
ON FINITENESS OF RELATIVE LOG PLURICANONICAL
REPRESENTATIONS

OSAMU FUJINO

Abstract. We prove the finiteness of relative log pluricanonical representations in the
complex analytic setting. As an application, we discuss the abundance conjecture for
semi-log canonical pairs within this framework. Furthermore, we establish the existence
of log canonical flips for complex analytic spaces. Roughly speaking, we reduce the
abundance conjecture for semi-log canonical pairs to the case of log canonical pairs
in the complex analytic setting. Moreover, we show that the abundance conjecture
for projective morphisms of complex analytic spaces can be reduced to the classical
abundance conjecture for projective varieties.
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1. Introduction

The present paper aims to address a missing component of the minimal model program
for projective morphisms between complex analytic spaces (see [Fuj12], [Fuj13], [Fuj14],
[Fuj15], [Fuj17], [FF], [DHP], [EH2], [LM], [EH3], [H5], and others). Broadly speaking,
this work can be viewed as a complex analytic generalization of [FG] (see also [Fuj1]).
One of the main objectives of the present paper is to establish the following result related
to the abundance conjecture.

Theorem 1.1 (Abundance theorem for semi-log canonical pairs in the complex analytic
setting, cf. [FG, Theorem 1.5]). Let π : X → Y be a projective morphism of complex
analytic spaces, let W be a compact subset of Y , and let (X,∆) be a semi-log canonical
pair such that KX +∆ is Q-Cartier. Let ν : Xν → X be the normalization. Assume that
KXν + Θ := ν∗(KX + ∆) is π ◦ ν-semiample over some open neighborhood of W . Then
there exists an open neighborhood U of W and a divisible positive integer m such that
OX(m(KX +∆)) is π-generated over U .
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In order to prove Theorem 1.1, we need:

Theorem 1.2 (Finiteness of relative log pluricanonical representations, I, cf. [FG, The-
orem 1.1]). Let π : X → Y be a projective morphism from a (not necessarily connected)
normal complex analytic space X onto a complex variety Y such that (X,∆) is log canon-
ical and that every irreducible component of X is dominant onto Y . Let m be a positive
integer such that m(KX+∆) is Cartier and π∗OX(m(KX+∆)) ̸= 0. Assume that KX+∆
is π-semiample. Then the image of

ρm : Bim(X/Y,∆) → AutOY
(π∗OX(m(KX +∆)))

is a finite group, where Bim(X/Y,∆) is the group of all B-bimeromorphic maps of (X,∆)
over Y .

As an easy consequence of Theorem 1.2, we have a useful corollary. We will use it in
the proof of Theorem 1.1.

Corollary 1.3 (Finiteness of relative log pluricanonical representations, II, cf. [FG, The-
orem 1.1]). Let (X,∆) be an equidimensional (not necessarily connected) log canonical
pair and let π : X → Y be a projective morphism of complex analytic spaces. Let m be a
positive integer such that m(KX+∆) is Cartier and π∗OX(m(KX+∆)) ̸= 0. Assume that
KX+∆ is π-semiample. Let W be a compact subset of Y and let U be a semianalytic Stein
open subset of Y with U ⊂ W . Let Bim(X/Y,∆;W ) be the group of all B-bimeromorphic
maps g defined over some open neighborhood Ug of W . In this setting, we can consider

ρWU
m : Bim(X/Y,∆;W ) → AutOU

(
π∗Oπ−1(U)(m(KX +∆))

)
.

Then ρWU
m (Bim(X/Y,∆;W )) is a finite group.

As an application of Theorem 1.1, we have:

Theorem 1.4 (Freeness for nef and log abundant log canonical bundles, cf. [FG, Theorem
1.6]). Let (X,∆) be a semi-log canonical pair and let π : X → Y be a projective morphism
of complex analytic spaces. Assume that KX + ∆ is Q-Cartier and is π-nef and π-log
abundant with respect to (X,∆) over Y . Let W be a compact subset of Y . Then there
exists a positive integer m such that OX(m(KX + ∆)) is π-generated over some open
neighborhood of W .

Theorem 1.4 is well known when π : X → Y is algebraic (see [FG, Theorem 1.6]).
As mentioned above, we prove Theorem 1.4 as a consequence of Theorem 1.1. In our
proof of Theorem 1.4 presented in the present paper, we make use of a kind of canonical
bundle formula (see [Fuj3] and [Fuj7]). Therefore, the result is not entirely obvious. When
KX +∆ is only assumed to be R-Cartier, we have the following theorem.

Theorem 1.5. Let π : X → Y be a projective morphism of complex analytic spaces and
let W be a Stein compact subset of Y such that Γ(W,OY ) is noetherian. Let U be an open
subset of Y and let L be a compact subset of Y such that L ⊂ U ⊂ W . Let (X,∆) be a
log canonical pair such that KX + ∆ is π-nef and π-log abundant with respect to (X,∆)
over Y . Then KX +∆ is π-semiample over some open neighborhood of L.

We note that Stein compact subsets play an important role in [Fuj12].

Remark 1.6 (Stein compact subsets). A compact subset on an analytic space is said to
be Stein compact if it admits a fundamental system of Stein open neighborhoods. Let
W be a Stein compact subset on a complex analytic space Y . Then, by Siu’s theorem,
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Γ(W,OY ) is noetherian if and only if W ∩Z has only finitely many connected components
for any analytic subset Z which is defined over an open neighborhood of W . Hence, if W
is a Stein compact semianalytic subset of a complex analytic space Y , then Γ(W,OY ) is
always noetherian.

By combining Theorem 1.5 with [EH2, Theorem 1.2], we can prove the existence of log
canonical flips in the complex analytic setting. We learned it from Kenta Hashizume.

Theorem 1.7 (Existence of log canonical flips). Let ϕ : X → Z be a small projective
bimeromorphic morphism of normal complex varieties such that (X,∆) is log canonical
and that −(KX +∆) is ϕ-ample. Then we have a commutative diagram

(X,∆)

φ
""F

FF
FF

FF
FF

ϕ //_______ (X+,∆+)

φ+
zzuuu

uu
uu
uu
u

Z

satisfying the following properties:

(i) ϕ+ : X+ → Z is a small projective bimeromorphic morphism of normal complex
varieties,

(ii) (X+,∆+) is log canonical, where ∆+ is the strict transform of ∆ on X+, and
(iii) KX+ +∆+ is ϕ+-ample.

We usually simply say that φ : (X,∆) 99K (X+,∆+) is a log canonical flip.

By combining Theorem 1.5 with [EH2, Theorem 1.3], we establish the existence of good
dlt blow-ups in the complex analytic setting. This result immediately yields the inversion
of adjunction for log canonicity (see [Fuj16, Theorem 1.1] and Theorem 6.3).

Theorem 1.8 (Good dlt blow-ups). Let X be a normal complex variety X and let ∆ be an
effective R-divisor on X such that KX +∆ is R-Cartier. Note that ∆ is not necessarily
a boundary R-divisor. Let W be a Stein compact subset of X such that Γ(W,OX) is
noetherian. Then, after shrinking X around W suitably, we can construct a projective
bimeromorphic morphism f : Z → X from a normal complex variety Z with the following
properties:

(i) Z is Q-factorial over W ,
(ii) a(E,X,∆) ≤ −1 for every f -exceptional divisor E on Z, and
(iii) (Z,∆<1

Z + Supp∆≥1
Z ) is divisorial log terminal, where KZ +∆Z = f ∗(KX +∆).

Moreover, we put

∆†
Z := ∆<1

Z + Supp∆≥1
Z = ∆≤1

Z + Supp∆>1
Z .

Then we have
KZ +∆†

Z = f ∗(KX +∆)−G,

where
G = ∆≥1

Z − Supp∆≥1
Z = ∆>1

Z − Supp∆>1
Z .

In this setting, we can make f : Z → X satisfy:

(iv) −G is f -nef over W .

We further assume that
L ⊂ U ′ ⊂ W ′ ⊂ U ⊂ W,

where W ′ is a Stein compact subset of X such that Γ(W ′,OX) is noetherian, U and U ′

are open subsets of X, and L is a compact subset of X. Then, by Theorem 1.5, we have:
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(v) −G is f -semiample over some open neighborhood of L.

In Section 6, we also present another refinement of dlt blow-ups (see Theorem 6.1),
derived as a consequence of [EH2], which is closely related to Theorem 1.8. Both Theorems
1.8 and 6.1 are useful for the study of complex analytic singularities. As applications of
these theorems, we discuss the ACC for log canonical thresholds (see Theorem 6.2) and
the inversion of adjunction for log canonicity (see Theorem 6.3) in the complex analytic
setting.

For the reader’s convenience, we recall the abundance conjecture for projective log
canonical pairs. It is well known that the abundance conjecture is among the most
important and profound conjectures in the theory of minimal models.

Conjecture 1.9 (Abundance conjecture for projective log canonical pairs). Let (X,∆)
be a projective log canonical pair such that KX +∆ is nef. Then KX +∆ is semiample.

It is well known that Conjecture 1.9 has already been solved in dimX ≤ 3. When
dimX ≥ 4, it is still widely open. By Theorem 1.4, we have:

Theorem 1.10 (cf. [Fuj12, Theorem 1.30]). Assume that Conjecture 1.9 holds in dimen-
sion n. Let π : X → Y be a projective surjective morphism of normal complex varieties
with dimX ≤ n and let (X,∆) be a log canonical pair such that KX + ∆ is Q-Cartier.
Assume that KX + ∆ is π-nef. Let W be a compact subset of Y . Then there exists a
positive integer m such that OX(m(KX+∆)) is π-generated over some open neighborhood
of W .

When KX +∆ is only R-Cartier, we have:

Corollary 1.11. Assume that Conjecture 1.9 holds in dimension n. Let π : X → Y be a
projective surjective morphism of normal complex varieties with dimX ≤ n and let (X,∆)
be a log canonical pair. Assume that KX +∆ is π-nef. Let W be a Stein compact subset
of Y such that Γ(W,OY ) is noetherian. Let U be an open subset of Y and let L be a
compact subset of Y with L ⊂ U ⊂ W . Then KX + ∆ is π-semiample over some open
neighborhood of L.

Theorem 1.10 and Corollary 1.11 show that the abundance conjecture for projective
morphisms of complex analytic spaces can be reduced to the original abundance conjec-
ture for projective varieties. Therefore, in order to address the abundance conjecture for
projective morphisms between complex analytic spaces, it is sufficient to resolve Conjec-
ture 1.9. In the case where (X,∆) is a kawamata log terminal pair, Theorem 1.10 has
already been established in [Fuj12, Theorem 1.30].

Note that in the present paper, we employ the minimal model program for projective
morphisms between complex analytic spaces, as established in [Fuj12], [EH1], and [EH2].
Additionally, we make use of the vanishing theorems proved in [Fuj13] (see also [Fuj17]
and [FF]). However, we do not employ Kollár’s gluing theory as presented in [K], since it
is currently unclear whether it applies to complex analytic spaces.

Remark 1.12 (see Lemma 4.11). We can easily check that Theorem 1.1 recovers [HX,
Theorem 2], which is the original algebraic version of this problem. Hence the present
paper gives an alternative proof of [HX, Theorem 2] without using Kollár’s gluing theory
in [K].

Remark 1.13. Based on [Fuj12], [EH1], [EH2], and the present paper, we believe that
various results of the minimal model program for log canonical pairs can be formulated



ON FINITENESS OF RELATIVE LOG PLURICANONICAL REPRESENTATIONS 5

and proved in the complex analytic setting. We do not discuss these results here. For
details and further developments, see [EH1], [EH2], [EH3], [H4], [H5], and the references
therein. Since [EH1] and [EH2] do not rely on the results of the present paper, we may
freely use their results here. In contrast, [EH3] and [H5] do depend on the results of this
paper, and therefore will not be cited or used in the arguments below.

Remark 1.14. In [Fuj6], we demonstrated that the minimal model theory for algebraic
surfaces can be developed under significantly weaker assumptions than those required in
higher dimensions. A comparable result holds for projective morphisms between complex
analytic spaces. Moriyama (see [M]) offers a detailed treatment of the minimal model
theory for surfaces in the complex analytic setting.

We now outline the organization of the present paper. In Section 2, we review basic
definitions and results that are essential for the development of the present paper. Section
3 is devoted to the finiteness of relative log pluricanonical representations. Our proof of
Theorem 1.2 relies on the finiteness of log pluricanonical representations for projective log
canonical pairs, as established in [FG]. In Section 4, we address the abundance conjecture
for semi-log canonical pairs in the complex analytic setting. More specifically, we prove
Theorem 1.1, which is one of the main results of the present paper. In Section 5, we
prove Theorem 1.4 as an application of Theorem 1.1, and then deduce Theorem 1.10 as
a straightforward consequence of Theorem 1.4. We also establish Theorems 1.5, 1.7, and
Corollary 1.11. In Section 6, we discuss dlt blow-ups as applications of the minimal model
program for log canonical pairs, as established in [EH2]. We prove two generalizations
of dlt blow-ups (see Theorems 1.8 and 6.1). As a direct application of Theorem 6.1, we
address the ACC for log canonical thresholds in the setting of complex analytic spaces
(see Theorem 6.2). Moreover, we show that Theorem 1.8 allows us to quickly recover
the inversion of adjunction for log canonicity (see Theorem 6.3). In the final section,
Section 7, we provide some supplementary comments on [Fuj1] and [FG] for the reader’s
convenience. We also correct some minor issues in these papers.

Acknowledgments. The author was partially supported by JSPS KAKENHI Grant
Numbers JP19H01787, JP20H00111, JP21H04994, JP23K20787. The author would like
to thank Professor Shigefumi Mori for his warm encouragement. He is also deeply grateful
to Makoto Enokizono, Taro Fujisawa, Yoshinori Gongyo, Kenta Hashizume, and Nao
Moriyama for their valuable discussions and support.

