can take a projective bimeromorphic morphism p: Z; — Z from a smooth variety
such that the main component of X x  Z; is flat over Z;. We may further assume that
p: Z1 — Z factors through Z’. Then we consider the following big commutative diagram:

B ol

X <X Xs X"

l f//

~
~
=

-
=

%

PV

where X is the main component of X x 7 Z1, X5 is the normalization of X, and v: X" —
X5 is a proper bimeromorphic morphism from a smooth variety X”. We put h:=«ao o
v: X" = X and Kx»+A" = h*(Kx+A). We may assume that there exist simple normal
crossing divisors Yx» and Xz» on X” and Z”, respectively, such that f”: X" — Z" is
smooth over Z”\ Xz, Yxn is relatively simple normal crossing over Z”\ Xz, (f")"'¥ 41 C
Yxr, and Supp A”USupp h* B is contained in X x~. Since Kx +A ~q f*D+ B, we obtain
Kxn+ A" ~q (f")p*D + h*B. We can write

A/L + (f/l)*p*D ‘I’ h*B — (f//)*D” + B//

such that codimy~ f”(Supp B”) > 2 and that f/Ox«(|iB/|) ~ Ogz» for every i > 0,
where B” = B] — B” as usual. Hence, we can write

KX” + Al_{_ ~Q (f//)*<KZN + BZH -+ MZI/) -+ B”.

By construction, we can check that

(d) Mz» = p* My is nef over Y, and
(e) Supp Bzn C Xgn, Byn is effective, and | Bz | = 0.
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Weput m:=go f: X =Y and n”7: X” — Y. Let k be a divisible positive integer. Then
T.O0x(k(Kx + A)) = 7/Oxn(k(Kxr + A"))
~ ! Oxn(k(Kxn + Al + B”))
~ 7 Oxn((f") (k(Kz» + Bz + Mz»)) + kBY)
~ g Oyn(k(Kzn + Bgn + Mgn)),
where ¢”: Z” — Y. Here, we used the fact that A” + B” is effective and h-exceptional.

Remark 21.6. In [FMd], we used Kawamata’s positivity theorem (see [Kawd, Theorem
2]) to prove the nefness of the moduli part Mz.. In Theorem 2I4, we adopted Ambro’s
formulation of klt-trivial fibrations (see Theorem PT-4 and [Al]) instead of [Kawd, Theorem
2].

Let us go to the proof of Theorems T8 and [T2A.

Proof of Theorems I8 and IZ3. Let y be any point of Y. Throughout this proof, we
will feely replace Y with a relatively compact Stein open neighborhood of y. In Theorem
T8, by taking a resolution of singularities, we may assume that X is smooth and Supp A
is a simple normal crossing divisor on X. Let f: X --» Z be the litaka fibration with
respect to Kx + A over Y. By replacing X and Z, we may assume that Z is a smooth
variety and is projective over Y and that f is a morphism with f,Ox ~ Oz. We use the
canonical bundle formula discussed in PZI3. Then, by Lemma P28, it is sufficient to prove
that

@ g;/OZ//(mk(KZ// + Byn + MZ”))

meN
is a locally finitely generated graded Oy-algebra. By construction, Kz + Bzn + Mzn is
big over Y. We can find Az such that (Z”, Az») is kawamata log terminal and that

CL(KZ// + BZ” + MZ!I) ~/ b(KZ// + AZ”)

for some positive integers a and b. Hence, by Lemma again, it is sufficient fo prove

that

D g0z (m(Kn + Azn)))

meN
is a locally finitely generated graded Oy-algebra. Since Kz»+ Az» is big over Y, it follows
from Theorem 8 (3). Therefore, we get the desired result. O

22. MINIMAL MODEL PROGRAM WITH SCALING REVISITED

In this section, we will discuss the minimal model program with scaling again for future
usage. The original results for algebraic varieties are not covered by [BCHM]. Here, we
will closely follow the presentation of [Birl] and [Bir2].

Let us recall the definition of extremal curves.

Definition 22.1 (Extremal curves). Let 7: X — Y be a projective morphism of complex
analytic spaces and let W be a compact subset of Y such that 7: X — Y and W satisfies
(P). A curve I'' on X is called extremal over W if the following properties hold.

