ON FINITENESS OF RELATIVE LOG PLURICANONICAL
REPRESENTATIONS

OSAMU FUJINO

ABSTRACT. We prove the finiteness of relative log pluricanonical representations in the
complex analytic setting. Then we discuss the abundance conjecture for semi-log canon-
ical pairs in the complex analytic setting as an application. Roughly speaking, in the
complex analytic setting, we reduce the abundance conjecture for semi-log canonical pairs
to the one for log canonical pairs. Moreover, we show that we can reduce the abundance
conjecture for projective morphisms of complex analytic spaces to the original abundance
conjecture for projective varieties.

CONTENTS
I___Infroduction 1
P Preliminaried 4
b. Fimiteness ol relative log pluricanonical representations 11
B.  Abundance for semi-log canonical pairg 15
b. Freeness Ior nel and log abundant log canonical bundles 27
b. Supplementary commentd 29
Referenced 30

1. INTRODUCTION

This paper will fill a missing part of the minimal model program for projective mor-
phisms between complex analytic spaces (see [Fujll], [Fujl2], [Fujl3], [Fujl4], [Fujl5],
[EH], [DHP], [EH?], [LM], and so on). Roughly speaking, this paper is a complex analytic
generalization of [FG] (see also [Fujl]). One of the main purposes of this paper is to
establish the following result on the abundance conjecture.

Theorem 1.1 (Abundance theorem for semi-log canonical pairs in the complex analytic
setting, cf. [FG, Theorem 1.5]). Let m: X — Y be a projective morphism of complex
analytic spaces, let W be a compact subset of Y, and let (X, A) be a semi-log canonical
pair such that Kx + A is Q-Cartier. Let v: XV — X be the normalization. Assume that
Kxv 4+ 0 := v*(Kx + A) is m o v-semiample over some open neighborhood of W. Then
there exists an open neighborhood U of W and a divisible positive integer m such that
Ox(m(Kx + A)) is m-generated over U.

In order to prove Theorem [, we need:
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Theorem 1.2 (Finiteness of relative log pluricanonical representations, I, cf. [FG, The-
orem 1.1)). Let m: X — Y be a projective morphism from a (not necessarily connected)
normal complex analytic space X onto a complex variety Y such that (X, A) is log canon-
ical and that every irreducible component of X is dominant onto Y. Let m be a positive
integer such that m(Kx +A) is Cartier and m.Ox(m(Kx+A)) # 0. Assume that Kx+A
1s w-semiample. Then the image of

pm: BIm(X/Y,A) = Aute, (m.0x(m(Kx + A)))

is a finite group, where Bim(X /Y, A) is the group of all B-bimeromorphic maps of (X, A)
overY .

As an easy consequence of Theorem 2, we have a useful corollary. We will use it in
the proof of Theorem [l

Corollary 1.3 (Finiteness of relative log pluricanonical representations, I1, cf. [FG, The-
orem 1.1]). Let (X,A) be an equidimensional (not necessarily connected) log canonical
pair and let m: X — 'Y be a projective morphism of complex analytic spaces. Let m be a
positive integer such that m(Kx+A) is Cartier and m,Ox(m(Kx+A)) # 0. Assume that
Kx+A is w-semiample. Let W be a compact subset of Y and let U be a semianalytic Stein
open subset of Y with U C W. Let Bim(X/Y, A; W) be the group of all B-bimeromorphic
maps g defined over some open neighborhood U, of W. In this setting, we can consider

pz‘:U: Bim(X/Y, A; W) — AutoU (W*Oﬂ—l((]) (m(KX + A))) .
Then pY(Bim(X/Y, A; W) is a finite group.
As an application of Theorem I, we have:

Theorem 1.4 (Freeness for nef and log abundant log canonical bundles, cf. [FG, Theorem
1.6]). Let (X, A) be a semi-log canonical pair and let m: X — Y be a projective morphism
of complex analytic spaces. Assume that Kx + A is Q-Cartier and is w-nef and m-log
abundant with respect to (X,A) over Y. Let W be a compact subset of Y. Then there
exists a positive integer m such that Ox(m(Kx + A)) is m-generated over some open

netghborhood of W

Theorem [ is well known when 7: X — Y is algebraic (see [FG, Theorem 1.6]). As
mentioned above, we prove Theorem 4 as an application of Theorem 1. In our proof of
Theorem [ given in this paper, we use a kind of a canonical bundle formula (see [Fuj3|
and [Fuj6]). Hence, it is not so obvious. When Kx + A is only R-Cartier, we have the
following theorem.

Theorem 1.5. Let m: X — Y be a projective morphism of complex analytic spaces and
let W be a Stein compact subset of Y such that T'(W, Oy) is noetherian. Let U be an open
subset of Y and let L be a compact subset of Y such that L C U C W. Let (X,A) be a
log canonical pair such that Kx + A is w-nef and w-log abundant with respect to (X, A)
over'Y. Then Kx + A is w-semiample over some open neighborhood of L.

We note that Stein compact subsets play an important role in [Fujll].

Remark 1.6 (Stein compact subsets). A compact subset on an analytic space is said to
be Stein compact if it admits a fundamental system of Stein open neighborhoods. Let
W be a Stein compact subset on a complex analytic space Y. Then, by Siu’s theorem,
(W, Oy ) is noetherian if and only if W' N Z has only finitely many connected components
for any analytic subset Z which is defined over an open neighborhood of W. Hence, if W
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is a Stein compact semianalytic subset of a complex analytic space Y, then I'(IW, Oy) is
always noetherian.

By combining Theorem T3 with [EH2, Theorem 1.2}, we can prove the existence of log
canonical flips in the complex analytic setting. We learned it from Kenta Hashizume.

Theorem 1.7 (Existence of log canonical flips). Let ¢: X — Z be a small projective
bimeromorphic morphism of normal complex varieties such that (X, A) is log canonical
and that —(Kx + A) is w-ample. Then we have a commutative diagram

(X,8) -2~ (x+,A%)
NN

satisfying the following properties:
(i) ¢T: Xt — Z is a small projective bimeromorphic morphism of normal complex
varieties,
(i) (XT, A7) is log canonical, where AT is the strict transform of A on X, and
(ili) Kx+ + AT is T -ample.
We usually simply say that ¢: (X, A) --» (X, AT) is a log canonical flip.

Let us recall the abundance conjecture for projective log canonical pairs for the reader’s
convenience. It is well known that the abundance conjecture is one of the most important
and the deepest conjectures in the theory of minimal models.

Conjecture 1.8 (Abundance conjecture for projective log canonical pairs). Let (X, A)
be a projective log canonical pair such that Kx + A is nef. Then Kx + A is semiample.

It is well known that Conjecture I8 has already been solved in dim X < 3. When
dim X > 4, it is still widely open. By Theorem 4, we have:

Theorem 1.9 (cf. [Fujll, Theorem 1.30]). Assume that Conjecture I8 holds in dimension
n. Let m: X — Y be a projective surjective morphism of normal complex varieties with
dim X < n and let (X, A) be a log canonical pair such that Kx + A is Q-Cartier. Assume
that Kx + A is w-nef. Let W be a compact subset of Y. Then there exists a positive
integer m such that Ox(m(Kx + A)) is m-generated over some open neighborhood of W.

When Ky + A is only R-Cartier, we have:

Corollary 1.10. Assume that Conjecture I8 holds in dimension n. Let m: X —Y be a
projective surjective morphism of normal complex varieties with dim X < n and let (X, A)
be a log canonical pair. Assume that Kx + A is w-nef. Let W be a Stein compact subset
of Y such that T'(W, Oy) is noetherian. Let U be an open subset of Y and let L be a
compact subset of Y with L C U C W. Then Kx + A is w-semiample over some open
neighborhood of L.

Theorem 9 and Corollary 10 says that we can reduce the abundance conjecture for
projective morphisms of complex analytic spaces to the original abundance conjecture
for projective varieties. Hence, for the abundance conjecture for projective morphisms
between complex analytic spaces, it is sufficient to solve Conjecture 8. When (X, A) is
a kawamata log terminal pair, Theorem 9 has already been treated in [Fujll, Theorem
1.30].
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We note that in this paper we use the minimal model program for projective morphisms
between complex analytic spaces established in [Fujll], [EHT], and [EHZ]. Moreover, we
use vanishing theorems proved in [Fujl2] (see also [Fujld] and [FE]). In this paper, we
do not use Kollar’s gluing theory in [K]. We do not know if it works for complex analytic
spaces or not.

Remark 1.11. We can easily check that Theorem [T recovers [HX), Theorem 2], which

is the original algebraic version of this problem. Hence this paper gives an alternative
proof of [HX|, Theorem 2] without using Kollar’s gluing theory in [KI.

Remark 1.12. By [Fujll], [EHT], [EH2], and this paper, we think that we can formulate
and prove various results of the minimal model program for log canonical pairs in the
complex analytic setting. We do not treat them here. The details will be discussed
elsewhere.