In the present paper, every complex analytic space is assumed to be Hausdorff and
second-countable. A reduced and irreducible complex analytic space is called a complex
variety. We will freely use the basic results on complex analytic geometry in [BS] and
[Fis]. For the minimal model program for projective morphisms between complex analytic
spaces, see [Fuj12] (see also [EH1] and [EH2]). For the basic definitions and results in the
theory of minimal models for higher-dimensional algebraic varieties, see [Fuj4] and [Fuj11]
(see also [KM] and [K]). In the present paper, we sometimes use semianalytic sets. For
the basic properties of semianalytic sets, see [BieM1].

2. Preliminaries

In this section, we collect some basic definitions and results necessary for the present
paper. We begin with the following fundamental definitions.



6 OSAMU FUJINO

Definition 2.1 ([Fuj12, Definition 2.32] and [Fuj14, 2.1.6]). Let X be a normal complex
variety and let D =

∑
i aiDi be an R-divisor on X such that Di is a prime divisor on X

for every i with Di ̸= Dj for i ̸= j. We put

⌊D⌋ :=
∑
i

⌊ai⌋Di, ⌈D⌉ := −⌊−D⌋, and {D} := D − ⌊D⌋.

We also put

D=1 :=
∑
ai=1

Di, D<1 :=
∑
ai<1

aiDi, and D>1 :=
∑
ai>1

aiDi.

Similarly, we can define D≤1 and D≥1. We note that D is called a boundary Q-divisor
(resp. a subboundary Q-divisor) when ai ∈ Q and 0 ≤ ai ≤ 1 (resp. ai ≤ 1) for every i.

Let us recall the definitions of log canonical pairs and log canonical strata. For a
detailed discussion of the singularities of pairs, see [Fuj4], [Fuj11], [Fuj12, Section 3],
[Fuj14, Section 2.1], [K], and others. Although there are some subtle issues regarding the
complex analytic singularities of pairs, we do not repeat the details here.

Definition 2.2 (Log canonical pairs and log canonical strata, see [Fuj12, Definition 3.1]
and [Fuj14, 2.1.1]). Let X be a normal complex analytic space and let ∆ be an effective
R-divisor on X such that KX+∆ is R-Cartier. If a(E,X,∆) ≥ −1 (resp. > −1) holds for
any proper bimeromorphic morphism f : Y → X from a normal complex analytic space
Y and every f -exceptional divisor E, then (X,∆) is called a log canonical (resp. purely
log terminal) pair. If (X,∆) is purely log terminal and ⌊∆⌋ = 0, then we say that (X,∆)
is a kawamata log terminal pair.

Let (X,∆) be a log canonical pair. The image of E with a(E,X,∆) = −1 for some
f : Y → X is called a log canonical center of (X,∆). A closed subset S of X is called a
log canonical stratum of (X,∆) if S is an irreducible component of X or a log canonical
center of (X,∆).

Definition 2.3 (Non-lc loci). LetX be a normal complex variety and let ∆ be an effective
R-divisor onX such thatKX+∆ is R-Cartier. Then the non-lc locus of (X,∆), denoted by
Nlc(X,∆), is the smallest closed subset Z of X such that the complement (X \Z,∆|X\Z)
is log canonical.

Let us recall the definition of divisorial log terminal pairs in the complex analytic setting
(see [Fuj12, Definition 3.7]). Note that [KM, Definition 2.37, Proposition 2.40, Theorem
2.44] is helpful.

Definition 2.4 (Divisorial log terminal pairs). Let X be a normal complex analytic space
and let ∆ be a boundary R-divisor on X such that KX +∆ is R-Cartier. If there exists
a proper bimeromorphic morphism f : Y → X from a smooth complex variety Y such
that Exc(f) and Exc(f) ∪ Supp f−1

∗ ∆ are simple normal crossing divisors on Y and that
the discrepancy coefficient a(E,X,∆) > −1 holds for every f -exceptional divisor E, then
(X,∆) is called a divisorial log terminal pair. We note that Exc(f) denotes the exceptional
locus of f .

We note that Definitions 2.2 and 2.4 work for a finite disjoint union of normal complex
varieties. In Definitions 2.2 and 2.4, X is not necessarily connected. It is well known that
a divisorial log terminal pair is a log canonical pair.
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Remark 2.5. If we shrink X to a relatively compact open subset of X in Definition 2.4,
then we can assume that f is a composite of a finite sequence of blow-ups. In particular,
f is projective. For the details, see [Fuj12, Lemma 3.9] and [BieM2].

Let us define semi-log canonical pairs and semi-divisorial log terminal pairs in the
complex analytic setting.

Definition 2.6 (Semi-log canonical pairs and semi-divisorial log terminal pairs). LetX be
an equidimensional reduced complex analytic space that is normal crossing in codimension
one and satisfies Serre’s S2 condition. Let ∆ be an effective R-divisor on X such that
the singular locus of X does not contain any irreducible components of Supp∆. In this
situation, the pair (X,∆) is called a semi-log canonical pair (an slc pair, for short) if

(1) KX +∆ is R-Cartier, and
(2) (Xν ,Θ) is log canonical, where ν : Xν → X is the normalization and KXν +Θ :=

ν∗(KX +∆).

Let (X,∆) be a semi-log canonical pair in the above sense. If each irreducible component
of X is normal and (Xν ,Θ) is divisorial log terminal, then we say that (X,∆) is a semi-
divisorial log terminal pair (an sdlt pair, for short). Let S be a closed subset of X. We
say that S is a semi-log canonical stratum of (X,∆) if and only if S is an irreducible
component of X or the ν-image of some log canonical center of (Xν ,Θ). When (X,∆)
is log canonical, then a semi-log canonical stratum S is called a log canonical stratum of
(X,∆) (see Definition 2.2).

For various results on algebraic (resp. complex analytic) semi-log canonical pairs, see
[Fuj10] (resp. [Fuj15]).

Remark 2.7. Note that the definition of semi-divisorial log terminal pairs in Definition
2.6 is different from [K, Definition 5.19]. Our definition is a direct analytic generalization
of the one in [Fuj1] (see [Fuj1, Definition 1.1]).

The following lemma is well known when X is an algebraic variety. We state it here
explicitly for the sake of completeness.

Lemma 2.8. Let (X,∆) be a divisorial log terminal pair. We put S := ⌊∆⌋ and KS +
∆S := (KX+∆)|S by adjunction. Then (S,∆S) is semi-divisorial log terminal in the sense
of Definition 2.6. More precisely, let S = S1 + · · · + Sl be the irreducible decomposition.
We put T := S1 + · · ·+ Sl for some l with 1 ≤ l ≤ k. Then T is Cohen–Macaulay and is
simple normal crossing in codimension one. In particular, every irreducible component of
S is normal. We put KSi

+∆Si
:= (KX +∆)|Si

by adjunction for every i. Then (Si,∆Si
)

is divisorial log terminal. Thus we see that (T,∆T ), where KT + ∆T := (KX + ∆)|T by
adjunction, is semi-divisorial log terminal.

Proof. By [RRV], we can apply the proof of [Fuj11, Theorem 3.13.6] to our setting with
some suitable modifications (see also Remark 2.5). Then we obtain that T is Cohen–
Macaulay. It is obvious that T is simple normal crossing in codimension one. Hence we
can easily check all the other statements. �
We will repeatedly use Lemma 2.9 in subsequent sections.

Lemma 2.9. Let (X,∆) be a log canonical pair such that (X,∆− ⌊∆⌋) is kawamata log
terminal. We put S := ⌊∆⌋ and KS + ∆S := (KX + ∆)|S by adjunction. Then S is
Cohen–Macaulay and is semi-log canonical.
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Proof. Since (X,∆ − S) is kawamata log terminal, X has only rational singularities.
Therefore, X is Cohen–Macaulay. Since S is Q-Cartier, OX(−S) is Cohen–Macaulay.
This implies that OS is Cohen–Macaulay. For the details, see [KM, Corollary 5.25], [K,
Corollaries 2.62, 2.63, and 2.88], and others. By adjunction, we see that (S,∆S) is semi-log
canonical. �
We need nef and log abundant divisors in Theorem 1.4.

Definition 2.10 (Nef and abundant line bundles). Let π : X → Y be a projective surjec-
tive morphism from a normal complex variety X onto a complex variety Y . Let L be a
π-nef line bundle on X. If κ(F,L|F ) = ν(F,L|F ) holds for analytically sufficiently general
fibers F , then L is said to be π-nef and π-abundant over Y . Similarly, we can define π-nef
and π-abundant Q-Cartier Q-divisors.

Remark 2.11. In Definition 2.10, if L is π-semiample, then it is easy to see that L is
π-nef and π-abundant over Y .

We will freely use the following elementary lemma.

Lemma 2.12. Let π : X → Y be a projective surjective morphism from a normal complex
variety X onto a complex variety Y and let L be a π-nef and π-abundant line bundle on
X. Let p : Z → X be a projective surjective morphism from a normal complex variety Z.
Then p∗L is (π ◦ p)-nef and (π ◦ p)-abundant over Y .

Definition 2.13 (Nef and log abundant line bundles). Let π : X → Y be a projective
morphism of complex analytic spaces and let (X,∆) be a semi-log canonical pair. Let L
be a line bundle on X. We say that L is π-nef and π-log abundant with respect to (X,∆)
over Y if and only if L|Sν is nef and abundant over π(S) for every semi-log canonical
stratum S of (X,∆), where L|Sν denotes the pull-back of L to the normalization of S.
Similarly, we can define π-nef and π-log abundant Q-Cartier Q-divisors with respect to
(X,∆).

For R-Cartier R-divisors, we need the following definitions. In the present paper, we
will use R-Cartier R-divisors only in Theorems 1.5, 1.7, 1.8, Corollary 1.11, and Section
6.

Definition 2.14 (Relatively abundant R-Cartier R-divisors). Let π : X → Y be a projec-
tive morphism from a normal complex variety X onto a complex variety Y . Let D be an
R-Cartier R-divisor on X. If κσ(F,D|F ) = κι(F,D|F ) holds for analytically sufficiently
general fibers F , then D is said to be π-abundant over Y .

For the details of κσ and κι, see [N, Chapter V, §2] and [Fuj11, Section 2.5], respectively.
For the details of abundant divisors, see also [EH2, Subsection 2.6. Abundant divisor].

Definition 2.15 (Nef and log abundant R-Cartier R-divisors). Let π : X → Y be a
projective morphism of complex analytic spaces and let (X,∆) be a log canonical pair.
Let D be an R-Cartier R-divisor on X. We say that D is π-nef and π-log abundant with
respect to (X,∆) over Y if and only if D|Sν is nef and abundant over π(S) for every log
canonical stratum of (X,∆), where D|Sν denotes the pull-back of D to the normalization
of S.

Remark 2.16. A Q-Cartier Q-divisor D is π-nef and π-log abundant with respect to
(X,∆) over Y in the sense of Definition 2.15 if and only if it is π-nef and π-log abundant
with respect to (X,∆) over Y in the sense of Definition 2.13.
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Let us introduce the notion of B-bimeromorphic maps, which is obviously a generaliza-
tion of the notion of B-birational maps.

Definition 2.17 (B-bimeromorphic maps). Let π : X → Y and π′ : X ′ → Y be projective
morphisms of complex analytic spaces and let (X,∆) and (X ′,∆′) be log canonical pairs.
We say that a bimeromorphic map f : X 99K X ′ over Y is B-bimeromorphic over Y if
there exists a commutative diagram