(i) T generates an extremal ray R of NE(X/Y;W).
(ii) There exists a m-ample Cartier divisor H on X such that

H-T =min{H - (},

where ¢ ranges over curves generating R.
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The following theorem is very useful when we run the minimal model program with
scaling.

Theorem 22.2 (see [FuY, Theorem 4.7.2]). Let m: X — Y be a projective morphism
of complex analytic spaces and let W be a compact subset of Y such that m: X — Y
and W satisfies (P). Let V' be a finite-dimensional affine subspace of WDivg(X), which
1s defined over the rationals. Assume that there is an R-divisor Ay on X such that
(X, Ag) is kawamata log terminal. We fiz an R-divisor A € L(V ;71 (W)). Then we can
find positive real numbers a and &, which depend on (X,A) and V, with the following
properties.

(1) If T is any extremal curve over W and (Kx +A)-T' >0, then (Kx +A)-T > a.

(2) If De L(V;m Y (W), |D—A| <46, and (Kx + D) -T <0 for an extremal curve

I' over W, then (Kx +A)-T <0.
(3) Let {Ri}ier be any set of extremal rays of NE(X/Y;W). Then

T={Dec L(V;m *(W))|(Kx + D) R, >0 for everyt € T}
15 a rational polytope in V. In particular,

NV W) ={A € L(V;7n '(W))| Kx + A is nef over W}
1 a rational polytope.

Proof. This theorem is a formal consequence of Theorem B2 and Theorem [Z3. More
precisely, (1) easily follows from Theorem B2, We can check that (2) holds true by using
(1). By (2) and Theorem [3, we can prove (3). For the details, see, for example, the
proof of [Fud, Theorem 4.7.2]. O

By Theorem 222 (3) and Theorem B2, we can prove:

Theorem 22.3 (see [Fn9, Theorem 4.7.3)). Let m: X — Y be a projective morphism of
complex analytic spaces and let W be a compact subset of Y such that m: X — Y and
W satisfies (P). Let (X,A) be a log canonical pair and let H be an effective R-Cartier
R-divisor on X such that (X, A+ H) is log canonical and that Kx + A+ H is nef over W.
Assume that there exists Ay such that (X, Ag) is kawamata log terminal. Then, either
Kx + A is nef over W or there is a (Kx + A)-negative extremal ray R of NE(X/Y; W)
such that (Kx + A+ AH) - R =0, where

A=1inf{t € Ryo| Kx + A+ tH is nef over W}.
Of course, Kx + A + AH is nef over W.
Proof. The proof of [Fud, Theorem 4.7.3] works without any modifications. U

By Theorems 222 and 223, the minimal model program with scaling explained in
Section [3 becomes much more useful.

22.4 (Minimal model program with scaling). Let 7: X — Y be a projective morphism
of complex analytic spaces and let W be a compact subset of Y such that 7: X — Y
and W satisfies (P). Let (X, A) be a log canonical pair such that X is Q-factorial over
W. Assume that there exists Ay such that (X,4A) is kawamata log terminal. Let H
be an effective R-Cartier R-divisor on X such that (X, A + H) is log canonical and that
Kx + A+ H is nef over W. By Theorem EZ3, we can take a (Kx + A)-negative extremal
ray R of NE(X/Y;W) such that (Kx + A+ AH) - R if (Kx + A) is not nef over W.
We can consider the contraction morphism pgr: X — Z associated to R over some open
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neighborhood of W by Theorem [Z3. By Remark I7T0, we know that the desired flip
always exists. We note that we can always find A such that (X, A{) is kawamata log
terminal and that R is a (Kx + A})-negative extremal ray of NE(X/Y;W). Therefore,
we can run a minimal model program similar to the one explained in Section [3. We
call it the (Kx + A)-minimal model program with scaling of H over Y around W. We
sometimes simply say that it is the minimal model program with scaling if there is no
danger of confusion.

It is well known that Theorem is an easy consequence of the minimal model
program with scaling. The main ingredient of the following proof of Theorem is
Theorem P27 (2).