We look at the organization of this paper. In Section B, we collect basic definitions
and results necessary for this paper. In Section B, we treat the finiteness of relative
log pluricanonical representations. Our proof of Theorem @2 uses the finiteness of log
pluricanoincal representations for projective log canonical pairs established in [EG]. In
Section B, we discuss the abundance conjecture for semi-log canonical pairs in the complex
analytic setting. More precisely, we prove Theorem [, which is one of the main results
of this paper. In Section B, we prove Theorem 4 as an application of Theorem . Then
we prove Theorem [T as an easy consequence of Theorem 4. We also prove Theorems
4, T4, and Corollary II0. In the final section, Section B, we give some supplementary
comments on [Fujl] and [EG] for the reader’s convenience. We remove some minor troubles
from [Fujl] and [FG].

Acknowledgments. The author was partially supported by JSPS KAKENHI Grant
Numbers JP19H01787, JP20H00111, JP21H04994, JP23K20787. The author thanks Pro-
fessor Shigefumi Mori for warm encouragement. He also would like to thank Makoto
Enokizono, Taro Fujisawa, Yoshinori Gongyo, and Kenta Hashizume very much.

In this paper, every complex analytic space is assumed to be Hausdorff and second-
countable. A reduced and irreducible complex analytic space is called a complex variety.
We will freely use the basic results on complex analytic geometry in [BS] and [Eid]. For
the minimal model program for projective morphisms between complex analytic spaces,
see [Fujll] (see also [EHT] and [EHZ]). For the basic definitions and results in the theory
of minimal models for higher-dimensional algebraic varieties, see [Fujd] and [Fujl(] (see
also [KM] and [K|]). In this paper, we sometimes use semianalytic sets. For the basic
properties of semianalytic sets, see [BieM1l].

2. PRELIMINARIES

In this section, we will collect some basic definitions and results necessary for this paper.
Let us start with the following basic definitions.

Definition 2.1 ([Fujll, Definition 2.32]). Let X be a normal complex variety and let
D =>".a;D; be an R-divisor on X such that D; is a prime divisor on X for every ¢ with
D; # D; for i # j. We put

|D| =) |a;|D;, [D]:=—|-D|, and {D}:=D—|D].

7
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We also put

D=t = Z D; and D<!:= Z a;D;.

a;=1 a; <1

We note that D is called a boundary Q-divisor when a; € Q and a; < 1 for every 1.

Let us recall the definition of log canonical pairs and log canonical strata. For the
details of singularities of pairs, see [Fuj4], [Fujll], [Fujll, Section 3], [KJ], and so on.
Although there are some subtle problems for complex analytic singularities of pairs, we
do not repeat the details here.

Definition 2.2 (Log canonical pairs and log canonical strata, see [Fujll, Definition 3.1]).
Let X be a normal complex analytic space and let A be an effective R-divisor on X
such that Kx + A is R-Cartier. If a(E, X, A) > —1 (resp. > —1) holds for any proper
bimeromorphic morphism f: Y — X from a normal complex analytic space Y and every
f-exceptional divisor F, then (X, A) is called a log canonical (resp. purely log terminal)
pair. If (X, A) is purely log terminal and |A| = 0, then we say that (X, A) is a kawamata
log terminal pair.

Let (X, A) be a log canonical pair. The image of £ with a(F, X, A) = —1 for some
f:Y — X is called a log canonical center of (X,A). A closed subset S of X is called a
log canonical stratum of (X, A) if S is an irreducible component of X or a log canonical
center of (X, A).

Let us recall the definition of divisorial log terminal pairs in the complex analytic setting
(see [Fuilll, Definition 3.7]). Note that [KM, Definition 2.37, Proposition 2.40, Theorem
2.44] is helpful.

Definition 2.3 (Divisorial log terminal pairs). Let X be a normal complex analytic space
and let A be a boundary R-divisor on X such that Kx + A is R-Cartier. If there exists
a proper bimeromorphic morphism f: Y — X from a smooth complex variety Y such
that Exc(f) and Exc(f) U Supp f,'A are simple normal crossing divisors on Y and that
the discrepancy coefficient a(F, X, A) > —1 holds for every f-exceptional divisor F, then
(X, A) is called a divisorial log terminal pair. We note that Exc(f) denotes the exceptional
locus of f.

We note that Definitions 272 and P23 work for a finite disjoint union of normal complex
varieties. In Definitions 222 and 223, X is not necessarily connected. It is well known that
a divisorial log terminal pair is a log canonical pair.

Remark 2.4. If we shrink X to a relatively compact open subset of X in Definition 223,
then we can assume that f is a composite of a finite sequence of blow-ups. In particular,
f is projective. For the details, see [Fujll, Lemma 3.9] and [BieM2].

Let us define semi-log canonical pairs and semi-divisorial log terminal pairs in the
complex analytic setting.

Definition 2.5 (Semi-log canonical pairs and semi-divisorial log terminal pairs). Let X be
an equidimensional reduced complex analytic space that is normal crossing in codimension
one and satisfies Serre’s Sy condition. Let A be an effective R-divisor on X such that
the singular locus of X does not contain any irreducible components of Supp A. In this
situation, the pair (X, A) is called a semi-log canonical pair (an slc pair, for short) if

(1) Kx + A is R-Cartier, and
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(2) (X¥,0) is log canonical, where v: X” — X is the normalization and Kx» + © :=
I/*(KX + A)

Let (X, A) be a semi-log canonical pair in the above sense. If each irreducible component

of X is normal and (X", ©) is divisorial log terminal, then we say that (X, A) is a semi-

divisorial log terminal pair (an sdlt pair, for short). Let S be a closed subset of X. We

say that S is a semi-log canonical stratum of (X,A) if and only if S is an irreducible

component of X or the v-image of some log canonical center of (X*,©). When (X, A)

is log canonical, then a semi-log canonical stratum S is called a log canonical stratum of
(X, A) (see Definition 272).

For various results on algebraic (resp. complex analytic) semi-log canonical pairs, see
[Euj9] (resp. [Fujld]).

Remark 2.6. Note that the definition of semi-divisorial log terminal pairs in Definition
73 is different from [K|, Definition 5.19]. Our definition is a direct analytic generalization
of the one in [Fujll] (see [Fujl, Definition 1.1]).

The following lemma is well known when X is an algebraic variety. We state it here
explicitly for the sake of completeness.

Lemma 2.7. Let (X,A) be a divisorial log terminal pair. We put S := |A]| and Kg +
Ag = (Kx+A)|s by adjunction. Then (S, Ag) is semi-divisorial log terminal in the sense
of Definition ZZ4. More precisely, let S = Sy + ---+ S; be the irreducible decomposition.
We put T := Sy +---+ S, for some |l with 1 <1 < k. Then T is Cohen—Macaulay and is
simple normal crossing in codimension one. In particular, every irreducible component of
S is normal. We put Kg, + Ag, := (Kx + A)|s, for every i. Then (S;, Ag,) is divisorial
log terminal. Thus we see that (T, Ar), where Kp+ Ar := (Kx + A)|r, is semi-divisorial
log terminal.

Proof. By [RRV]], we can apply the proof of [Fujl0, Theorem 3.13.6] to our setting with
some suitable modifications (see also Remark Z4). Then we obtain that 7" is Cohen—
Macaulay. It is obvious that 7' is simple normal crossing in codimension one. Hence we
can easily check all the other statements. U

We will repeatedly use Lemma IZ8 in subsequent sections.

Lemma 2.8. Let (X, A) be a log canonical pair such that (X, A — |A]) is kawamata log
terminal. We put S := |A| and Ks + Ag := (Kx + A)|s. Then S is Cohen—Macaulay

and 1s semi-log canonical.

Proof. Since (X, A — S) is kawamata log terminal, X has only rational singularities.
Therefore, X is Cohen-Macaulay. Since S is Q-Cartier, Ox(—S) is Cohen—Macaulay.
This implies that Og is Cohen—-Macaulay. For the details, see KM, Corollary 5.25], [K,
Corollaries 2.62, 2.63, and 2.88], and so on. By adjunction, we see that (S, Ag) is semi-log
canonical. U

We need nef and log abundant divisors in Theorem 4.

Definition 2.9 (Nef and abundant line bundles). Let 7: X — Y be a projective surjective
morphism from a normal complex variety X onto a complex variety Y. Let £ be a m-nef
line bundle on X. If x(F, L|r) = v(F, L|r) holds for analytically sufficiently general fibers
F, then L is said to be m-nef and m-abundant over Y. Similarly, we can define m-nef and
m-abundant Q-Cartier Q-divisors.
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Remark 2.10. In Definition 29, if £ is m-semiample, then it is easy to see that £ is m-nef
and m-abundant over Y.

We will freely use the following elementary lemma.

Lemma 2.11. Let m: X — Y be a projective surjective morphism from a normal complex
variety X onto a complex variety Y and let L be a w-nef and w-abundant line bundle on
X. Letp: Z — X be a projective surjective morphism from a normal complex variety Z.
Then p*L is (o p)-nef and (7 o p)-abundant overY .