Z
α′

  A
AA

AA
AA

α

~~~~
~~
~~
~~

X

π
  @

@@
@@

@@
@

f //_______ X ′

π′
~~}}
}}
}}
}}

Y

such that Z is a normal complex analytic space, α and α′ are proper bimeromorphic
morphisms, and

α∗(KX +∆) = α′∗(KX′ +∆′)

holds. Let m be a positive integer such that m(KX + ∆) and m(KX′ + ∆′) are Cartier.
Then we have

f ∗ : π′
∗OX′(m(KX′ +∆′))

α′∗
−→π′

∗α
′
∗OZ(α

′∗(m(KX′ +∆′)))

≃ π∗α∗OZ(α
∗(m(KX +∆)))

(α∗)−1

−→ π∗OX(m(KX +∆)).

We put

Bim(X/Y,∆) := {f | f : (X,∆) 99K (X,∆) is B-bimeromorphic over Y }.

Then it is obvious that Bim(X/Y,∆) has a natural group structure.
Let W be a compact subset of Y . Then we put

Bim(X/Y,∆;W ) :=

{
g

∣∣∣∣ g ∈ Bim
(
π−1(Ug)/Ug,∆|π−1(Ug)

)
such that

Ug is an open neighborhood of W

}
.

Note that Bim(X/Y,∆;W ) also has a natural group structure.

We make small remarks on Definition 2.17.

Remark 2.18. If Y is a point in Definition 2.17, then (X,∆) is a projective log canonical
pair and Bim(X/Y,∆) is nothing but Bir(X,∆) in [Fuj1] and [FG].

Remark 2.19. In Definition 2.17, X and X ′ are not necessarily irreducible. In the proof
of Theorem 1.2, we have to treat Bir(X,∆) in the case where X is a disjoint union of
normal projective varieties.

Remark 2.20. Let (X,∆) =:
⊔
i(Xi,∆i) and (X ′,∆′) =:

⊔
i(X

′
i,∆

′
i) be the irreducible

decompositions. Let f : X 99K X ′ be a B-bimeromrophic map over Y as in Definition
2.17. Then, there exists a permutation σ such that

fi := f |Xi
: Xi 99K X ′

σ(i)

is a B-bimeromorphic map over Y between irreducible log canonical pairs (Xi,∆i) and
(X ′

σ(i),∆
′
σ(i)). We note that π(Xi) = π′(X ′

σ(i)) holds for every i.
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Remark 2.21 (see [FG, Remark 2.15]). Let (X,∆) and (X ′,∆′) be log canonical pairs.
Let f : (X,∆) 99K (X ′,∆′) be a B-bimeromorphic map over Y as in Definition 2.17.
We assume that (X,∆ − ⌊∆⌋) and (X ′,∆′ − ⌊∆′⌋) are kawamata log terminal. We put
S := ⌊∆⌋ and S ′ := ⌊∆′⌋. By replacing Y with a relatively compact open subset, we may
assume that Z in Definition 2.17 is smooth and

α∗(KX +∆) =: KZ +∆Z := α′∗(KX′ +∆′)

such that Supp∆Z is a simple normal crossing divisor on Z. We may further assume
that α and α′ are projective in Definition 2.17. We put KS + ∆S := (KX + ∆)|S and
KS′ +∆S′ := (KX′ +∆′)|S′ . By applying α∗ and α′

∗ to

0 → OZ(⌈−(∆<1
Z )⌉ −∆=1

Z ) → OZ(⌈−(∆<1
Z )⌉) → O∆=1

Z
(⌈−(∆<1

Z )⌉) → 0,

we have α∗O∆=1
Z

≃ OS and α′
∗O∆=1

Z
≃ OS′ . Here we used

R1α∗OZ(⌈−(∆<1
Z )⌉ −∆=1

Z ) = R1α′
∗OZ(⌈−(∆<1

Z )⌉ −∆=1
Z ) = 0,

which is nothing but the relative Kawamata–Viehweg vanishing theorem. Thus f induces
an isomorphism

(α∗)−1 ◦ (α′)∗ : π′
∗OS′(m(KS′ +∆S′))

∼−→ π∗OS(m(KS +∆S)).

We note that f does not necessarily induce a bimeromorphic map S 99K S ′ in the above
setting.

Let us introduce the notion of B-pluricanonical representations in the relative complex
analytic setting.

Definition 2.22 (B-pluricanonical representations). Let X be a normal complex analytic
space such that (X,∆) is log canonical and let π : X → Y be a projective morphism of
complex analytic spaces. Let m be a positive integer such that m(KX + ∆) is Cartier.
Then we have a group homomorphism

ρm : Bim(X/Y,∆) → AutOY
(π∗OX(m(KX +∆)))

given by ρm(g) = g∗ for g ∈ Bim(X/Y,∆). It is called the B-pluricanonical representation
or log pluricanonical representation for (X,∆) over Y . When Y is a point, we have

ρm : Bir(X,∆) → AutC
(
H0(X,OX(m(KX +∆)))

)
.

Theorem 1.2 is a generalization of the following theorem, which is one of the main
results of [FG]. We note that we need it in the proof of Theorem 1.2. In [HX], Hacon and
Xu independently proved a slightly weaker theorem (see [HX, Theorem 1]), which seems
to be insufficient for the purpose of the present paper.

Theorem 2.23 ([FG, Theorem 1.1]). Let (X,∆) be a projective log canonical pair. Sup-
pose that m(KX +∆) is Cartier and that KX +∆ is semiample. Then ρm (Bir(X,∆)) is
a finite group.

In the proof of Theorem 1.2, Burnside’s theorem plays a crucial role. Hence we state
it explicitly for the sake of completeness. For the proof, see, for example, [CR, (36.1)
Theorem].

Theorem 2.24 (Burnside). Let G be a subgroup of GL(n,C). If the order of any element
g of G is uniformly bounded, then G is a finite group.

In order to prove Theorem 1.1, we need the notion of admissible and preadmissible
sections, which are first introduced in [Fuj1].
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Definition 2.25 (Admissible and preadmissible sections, see [Fuj1, Definition 4.1]). Let
(X,∆) be a semi-divisorial log terminal pair and let π : X → Y be a projective morphism
of complex analytic spaces. Let W be a compact subset of Y . Let X =

⋃
iXi be the

irreducible decomposition. As usual,

ν : Xν =
⊔
i

Xi →
⋃
i

Xi = X

is the normalization with

ν∗(KX +∆) = KXν +Θ =:
⊔
i

(KXi
+Θi).

Let S be the disjoint union of ⌊Θi⌋’s. We put

KS +∆S := (KXν +Θ)|S.
Then, by adjunction, (S,∆S) is semi-divisorial log terminal. Let m be a positive integer
such that m(KX + ∆) is Cartier. Let U be a semianalytic Stein open subset of Y with
U ⊂ W . In particular, the number of the connected components of U is finite (see, for
example, [BieM1, Corollary 2.7]). We put XU := π−1(U) and SU := S ∩ (π ◦ ν)−1(U).
Then we define preadmissible and admissible sections inductively as follows.

(1) s ∈ H0(XU ,OX(m(KX +∆))) ≃ H0(U, π∗OX(m(KX +∆))) is preadmissible if the
restriction ν∗s|SU

∈ H0(SU ,OS(m(KS +∆S))) is admissible.
(2) s ∈ H0(XU ,OX(m(KX+∆))) is admissible if s is preadmissible and g∗(s|Xj

) = s|Xi

holds for every B-bimeromorphic map g : (Xi,Θi) 99K (Xj,Θj) defined over some
open neighborhood Ug of W for every i, j.

Then we put

PA (XU ,OX(m(KX +∆)))

:= {s | s ∈ H0(XU ,OX(m(KX +∆))) is preadmissible}
and

A (XU ,OX(m(KX +∆)))

:= {s | s ∈ H0(XU ,OX(m(KX +∆))) is admissible}.
We note that if Z is any analytic subset defined over some open neighborhood of W then
U ∩ Z is a semianalytic Stein open subset of Z contained in W ∩ Z. Thus the number of
the connected components of U ∩ Z is finite (see, for example, [BieM1, Corollary 2.7]).
Let U ′ be a semianalytic Stein open subset of Y such that U ′ ⊂ U . We put XU ′ :=

π−1(U ′). Then there exist natural restriction maps

PA (XU ,OX(m(KX +∆))) → PA (XU ′ ,OX(m(KX +∆)))

and

A (XU ,OX(m(KX +∆))) → A(XU ′ ,OX(m(KX +∆))) .

Remark 2.26. In Definition 2.25, the natural map

H0(XU ,OX(m(KX +∆))) → H0(U, π∗OX(m(KX +∆)))

is an isomorphism of topological vector spaces since U is Stein (see, for example, [P,
Lemma II.1]).

The following remark is almost obvious by definition. We state it explicitly for the sake
of completeness.



12 OSAMU FUJINO

Remark 2.27. In Definition 2.25, if

s ∈ A(XU ,OX(m(KX +∆))) (resp. PA (XU ,OX(m(KX +∆))),

then

sl ∈ A(XU ,OX(lm(KX +∆))) (resp. PA (XU ,OX(lm(KX +∆)))

for every positive integer l. Moreover, if A (XU ,OX(m(KX +∆))) generates OX(m(KX+
∆)) over U , then A (XU ,OX(lm(KX +∆))) generates OX(lm(KX +∆)) over U for every
positive integer l. Similarly, if PA (XU ,OX(m(KX +∆))) generates OX(m(KX+∆)) over
U , then PA (XU ,OX(lm(KX +∆))) generates OX(lm(KX+∆)) over U for every positive
integer l.

The following remark is obvious by definition.

Remark 2.28. In Definition 2.25, if (X,∆) is kawamata log terminal, then any section
s ∈ H0(XU ,OX(m(KX +∆))) is preadmissible by definition.

In our complex analytic setting, we can reformulate Claim (An) and Claim (Bn) in the
proof of [Fuj1, Lemma 4.9] as follows. We note that (X,∆X) is sub log canonical when
X is smooth and ∆X is a subboundary Q-divisor such that Supp∆X is a simple normal
crossing divisor. For sub log canonical pairs, we can define log canonical centers as in
Definition 2.2.

Lemma 2.29. Let p : Z → X be a projective bimeromorphic morphism of smooth complex
varieties and let π : X → Y be a projective morphism of complex varieties. Let W be a
compact subset of Y . Let ∆Z (resp. ∆X) be a subboundary Q-divisor on Z (resp. X) such
that Supp∆Z (resp. Supp∆X) is a simple normal crossing divisor on Z (resp. X). We
assume that KZ+∆Z = p∗(KX+∆X). Let m be a positive integer such that m(KX+∆X)
is Cartier.Then the following statements hold over some open neighborhood of W .

(i) If T is a log canonical center of (X,∆X), then there exists a log canonical center
S of (Z,∆Z) such that p : S → T is bimeromorphic. In particular,

p∗OS(m(KS +∆S)) ≃ OT (m(KT +∆T )),

where KS +∆S := (KZ +∆Z)|S and KT +∆T := (KX +∆X)|T by adjunction.
(ii) If S is a log canonical center of (Z,∆Z) such that p : S → π(S) =: T is not

bimeromorphic, then there exists a log canonical center S ′ of (Z,∆Z) with S
′ ⊂ S

such that p : S ′ → T is bimeromorphic and the restriction map

p∗OS(m(KS +∆S)) → p∗OS′(m(KS′ +∆S′)),

induced by the inclusion S ′ ↪→ S and adjunction, is an isomorphism, where KS′ +
∆S′ := (KZ +∆Z)|S′ by adjunction. We note that

p∗OS′(m(KS′ +∆S′)) ≃ OT (m(KT +∆T ))

obviously holds.

Sketch of Proof of Lemma 2.29. With suitable modifications, the proofs of Claims (An)
and (Bn) in the proof of [Fuj1, Lemma 4.9] also work in our setting (see also [Fuj2, Lemma
7.2]). Therefore, we only sketch the argument here.

We can verify (i) by induction on the dimension of X. To prove (ii), by blowing up Z
along the center S, we may assume that S is a divisor on Z. Using (i), we can reduce
the problem to the case where p : Z → X is a finite composition of blow-ups with centers
corresponding to S. The statement then follows by a direct check. �
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We will freely use Lemma 2.29 in subsequent sections.

3. Finiteness of relative log pluricanonical representations

In this section, we prove Theorem 1.2 and Corollary 1.3. We note that the proof of
Theorem 1.2 relies on Theorem 2.23. We begin with an elementary lemma.

Lemma 3.1. Let Y be a complex manifold, which is connected. Let

ρ : G→ GL(r,OY )

be a group homomorphism. We further consider

ρy := evy ◦ρ : G→ GL(r,OY ) → GL(r,C),
where evy is the evaluation map at y ∈ Y . We assume that Im ρy = ρy(G) is a finite
group for every y ∈ Y . Then evy : ρ(G) → ρy(G) is an isomorphism for every y ∈ Y . In
particular, Im ρ = ρ(G) is a finite group.

Proof. It is obvious that evy : ρ(G) → ρy(G) is surjective for every y ∈ Y . We take an
arbitrary point y0 ∈ Y . It is sufficient to prove that evy0 : ρ(G) → ρy0(G) is injective.
We take g ∈ ρ(G) such that evy0(g) = Er, where Er is the r × r identity matrix. Note
that evy(g) is semisimple and every eigenvalue of evy(g) is a root of unity for every y ∈ Y
since ρy(G) is a finite group by assumption. We consider the characteristic polynomial
χ(t) := det(tEr−g). The coefficients of χ(t) are holomorphic and take values in K, where
K is the subfield of C generated by all roots of unity. Hence they are constant. Since
evy0(g) = Er, we see that every eigenvalue of evy(g) is 1 for every y ∈ Y . This implies
that evy(g) = Er holds for every y ∈ Y because evy(g) is semisimple. Hence we have
g = Er, that is, evy0 : ρ(G) → ρy0(G) is injective. We finish the proof. �
Theorem 3.2 is one of the most important results in the present paper.

Theorem 3.2. Let π : X → Y be a projective morphism from a normal complex analytic
space X onto a polydisc Y such that (X,∆) is divisorial log terminal and that KX + ∆
is π-semiample. Let ϕ : Z → X be a projective bimeromorphic morphism from a smooth
complex analytic space Z with KZ+∆Z := ϕ∗(KX+∆) such that π ◦ϕ : Z → Y is smooth