Proof of Theorem IZ8. Throughout this proof, we will freely shrink Y around W suitably
without mentioning it explicitly. Let Hy be a general mo-ample Q-divisor on X, and let
H; be its strict transform on X;. Then there is a small positive real number § such that
(X1, A1+ 0H;) is kawamata log terminal. We take a general 7j-ample Q-divisor H; on X
such that (Xs, Ag + dHy + 6'H)) is kawamata log terminal for some positive real number
o', where HY, is the strict transform of H{. If ¢ is sufficiently small, Kx, + Ay +6H, +0'H]
is nef over W. We can run the (Kx, + A; + 0 H;)-minimal model program with scaling
over Y around W (see 2Z4). After finitely many flips, we finally end up with X5. On the
other hand, by Theorem 222 (2), we see that each step is a flop with respect to Kx, + A
if 9 is sufficiently small. Therefore, we obtain the desired statement. U

23. ON ABUNDANCE CONJECTURE

In this final section, we will treat the abundance conjecture for kawamata log terminal
pairs in the complex analytic setting.

Let us recall the following famous conjecture, which is one of the most difficult conjec-
tures in the theory of minimal models.

Conjecture 23.1 (Abundance conjecture for projective kawamata log terminal pairs).
Let (X, A) be a projective kawamata log terminal pair such that Kx + A is nef. Then
Kx + A is semiample.

The main result of this section is as follows.

Theorem 23.2 (see Theorem [Z30). Assume that Conjecture 231 holds in dimension n.

Let m: X — Y be a projective surjective morphism of normal complex varieties with
dim X —dimY = n and let (X, A) be a kawamata log terminal pair. Assume that Kx + A
is m-nef. Let W be a Stein compact subset of Y such that T'(W, Oy) is noetherian. Then
Kx + A is m-semiample over some open neighborhood of W'.

Theorem 232 says that we can reduce the abundance conjecture for projective mor-
phisms of complex analytic spaces to the original abundance conjecture for projective
varieties. Before we prove Theorem 23, we prepare some lemmas. The following lemma
is Wilson’s theorem (see [Lall, Theorem 2.3.9]) for projective morphisms of complex vari-
eties.

Lemma 23.3. Let f: Z — Y be a projective morphism from a smooth complex variety Z
onto a normal Stein variety Y and let D be a Cartier divisor on X such that D is nef and
big over Y. Let y be any point of Y. Then, by replacing Y with any relatively compact
Stein open neighborhood of y, there exist a positive integer mgy and an effective Cartier
divisor B on Z such that Oz(mD — B) is f-free.
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Proof. We can take a f-very ample Cartier divisor H on Z after replacing Y with any
relatively compact Stein open neighborhood of y. Since D is big over Y, there exists a
positive integer mg such that moD ~ A+ B, A is f-ample, B > 0, and A — (Kx +nH)
is f-ample with n = dim X. Then, R'f.Oz(mD — B —iH) = 0 holds for every i > 0
and every m > mg since mD — B —iH — Kx ~ A— (Kx +nH)+ (n—1i)H is f-ample
for 0 < i < n (see, for example, Theorem B). Therefore, by Castelnuovo-Mumford
regularity (see, for example, [La2, Example 1.8.24]), we obtain that Oz(mD — B) is
f-free for every m > my. 0

As an easy consequence, we obtain:

Lemma 23.4. Let f: Z — Y be a projective morphism from a smooth complex variety
Z onto a normal Stein variety Y and let D be a Cartier divisor on X such that D is nef
and big over Y. Assume that

R(Z,D) := € f.0z(mD)

meN
18 a locally finitely generated graded Oy -algebra. Then D s f-semiample.

Lemma 234 is well known for normal projective varieties (see, for example, [[Lal, The-
orem 2.3.15]).