Definition 2.12 (Nef and log abundant line bundles). Let 7: X — Y be a projective
morphism of complex analytic spaces and let (X, A) be a semi-log canonical pair. Let £
be a line bundle on X. We say that £ is w-nef and w-log abundant with respect to (X, A)
over Y if and only if L|s» is nef and abundant over 7(S) for every semi-log canonical
stratum S of (X, A), where L|s» denotes the pull-back of £ to the normalization of S.
Similarly, we can define m-nef and 7-log abundant Q-Cartier Q-divisors with respect to

(X,A).

For R-Cartier R-divisors, we need the following definitions. In this paper, we will use
R-Cartier R-divisors only in Theorems A, 4, and Corollary [I0.

Definition 2.13 (Relatively abundant R-Cartier R-divisors). Let 7: X — Y be a projec-
tive morphism from a normal complex variety X onto a complex variety Y. Let D be an
R-Cartier R-divisor on X. If k,(F,D|r) = k,(F, D|r) holds for analytically sufficiently
general fibers F', then D is said to be m-abundant over Y.

For the details of k, and &,, see [N, Chapter V, §2] and [Fujl0, Section 2.5], respectively.

Definition 2.14 (Nef and log abundant R-Cartier R-divisors). Let 7: X — Y be a
projective morphism of complex analytic spaces and let (X, A) be a log canonical pair.
Let D be an R-Cartier R-divisor on X. We say that D is w-nef and w-log abundant with
respect to (X, A) over Y if and only if D|gv is nef and abundant over m(S) for every log
canonical stratum of (X, A), where D|s» denotes the pull-back of D to the normalization
of S.

Remark 2.15. A Q-Cartier Q-divisor D is m-nef and m-log abundant with respect to
(X, A) over Y in the sense of Definition 214 if and only if it is 7m-nef and 7-log abundant
with respect to (X, A) over Y in the sense of Definition ZT2.

Let us introduce the notion of B-bimeromorphic maps, which is obviously a generaliza-
tion of the notion of B-birational maps.

Definition 2.16 (B-bimeromorphic maps). Let 7: X — Y and 7': X’ — Y be projective
morphisms of complex analytic spaces and let (X, A) and (X', A’) be log canonical pairs.
We say that a bimeromorphic map f: X --+ X’ over Y is B-bimeromorphic over Y if
there exists a commutative diagram
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such that Z is a normal complex analytic space,  and o' are proper bimeromorphic
morphisms, and

OK*(KX + A) = Ojl*(le + A,)

holds. Let m be a positive integer such that m(Kx + A) and m(Kx + A’) are Cartier.
Then we have

£ Oxim(Kxr + A)) 25r o Oz (m(Kx + A)))

~ 1 O (0 (m(Kx + A)) “L m.0x(m(Kx + A)).

We put
Bim(X/Y,A) :={f | f: (X,A) --» (X, A) is B-bimeromorphic over Y}.

Then it is obvious that Bim(X/Y, A) has a natural group structure.
Let W be a compact subset of Y. Then we put

g € Bim (77 1(U,) /Uy, Alz-1v,)) such that }

Bim(X/Y, A; W) := {g' U, is an open neighborhood of W

Note that Bim(X/Y, A; W) also has a natural group structure.
We make small remarks on Definition PCT8.

Remark 2.17. If Y is a point in Definition P18, then (X, A) is a projective log canonical
pair and Bim(X/Y, A) is nothing but Bir(X, A) in [Fujl] and [EG].

Remark 2.18. In Definition P18, X and X’ are not necessarily irreducible. In the proof
of Theorem [, we have to treat Bir(X,A) in the case where X is a disjoint union of
normal projective varieties.

Remark 2.19. Let (X, A) =: | |,(X;,4A;) and (X', A") =: | ],(X], A}) be the irreducible
decompositions. Let f: X --» X’ be a B-bimeromrophic map over Y as in Definition
P18. Then, there exists a permutation ¢ such that

fi=1T
is a B-bimeromorphic map over Y between irreducible log canonical pairs (X;, A;) and

(X7 (i) Ab))- We note that m(X;) = 7'(X/] ;) holds for every .

(i)

X, Xi—=» (lr(i)

Remark 2.20 (see [FG, Remark 2.15]). Let (X, A) and (X', A) be log canonical pairs.
Let f: (X,A) --» (X', A’) be a B-bimeromorphic map over Y as in Definition PZT8.
We assume that (X, A — [A]) and (X', A" — |A’]) are kawamata log terminal. We put
S:=|A] and S’ := |A’|. By replacing Y with a relatively compact open subset, we may
assume that Z in Definition 2718 is smooth and

Oé*(KX + A) = Kz + Ay = O/*(KX/ + A/)

such that Supp Az is a simple normal crossing divisor on Z. We may further assume
that o and o' are projective in Definition Z18. We put Kg + Ag := (Kx + A)|s and
Kg + Ag := (Kx + A')|s. By applying a.. and o, to

0= Oz([=(AZ")] = AZ") = Oz([—(AZ)]) = Oasnt ([-(AZ)]) = 0,
we have a,.Ox-1 >~ Og and a;(’)A? ~ Og. Here we used

R'o.07([—(A71)] = A7) = Rl 0z([-(AZ)] — AZ') =0,
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which is nothing but the relative Kawamata—Viehweg vanishing theorem. Thus f induces
an isomorphism

(@) to () : .O0g(m(Kg + Ag)) — m.05(m(Ks + Ag)).
We note that f does not necessarily induce a bimeromorphic map S --» S’ in the above
setting.

Let us introduce the notion of B-pluricanonical representations in the relative complex
analytic setting.

Definition 2.21 (B-pluricanonical representations). Let X be a normal complex analytic
space such that (X, A) is log canonical and let 7: X — Y be a projective morphism of
complex analytic spaces. Let m be a positive integer such that m(Kx + A) is Cartier.
Then we have a group homomorphism

pm: BIm(X/Y,A) = Aute, (m.0x(m(Kx + A)))

given by p,,(g) = g* for g € Bim(X/Y, A). It is called the B-pluricanonical representation
or log pluricanonical representation for (X, A) over Y. When Y is a point, we have

pm: Bir(X,A) = Aute (H(X, Ox(m(Kx + A)))) .

Theorem @2 is a generalization of the following theorem, which is one of the main
results of [FG]. We note that we need it in the proof of Theorem 2. In [HX]], Hacon and
Xu independently proved a slightly weaker theorem (see [HXI, Theorem 1]), which seems
to be insufficient for the purpose of this paper.

Theorem 2.22 ([FG, Theorem 1.1]). Let (X, A) be a projective log canonical pair. Sup-
pose that m(Kx + A) is Cartier and that Kx + A is semiample. Then py, (Bir(X, A)) is
a finite group.

In the proof of Theorem 2, Burnside’s theorem plays a crucial role. Hence we state
it explicitly for the sake of completeness. For the proof, see, for example, [CR|, (36.1)
Theorem).

Theorem 2.23 (Burnside). Let G be a subgroup of GL(n,C). If the order of any element
g of G is uniformly bounded, then G is a finite group.

In order to prove Theorem [, we need the notion of admissible and preadmissible
sections, which are first introduced in [Fujll.

Definition 2.24 (Admissible and preadmissible sections, see [Fujl, Definition 4.1]). Let
(X, A) be a semi-divisorial log terminal pair and let 7: X — Y be a projective morphism
of complex analytic spaces. Let W be a Stein compact subset of Y such that I'(W, Oy )
is noetherian. Let X = |J, X; be the irreducible decomposition. As usual,

vi X' = [ X = X=X

is the normalization with

Let S be the disjoint union of |©;|’s. We put
Kqg+ Ag := (KXV + ®>|S
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Then, by adjunction, (S5, Ag) is semi-divisorial log terminal. Let m be a positive integer
such that m(Kx + A) is Cartier. Let U be a semianalytic Stein open subset of Y with
U C W. In particular, the number of the connected components of U is finite (see, for
example, [BieMT, Corollary 2.7]). We put Xy := 7~ 1(U) and Sy := (7 o v)"}(U). Then
we define preadmissible and admissible sections inductively as follows.
(1) s € H'( Xy, Ox(m(Kx +A))) ~ HY (U, 7m.Ox(m(Kx +A))) is preadmissible if the
restriction v*s|g, € H(Sy, Os(m(Ks + Ag))) is admissible.
(2) s € H'(Xy, Ox(m(Kx+A))) is admissibleif s is preadmissible and ¢*(s|x,) = s|x,
holds for every B-bimeromorphic map g: (X;, 0;) --+ (X, ©,) defined over some
open neighborhood U, of W for every 4, j.

Then we put
PA (Xy, Ox(m(Kx + A)))
= {s|s € H (Xy,Ox(m(Kx + A))) is preadmissible}
and
A (Xy,Ox(m(Kx + A)))
= {s|s€ H(Xy,Ox(m(Kx + A))) is admissible}.

We note that if Z is any analytic subset defined over some open neighborhood of W then
U N Z is a semianalytic Stein open subset of Z contained in W N Z. Thus the number of
the connected components of U N Z is finite (see, for example, [BieM1l, Corollary 2.7]).