and projective and that Supp∆Z is a simple normal crossing divisor on Z and is relatively
normal crossing over Y . Let m be a positive integer such that m(KX +∆) is Cartier. We
assume that Riπ∗OX(m(KX+∆)) is locally free for every i and π∗OX(m(KX+∆)) ≃ O⊕r

Y

for some positive integer r. We consider

ρm : Bim(X/Y,∆) → GL(r,OY ) ≃ AutOY
(π∗OX(m(KX +∆)))

and

ρm,y := evy ◦ρm : Bim(X/Y,∆) → GL(r,OY ) → GL(r,C),
where evy is the evaluation map at y ∈ Y . Then Im ρm,y is a finite group for every y ∈ Y .
Moreover,

evy : Im ρm → Im ρm,y

is an isomorphism for every y ∈ Y . In particular, Im ρm is a finite group.
We note that, in the above setting, Xy := π−1(y) is a normal projective scheme, (Xy,∆y)

is divisorial log terminal, where KXy +∆y := (KX +∆)|Xy , and

(3.1) evy : π∗OX(m(KX +∆)) → H0(Xy,OXy(m(KXy +∆y)))

by the base change theorem.
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Remark 3.3. In Theorem 3.2, X is not necessarily connected.

Let us prove Theorem 3.2.

Proof of Theorem 3.2. By Lemma 3.1, it is sufficient to prove the finiteness of Im ρm,y for
every y ∈ Y . In Step 1, we will prove the description (3.1) of the evaluation map evy.
Then, in Step 2, we will prove the finiteness of Im ρm,y.

Step 1. We put d := dim Y . We note that Y is a polydisc by assumption. We take general

hyperplanesH1, · · · , Hd on Y passing through y. Then
(
X,∆+

∑d
i=1 π

∗Hi

)
is a divisorial

log terminal pair. We note that (π ◦ ϕ)∗
(∑d

i=1Hi

)
and Supp

(
∆Z + (π ◦ ϕ)∗

(∑d
i=1Hi

))
are simple normal crossing divisors on Z. By construction, Xy is a log canonical center

of
(
X,∆+

∑d
i=1 π

∗Hi

)
. This implies that Xy is normal and (Xy,∆y) is divisorial log

terminal. Since Riπ∗OX(m(KX +∆)) is locally free for every i by assumption, we have

π∗OX(m(KX +∆))⊗ C(y) ≃ H0(Xy,OXy(m(KXy +∆y)))

by the base change theorem. Hence we have the desired description (3.1) of the evaluation
map evy.

Step 2. We take an arbitrary element g of Bim(X/Y,∆). By Theorem 2.24, it is sufficient
to prove that the order of ρm,y(g) = evy ◦ρm(g) is uniformly bounded. We make H1 general
in Step 1 and put Y ′ := H1, X

′ := π∗H1, and KX′ +∆′ := (KX +X ′ +∆)|X′ . Then the
above g induces g′ ∈ Bim(X ′/Y ′,∆′) such that evy ◦ρm(g) = evy ◦ρ′m(g′) holds, where

ρ′m : Bim(X ′/Y ′,∆′) → AutOY ′ (π∗OX′(m(KX′ +∆′))) .

By repeating this process finitely many times, we may assume that Y is a disc. Hence Xy

is a divisor on X.
We first assume that Xy is connected. Let l be the number of the log canonical strata

of (Xy,∆y). We consider

ρm : Bir(V,∆V ) → AutC
(
H0(V,OV (m(KV +∆V )))

)
,

where (V,∆V ) is a log canonical stratum of (Xy,∆y). Since KV + ∆V is semiample,
ρm (Bir(V,∆V )) is a finite group by Theorem 2.23. Then we put

k := lcm {#ρm (Bir(V,∆V )) | (V,∆V ) is a log canonical stratum of (Xy,∆y)}

Claim. ρm,y(g)
l!k = Er holds.

Proof of Claim. We consider log canonical strata (T,∆T ) of (Xy,∆y) satisfying that the
natural restriction map

(3.2) H0(Xy,OXy(m(KXy +∆y))) → H0(T,OT (m(KT +∆T )))

is an isomorphism. We put t := min dim T .
Let (T,∆T ) be a t-dimensional log canonical stratum of (Xy,∆y) such that the natural

restriction map (3.2) is an isomorphism. We consider the following commutative diagram
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as in Definition 2.17

X†

β

  B
BB

BB
BB

B
α

~~||
||
||
||

X

π
!!B

BB
BB

BB
B

g //_______ X

π
}}||
||
||
||

Y

where g is a B-bimeromorphic map of (X,∆) over Y taken above. By shrinking Y around
y, we may assume that X† is smooth, α and β are projective, and

α∗(KX +∆) =: KX† +∆X† := β∗(KX +∆)

such that Supp∆X†∪Supp(π◦α)∗y is a simple normal crossing divisor on X†. We take X†

suitably. Then, by Lemma 2.29 (see also the proof of [Fuj1, Lemma 4.9] and [FG, Lemma
2.16]), we can find a log canonical stratum (T ′,∆T ′) of (Xy,∆y) and a commutative
diagram

T †

β|
T†

$$I
II

II
II

IIα|
T†

{{ww
ww
ww
ww
w

(T,∆T ) (T ′,∆T ′)

such that α|T † and β|T † are proper birational and that

(β|T †) ◦ (α|T †)−1 : (T,∆T ) 99K (T ′,∆T ′)

is a B-birational map of projective divisorial log terminal pairs. Note that there are only
finitely many log canonical strata contained in Xy. Thus we can find t-dimensional log
canonical strata (Si,∆Si

) of (Xy,∆y) for 1 ≤ i ≤ p and a natural embedding

H0(Xy,OXy(m(KXy +∆y))) ↪→
⊕
i

H0(Si,OSi
(m(KSi

+∆Si
)))

such that g induces g̃ ∈ Bir(S,∆S), where (S,∆S) :=
⊔
i(Si,∆Si

), satisfying the following
commutative diagram:

0 // H0(Xy,OXy(m(KXy +∆y)))

ρm,y(g)

��

//
⊕

iH
0(Si,OSi

(m(KSi
+∆Si

)))

ρm(g̃)

��
0 // H0(Xy,OXy(m(KXy +∆y))) //

⊕
iH

0(Si,OSi
(m(KSi

+∆Si
))).

We note the following description of ρm,y(g). Let V be the union of the irreducible
components of (∆X† + (π ◦ α)∗y)=1 mapped to y. We put

KV +∆V := (KX† +∆X† + (π ◦ α)∗y)|V .
Then we can check that α∗OV ≃ OXy ≃ β∗OV holds, which is an easy consequence of
the strict support condition established in [Fuj13, Theorem 1.1 (i)] (see, for example, the
proof of Lemma 4.2 below). Thus ρm,y(g) can be written as

ρm,y : H
0(Xy,OXy(m(KXy +∆y)))

β∗
−→ H0(V,OV (m(KV +∆V )))

(α∗)−1

−→ H0(Xy,OXy(m(KXy +∆y))).
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Since ρm(g̃)
l!k = id on

⊕
iH

0(Si,OSi
(m(KSi

+ ∆Si
))) by the definitions of l and k, we

have ρm,y(g)
l!k = Er. This is what we wanted. �

We note that l!k is independent of g. Therefore, Claim implies that Im ρm,y, which is a
subgroup of GL(r,C), is a finite group by Burnside’s theorem (see Theorem 2.24). Thus
we finish the proof under the assumption that Xy is connected.
From now, we assume that Xy is not connected. Let a denote the number of the

connected components of Xy. Then g
a! preserves each connected component of Xy. Thus,

by the above argument, we can take a positive integer b such that ρm,y(g)
b = Er holds for

every g ∈ Bim(X/Y,∆). Thus, by Burnside’s theorem (see Theorem 2.24), we see that
Im ρm,y is a finite group.

We finish the proof. �
We can prove Theorem 1.2 as an easy application of Theorem 3.2.

Proof of Theorem 1.2. Let U be a nonempty open subset of Y . We consider the following
commutative diagram

ρm : Bim(X/Y,∆)

��

// AutOY
(π∗OX(m(KX +∆)))

��

ρm : Bim(π−1(U)/U,∆|π−1(U)) // AutOU

(
π∗Oπ−1(U)(m(KX +∆))

)
.

Note that the vertical arrows are natural restriction maps. It is obvious that the restriction
map

AutOY
(π∗OX(m(KX +∆))) → AutOU

(
π∗Oπ−1(U)(m(KX +∆))

)
is injective since Y is irreducible and every irreducible component of X is dominant
onto Y . Hence, in order to prove Theorem 1.2, we can freely replace Y with a small
nonempty open subset of Y . We take a Stein compact subset W of Y such that Γ(W,OY )
is noetherian. Then, by [Fuj12, Theorems 1.21 and 1.27], we can take a dlt blow-up
ψ : (X ′,∆′) → (X,∆). By replacing π : (X,∆) → Y with π′ := π ◦ ψ : (X ′,∆′) → Y ,
we may further assume that (X,∆) is divisorial log terminal. By taking a resolution of
singularities of X (see, for example, [BieM2]) and shrinking Y suitably, we may assume
that π : (X,∆) → Y satisfies all the conditions in Theorem 3.2. Then, by Theorem 3.2,
ρm (Bim(X/Y,∆)) is a finite group. This is what we wanted. We finish the proof. �
Let us prove Corollary 1.3, which is almost obvious by Theorem 1.2. We will use it in

the proof of Theorem 1.1.

Proof of Corollary 1.3. We decompose (X,∆) =:
⊔
i(Xi,∆i) such that πi := π|Xi

: Xi →
Yi := π(Xi) is surjective and every irreducible component of Xi is dominant onto Yi for
every i. We may assume that Yi ̸= Yj for i ̸= j. Since U is a semianalytic Stein open
subset of Y with U ⊂ W , Yi ∩ U is a finite disjoint union of semianalytic Stein open
subsets of Yi (see, for example, [BieM1, Corollary 2.7]). Let U ′ be a connected component
of Yi ∩ U . Then, by Theorem 1.3, the image of

(3.3) ρm : Bim
(
π−1
i (U ′)/U ′,∆i|π−1

i (U ′)

)
→ AutOU′

(
πi∗Oπ−1

i (U ′)(m(KXi
+∆i))

)
is a finite group. Note that there exists a natural restriction map

(3.4) Bim(X/Y,∆;W ) → Bim
(
π−1
i (U ′)/U ′,∆i|π−1

i (U ′)

)
.
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By the natural restriction map (3.4),

ρWU ′

m : Bim(X/Y,∆;W ) → AutOU′

(
πi∗Oπ−1

i (U ′)(m(KXi
+∆i))

)
factors through ρm in (3.3). Thus, we have

ρWU ′

m (Bim(X/Y,∆;W )) ⊂ ρm

(
Bim

(
π−1
i (U ′)/U ′,∆i|π−1

i (U ′)

))
.

Since ρWU
m (Bim(X/Y,∆;W )) is contained in∏

U ′

ρWU ′

m (Bim(X/Y,∆;W )),

where U ′ runs over all connected components of Yi ∩ U for all i. Hence we see that
ρWU
m (Bim(X/Y,∆;W )) is a finite group. We finish the proof. �

4. Abundance for semi-log canonical pairs

In this section, we prove Theorem 1.1. Our strategy follows that of [Fuj1], except that
we make use of the minimal model program for projective morphisms between complex
analytic spaces established in [Fuj12], [EH1], and [EH2].

The following lemma is well known and follows easily from the relative Kawamata–
Viehweg vanishing theorem.

Lemma 4.1 (Connectedness lemma). Let (X,∆) be a log canonical pair and let π : X →
Y be a projective morphism of complex analytic spaces with π∗OX ≃ OY . Assume that
−(KX +∆) is π-nef and π-big. Then Nklt(X,∆) ∩ π−1(y) is connected for every y ∈ Y ,
where Nklt(X,∆) denotes the non-kawamata log terminal locus of (X,∆). In particular,
if (X,∆− ⌊∆⌋) is kawamata log terminal, ⌊∆⌋ ∩ π−1(y) is connected for every y ∈ Y .

Proof. The usual proof in the algebraic setting can work with only some suitable modifi-
cations. This is because the Kawamata–Viehweg vanishing theorem holds for projective
morphisms between complex analytic spaces. In this proof, we can freely shrink Y around
y. We consider the following short exact sequence:

0 → J (X,∆) → OX → ONklt(X,∆) → 0,

where J (X,∆) denotes the multiplier ideal sheaf of (X,∆). By the relative Kawamata–
Viehweg–Nadel vanishing theorem, we have

0 → π∗J (X,∆) → OY → π∗ONklt(X,∆) → 0.

This implies that Nklt(X,∆) ∩ π−1(y) is connected. �
The following lemma also asserts that the union of log canonical centers is connected

under a suitable setting. Lemma 4.2 is substantially more difficult than Lemma 4.1. Its
proof relies heavily on the strict support condition established in [Fuj13, Theorem 1.1 (i)]
(see also [Fuj17] and [FF]).

Lemma 4.2. Let (X,∆) be a log canonical pair and let π : X → Y be a projective mor-
phism of normal complex varieties with π∗OX ≃ OY . Let W be a compact subset of Y .
We assume that KX +∆ ∼Q,π 0 holds. We put Y ′ :=

⋃
i π(Ci) ⊊ Y , where {Ci} is a set

of some log canonical centers of (X,∆). Let X ′ be the union of the log canonical centers
of (X,∆) mapped to Y ′ by π. Then, after shrinking Y around W suitably, π∗OX′ ≃ OY ′

holds. In particular, π∗OX′ ≃ OY ′ holds on an open subset U contained in W .
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Proof. Throughout this proof, we will freely shrink Y around W without mentioning
it explicitly. Let p : Z → X be a projective bimeromorphic morphism from a smooth
complex variety Z with KZ + ∆Z := p∗(KX + ∆) (see [BieM2]). We may assume that
(π ◦ p)−1(Y ′) and p−1(X ′) are simple normal crossing divisors on Z. We may further
assume that the union of (π ◦ p)−1(Y ′), p−1(X ′), and Supp∆Z is contained in a simple
normal crossing divisor on Z. Let V be the union of the irreducible components of ∆=1

Z

mapped to Y ′ by π ◦ p. We put A := ⌈−(∆<1
Z )⌉, which is a p-exceptional effective divisor

on Z. By assumption, we have

A− V − (KZ +∆=1
Z − V + {∆Z}) ∼Q,π◦p 0.

We consider the following short exact sequence