Proof of Lemma 3. By taking the Stein factorization, we may assume that f,Oz ~ Oy.
Suppose that, for every positive integer m, f*f.Oz(mD) — Oz(mD) is not surjective
at z € Z. We take an open neighborhood U of f(z) and a Stein compact subset W' of
Y such that f(z) € U C W and that Oy (W) = I'(W, Oy) is noetherian. If we make
U and W sufficiently small, then T' (W, @,y fsOz(mD)) ~ @, cx [xOz(mD)(W) is a
finitely generated Oy (W )-algebra. Therefore, there exists a positive integer [ such that
D,.cn [+Oz(mID)(W) is generated by f.Oz(ID)(W). Let V be a relatively compact
Stein open neighborhood of W. Then, by Lemma 2373, there exist £ > 0 and g €
L(f~Y(V),0z(klD)) = T(V, f.Oz(klD)) such that C = (g = 0) is an effective divisor
on f~Y(V) with mult, C < k. On the other hand, since f,Oz(kID)(W) is generated
by f.Oz(ID)(W), mult, C > k holds. It is a contradiction. This means that D is f-
semiample. 0]

Let us prove Theorem 2372

Proof of Theorem [ZZ2. In Step [, we will reduce the problem to the case where Kx + A
is Q-Cartier. Then, in Step B, we will prove that it is semiample by using the finite
generation of log canonical rings.

Step 1. We take a Stein open neighborhood U of W and a Stein compact subset W’
such taht U C W’ and that I'(W’, Oy) is noetherian. By Theorem 222, after shrinking YV
around W', we can find Q-divisors Ay, ..., A; on X such that Kx + A =", ri(Kx+4,;),
(X, A;) is kawamata log terminal, Kx + A; is nef over W’, and r; € Ry with > . r; = 1.
Therefore, it is sufficient to prove that K x4+ 4, is semiample over some open neighborhood
of W. Hence, from now on, we may further assume that K x+A is Q-Cartier. Moreover, we
may assume that there exists a positive integer k such that k(K x 4+ A) is Cartier. Without
loss of generality, we may assume that 7.0x ~ Oy by taking the Stein factorization.

Step 2. Let F' be an analytically sufficiently general fiber of 7: X — Y. Then (F, A|p) is
kawamata log terminal with K 4+ A|r = (Kx + A)|r. Hence, by assumption, Kr + A|p
is semiample. We put L = k(Kx + A). From now on, we will freely replace Y with a
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smaller Stein open neighborhood of W without mentioning it explicitly. We consider a
meromorphic map g: X --» Zy over Y associated to 7*m,.Ox(mL) — Ox(mL) for some
sufficiently large and divisible integer m such that dim Zy = dim Y + k(F, Kr + A|r). As

in the proof of [Kawll, Proposition 2.1], by using Hironaka’s flattening theorem (see [Hi]),
and so on, we can construct the following commutative diagram:

X Ho X, B X, K2 X, K3 X/

R

Zy Z Z Z A

1

0

which satisfies the following conditions.

(i) All the varieties in the diagram are projective over Y.

(i) Xy, X', Zy, and Z are smooth, and X3 is normal.

(iil) po, p1, M2, 3, and m are projective bimeromorphic morphisms, g1, g2, g3 and
¢ are surjective morphisms with connected fibers, and 7, is a generically finite
surjective morphism.

(iv) go is flat, ps is finite, and g3 is equidimensional.

We put o := g o pg o g o puz: X' — X. Then we finally get the following commutative

diagram:
X/
N
X VA
Y
such that

(a) X’ and Z are projective over Y,

(b) X’ and Z are smooth,

(¢) p is bimeromorphic and ¢ is a surjective morphism with connected fibers, and

(d) there exists a Cartier divisor D on Z such that D is nef and big over Y with
ap* L ~ bp* D for some positive integers a and b.

For the details, see the proof of [Kawll, Proposition 2.1]. Since R(X/Y, Kx+A) is a locally
finitely generated graded Oy-algebra by Theorem IR, R(Z, D) is also a locally finitely
generated graded Oy-algebra by Lemma PZZ28. Hence, by Lemma 234, D is f-semiample.
This means that L is m-semiample.

Anyway, Kx + A is a finite Ry -linear combination of semiample Cartier divisors over
some open neighborhood of W. This is what we wanted. U

The abundance conjecture for log canonical pairs in the complex analytic setting seems
to be much more difficult than the one for kawamata log terminal pairs.
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