Let U’ be a semianalytic Stein open subset of Y such that U" C U. We put Xy =
7~ Y(U"). Then there exist natural restriction maps

PA (Xy, Ox(m(Kx + A))) — PA(Xy, Ox(m(Kx + A)))
and

A(Xy,Ox(m(Kx +A))) = A(Xy, Ox(m(Kx + A))).
Remark 2.25. In Definition 224, the natural map

H( Xy, Ox(m(Kx + A))) — HY(U, m.0x (m(Kx + A)))

is an isomorphism of topological vector spaces since U is Stein (see, for example, [P,
Lemma II.1]).

The following remark is almost obvious by definition. We state it explicitly for the sake
of completeness.

Remark 2.26. In Definition 2224, if

s€A(Xy,Ox(m(Kx +A))) (resp. PA(Xy, Ox(m(Kx + A))),
then

st € A(Xy, Ox(Im(Kx + A)))  (resp. PA (Xy, Ox(Im(Kx + A)))

for every positive integer I. Moreover, if A (Xy, Ox(m(Kx + A))) generates Ox (m(Kx +
A)) over U, then A (Xy, Ox(Im(Kx + A))) generates Ox (Im(Kx + A)) over U for every
positive integer [. Similarly, if PA (X, Ox(m(Kx + A))) generates Ox (m(Kx +A)) over
U, then PA (X, Ox(Im(Kx + A))) generates Ox (Im(Kx +A)) over U for every positive
integer [.

The following remark is obvious by definition.
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Remark 2.27. In Definition 224, if (X, A) is kawamarta log terminal, then any section
s € H(Xy, Ox(m(Kx + A))) is preadmissible by definition.

In our complex analytic setting, we can reformulate Claim (A,) and Claim (B,,) in the
proof of [Fujl, Lemma 4.9] as follows. We note that (X, Ax) is sub log canonical when
X is smooth and Ay is a subboundary Q-divisor such that Supp Ax is a simple normal
crossing divisor. For sub log canonical pairs, we can define log canonical centers as in
Definition 22

Lemma 2.28. Letm: X — Y be a projective bimeromorphic morphism of smooth complex
varieties and let Ax (resp. Ay) be a boundary Q-divisor on X (resp. Y') such that Supp Ax
(resp. Supp Ay) is a simple normal crossing divisor on X (resp. Y). We assume that
Kxy +Ax = W*(Ky + Ay)
(i) If T is a log canonical center of (Y,Ay), then there exists a log canonical center
S of (X, Ax) such that m: S — T is bimeromorphic.
(ii) Let m be a positive integer such that m(Ky +Ay) is Cartier. If S is a log canonical
center of (X, Ax) such that w: S — mw(S) is not bimeromorphic, then there exists
a log canonical center S" of (X,Ax) with S" C S such that n: S" — 7n(S) is
bimeromorphic and the natural restriction map

F*Os(m([(s + As)) — 1, Oy (m(KS/ + AS/))
induced by the inclusion S' — S is an isomorphism, where Kg + Ag := (Kx +
AX>|S and st + Asr = (KX + Ax)|5/.

Proof. The proof of Claim (A,,) and Claim (B,,) in the proof of [Fujl, Lemma 4.9] works
in our setting (see also [Fuj2, Lemma 7.2]). O

We will freely use Lemma in subsequent sections.

3. FINITENESS OF RELATIVE LOG PLURICANONICAL REPRESENTATIONS

In this section, we will prove Theorem T2 and Corollary 3. We note that we use
Theorem 222 for the proof of Theorem 2. Let us start with an elementary lemma.

Lemma 3.1. Let Y be a complex manifold, which is connected. Let
p: G — GL(r, Oy)
be a group homomorphism. We further consider
py =evyop: G — GL(r, Oy) — GL(r, C),

where ev, is the evaluation map at y € Y. We assume that Im p, = p,(G) is a finite
group for everyy € Y. Then evy,: p(G) — p,(G) is an isomorphism for everyy € Y. In
particular, ITm p = p(G) is a finite group.

Proof. 1t is obvious that evy: p(G) — p,(G) is surjective for every y € Y. We take an
arbitrary point yo € Y. It is sufficient to prove that ev,,: p(G) — p,(G) is injective.
We take g € p(G) such that ev, (g9) = E,, where E, is the r x r identity matrix. Note
that ev,(g) is semisimple and every eigenvalue of ev,(g) is a root of unity for every y € Y’
since p,(G) is a finite group by assumption. We consider the characteristic polynomial
X(t) := det(tE, — g). The coefficients of x(t) are holomorphic and take values in K, where
K is the subfield of C generated by all roots of unity. Hence they are constant. Since
evy(9) = E,, we see that every eigenvalue of ev,(g) is 1 for every y € Y. This implies
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that ev,(g) = E, holds for every y € Y because ev,(g) is semisimple. Hence we have
g = E,, that is, evy,: p(G) = py, (G) is injective. We finish the proof. O

Theorem B is one of the most important results in this paper.

Theorem 3.2. Let m: X — Y be a projective morphism from a normal complex analytic
space X onto a polydisc Y such that (X, A) is divisorial log terminal and that Kx + A
1s m-semiample. Let p: Z — X be a projective bimeromorphic morphism from a smooth
complez analytic space Z with Kz + Ay := p*(Kx 4+ A) such that mop: Z — Y is smooth
and projective and that Supp Az is a simple normal crossing divisor on Z and is relatively
normal crossing over Y. Let m be a positive integer such that m(Kx + A) is Cartier. We
assume that R'm,Ox(m(Kx+A)) is locally free for every i and m,Ox(m(Kx+A)) ~ OF"
for some positive integer r. We consider
pm: Bim(X/Y,A) — GL(r, Oy) ~ Auto, (m.Ox(m(Kx + A)))
and
Py = €Vy opn,: Bim(X/Y,A) — GL(r, Oy) — GL(r, C),

where evy, is the evaluation map aty € Y. Then Im p,, , is a finite group for everyy € Y.
Moreover,

evy: Imp, — Impy,,

1s an isomorphism for every y € Y. In particular, Im p,, is a finite group.
We note that, in the above setting, X,, := 7 *(y) is a normal projective scheme, (X,, A,)
is divisorial log terminal, where Kx, + A, := (Kx + A)lx,, and

(3.1) evy: mOx(m(Kx + A)) = H°(X,, Ox,(m(Kx, + A)))
by the base change theorem.
Remark 3.3. In Theorem B, X is not necessarily connected.

Let us prove Theorem B2.

Proof of Theorem 33. By Lemma BT, it is sufficient to prove the finiteness of Im p,, , for
every y € Y. In Step [, we will prove the description (B8 of the evaluation map ev,.
Then, in Step B, we will prove the finiteness of Im p,, ,,.

Step 1. We put d := dim Y. We note that Y is a polydisc by assumption. We take general
hyperplanes Hy,--- , H;on Y passing through y. Then <X, A+ Z?Zl 7T*Hi> is a divisorial

log terminal pair. We note that (7 o ¢)* (Z?:l Hi) and Supp (AZ + (mop)” (Z?:l HZ>>

are simple normal crossing divisors on Z. By construction, X, is a log canonical center

of (X, A+Y¢ W*Hi). This implies that X, is normal and (X,,A,) is divisorial log

terminal. Since R'm,Ox(m(Kx + A)) is locally free for every i by assumption, we have
m.O0x(m(Kx + A)) @ C(y) ~ H°(X,, Ox,(m(Kx, + A,)))

by the base change theorem. Hence we have the desired description (BI) of the evaluation

map ev,,.

Step 2. We take an arbitrary element g of Bim(X /Y, A). By Theorem 223, it is sufficient
to prove that the order of p,, ,(g9) = ev, 0p,,(g) is uniformly bounded. We make H; general
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in Step @ and put Y’ := Hy, X' ;= 7n*H;y, and Kx/ + A’ := (Kx + X’ 4+ A)|x/. Then the
above g induces ¢’ € Bim(X'/Y”’, A’) such that ev, op,,(g9) = ev, op/,(¢') holds, where

P BIm(X' /Y A") — Aute, (m.0x/(m(Kx + A'))).
By repeating this process finitely many times, we may assume that Y is a disc. Hence X,
is a divisor on X.

We first assume that X, is connected. Let [ be the number of the log canonical strata
of (X,,A,). We consider

pm: Bir(V, Ay) = Aute (H*(V, Oy (m(Kv + Av))))

where (V,Ay) is a log canonical stratum of (X,,A,). Since Ky + Ay is semiample,
pm (Bir(V, Ay)) is a finite group by Theorem ZZ2. Then we put

k= lem {#pm (Bir(V,Ay)) | (V. Ay) is a log canonical stratum of (X, A,)}
Claim. p,,,(9)" = E, holds.

Proof of Claim. We consider log canonical strata (7, Ar) of (X, A,) satisfying that the
natural restriction map

(3.2) HY(X,, Ox,(m(Kx, +Ay))) — HY(T,Or(m(Kr + Ar)))

is an isomorphism. We put ¢ := mindim 7.