0 → OZ(A− V ) → OZ(A) → OV (A) → 0.

We note that no log canonical centers of (Z,∆=1
Z −V +{∆Z}) map to Y ′ by construction.

Then we have

0 → (π ◦ p)∗OZ(A− V ) → OY → (π ◦ p)∗OV (A) → 0.

Here we used the strict support condition for R1(π ◦ p)∗OZ(A− V ) (see [Fuj13, Theorem
1.1 (i)]) in order to prove the connecting homomorphism

δ : (π ◦ p)∗OV (A) → R1(π ◦ p)∗OZ(A− V )

is zero. This implies that (π ◦ p)∗OV (A) ≃ OY ′ holds. Similarly, we have the short exact
sequence

0 → p∗OZ(A− V ) → OX → p∗OV (A) → 0

since no log canonical centers of (Z,∆=1
Z − V + {∆Z}) map to X ′ by construction. This

implies that p∗OV (A) ≃ OX′ . Hence we have π∗OX′ ≃ OY ′ . We finish the proof of Lemma
4.2. �

As a straightforward corollary of Lemma 4.2, we obtain the following:

Corollary 4.3 ([Fuj1, Lemma 4.2]). Let (X,∆) be a divisorial log terminal pair and let
π : X → Y be a projective morphism of normal complex varieties with π∗OX ≃ OY . Let
W be a compact subset of Y . We assume that KX+∆ ∼Q,π 0 holds. If Y ′ := π(⌊∆⌋) ⊊ Y ,
then, after shrinking Y around W suitably, we have π∗O⌊∆⌋ ≃ OY ′.

Proof. Since (X,∆) is divisorial log terminal, ⌊∆⌋ is the union of all log canonical centers
of (X,∆). Therefore, by Lemma 4.2, we have π∗O⌊∆⌋ ≃ OY ′ . �

The following lemma, which serves as a toy model for Lemma 4.5 and Proposition 4.6
below, is sufficient for the purposes of [Fuj2], [Fuj5], [Fuj8], and [G2]. Therefore, we do
not need to address any subtle issues when KX +∆ is numerically trivial.

Lemma 4.4. Let (X,∆) be a projective Q-factorial divisorial log terminal pair such that
KX+∆ ∼Q 0. Assume that ⌊∆⌋ is not connected. Then ⌊∆⌋ = S1+S2 such that (Si,∆Si

)
is kawamata log terminal with KSi

+∆Si
:= (KX +∆)|Si

for i = 1, 2 and that (S1,∆1) is
B-birationally equivalent to (S2,∆S2). In particular, (X,∆) is purely log terminal.

Proof. Note that KX + ∆ − ε⌊∆⌋ is not pseudo-effective for a small positive rational
number ε. By running a (KX + ∆ − ε⌊∆⌋)-minimal model program with ample scaling
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(see [BCHM]), we finally get an extremal Fano contraction morphism, which is generically
a P1-bundle with two disjoint sections. More precisely, we have

p : X //___ X ′

φ

��
V

where p : X 99K X ′ is a finite sequence of flips and divisorial contractions and ϕ : X ′ → V
is a (KX′ + ∆′ − ε⌊∆′⌋)-negative extremal Fano contraction with dim V = dimX − 1,
where ∆′ := p∗∆. We know that the number of connected components of ⌊∆⌋ is preserved
by the above minimal model program, as we apply Lemma 4.1 at each step. Hence we
obtain that ⌊∆′⌋ = S ′

1+S
′
2, ϕ : S

′
i → V is an isomorphism for i = 1, 2, and S ′

1∩S ′
2 = ∅. By

using [AFKM, 12.3.4 Theorem], we can check that ϕ : (S ′
i,∆S′

i
) → (V, P ) is a B-birational

isomorphism for some effective Q-divisor P on V , where KS′
i
+ ∆S′

i
:= (KX′ + ∆′)|S′

i
.

Then, by Lemma 4.2, we see that there are no log canonical centers except ⌊∆′⌋. This
implies that (X ′,∆′) is purely log terminal. Hence, (X,∆) is purely log terminal and
(S1,∆S1) is B-birationally equivalent to (S2,∆S2). This is what we wanted. �

The following lemma is crucial.

Lemma 4.5. Let (X ′,∆′) be a log canonical pair and let π′ : X ′ → Y be a projective
surjective morphism of normal complex varieties. Let W be a Stein compact subset of Y
such that Γ(W,OY ) is noetherian. Assume that X ′ is Q-factorial over W . Let f ′ : X ′ → Z
be a projective surjective morphism of normal complex varieties over Y such that KX′ +
∆′ ∼Q,f ′ 0, and πZ : Z → Y is projective, where πZ is the structure morphism. Assume
that (X ′,∆′ − ε⌊∆′⌋) is kawamata log terminal for some small positive rational number ε
and there exists a (KX′+∆′−ε⌊∆′⌋)-negative extremal Fano contraction ϕ := ϕR : X

′ → V
over Z associated to an extremal ray R of NE(X ′/Z; π−1

Z (W )) with dimV = dimX ′ − 1.
Note that V is Q-factorial over W and has only kawamata log terminal singularities.

X ′

f ′

  A
AA

AA
AA

A

π′

��

φ // V

��
Y ZπZ

oo

Then the horizontal part (∆′)h of ⌊∆′⌋ with respect to ϕ satisfies one of the following
conditions.

(I) (∆′)h = D′
1, which is irreducible, and deg[D′

1 : V ] = 1.
(II) (∆′)h = D′

1 +D′
2 such that D′

i is irreducible and deg[D′
i : V ] = 1 for i = 1, 2.

(III) (∆′)h = D′
1, which is irreducible, and deg[D′

1 : V ] = 2.

We define ∆D′
i
by

KD′
i
+∆D′

i
= (KX′ +∆′)|D′

i

for i = 1, 2. Let νi : D
′ν
i → D′

i be the normalization for i = 1, 2. We put

KD′ν
i
+∆D′ν

i
:= ν∗i (KD′

i
+∆D′

i
)

for i = 1, 2. After shrinking Y around W suitably, we have the following statements.

Case (I). ⌊∆′⌋ ∩ ϕ−1(v) is connected for every v ∈ V .
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Case (II). The number of the connected components of ⌊∆′⌋ ∩ ϕ−1(v) is at most two for
every v ∈ V and

(ϕ ◦ ν2)−1 ◦ (ϕ ◦ ν1) : (D′ν
1 ,∆D′ν

1
) 99K (D′ν

2 ,∆D′ν
2
)

is a B-bimeromorphic map over V .

Case (III). The number of the connected components of ⌊∆′⌋∩ϕ−1(v) is at most two for
every v ∈ V and there exists a B-bimeromorphic map

ι : (D′ν
1 ,∆D′ν

1
) 99K (D′ν

1 ,∆D′ν
1
)

over V with ι ̸= id and ι2 = id.

Moreover, in (II) and (III), if ⌊∆′⌋ ∩ ϕ−1(v) is not connected for some v ∈ V , then
(X ′,∆′) is purely log terminal in a neighborhood of ϕ−1(v).

More details on Cases (II) and (III) will be discussed in the following proof.

Proof of Theorem 4.5. We have Riϕ∗OX′ = 0 by the relative Kawamata–Viehweg van-
ishing theorem. Therefore, we see that general fibers of ϕ : X ′ → V are P1. Hence the
mapping degree of (∆′)h, the horizontal part of ⌊∆′⌋, is at most two. Therefore, we have
(I), (II), and (III).

In Case (I), (∆′)h = D′
1 is irreducible and ϕ-ample. Since ϕ is an extremal Fano

contraction, the vertical part of ⌊∆′⌋ is the pull-back of some effective Q-divisor on V .
Hence ⌊∆′⌋ ∩ ϕ−1(v) is connected for every v ∈ V .

In Case (II), we consider the following commutative diagram

D′
i

��

D′ν
i

ρi~~}}
}}
}}
}}

νioo

D†
i

ψi

��
V

where D′
i → D†

i → V is the Stein factorization for i = 1, 2. Since the mapping degree

deg[D′
i : V ] = 1, ψi : D

†
i → V is an isomorphism for i = 1, 2. We put

KD†
i
+∆D†

i
:= ρi∗(KDν

i
+∆Dν

i
)

for i = 1, 2. Then we can check that

ψ−1
2 ◦ ψ1 : (D

†
1,∆D†

1
) → (D†

2,∆D†
2
)

is a B-bimeromorphic isomorphism. More precisely, by taking general hyperplane cuts
and applying [AFKM, 12.3.4 Theorem] to our setting, we see that there exists an effective

Q-divisor P on V such that ψi : (D
†
i ,∆D†

i
) → (V, P ) is a B-bimeromorphic isomorphism

for i = 1, 2. Hence

(ϕ ◦ ν2)−1 ◦ (ϕ ◦ ν1) : (D′ν
1 ,∆D′ν

1
) 99K (D′ν

2 ,∆D′ν
2
)

is a B-bimeromorphic map over V .
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In Case (III), we consider the following commutative diagram

D′
1

��

D′ν
1

ρ1
��

ν1oo

D†
1

��

D†ν
1

ν†1oo

}}{{
{{
{{
{{

V

where D′
1 → D†

1 → V is the Stein factorization and ν†1 : D
†ν
1 → D†

1 is the normalization.
We put

KD†ν
1
+∆D†ν

1
:= ρ1∗(KD′ν

1
+∆D′ν

1
).

Then there exists an isomorphism ι† : D†ν
1 → D†ν

1 over V such that ι† ̸= id and (ι†)2 =
id (see, for example, [EH1, Lemma 2.24 and Corollary 2.26]). Over a nonempty open

subset of V over which D†
1 is a union of two sections, the situation is the same as in

Case (II). Where D†
1 → V is a ramified double cover of smooth varieties, D†ν

1 → D†
1 is

an isomorphism and the ramification locus is ι†-invariant. Hence we can check that ι†

preserves ∆D†ν
1
. Therefore, we obtain a B-bimeromorphic involution map

ι : (D′ν
1 ,∆D′ν

1
) 99K (D′ν

1 ,∆D′ν
1
)

over V .
We assume that ⌊∆′⌋ ∩ϕ−1(v) is not connected in (II) and (III). Then D′

i is finite over

some open neighborhood of v. Therefore, D′
i → D†

i is an isomorphism for i = 1, 2. In
particular, D′

i is normal for i = 1, 2. By Lemma 4.2, we can prove that there are no
log canonical centers except (∆′)h over some open neighborhood of v. This means that
(X ′,∆′) is purely log terminal in a neighborhood of ϕ−1(v). This is what we wanted.

We finish the proof of Lemma 4.5. �
By Lemma 4.5, we have:

Proposition 4.6. Let (X,∆) be a divisorial log terminal pair and let π : X → Y be a
projective surjective morphism of normal complex varieties. Let W be a Stein compact
subset of Y such that Γ(W,OY ) is noetherian. Assume that X is Q-factorial over W .
Let f : X → Z be a projective surjective morphism of normal complex varieties over Y
such that f∗OX ≃ OZ, KX + ∆ ∼Q,f 0, and πZ : Z → Y is projective, where πZ is the
structure morphism. We further assume that ⌊∆⌋ ∩ f−1(z) is not connected for some
z ∈ π−1

Z (W ). Then, after shrinking Y around W suitably, the number of the connected
components of ⌊∆⌋ ∩ f−1(z) is at most two for every z ∈ Z. There exists a meromorphic
map q : X 99K V over Z whose general fiber is P1 such that V is Q-factorial over W and
has only kawamata log terminal singularities. The horizontal part ∆h of ⌊∆⌋ with respect
to q satisfies one of the following conditions.

(i) ∆h = D1, which is irreducible, the mapping degree deg[D1 : V ] = 2, and there is a
B-bimermorphic involution on (D1,∆D1) over Z.

(ii) ∆h = D1 +D2 such that Di is irreducible for i = 1, 2 and

(q|D2)
−1 ◦ (q|D1) : (D1,∆D1) 99K (D2,∆D2)

is a B-bimeromorphic map over Z.
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We note that KDi
+∆Di

:= (KX+∆)|Di
and (Di,∆Di

) is divisorial log terminal for i = 1, 2.
More precisely, by a (KX + ∆ − ε⌊∆⌋)-minimal model program with ample scaling over
Z around π−1

Z (W ), after shrinking Y around W suitably, we have p : (X,∆) 99K (X ′,∆′)
over Z and (X ′,∆′) satisfies (II) or (III) in Lemma 4.5.

X

q
''P

PPPPPPP

f

��0
00
00
00
00
00
00
00

π

��

p //_______ X ′

φ

��
V

~~}}
}}
}}
}}

Y ZπZ
oo

The reader can find more details in the following proof.

Proof of Proposition 4.6. The idea of the proof is very simple. By running a suitable
minimal model program, we reduce the problem to Lemma 4.5. We note that we need
the minimal model program established in [EH2] in Step 1. The minimal model program
treated in [Fuj12] is sufficient for Step 2.

Step 1. In this step, we assume that ⌊∆⌋ is not dominant onto Z. Under this assumption,
we will prove that ⌊∆⌋ ∩ f−1(z) is connected for every z ∈ π−1

Z (W ).
We take an arbitrary point z ∈ π−1

Z (W ) and a Stein compact subset Wz of Z such that
Γ(Wz,OZ) is noetherian and z ∈ Wz. By [EH2, Theorem 1.2], we can run a (KX +∆ −
ε⌊∆⌋)-minimal model program with ample scaling over Z around Wz. We finally get a
commutative diagram

X
p //_______

f   @
@@

@@
@@

@ X ′

f ′~~}}
}}
}}
}}

Z

around Wz such that p is a finite composite of flips and divisorial contrations and that
KX′ + ∆′ − ε⌊∆′⌋ is nef over Wz, where ∆′ := p∗∆. This implies that ⌊∆′⌋ ∩ f ′−1(z) is
connected, where f ′ : X ′ → Z is the structure morphism. More precisely, we have ⌊∆′⌋ ∩
f ′−1(z) = ∅ or f ′−1(z) ⊂ Supp⌊∆′⌋. Since the number of the connected components of
⌊∆⌋∩f−1(z) is preserved by the above minimal model program by Lemma 4.1, ⌊∆⌋∩f−1(z)
is connected.

Step 2. In this step, we assume that ⌊∆⌋ is dominant onto Z. Then KX + ∆ − ε⌊∆⌋
is not pseudo-effective over Z. By [Fuj12, Theorem 1.1 and Lemma 9.4], we can run
a (KX + ∆ − ε⌊∆⌋)-minimal model program with ample scaling over Z around WZ :=
π−1
Z (W ). Then we obtain a finite sequence of divisorial contractions and flips

p : X =: X0 99K X1 99K · · · 99K Xm =: X ′

such that there exists a (KX′+∆′−ε⌊∆′⌋)-negative extremal Fano contraction ϕ : X ′ → V
over Z. If dim V ≤ dimX−2, then ⌊∆′⌋∩ϕ−1(v) is connected for every v ∈ V since ⌊∆′⌋
is ϕ-ample. This implies that ⌊∆′⌋ ∩ f ′−1(z) is connected for every z ∈ π−1

Z (W ). Since
the above minimal model program preserves the number of the connected components of
⌊∆⌋ ∩ f−1(z) by Lemma 4.1, ⌊∆⌋ ∩ f−1(z) is connected for every z ∈ W . Hence, from
now, we may assume that dim V = dimX − 1. In this case, we have already described
the situation in Lemma 4.5. Case (III) (resp. (II)) in Lemma 4.5 implies (i) (resp. (ii)).
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We finish the proof of Proposition 4.6. �
Before presenting our gluing argument, we state an elementary but important lemma.

Here, we need the finiteness of relative log pluricanonical representations (see Corollary
1.3).

Lemma 4.7 ([Fuj1, Lemma 4.9]). Let (X,∆) be an equidimensional (not necessarily
connected) divisorial log terminal pair and let π : X → Y be a projective morphism of
complex analytic spaces such that KX + ∆ is π-semiample. Let W be a compact subset
of Y and let U be a Stein open subset of Y with U ⊂ W . We further assume that U is
semianalytic. We put G := ρWU

m (Bim(X/Y,∆;W )). Then G is a finite group. We put
XU := π−1(U). If

s ∈ PA (XU ,OX(m(KX +∆))) ,

then g∗s|⌊∆⌋ = s|⌊∆⌋ and

g∗s ∈ PA (XU ,OX(m(KX +∆)))

for every g ∈ G. In particular,∑
g∈G

g∗s ∈ A (XU ,OX(m(KX +∆))) ,

∏
g∈G

g∗s ∈ A (XU ,OX(m|G|(KX +∆))) ,

and ∏
g∈G

g∗s|⌊∆⌋ =
(
s|⌊∆⌋

)|G|
.

Of course,

1

|G|
∑
g∈G

g∗s|⌊∆⌋ = s|⌊∆⌋

holds.

Proof. By Corollary 1.3, G is a finite group. Then, by Lemma 2.29, it is not difficult to
see that the proof of [Fuj1, Lemma 4.9] works in our complex analytic setting. Hence we
omit the details here. �
The following lemma is required for our inductive gluing argument.

Lemma 4.8 ([Fuj1, Lemma 4.7]). Let π : X → Y be a projective morphism of complex
analytic spaces such that (X,∆) is an equidimensional divisorial log terminal pair and
that KX+∆ is π-semiample. Let W be a compact subset of Y and let U be a semianalytic
Stein open subset of Y with U ⊂ W . Assume that PA(XU ,OX(m(KX + ∆))) generates
OX(m(KX+∆)) over U . Then there exists a sufficiently divisible positive integer m′ such
that A(XU ,OX(m

′m(KX +∆))) generates OX(m
′m(KX +∆)) over U .

Proof. We put G := ρWU
m (Bim(X/Y,∆;W )). Then G is a finite group by Corollary 1.3.

We put G := {g1, · · · , gN} with N := |G|. Let σi be the ith elementary symmetric
polynomial for 1 ≤ i ≤ N . Then we have

{s = 0} ⊃
N⋂
j=1

{g∗j s = 0} =
N⋂
i=1

{σi(g∗1s, · · · , g∗Ns) = 0}.
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By Lemma 4.7, we see that

σi(g
∗
1s, · · · , g∗Ns) ∈ A(XU ,OX(im(KX +∆)))

for every i. Therefore, by considering

σ
N !/i
i (g∗1s, · · · , g∗Ns) ∈ A(XU ,OX(N !m(KX +∆)))

for s ∈ PA(XU ,OX(m(KX+∆))), we can check that A(XU ,OX(N !m(KX+∆))) generates
OX(N !m(KX+∆)) over U under the assumption that PA(XU ,OX(m(KX+∆))) generates
OX(m(KX +∆)) over U . Thus we obtain the desired statement of Lemma 4.8. We finish
the proof. �
Proposition 4.9, which is essentially the same as [Fuj1, Proposition 4.5], is a key step

of our gluing argument.

Proposition 4.9 ([Fuj1, Proposition 4.5]). Let π : X → Y be a projective morphism of
complex analytic spaces such that (X,∆) is divisorial log terminal. Let U be a semianalytic
Stein open subset of Y and let W be a Stein compact subset of Y with U ⊂ W such that X
is Q-factorial over W and that Γ(W,OY ) is noetherian. We put S := ⌊∆⌋, XU := π−1(U),
and SU := S|π−1(U). Assume that

(1) KX +∆ is π-semiample, and
(2) A (SU ,OS(m0(KX +∆))) generates OS(m0(KX + ∆)) over U for some positive

integer m0.

If necessary, we replace U with a smaller semianalytic Stein open subset of Y . Then there
exists a positive integer m1 such that m1m0 ∈ 2Z, the natural restriction map

PA (XU ,OX(m1m0(KX +∆))) → A(SU ,OS(m1m0(KX +∆)))

is surjective, and PA (XU ,OX(m1m0(KX +∆))) generates OX(m1m0(KX +∆)) over U .

Since we are working with complex analytic spaces, there are additional technical diffi-
culties. Nevertheless, the following proof is essentially the same as that of [Fuj1, Propo-
sition 4.5]. We describe it here for the reader’s convenience.

Proof of Proposition 4.9. It is sufficient to prove this proposition for each connected com-
ponent of X. Hence we may assume that X is irreducible. Throughout this proof, we will
freely shrink Y around W without mentioning it explicitly. We first take a relative Iitaka
fibration f : X → Z over Y , that is, f : X → Z is a projective surjective morphism of
normal complex analytic varieties such that f∗OX ≃ OZ and that OX(m(KX+∆)) ≃ f ∗L
holds for some positive integer m and a πZ-ample line bundle L on Z, where πZ : Z → Y
is the structure morphism.

X

π
  @

@@
@@

@@
@

f // Z

πZ��~~
~~
~~
~~

Y

If S = ⌊∆⌋ = 0, then there is nothing to prove. Therefore, we may assume that S =
⌊∆⌋ ̸= 0. Then we have the following four cases:

(1) Z is a point and S is connected,
(2) dimZ ≥ 1, S ∩ f−1(z) is connected for every z ∈ Z, and f(S) = Z,
(3) dimZ ≥ 1, S ∩ f−1(z) is connected for every z ∈ Z, and f(S) ⊊ Z, and
(4) S ∩ f−1(z) is not connected for some z ∈ Z.
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Step 1. In this step, we will treat (1).
When Z is a point, X is projective and KX +∆ ∼Q 0. We consider the following long

exact sequence:

0 → H0(X,OX(m0(KX +∆)− S)) → H0(X,OX(m0(KX +∆)))

→ H0(S,OS(m0(KX +∆))) → · · · .
Since KX + ∆ ∼Q 0 and S ̸= 0, we obtain that H0(X,OX(m0(KX + ∆) − S)) = 0 and
that the second and the third terms are one-dimensional. Hence we obtain the desired
statement.

Step 2. In this step, we will treat (2).
By taking a divisible positive integer m such that A(SU ,OS(m(KX + ∆))) generates

OS(m(KX +∆)) over U and that OX(m(KX +∆)) ≃ f ∗L holds for some πZ-ample line
bundle L on Z. If necessary, we replace U with a smaller relatively compact semiana-
lytic Stein open subset of Y . By A (SU ,OS(m(KX +∆))), we can construct a morphism
Φ: S → Z ′ over U . Since every curve in any fiber of f |S over U is mapped to a point by
Φ, there exists a morphism Ψ: Z → Z ′ over U such that Ψ ◦ (f |S) = Φ. Over U , there
exists the following commutative diagram.

X

f

��

S? _oo

Φ
��

Z
Ψ

// Z ′

We note that

Φ: S
f |S // Z

Ψ // Z ′

and that f |S is surjective with connected fibers. For any

s ∈ A(SU ,OS(m(KX +∆))) ,

we can take t such that s = Φ∗t. We put u := f ∗Ψ∗t. Then

u ∈ PA (XU ,OX(m(KX +∆)))

such that u|S = s. By construction, PA (XU ,OX(m(KX +∆))) generates OX(m(KX +
∆)) over U .

Step 3. In this step, we will treat (3).
This step is a relative version of [Fuj1, Lemma 4.3]. We take a divisible positive integer

m such that OX(m(KX +∆)) ≃ f ∗L for some πZ-ample line bundle L on Z.

X

π
  @

@@
@@

@@
@

f // Z

πZ��~~
~~
~~
~~

Y

We put T := f(S) ⊊ Z. Then f∗OS ≃ OT by Corollary 4.3. Therefore, we have the
following commutative diagram:

(4.1) π∗OX(lm(KX +∆)) // π∗OS(lm(KS +∆S))

πZ∗L⊗l //

≃

OO

πZ∗
(
L⊗l|T

)
.

≃

OO
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Note that the vertical arrows are isomorphisms. If we replace U with a relatively compact
semianalytic Stein open subset and make l sufficiently large, then L⊗l⊗IT is πZ-generated
over U , where IT is the defining ideal sheaf of T on Z, and R1πZ∗

(
L⊗l ⊗ IT

)
= 0 since

L is πZ-ample. Thus, by (4.1), we have the following short exact sequence:

0 → π∗OX(lm(KX +∆)− S) → π∗OX(lm(KX +∆))

→ π∗OS(lm(KS +∆S)) → 0.
(4.2)

By definition, it is obvious that every element of H0(XU ,OX(lm(KX+∆)−S)) is contained
in PA(XU ,OX(lm(KX +∆))). By (4.2), we can extend

A (SU ,OS(lm(KS +∆S)))

to

PA (XU ,OX(lm(KX +∆)))

and check that PA (XU ,OX(lm(KX +∆))) generates OX(lm(KX +∆)) over U .

Step 4. In this step, we will treat (4).
In this case, by Proposition 4.6, we can run a (KX+∆−ε⌊∆⌋)-minimal model program

with ample scaling over Z around WZ := π−1
Z (W ) (see [Fuj12, Theorem 1.2 and Lemma

9.4]) and finally get (X ′,∆′) and a (KX′ +∆′−ε⌊∆′⌋)-negative extremal Fano contraction
ϕ : X ′ → V as in Lemma 4.5. Then we have (II) or (III) in Lemma 4.5. From now, we will
freely use the notation in Lemma 4.5 and its proof. We note that p : (X,∆) 99K (X ′,∆′)
is B-bimeromorphic over Y . The situation is summarized in the following commutative
diagram.

Di� _

��

//_______ D′
i� _

��

D′ν
i

νioo

ρi
��

X

q
''O

OOOOOOO

f

��0
00
00
00
00
00
00
00
0

π

��

p //_______ X ′

φ

��

D†ν
i

}}||
||
||
||

V

~~}}
}}
}}
}}

Y ZπZ
oo

We take any element s of A (SU ,OS(m(KS +∆S))). By Remark 2.21, we note that there
exist natural isomorphisms

H0 (XU ,OX(m(KX +∆))) ≃ H0 (X ′
U ,OX′(m(KX′ +∆′)))

and

H0 (SU ,OS(m(KS +∆S))) ≃ H0 (S ′
U ,OS′(m(KS′ +∆S′)))

induced by p, where π′ : X ′ → Y , X ′
U := π′−1(U), S ′ := ⌊∆′⌋, and S ′

U := S ′ ∩X ′
U . Hence

s induces

s′ ∈ H0 (S ′
U ,OS′(m(KS′ +∆S′))) .

Let m be a sufficiently large and divisible positive integer such that OX(m(KX +∆)) ≃
f ∗L for some line bundle L on Z. The section s′ induces a section

s′′i ∈ H0(D′ν
i ,OD′ν

i
(m(KD′ν

i
+∆D′ν

i
)))
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over U for i = 1, 2. In Case (III), s′′1 is ι-invariant. Hence s′′1 descends to a section t of LV
over U , where LV is the pull-back of L to V . In Case (II), s′′1 also naturally descends to
a section t of LV over U . In Case (III), the pull-back of ϕ∗t to D′ν

1 coincides with s′′1 by

construction. In Case (II), on a small open subset Ũ of U such that ϕ−1(Ũ) ≃ P1× Ũ and

that ϕ|φ−1(Ũ) : P1 × Ũ → Ũ is the second projection, the difference between s′′2 and the

pull-back of ϕ∗t to D′ν
2 is at most (−1)m (see the proof of [AFKM, 12.3.4 Theorem]). By

construction, it is obvious that the pull-back of ϕ∗t to D′ν
1 coincides with s′′1. Hence, we

have s′|(∆′)h = (ϕ∗t)|(∆′)h holds if m is even. From now, we will see that (ϕ∗t)|⌊∆′⌋ = s′|⌊∆′⌋
holds as in Case 4 in the proof of [Fuj1, Proposition 4.5]. Let (∆′)v be the vertical part
of ⌊∆′⌋. We can write (∆′)v =

∑
i ϕ

∗Pi such that Qi := SuppPi is a prime divisor on V
for every i and Qi ̸= Qj for i ̸= j. We put Ei := ϕ∗Pi. Then it is sufficient to check that
s′|Ei

= (ϕ∗t)|Ei
holds for every i. Let Fi be an irreducible component of Ei ∩ (∆′)h such

that ϕ : Fi → Qi is dominant. Since (∆′)h ∩ (∆′)v ̸= ∅, we can always take such Fi. We
consider the following commutative diagram:

π∗OEi
(m(KX′ +∆′)) // π∗OFi

(m(KX′ +∆′))

πV ∗ (LV |Qi
)

≃

OO

πV ∗ (LV |Qi
) ,

?�

j

OO

where πV : V → Y is the structure morphism. The left vertical arrow is an isomorphism by
Lemma 4.2. The map j is injective since ϕ : Fi → Qi is dominant. Since s′|Fi

= (ϕ∗t)|Fi
,

we have s′|Ei
= (ϕ∗t)|Ei

for every i. Thus we have s′|⌊∆′⌋ = (ϕ∗t)|⌊∆′⌋. This means that
s can be lifted to a member of PA (XU ,OX(m(KX +∆))). By construction, it is not
difficult to see that PA (XU ,OX(m(KX +∆))) generates OX(m(KX +∆)) over U .

We finish the proof. �
As a consequence of Lemma 4.8 and Proposition 4.9, we obtain the following key lemma,

which plays a crucial role in the proof of Theorem 1.1.

Lemma 4.10 (Abundance for semi-divisorial log terminal pairs in the complex analytic
setting). Let (X,∆) be a semi-divisorial log terminal pair and let π : X → Y be a projective
morphism of complex analytic spaces. Let U be an open subset of Y and let W be a Stein
compact subset of Y such that Γ(W,OY ) is noetherian with U ⊂ W . Assume that KX+∆