Let (T, Ar) be a t-dimensional log canonical stratum of (X,, A,) such that the natural
restriction map (B72) is an isomorphism. We consider the following commutative diagram
as in Definition 221G

where g is a B-bimeromorphic map of (X, A) over Y taken above. By shrinking Y around
y, we may assume that X is smooth, a and 3 are projective, and

o (Kx +A) = Kyt + Axi = §5(Kx + A)

such that Supp A y+ USupp(moa)*y is a simple normal crossing divisor on XT. We take X
suitably. Then, by Lemma (see also the proof of [Fujl, Lemma 4.9] and [FG, Lemma
2.16]), we can find a log canonical stratum (77, Ap) of (X,,A,) and a commutative
diagram

Tt
2
(T7 AT) (Tla AT’)

such that a|p+ and f|r+ are proper birational and that

(Blzt) o (alzt) ™ (T, Ag) -=» (T", Ag)
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is a B-birational map of projective divisorial log terminal pairs. Note that there are only
finitely many log canonical strata contained in X,. Thus we can find ¢-dimensional log
canonical strata (5;, Ag,) of (X,,A,) for 1 <i < p and a natural embedding

HY(X,, Ox,(m(Kx, + A,))) = @HO(&" Os, (m(Ks, + As,)))

such that ¢ induces g € Bir(S, Ag), where (S, Ag) := | |,(S;, Ag,), satisfying the following
commutative diagram:

0 —= H(X,, Ox, (m(Kx, + 4,))) — B, H°(S:, Os,(m(Ks, + As,)))
pm.y(9) l l pm(9)
0 — H°(X,, Ox, (m(Kx, + Ay))) —= B, H(S;, Os,(m(Ks, + As,))).
We note the following description of p,,,(g). Let V be the union of the irreducible
components of (Ax+ + (7 o a)*y)~! mapped to y. We put
Ky + Ay = (KXT + Axt + (7‘(‘ o Oé>*y)|v.

Then we can check that a,Oy ~ Ox, ~ 5,0y holds, which is an easy consequence of
the strict support condition established in [Fujl2, Theorem 1.1 (i)] (see, for example, the
proof of Lemma B2 below). Thus p,,,(g) can be written as

Py HO(X,, Ox, (m(Kx, + A,))) 5 H(V, Oy (m(Ky + Av)))

L HY(X,, Ox, (m(Kx, + A,))).

Since pm(9)™ = id on @, H°(S;, Os,(m(Ks, + Ag,))) by the definitions of [ and k, we

have pp,(9)"* = E,. This is what we wanted. O

We note that [!k is independent of g. Therefore, Claim implies that Im p,,, ,,, which is a
subgroup of GL(r,C), is a finite group by Burnside’s theorem (see Theorem Z23). Thus
we finish the proof under the assumption that X, is connected.

From now, we assume that X, is not connected. Let a denote the number of the
connected components of X,,. Then g™ preserves each connected component of X,. Thus,
by the above argument, we can take a positive integer b such that p,,,(g)* = E, holds for
every g € Bim(X/Y,A). Thus, by Burnside’s theorem (see Theorem P723), we see that
Im p,,,,, is a finite group.

We finish the proof. O
We can prove Theorem 2 as an easy application of Theorem B2

Proof of Theorem 2. Let U be a nonempty open subset of Y. We consider the following
commutative diagram

pm: Bim(X/Y, A) Auto, (m.Ox(m(Kx 4+ A)))

| |

pm: Bim(m=H(U) /U, Alz-1 1)) — Auto,, (1.0—10n(m(Kx + A))) .

Note that the vertical arrows are natural restriction maps. It is obvious that the restriction
map

Auto, (m.Ox(m(Kx + A))) — Auto,, (W*OW—I(U) (m(Kx + A)))
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is injective since Y is irreducible. Hence, in order to prove Theorem 2, we can freely
replace Y with a small nonempty open subset of Y. We take a Stein compact subset
W of Y such that I'(W, Oy) is noetherian. Then, by [Fujll, Theorems 1.21 and 1.27],
we can take a dlt blow-up ¢: (X', A’) — (X,A). By replacing 7: (X,A) — Y with
n'i=mot: (X' A') =Y, we may further assume that (X, A) is divisorial log terminal.
By taking a resolution of singularities of X (see, for example, [BieM?]) and shrinking Y
suitably, we may assume that 7: (X, A) — Y satisfies all the conditions in Theorem B=2.
Then, by Theorem B3, p,,, (Bim(X/Y,A)) is a finite group. This is what we wanted. We
finish the proof. O

Let us prove Corollary I3, which is almost obvious by Theorem 2. We will use it in
the proof of Theorem [I.

Proof of Corollary T-3. We decompose (X, A) =: | |,(X;, A;) such that 7, := 7|x,: X; —
Y; := 7(X;) is surjective and every irreducible component of X; is dominant onto Y; for
every ¢. We may assume that Y; # Y; for i # j. Since U is a semianalytic Stein open
subset of Y, ¥;NU is a finite disjoint union of semianalytic Stein open subsets of Y; (see,
for example, [BieM1, Corollary 2.7]). Let U’ be a connected component of ¥; N U. Then,
by Theorem 3, the image of

(33)  pm: Bim ( HUN U, Al ) ) — Auto,, <7ri*(’)7r;1(U,)(m(Kxi + Ai))>
is a finite group. Note that there exists a natural restriction map
(3.4) Bim(X/Y, A; W) — Bim (Wﬂ(U') U, A1|W;1(U,)) .
By the natural restriction map (84),

PV Bim(X/Y, A W) = Auto,, (m*oﬁl(U,)(m(KXi + Ai))>
factors through p,, in (833). Thus, we have

PV (Bim(X/Y, A W) € g (Bim (7, ' (U) /U, Al 1)) ) -
Since p/Y(Bim(X/Y,A; W)) is contained in

Hp (Bim(X/Y, A; W),

where U’ runs over all connected components of Y; N U for all i. Hence we see that
oV (Bim(X/Y, A; W)) is a finite group. We finish the proof. O

4. ABUNDANCE FOR SEMI-LOG CANONICAL PAIRS

In this section, we will prove Theorem [I. This section is essentially the same as [Fujl]
although we need the minimal model program for projective morphisms between complex
analytic spaces established in [Fujll] (see also [EHI] and [EHZ]).

The following lemma is well known. It is an easy application of the relative Kawamata—
Viehweg vanishing theorem.

Lemma 4.1 (Connectedness lemma). Let (X, A) be a log canonical pair and let m: X —
Y be a projective morphism of complex analytic spaces with m,Ox ~ Oy. Assume that
—(Kx + A) is w-nef and w-big. Then NkIt(X, A) N7~ (y) is connected for every y € Y,
where NkIt(X, A) denotes the non-kawamata log terminal locus of (X, A). In particular,
if (X, A —|A]) is kawamata log terminal, |A| N7~ (y) is connected for every y € Y.
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Proof. The usual proof in the algebraic setting can work with only some suitable modifi-
cations. This is because the Kawamata—Viehweg vanishing theorem holds for projective
morphisms between complex analytic spaces. In this proof, we can freely shrink Y around
y. We consider the following short exact sequence:

0— j(X, A) — Ox — ONklt(X,A) — 0,

where J(X, A) denotes the multiplier ideal sheaf of (X, A). By the relative Kawamata—
Viehweg-Nadel vanishing theorem, we have

0— W*j(X, A) — Oy — W*ONklt(X,A) — 0.
This implies that Nklt(X, A) N7~ !(y) is connected. O

The following lemma also claims that the union of log canonical centers is connected
in some suitable setting. Lemma B2 is much harder than Lemma BEZ1. The proof heavily
depends on the strict support condition established in [Fujl2, Theorem 1.1 (i)] (see also
[Fuil5) and [EE]).

Lemma 4.2. Let (X, A) be a log canonical pair and let m: X — Y be a projective mor-
phism of normal complex varieties with m7,Ox ~ Oy. Let W be a compact subset of Y.
We assume that Kx + A ~q . 0 holds. We put Y' :=J,n(C;) C Y, where {C;} is a set
of some log canonical centers of (X, A). Let X’ be the union of the log canonical centers
of (X, A) mapped toY' by w. Then, after shrinking Y around W suitably, m.Ox: ~ Oy
holds. In particular, 7,Ox >~ Oy holds on an open subset U contained in W .

Proof. Throughout this proof, we will freely shrink Y around W without mentioning
it explicitly. Let p: Z — X be a projective bimeromorphic morphism from a smooth
complex variety Z with Kz + Ay := p*(Kx + A) (see [BieM?]). We may assume that
(rop) H(Y’) and p~'(X’) are simple normal crossing divisors on Z. We may further
assume that the union of (o p)~*(Y”"), p~*(X’), and Supp Ay is contained in a simple
normal crossing divisor on Z. Let V' be the union of the irreducible components of AZ!
mapped to Y’ by mop. We put A := [—(AZ")], which is a p-exceptional effective divisor
on Z. By assumption, we have

A=V —(Kz+AZ' =V +{Az}) ~g.rop 0.
We consider the following short exact sequence

0—=0z(A-V)—= Oz(A) — Oy(A) — 0.
We note that no log canonical centers of (Z, AZ! —V +{Az}) map to Y’ by construction.
Then we have

0= (mop)Oz(A-=V)—= Oy — (r0p).Oy(A) = 0.