is π-semiample. Let P be an arbitrary point of U . Then there exists a semianalytic Stein
open neighborhood UP of P and a positive integer m such that admissible sections generate
OX(m(KX +∆)) over UP .

Proof. Let ν : Xν → X be the normalization. By definition, we see that any admissible
section on Xν over UP descends to an admissible section on X over UP since X is simple
normal crossing in codimension one and satisfies Serre’s S2 condition. Hence, by taking
the normalization, we may assume that X is normal. By [Fuj12, Theorems 1.21 and
1.27], we take a dlt blow-up and may assume that X is Q-factorial over W , By Lemma
4.8 and Proposition 4.9, it is sufficient to prove this lemma for (S,∆S), where S := ⌊∆⌋
and KS + ∆S := (KX + ∆)|S. By repeating this process finitely many times, we can
reduce the problem to the case where (X,∆) is kawamata log terminal. In this case, any
section is preadmissible (see Remark 2.28). Thus, by Lemma 4.8, we obtain the desired
result. �
Let us prove Theorem 1.1, which is one of the main results of the present paper.
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Proof of Theorem 1.1. We take an arbitrary point P ∈ W . Since W is compact, it is
sufficient to prove that there exists a positive integer mP such that OX(mP (KX + ∆))
is π-generated over some open neighborhood of P . We take a semianalytic Stein open
neighborhood UP of P and a Stein compact subset WP of Y with UP ⊂ WP such that
Γ(WP ,OY ) is noetherian. Let ν : Xν → X be the normalization with KXν + Θ :=
ν∗(KX +∆). By [Fuj12, Theorems 1.21 and 1.27], after shrinking Y around WP suitably,

we take a dlt blow-up α : X̃ → Xν withKX̃+∆̃ := α∗(KXν+Θ) such that X̃ is Q-factorial

over WP and (X̃, ∆̃) is divisorial log terminal. We consider π̃ := π ◦ ν ◦ α : X̃ → Y . If
necessary, we replace UP with a smaller semianalytic Stein open neighborhood of P .
Then, by Lemma 4.10, there exists a semianalytic Stein open neighborhood UP and a

positive integer mP such that admissible sections generate OX̃(mP (KX̃ + ∆̃)) over UP .
Note that X is normal crossing in codimension one and satisfies Serre’s S2 condition since
(X,∆) is semi-log canonical. Hence any admissible section over UP descends to a section
of OX(mP (KX + ∆)) over UP . Thus OX(mP (KX + ∆)) is π-generated over UP . As we
mentioned above, since W is compact, we can take an open neighborhood U of W and a
divisible positive integer m such that OX(m(KX +∆)) is π-generated over U . We finish
the proof of Theorem 1.1. �
The following elementary lemma shows that [HX, Theorem 2] can be deduced from

Theorem 1.1. Consequently, Kollár’s gluing theory in [K] is not required for the proof of
[HX, Theorem 2].

Lemma 4.11. Let π : X → Y be a proper morphism of algebraic schemes defined over C
and let L be a line bundle on X. Let U be a nonempty open subset of Y in the classical
topology. Assume that L is π-generated over U . Then there exists a Zariski open subset
V of Y such that L is π-generated over V with U ⊂ V .

Proof. Let C be the cokernel of π∗π∗L → L. We put V := Y \ π(Supp C). Then, by
definition, V is a Zariski open subset with U ⊂ V and L is π-generated over V . �

5. Freeness for nef and log abundant log canonical bundles

In this section, we first prove Theorem 1.4. As a straightforward application of Theorem
1.4, we then establish Theorem 1.10. We also give proofs of Theorem 1.5 and Corollary
1.11. The proof of Theorem 1.4 begins with Theorem 5.1, which is well known in the
algebraic setting (see [Fuj7]). Once Theorem 5.1 is established, the proof of Theorem 1.4
follows without much difficulty.

Theorem 5.1. Let (X,∆) be an irreducible divisorial log terminal pair and let π : X → Y
be a projective morphism of complex analytic spaces. Assume that KX +∆ is Q-Cartier
and is π-nef and π-abundant over Y . We further assume that KS +∆S is π-semiample,
where S := ⌊∆⌋ and KS + ∆S := (KX + ∆)|S. Let W be a compact subset of Y . Then
there exists a positive integer m such that OX(m(KX+∆)) is π-generated over some open
neighborhood of W .

Proof. We can modify the argument in [Fuj7, Section 6] for our complex analytic set-
ting. Since the Kawamata–Viehweg vanishing theorem holds for projective morphisms
of complex analytic spaces, we can generalize [Fuj7, Theorem 6.1], which is a slight gen-
eralization of the Kawamata–Shokurov basepoint-free theorem, for our complex analytic
setting. By [Fuj12, Theorem 21.4], which is a kind of canonical bundle formula, and the
argument in Step 2 in the proof of [Fuj12, Theorem 23.2], we can prove a complex analytic
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generalization of [Fuj7, Theorem 6.2]. Therefore, we see that the desired statement holds
(see also [Fuj7, Theorem 1.1]). �

Let us prove Theorem 1.4.

Proof of Theorem 1.4. Let P be an arbitrary point of W . Since W is compact, it is
sufficient to prove that there exist a positive integer mP and an open neighborhood UP
of P such that OX(mP (KX + ∆)) is π-generated over UP . By Theorem 1.1, we may
assume that X is normal. By taking a Stein compact subset WP such that P ∈ WP and
Γ(WP ,OY ) is noetherian. By [Fuj12, Theorems 1.21 and 1.27], after shrinking Y around
WP suitably, we take a dlt blow-up and may assume that (X,∆) is divisorial log terminal.
By induction on dimension, we may assume that KS+∆S is π-semiample over some open
neighborhood of P , where S := ⌊∆⌋ and KS + ∆S := (KX + ∆)|S. Hence, by Theorem
5.1, we obtain the desired statement. We finish the proof. �

The following proof is essentially due to Kenta Hashizume (see [H2, Lemma 3.4]).

Proof of Theorem 1.5. We can freely shrink Y aroundW suitably and always assume that
Y is Stein. By taking a dlt blow-up (see [Fuj12, Theorems 1.21 and 1.27]), we may assume
that (X,∆) is divisorial log terminal and is Q-factorial over W . By induction, we may
assume that KS +∆S := (KX +∆)|S is π-semiample over some open neighborhood of L
for every log canonical center S of (X,∆). By applying the argument in the proof of [H2,
Lemma 3.4], we can write KX +∆ =

∑
i ri(KX +∆i) such that (X,∆i) is divisorial log

terminal, KX + ∆i is Q-Cartier, ri is a positive real number, and KX + ∆i is π-nef and
π-log abundant over some open neighborhood of L for every i. Hence, by Theorem 1.4,
there exists a positive integer mi such that OX(mi(KX + ∆i)) is π-generated over some
open neighborhood of L. Hence, KX + ∆ is π-semiample over some open neighborhood
of L. This is what we wanted. �

Theorem 1.7 is almost obvious by Theorem 1.5 and [EH2, Theorem 1.2].

Proof of Theorem 1.7. We take an arbitrary point P ∈ Z. Then it is sufficient to prove
the existence of a log canonical model of (X,∆) over some open neighborhood of P .
We take P ∈ U1 ⊂ W1 ⊂ U2 ⊂ W2, where Ui is a Stein open subset of Z for i = 1, 2
and Wi is a Stein compact subset of Z such that Γ(Wi,OZ) is noetherian for i = 1, 2.
Throughout this proof, we can freely shrink Z around W2 suitably. Since −(KX +∆) is
ϕ-ample, we can take an effective R-divisor A on X such that KX+∆+A ∼R,φ 0 and that
(X,∆+ A) is log canonical. By [Fuj12, Theorems 1.21 and 1.27], we take a dlt blow-up
p : (X ′,∆′) → (X,∆) over some open neighborhood of W2. We note that (X ′,∆′ +A′) is
log canonical with KX′ +∆′ + A′ ∼R,φ′ 0, where A′ := p∗A and ϕ′ := ϕ ◦ p : X ′ → Z. It
is sufficient to construct a log canonical model of (X ′,∆′) over some open neighborhood
of P . By [EH2, Theorem 1.2], after finitely many flips and divisorial contractions, we
finally obtain (X ′′,∆′′) over some open neighborhood of W2 such that KX′′ + ∆′′ is nef
over W2. By construction, KX′′ +∆′′ +A′′ ∼R,φ′′ 0 holds, where A′′ is the pushforward of
A′ on X ′′ and ϕ′′ : X ′′ → Z is the structure morphism. Thus, by [G1, Theorem 6.1], we
can check that KX′′ +∆′′ is ϕ′′-nef and ϕ′′-log abundant with respect to (X ′′,∆′′) over U2

(see also [H3, Remark 3.7]). Therefore, by Theorem 1.5, KX′′ +∆′′ is ϕ′′-semiample over
some open neighborhood of P . This means that (X ′,∆′) has a log canonical model over
some open neighborhood of P . This is what we wanted. We finish the proof. �

We prove Theorem 1.10 as an application of Theorem 1.4.
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Proof of Theorem 1.10. Let P be an arbitrary point of W . Since W is compact, it is
sufficient to prove that there exist a positive integer mP and an open neighborhood UP of
P such that OX(mP (KX +∆)) is π-generated over UP . From now, we will freely shrink
Y around P . By [Fuj12, Theorems 1.21 and 1.27], we take a dlt blow-up. Thus we may
assume that (X,∆) is divisorial log terminal. Let S be a log canonical stratum of (X,∆)
with KS+∆S := (KX+∆)|S. It is obvious that KS+∆S is π-nef. By applying Conjecture
1.9 to an analytically sufficiently general fiber F of S → π(S), we see that KS+∆S is π-nef
and π-abundant. This means that KX + ∆ is π-nef and π-log abundant with respect to
(X,∆). Hence, by Theorem 1.4, we obtain mP such that OX(mP (KX+∆)) is π-generated
over some open neighborhood of P . We finish the proof. �
Let us prove Corollary 1.11, which is an easy application of Theorem 1.10.

Proof of Corollary 1.11. We can freely shrink Y aroundW . By using Shokurov’s polytope
(see [Fuj12]), we can write KX +∆ =

∑
i ri(KX +∆i) such that (X,∆i) is log canonical,

KX + ∆i is Q-Cartier, ri is a positive real number, and KX + ∆i is π-nef over W for
every i. In particular, KX +∆i is π-nef over U for every i. Then, by Theorem 1.10, there
exists a positive integer mi such that OX(mi(KX + ∆i)) is π-generated over some open
neighborhood of L for every i. This implies that KX +∆ is π-semiample over some open
neighborhood of L. We finish the proof. �
Anyway, by Theorem 1.10 and Corollary 1.11, we are released from the abundance

conjecture for projective morphisms of complex analytic spaces. We close this section
with an important conjecture.

Conjecture 5.2. Let π : X → Y be a projective surjective morphism of normal complex
varieties and let (X,∆) be a log canonical pair. Let W be a compact subset of Y . Assume
that KX + ∆ is π-nef over W . Then KX + ∆ is π-nef over some open neighborhood of
W .

If Conjecture 5.2 holds, then we can prove that KX + ∆ is π-semiample over some
open neighborhood of W in Theorem 1.5 and Corollary 1.11. In the case dimX = 2,
Conjecture 5.2 has been completely resolved in [M].

6. Dlt blow-ups and some applications

In this section, we discuss dlt blow-ups (see also [Fuj12, Theorems 1.21 and 1.27]) and
some applications. This section heavily relies on the minimal model program established
in [EH2] and hence in [Fuj12].

We begin with the following statement. In the original algebraic setting, the reader can
find it in [HMX, Proposition 3.3.1].

Theorem 6.1 (Dlt blow-ups for log canonical pairs). Let X be a normal complex variety
and let ∆ be an effective R-divisor on X such that (X,∆) is log canonical. Let W be a
Stein compact subset of X such that Γ(W,OX) is noetherian. Then, after shrinking X
around W suitably, we can construct a projective bimeromorphic morphism f : Z → X
from a normal complex variety Z with the following properties:

(i) Z is Q-factorial over W ,
(ii) a(E,X,∆) = −1 for every f -exceptional divisor E on Z, and
(iii) (Z,∆Z) is divisorial log terminal, where KZ +∆Z = f ∗(KX +∆).

Moreover, let S be an irreducible component of ∆ and let T be the strict transform of S
on Z. Then we can make f : Z → X satisfy:
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(iv) there exists an effective f -exceptional Q-divisor F on Z with f(F ) ⊂ S such that
−T − F is f -nef over W .

The following proof is well known for algebraic varieties. In the complex analytic
setting, it is sufficient to use [EH2, Theorem 1.2].

Proof of Theorem 6.1. By [Fuj12, Theorem 1.27], after shrinkingX aroundW suitably, we
can take a projective bimeromorphic morphism g : V → X from a normal complex variety
V with KV +∆V = g∗(KX+∆) satisfying (i), (ii), and (iii). Let TV be the strict transform
of S on V . By [EH2, Theorem 1.2], after running a suitable minimal model program with
ample scaling overX aroundW , we obtain a minimal model (V ′,∆V ′−TV ′) of (V,∆V−TV )
over some open neighborhood ofW . We note that φ : V 99K V ′, φ∗∆V = ∆V ′ , and φ∗TV =
TV ′ . We put gV ′ : V ′ → X. Then we obtain that KV ′ + ∆V ′ ∼R,gV ′ 0, (V ′,∆V ′) is log
canonical, and KV ′+(∆V ′−TV ′) ∼R,gV ′ −TV ′ is gV ′-nef overW . By [Fuj12, Theorem 1.27]
again, we can take a dlt blow-up h : (Z,∆Z) → (V ′,∆V ′) with KZ +∆Z = h∗(KV ′ +∆V ′)
after shrinking X around W . Then we can write h∗(−TV ′) = −T − F . By construction,
F is an effective f -exceptional Q-divisor with f(F ) ⊂ S, where f := gV ′ ◦ h : Z → X.
It is not difficult to see that (Z,∆Z) satisfies (i), (ii), (iii), and (iv). Hence we finish the
proof. �

As a straightforward application of Theorem 6.1, we consider Theorem 6.2, which is a
slight generalization of [Fuj18, Theorem 2.1.6]. Note that [Fuj18, Theorem 2.1.6] follows
easily from Theorem 6.2. For further details, see [HMX, Proof of (1.1)]. Notably, Theorem
6.2 can be viewed as a complex analytic generalization of [HMX, Theorem 1.4].

Theorem 6.2 (ACC for the log canonical thresholds for complex analytic spaces). Fix
a positive integer n and a set I ⊂ [0, 1] which satisfies the DCC. Then there is a finite
subset I0 ⊂ I with the following properties:

If X is a normal complex variety and let ∆ be an effective R-divisor on X such that
KX +∆ is R-Cartier and that

(1) dimX = n,
(2) (X,∆) is log canonical,
(3) the coefficients of ∆ belong to I, and
(4) there exists a log canonical center C ⊂ X which is contained in every component

of ∆,

then the coefficients of ∆ belong to I0.

Proof of Theorem 6.2. We note that [HMX, Lemma 5.1] also holds in the complex analytic
setting by virtue of Theorem 6.1. For details, we refer the reader to the proof of [HMX,
Lemma 5.1]. Consequently, the arguments in [HMX, Section 5] apply equally well in the
complex analytic setting. Therefore, Theorem 6.2 follows from the ACC for numerically
trivial pairs (see [HMX, Theorem 1.5]). �

Theorem 1.8 is significantly more profound than Theorem 6.1. It can be regarded as a
complex analytic version of [FH, Lemma 3.5]. For related results in the original algebraic
setting, see [FH]. Let us prove Theorem 1.8.

Proof of Theorem 1.8. Without mentioning it explicitly, we will freely shrink X aroundW
throughout this proof. By [Fuj12, Theorem 1.27], we can take a projective bimeromorphic
morphism g : V → X withKV+∆V = g∗(KX+∆) satisfying (i), (ii), and (iii). We consider
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KV +∆†
V = g∗(KX+∆)−GV , where ∆

†
V := ∆≤1

V +Supp∆>1
V . We take a rational number

ε with 0 < ε≪ 1. Then we consider

KV +∆†
V − εGV = g∗(KX +∆)− (1 + ε)GV .

Note that (V,∆†
V − εGV ) is divisorial log terminal and KV +∆†

V − εGV is g-log abundant

with respect to (V,∆†
V −εGV ) (see [G1, Theorem 6.1]). We take a general g-ample effective

Q-divisor A on V such that (V,∆†
V − εGV +A) is log canonical and KV +∆†

V − εGV +A

is g-nef over W . We run a (KV + ∆†
V − εGV )-minimal model program over X around

W with scaling of A starting from (V0,∆
†
V0

− εGV0) := (V,∆†
V − εGV ). Then we have a

sequence of flips and divisorial contractions:

V0
ϕ099K V1

ϕ199K · · ·
ϕi−199K Vi

ϕi99K · · ·
with

1 ≥ λ0 ≥ λ1 ≥ · · ·
such that KVi + ∆†

Vi
− εGVi + λiAi is gVi-nef over W , where gVi : Vi → X, ∆†

Vi
:=

(φi−1)∗∆
†
Vi−1

, GVi := (φi−1)∗GVi−1
, and Ai := (φi−1)∗Ai−1 for every i ≥ 1. We put

λ∞ := limi→∞ λi. Then we obtain λ∞ = 0. For the details, see, for example, the proof of
[Fuj12, Lemma 13.7]. On the other hand, since KVi +∆†

Vi
+GVi ∼R,gVi 0, KVi +∆†

Vi
−εGVi

is gVi-log abundant with respect to (Vi,∆
†
Vi
− εGVi) for every i ≥ 0 by [G1, Theorem 6.1].

Then, by [EH2, Theorem 1.3], it terminates at a minimal model (V ′,∆†
V ′ − εGV ′). We

note that φ : V 99K V ′, φ∗∆
†
V = ∆†

V ′ , and φ∗GV = GV ′ . We put gV ′ : V ′ → X. Since

KV + ∆†
V ∼R,g −GV and KV + ∆†

V − εGV ∼R,g −(1 + ε)GV , the above minimal model

program is also a (KV +∆†
V )-minimal model program. In particular, (V ′,∆†

V ′) is a divi-
sorial log terminal pair. We put (Z,∆Z) := (V ′,∆V ′) and f := gV ′ . Then it is easy to see
that it satisfies (i), (ii), (iii), and (iv). Since

−(1 + ε)G ∼R,f KZ +∆†
Z − εG

and KZ + ∆†
Z − εG is f -nef and f -log abundant with respect to (Z,∆†

Z − εG), it is
f -semiample over some open neighborhood of L. This implies that −G is f -semiample
over some open neighborhood of L by Theorem 1.5. This is (v). We finish the proof of
Theorem 1.8. �
We can quickly recover the log canonical inversion of adjunction (see [Fuj16, Theorem

1.1]) from Theorem 1.8.

Theorem 6.3 (Inversion of adjunction for log canonicity, see [Fuj16, Theorem 1.1]).
Let X be a normal complex variety and let S + B be an effective R-divisor on X such
that KX + S + B is R-Cartier, S is reduced, and S and B have no common irreducible
components. Let ν : Sν → S be the normalization with KSν+BSν = ν∗(KX+S+B), where
BSν denotes Shokurov’s different. Then (X,S + B) is log canonical in a neighborhood of
S if and only if (Sν , BSν ) is log canonical.

For the sake of completeness, we provide a proof of Theorem 6.3 based on Theorem
1.8. In the proof of Theorem 6.3 below, we make use of (iv) of Theorem 1.8, but (v) of
Theorem 1.8 is not needed.

Proof of Theorem 6.3. If (X,S +B) is log canonical in a neighborhood of S, then we can
easily check that (Sν , BSν ) is log canonical. From now, we will prove that (X,S+B) is log
canonical in a neighborhood of S under the assumption that (Sν , BSν ) is log canonical.
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We take an arbitrary point P ∈ S. It is sufficient to prove that (X,S+B) is log canonical
around P . We take a Stein compact subset W of X such that Γ(W,OX) is noetherian and
an open neighborhood U of P such that P ∈ U ⊂ W . Let f : Z → X be a dlt blow-up
after shrinking X around W with KZ +∆Z = f ∗(KX +∆) as in Theorem 1.8. Note that

KZ +∆†
Z = f ∗(KX +∆) − G is f -nef over W . We also note that Nlc(Z,∆Z) = SuppG.

Since −G is f -nef over W , Nlc(Z,∆Z) = f−1 (Nlc(X,∆)) holds over U . Let T be the
strict transform of S on Z. Since (Sν , BSν ) is log canonical, T ∩SuppG = ∅. This implies
that S ∩ Nlc(X,∆) = ∅ on U . Hence (X,∆) is log canonical around S on U . We finish
the proof. �

7. Supplementary comments

In this final section, we provide some supplementary comments on [Fuj1] and [FG] for
the reader’s convenience.

7.1. In [FG, 2.20] and the proof of [FG, Theorem 4.3], we claim that the results in
[Fuj1, Section 2] can be freely used based on [BCHM]. However, in order to prove [Fuj1,
Proposition 2.1] in dimension n ≥ 4 (see also [Fuj1, Remark 2.2]), the minimal model
program with scaling established in [BCHM] is not sufficient. The following result is
required.

Theorem 7.2 (cf. [Bir, Theorem 5.2]). Let π : X → Y be a projective surjective morphism
of normal quasi-projective varieties and let (X,∆) be a Q-factorial divisorial log terminal
pair such that KX + ∆ ∼Q,π 0. Assume that π(⌊∆⌋) ⊊ Y , that is, ⌊∆⌋ is vertical with
respect to π. Then (X,∆ − ε⌊∆⌋) has a good minimal model over Y for every rational
number ε with 0 < ε ≤ 1. In particular, every (KX +∆− ε⌊∆⌋)-minimal model program
with ample scaling over Y always terminates.

If π(⌊∆⌋) = Y , then KX +∆− ε⌊∆⌋ is not π-pseudo-effective for any rational number
ε with 0 < ε ≤ 1. In this case, the minimal model program established in [BCHM] is
sufficient to prove [Fuj1, Proposition 2.1] in dimension n ≥ 4. Theorem 7.2 follows from
the results in [Bir]. We note that the pair (X,∆ − ε⌊∆⌋) is kawamata log terminal for
every rational number ε with 0 < ε ≤ 1. Hence, to prove Theorem 7.2, we do not require
any deep results related to the abundance conjecture for log canonical pairs. There is
no circular reasoning even if one uses [Bir, Theorem 5.2] in the context of [FG]. For
further details, see [Bir, Theorem 5.2]. We also point out that the most general result
in this direction is treated in [H1]. By combining [BCHM] and Theorem 7.2, we are free
to apply the results in [Fuj1, Section 2] for dimension n ≥ 4. Therefore, there are no
significant issues in the arguments of [FG]. In the present paper, in Step 1 of the proof of
Proposition 4.6, we use [EH2, Theorem 1.2] instead of Theorem 7.2. The minimal model
program developed in [Fuj12] is insufficient for the proof of Proposition 4.6.

7.3. We make a small remark on [Fuj1, Lemma 2.3] for the reader’s convenience. In the
proof of [Fuj1, Lemma 2.3], we claim that there exists a Q-divisor P on V satisfying
KDi

+ Diff(∆ − Di) = u|∗Di
(KV + P ). However, it is not clear when D1 is irreducible

and the mapping degree deg[D1 : V ] = 2. In that case, we can not apply [AFKM, 12.3.4
Theorem].

Example 7.4. We put Z := P1×P1. Let ∆ be a general member of |p∗1OP1(2)⊗p∗2OP1(2)|,
where pi is the ith projection for i = 1, 2. Then ∆ is a smooth elliptic curve and KZ+∆ ∼
0. We consider the first projection h : Z → R := P1. In this setting, u := h : Z → V := R
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is a (KZ+∆−ε⌊∆⌋)-negative extremal Fano contraction over R. Of course, the horizontal
part ∆h =: D1 of ⌊∆⌋ is irreducible and the mapping degree deg[D1 : V ] is two. In
[Fuj1, Lemma 2.3], we claim that there exists an effective Q-divisor P on V such that
KD1 = u|∗D1

(KV + P ) holds without explaining it explicitly. It is somewhat misleading
when D1 is irreducible with deg[D1 : V ] = 2.

Fortunately, as shown in the proof of Lemma 4.5 in the present paper, it is not necessary
to construct a Q-divisor P on V in Case (III). Therefore, there are no significant difficulties
in the proof of [Fuj1, Lemma 2.3].
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[DHP] O. Das, C. Hacon, M. Păun, On the 4-dimensional minimal model program for Kähler varieties,
Adv. Math. 443 (2024), Paper No. 109615.

[EH1] M. Enokizono, K. Hashizume, Semistable reduction for complex analytic spaces, to appear in
Trans. Amer. Math. Soc. Ser. B.

[EH2] M. Enokizono, K. Hashizume, Minimal model program for log canonical pairs on complex
analytic spaces, preprint (2024). arXiv:2404.05126 [math.AG]

[EH3] M. Enokizono, K. Hashizume, On termination of minimal model program for log canonical pairs
on complex analytic spaces, preprint (2025). arXiv:2501.03531 [math.AG]

[Fis] G. Fischer, Complex analytic geometry, Lecture Notes in Mathematics, Vol. 538. Springer-
Verlag, Berlin–New York, 1976.

[Fuj1] O. Fujino, Abundance theorem for semi log canonical threefolds, Duke Math. J. 102 (2000),
no. 3, 513–532.

[Fuj2] O. Fujino, The indices of log canonical singularities, Amer. J. Math. 123 (2001), no. 2, 229–253.
[Fuj3] O. Fujino, On Kawamata’s theorem, Classification of algebraic varieties, 305–315, EMS Ser.

Congr. Rep., Eur. Math. Soc., Zürich, 2011.
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