Here we used the strict support condition for R (7o p).Oz(A —V) (see [Fujl2, Theorem
1.1 (i)]) in order to prove the connecting homomorphism

§: (mop),Oy(A) = R} (mop).Oz(A—-V)
is zero. This implies that (7 o p),Oy (A) ~ Oy holds. Similarly, we have the short exact
sequence

0— p*(’)Z(A — V) — Ox — p*Ov(A) —0

since no log canonical centers of (Z, AZ' —V + {Az}) map to X’ by construction. This
implies that p.Oy(A) ~ Ox,. Hence we have m,Ox ~ Oy-. We finish the proof of Lemma
2. U
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As an easy corollary of Lemma B=4, we have:

Corollary 4.3 ([Fujl, Lemma 4.2]). Let (X, A) be a divisorial log terminal pair and let
m: X — Y be a projective morphism of normal complex varieties with m,.Ox ~ Oy. Let
W be a compact subset of Y. We assume that Kx +A ~q 0 holds. IfY' :=n(|A]) C Y,
then, after shrinking Y around W suitably, we have m,O\a) ~ Oy-.

Proof. Since (X, A) is divisorial log terminal, |A] is the union of all log canonical centers
of (X, A). Therefore, by Lemma B2, we have 7,0|a] =~ Oy-. O

The following lemma, which is a toy model of Lemma B3 and Proposition @ below,
is sufficient for [Fuj2], [Fuj5], [Fuj7], and [G2]. Therefore, we do not treat any subtle
problems when Kx + A is numerically trivial.

Lemma 4.4. Let (X, A) be a projective Q-factorial divisorial log terminal pair such that
Kx+A ~g 0. Assume that |A] is not connected. Then |A| = S+ S, such that (S;, Asg,)
is kawamata log terminal with Kg, + Ag, :== (Kx + A)lg, for i = 1,2 and that (S1, A1) is
B-birationally equivalent to (Ss, Ag,). In particular, (X, A) is purely log terminal.

Proof. Note that Kx + A — ¢|A] is not pseudo-effective for a small positive rational
number €. By running a (Kx + A — ¢[A])-minimal model program with ample scaling
(see [BCHM]), we finally get an extremal Fano contraction morphism, which is generically
a Pl-bundle with two disjoint sections. More precisely, we have

p: X --=X'
©

Vv

where p: X --» X’ is a finite sequence of flips and divisorial contractions and ¢: X' — V
is a (Kx + A" — ¢| A’|)-negative extremal Fano contraction with dimV = dim X — 1.
We can check that the number of the connected components of |A] is preserved by the
above minimal model program by applying Lemma BEZ1 to each step. Hence we obtain
that [A'] = S1+ 5%, ¢: S — V is an isomorphism for i = 1,2, and 57N S, = (). By using
[AFKM, 12.3.4 Theorem], we can check that ¢: (S}, Ag/) — (V, P) is a B-bimeromorphic
isomorphism for some effective Q-divisor P on V, where Kg + Ag 1= (Kx: + A')[g;.
Then, by Lemma B2, we see that there are no log canonical centers except |A’|. This
implies that (X', A’) is purely log terminal. Hence, (X, A) is purely log terminal and
(S1,As,) is B-birationally equivalent to (S, Ag,). This is what we wanted. O

The following lemma is very important.

Lemma 4.5. Let (X', A’) be a log canonical pair and let 7': X' — Y be a projective
surjective morphism of normal complex varieties. Let W be a Stein compact subset of Y
such that T'(W, Oy) is noetherian. Assume that X' is Q-factorial over W. Let f': X' — Z
be a projective surjective morphism of normal complex varieties over Y such that Kx +
A" ~gp 0, and Tz Z — 'Y is projective, where Ty is the structure morphism. Assume
that (X', A" —e|A'|) is kawamata log terminal for some small positive rational number e
and there ezists a (Kx+A'—e| A'])-negative extremal Fano contraction ¢ = pr: X' — V
over Z associated to an extremal ray R of NE(X'/Z; 7, (W)) with dimV = dim X’ — 1.
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Note that V' is Q-factorial over W and has only kawamata log terminal singularities.

X 2oy

X

Y%
Tz

Then the horizontal part (A" of |A']| with respect to ¢ satisfies one of the following
conditions.

(I) (A" = Dy, which is irreducible, and deg[D} : V] = 1.
(1) (A" = D} + D} such that D) is irreducible and deg[D}: V] =1 fori=1,2.
(IIT) (A" = Dy, which is irreducible, and deg[D} : V] = 2.

We define Ap; by
Kp + Ap = (Kx + A)|p,
fori=1,2. Let v;: DY — D) be the normalization for i = 1,2. We put
Kpw + Apw := v (Kp, + Ap)
fori=1,2. After shrinking Y around W suitably, we have the following statements.
Case (I). |[A'] N~ 1(v) is connected for every v € V.

Case (IT). The number of the connected components of [A’] N~ (v) is at most two for
every v € V and

(porm) "o (pom): (DY, App) - (DY, Apy)
is a B-bimeromorphic map over V.

Case (III). The number of the connected components of |A’| N~ (v) is at most two for
every v € V and there exists a B-bimeromorphic map

L (DllyvAD/l”) - (D3V7AD/1”)
over V with ¢ # id and /2 = id.

Moreover, in (II) and (IT1), if |A’] N~ (v) is not connected for some v € V, then
(X', A") is purely log terminal in a neighborhood of ¢~ (v).

More details on Cases (II) and (III) will be discussed in the following proof.

Proof of Theorem F.3. We have Rip,Ox/ = 0 by the relative Kawamata—Viehweg van-
ishing theorem. Therefore, we see that general fibers of ¢: X’ — V are P!. Hence the
mapping degree of (A’)", the horizontal part of |A’[, is at most two. Therefore, we have
(I), (IT), and (III).

In Case (I), (A")" = D} is irreducible and @-ample. Since ¢ is an extremal Fano
contraction, the vertical part of |A’| is the pull-back of some effective Q-divisor on V.
Hence |A’| Np~!(v) is connected for every v € V.



ON FINITENESS OF RELATIVE LOG PLURICANONICAL REPRESENTATIONS 19
In Case (II), we consider the following commutative diagram

)
D <" D

e

Dt

7

Y

V

where D) — D;r — V is the Stein factorization for ¢ = 1,2. Since the mapping degree
deg[D} : V] =1, ¢;: D! — V is an isomorphism for i = 1,2. We put
KDJ + ADJ = pi*(KD;' + AD;’)
for © = 1,2. Then we can check that
%_1 © ¢1 : (DL ADI) — (D;, AD%‘)

is a B-bimeromorphic isomorphism. More precisely, by taking general hyperplane cuts
and applying [AFKNM), 12.3.4 Theorem]| to our setting, we see that there exists an effective
Q-divisor P on V such that ;: (Dj, Api) = (V, P) is a B-bimeromorphic isomorphism
for i = 1,2. Hence
(po V2)71 o(pow): (DY, App) --» (Dy, Apy)
is a B-bimeromorphic map over V.
In Case (III), we consider the following commutative diagram

vi

Dy <" Dy

b

Y1

DI < D"

e

Vv

where D] — DI — V' is the Stein factorization and I/IZ D}L” — DI is the normalization.
We put

Then there exists an isomorphism ' DIV — DI” over V such that «f # id and (:1)? = id.
Over a nonempty open subset of V' over which DI is a union of two sections, the situation
is the same as in Case (IT). Where DI — V is a ramified double cover of smooth varieties,
D}LV — DI is an isomorphism and the ramification locus is ¢/-invariant. Hence we can
check that ¢/ preserves A piv Therefore, we obtain a B-bimeromorphic involution map

L (D;_V, ADllu) -—> (Dil/7 AD/lu)
over V.
We assume that |A’] Np~!(v) is not connected in (IT) and (III). Then D! is finite over
some open neighborhood of v. Therefore, D, — DZT is an isomorphism for ¢ = 1,2. In
particular, D] is normal for ¢ = 1,2. By Lemma B, we can prove that there are no
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log canonical centers except (A’)" over some open neighborhood of v. This means that
(X', A") is purely log terminal in a neighborhood of ¢! (v). This is what we wanted.
We finish the proof of Lemma B73. 0J

By Lemma B3, we have:

Proposition 4.6. Let (X, A) be a divisorial log terminal pair and let m: X — Y be a
projective surjective morphism of normal complex varieties. Let W be a Stein compact
subset of Y such that T'(W,Oy) is noetherian. Assume that X is Q-factorial over W.
Let f: X — Z be a projective surjective morphism of normal complex varieties over Y
such that f.Ox ~ Oz, Kx + A ~q 0, and mz: Z — Y 1is projective, where w7 is the
structure morphism. We further assume that |A] N f~1(z) is not connected for some
z € 7,/ (W). Then, after shrinking Y around W suitably, the number of the connected
components of |A| N f1(2) is at most two for every z € Z. There exists a meromorphic
map q: X --»V over Z whose general fiber is P! such that V is Q-factorial over W and
has only kawamata log terminal singularities. The horizontal part A" of | A| with respect
to q satisfies one of the following conditions.

(i) A" = Dy, which is irreducible, the mapping degree deg[Dy : V| = 2, and there is a

B-bimermorphic involution on (D1, Ap,) over Z.
(ii) AP = Dy + Dy such that D; is irreducible for i = 1,2 and

(q,Dz)il © <Q|D1): (Dl?ADl) -2 <D2>AD2)

1s a B-bimeromorphic map over Z.

We note that Kp,+Ap, := (Kx+A)|p, and (D;, Ap,) is divisorial log terminal fori = 1,2.
More precisely, by a (Kx + A — | A|)-minimal model program with ample scaling over
Z around 7, (W), after shrinking Y around W suitably, we have p: (X, A) --» (X', A')
over Z and (X', A) satisfies (I1) and (II1) in Lemma F-3.

X---2-->X
\\\q\ \L(p
| Ay
Y-~—7
Tz

The reader can find more details in the following proof.

Proof of Proposition .. The idea of the proof is very simple. By running a suitable
minimal model program, we reduce the problem to Lemma B. We note that we need
the minimal model program established in [EHZ] in Step M. The minimal model program
treated in [Fujll] is sufficient for Step .

Step 1. In this step, we assume that | A] is not dominant onto Z. Under this assumption,
we will prove that [A] N f~1(z) is connected for every z € 7, (W).

We take an arbitrary point z € 7, (W) and a Stein compact subset W, of Z such that
['(W,,Oy) is noetherian and z € W,. By [EH2, Theorem 1.2], we can run a (Ky + A —
e|A])-minimal model program with ample scaling over Z around W,. We finally get a
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commutative diagram

around W, such that p is a finite composite of flips and divisorial contrations and that
Kx: + A" — g|A’| is nef over W,. This implies that [A’| N f~!(z) is connected, where
' X' — Z is the structure morphism. Since the number of the connected components of
| A]Nf~1(2) is preserved by the above minimal model program by Lemma BT, |A]Nf~1(2)
is connected.

Step 2. In this step, we assume that |A] is dominant onto Z. Then Kx + A —¢|A]
is not pseudo-effective over Z. By [Fujll, Theorem 1.1 and Lemma 9.4|, we can run
a (Kx + A — ¢|A])-minimal model program with ample scaling over Z around W :=

7, (W). Then we obtain a finite sequence of divisorial contractions and flips

p: X:: XO -——> Xl ——> s == Xm = X/

such that there exists a (Kx +A’—e| A’])-negative extremal Fano contraction ¢: X' — V
over Z. If dimV < dim X — 2, then |A’] N~ (v) is connected for every v € V since |A’]
is p-ample. This implies that |A’] N f'~1(z) is connected for every z € 7,'(W). Since
the above minimal model program preserves the number of the connected components of
|A] N f71(2) by Lemma B0, [A] N f~!(2) is connected for every z € W. Hence, from
now, we may assume that dimV' = dim X — 1. In this case, we have already described
the situation in Lemma 3. Case (III) (resp. (II)) in Lemma BH implies (i) (resp. (ii)).

We finish the proof of Proposition 8. 0J

Before we explain our gluing argument, we prepare an elementary but important lemma.
Here, we need the finiteness of relative log pluricanonical representations (see Corollary

Lemma 4.7 ([Fujl, Lemma 4.6]). Let (X,A) be an equidimensional (not necessarily
connected) divisorial log terminal pair and let m: X — Y be a projective morphism of
complex analytic spaces. Let W be a compact subset of Y and let U be a Stein open
subset of Y with U C W. We further assume that U is semianalytic. We put G :=
oV (Bim(X/Y, A;W)). Then G is a finite group. We put Xy =7 Y(U). If

s € PA (XU, Ox(m(KX + A))) ,
then g*s||a) = s||a) and

g*S € PA (XU; Ox(m(KX + A)))
for every g € G. In particular,

Zg*s €A (XUv OX(m(KX + A))) )

geG

[[os € AXy, Ox(m|G|(Kx + A))),

geG
and

[T oslia) = (slia)"

geCG
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Of course,

1 *
@Zg SINEEIIN

geG

holds.

Proof. By Corollary =3, G is a finite group. Then, by Lemma P28, it is not difficult to
see that the proof of [Fujl, Lemma 4.9] works in our complex analytic setting. Hence we
omit the details here. U

Proposition B8, which is essentially the same as [Fujl, Proposition 4.5], is a key step
of our gluing argument.

Proposition 4.8 ([Fujl, Proposition 4.5]). Let w: X — Y be a projective morphism of
complez analytic spaces such that (X, A) is divisorial log terminal. Let U be a semianalytic
Stein open subset of Y and let W be a Stein compact subset of Y with U C W such that X
is Q-factorial over W and that T (W, Oy) is noetherian. We put S := |A], Xy := 7 1(U),
and Sy := S|y Assume that

(1) Kx + A is m-semiample, and
(2) A(Sy,Os(mo(Kx + A))) generates Og(mo(Kx + A)) over U for some positive
nteger myg.

If necessary, we replace U with a smaller semianalytic Stein open subset of Y. Then there
exists a positive integer my such that mymg € 27, the natural restriction map

PA (XU, Ox(mlmo(KX + A))) — A (SU, Os(mlmo(KX + A)))
is surjective, and PA (Xy, Ox(mimo(Kx + A))) generates Ox(mymo(Kx + A)) over U.

The proof below is essentially the same as that of [Fujl, Proposition 4.5]. We describe
it for the reader’s convenience.

Proof of Proposition [.8. 1t is sufficient to prove this proposition for each connected com-
ponent of X. Hence we may assume that X is irreducible. Throughout this proof, we will
freely shrink Y around W without mentioning it explicitly. We first take a relative litaka
fibration f: X — Z over Y, that is, f: X — Z is a projective surjective morphism of
normal complex analytic varieties such that f,Ox ~ Oy and that Ox(m(Kx+A)) ~ f*L
holds for some positive integer m and a mz-ample line bundle £ on Z, where 75: Z — Y
is the structure morphism.

N

Y

If S =|A| =0, then there is nothing to prove. Therefore, we may assume that S =
|A| # 0. Then we have the following four cases:
(1) Z is a point and S is connected,
(2) dim Z > 1, SN f~!(z) is connected for every z € Z, and f(S) = Z
(3) dimZ > 1, SN f~!(z) is connected for every z € Z, and f(S) C Z, and
(4) SN f71(2) is not connected for some z € Z.
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Step 1. In this step, we will treat (1).

When Z is a point, X is projective and Ky + A ~g 0. We consider the following long
exact sequence:

0 — H°(X,Ox(mo(Kx +A) —8)) = H (X, Ox(mo(Kx + A)))
— H(S, Os(mo(Kx + A))) — - -

Since Kx + A ~g 0 and S # 0, we obtain that H°(X, Ox(mo(Kx + A) — S)) = 0 and
that the second and the third terms are one-dimensional. Hence we obtain the desired
statement.

Step 2. In this step, we will treat (2).

By taking a divisible positive integer m such that A(Sy, Og(m(Kx + A))) generates
Os(m(Kx + A)) over U and that Ox(m(Kx + A)) ~ f*L£ holds for some mz-ample line
bundle £ on Z. If necessary, we replace U with a smaller relatively compact semiana-
lytic Stein open subset of Y. By A (Sy, Os(m(Kx + A))), we can construct a morphism
$: S — Z' over U. Since every curve in any fiber of f|s over U is mapped to a point by
®, there exists a morphism ¥: Z — Z" over U such that ¥ o (f|s) = ®. Over U, there
exists the following commutative diagram.

X <~—>F8
T
7 ——7
v
We note that

o. 50 7z v

and that f|g is surjective with connected fibers. For any
s €A (Sy,Os(m(Kx +A))),
we can take t such that s = ®*t. We put v := f*U*t. Then
u € PA (Xy, Ox(m(Kx + A)))

such that u|g = s. By construction, PA (Xy, Ox(m(Kx + A))) generates Ox(m(Kx +
A)) over U.

Step 3. In this step, we will treat (3).
This step is a relative version of [Fujl, Lemma 4.3]. We take a divisible positive integer
m such that Ox(m(Kx + A)) ~ f*L for some mz-ample line bundle £ on Z.

x---1 .z
Y

We put T := f(S) € Z. Then f.Og ~ Or by Corollary B=3. Therefore, we have the
following commutative diagram:

(41) W*Ox(lm(KX +A)) HW*OS(Zm(Ks—f—As))

] |

’iTZ*[,®l T 7% (£®1’T) .
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Note that the vertical arrows are isomorphisms. If we replace U with a relatively compact
semianalytic Stein open subset and make [ sufficiently large, then L2 ®Z; is 7;-generated
over U, where Zr is the defining ideal sheaf of 7' on Z, and R'my, (£®l ® IT) = 0 since
L is mz-ample. Thus, by (E), we have the following short exact sequence:

(42) 0— W*Ox(lm(KX +A) - S) — T*Ox(lm(KX +A)) — W*Os(lm(Ks—i-AS)) — 0.
By definition, it is obvious that every element of H( Xy, Ox (Im(Kx+A)—S)) is contained
in PA(Xy,Ox(Im(Kx + A))). By (B22), we can extend

A (SU, Og(lm(KS -+ As)))
to
and check that PA (Xy, Ox(Im(Kx + A))) generates Ox(Im(Kx + A)) over U.
Step 4. In this step, we will treat (4).

In this case, we can run a (K y + A —e|A|)-minimal model program with ample scaling
over Z around Wy := 7' (W) (see [Fujll, Theorem 1.2 and Lemma 9.4]) and finally get
(X', A") and a (Kx + A’ — e| A’])-negative extremal Fano contraction ¢: X' — V as in
Lemma BH. Then we have (II) or (IIT) in Lemma BH. From now, we will freely use the

notation in Lemma B3 and its proof. We note that p: X --+ X’ is B-bimeromorphic over
Y. The situation is summarized in the following commutative diagram.

Di-—---- ~ D <~ DV

[ |

X---2 =X Dl
LA \*V
e

Y~—7
Tz

We take any element s of PA (Xy, Ox(m(Kx + A))). By Remark 2220, we note that there
exists a natural isomorphism
H® (Xy, Ox(m(Kx + A))) ~ H° (X}, Ox/(m(Kx + A')))
induced by p, where 7/: X’ — Y and X[, := 77! (U). Hence s induces
8, & HO (X,U7 OX/(m(KX/ 4+ A/)>> .
Let m be a sufficiently large and divisible positive integer such that Ox(m(Kx + A)) =~
f*L for some line bundle £ on Z. The section s’ induces a section
S;/ & HO(D;V’ OD;u(m(KD;V + AD;”)))

over U for i = 1,2. In Case (III), s/ is t-invariant. Hence s{ descends to a section t of Ly
over U, where Ly is the pull-back of £ to V. In Case (II), s/ also naturally descends to
a section ¢t of Ly over U. In Case (III), the pull-back of ¢*t to D} coincides with s] by
construction. In Case (II), on a small open subset U of U such that go_l(fj) ~ P! x U and
that ¢| o1 () P! x U — U is the second projection, the difference between sj and the
pull-back of p*t to DY is at most (—1)™ (see the proof of [AFKM), 12.3.4 Theorem]). By
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construction, it is obvious that the pull-back of ¢*t to D}’ coincides with s]. Hence, we
have s'|(ann = (©*t)|(ar)» holds if m is even. From now, we will see that (¢*t)|a) = §'||a/]
holds as in Case 4 in the proof of [Fujl, Proposition 4.5]. Let (A")” be the vertical part
of [A’|. We can write (A')" = >, ¢*P; such that @; := Supp P, is a prime divisor on V
for every ¢ and @); # Q; for i # j. We put E; := ¢*F,;. Then it is sufficient to check that
s'|g. = (¢*t)|, holds for every i. Let F; be an irreducible component of E; N (A’)" such
that ¢: F; — Q; is dominant. Since (A’)" N (A’)” # (), we can always take such F;. We
consider the following commutative diagram:

1.0p, (M(Kx + A")) — 1.0 (m(Kx + A'))

-] jj
Tvs (Lv|g,) =————=1v: (Lv|q,),

where 7y : V' — Y is the structure morphism. The left vertical arrow is an isomorphism by
Lemma A2, The map j is injective since ¢: F; — Q; is dominant. Since §'|g, = (¢*t)|g,
we have §'|g, = (p*t)|g, for every i. Thus we have s'||a] = (¢*t)||a]. This means that
s can be lifted to a member of PA (Xy, Ox(m(Kx + A))). By construction, it is not
difficult to see that PA (Xy, Ox(m(Kx + A))) generates Ox(m(Kx + A)) over U.

We finish the proof. O

We need the following lemma for inductive gluing arguments.

Lemma 4.9 ([Fujl, Lemma 4.7]). In Proposition .8, we can replace
PA (Xy, Ox(mimo(Kx + A)))

with
A (Xy, Ox(mimo(Kx + A)))

if we make my sufficiently divisible.

Proof. We put G := p¥Y (Bim(X/Y,A;W)). Then G is a finite group. For any s €
PA(Xy, Ox(m(Kx 4+ A))), we define

1
t.= el Zg*s.
Gl 2=
Then t € A(Xy,Ox(m(Kx + A))) such that t|g = s|g by Lemma B74. We put G :=
{g1,--+ ,gn} with N := |G|. Let o; be the ith elementary symmetric polynomial for
1 <i < N. Then we have

{s =0} > s = 0 = (Woilois. - . gis) = 0.

Therefore, by considering

o (915, gxs) € A(Xu, Ox(Nlm(Kx + A)))

for s € PA(Xy, Ox(m(Kx+A))), we can check that A(Xy, Ox(N!m(Kx+A))) generates
Ox(N!'m(Kx+A)) over U under the assumption that PA(Xy, Ox(m(Kx+A))) generates
Ox(m(Kx + A)) over U. Thus we can obtain the desired statement of Lemma B9. We
finish the proof. O

By Proposition I8 and Lemma -9, we have:
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Lemma 4.10 (Abundance for semi-divisorial log terminal pairs in the complex analytic
setting). Let (X, A) be a semi-divisorial log terminal pair and let m: X — Y be a projective
morphism of complex analytic spaces. Let W be a Stein compact subset of Y such that
L'(W, Oy) is noetherian. Assume that Kx + A is w-semiample. Let P be an arbitrary
point of W. Then there exists a semianalytic Stein open neighborhood Up of P and a
positive integer m such that admissible sections generate Ox(m(Kx + A)) over Up.

Proof. Let v: X¥ — X be the normalization. By definition, we see that any admissible
section on X* descends to an admissible section on X since X is simple normal crossing in
codimension one and satisfies Serre’s S, condition. Hence, by taking the normalization, we
may assume that X is normal. By [Fujll, Theorems 1.21 and 1.27], we take a dlt blow-up
and may assume that X is Q-factorial over W, By Proposition I8 and Lemma B9, it is
sufficient to prove this lemma for (S, Ag), where S := |A| and K¢+ Ag = (Kx + A)|s.
By repeating this process finitely many times, we can reduce the problem to the case
where (X, A) is kawamata log terminal. In this case, any section is preadmissible (see
Remark 2227). Thus, by Lemma B9, we obtain the desired result. O

Let us prove Theorem [, which is one of the main results of this paper.

Proof of Theorem 1. We take an arbitrary point P € W. Since W is compact, it is
sufficient to prove that there exists a positive integer mp such that Ox(mp(Kx + A))
is m-generated over some open neighborhood of P. We take a semianalytic Stein open
neighborhood Up of P and a Stein compact subset Wp of Y with Up C Wp such that
['(Wp,Oy) is noetherian. Let v: XY — X be the normalization with Kx» + © :=
v*(Kx + A). By [Fujll, Theorems 1.21 and 1.27], after shrinking Y around Wp suitably,
we take a dlt blow-up a: X — X with Ks +A = o (K xv+0) such that X is Q-factorial

over Wp and (X, A) is divisorial log terminal. We consider ¥ := mrovoa: X — Y. If
necessary, we replace Up with a smaller semianalytic Stein open neighborhood of P.
Then, by Lemma B0, there exists a semianalytic Stein open neighborhood Up and a
positive integer mp such that admissible sections generate O (mp(Kg + A)) over Up.
Note that X is normal crossing in codimension one and satisfies Serre’s Sy condition
since (X, A) is semi-log canonical. Hence any admissible section descends to a section of
Ox(mp(Kx + A)). Thus Ox(mp(Kx + A)) is m-generated over Up. As we mentioned
above, since W is compact, we can take an open neighborhood U of W and a divisible
positive integer m such that Ox(m(Kx + A)) is m-generated over U. We finish the proof
of Theorem @I O

By using the following easy lemma, we can check that [HX|, Theorem 2] follows from
Theorem [I. This means that we do not need Kollar’s gluing theory in [K|| for the proof
of [HX], Theorem 2].

Lemma 4.11. Let 7: X — Y be a proper morphism of algebraic schemes defined over C
and let L be a line bundle on X. Let U be a nonempty open subset of Y in the classical
topology. Assume that L is w-generated over U. Then there exists a Zariski open subset
V of Y such that L is m-generated over V with U C V.

Proof. Let C be the cokernel of *m,L — L. We put V := Y \ 7#(SuppC). Then, by
definition, V' is a Zariski open subset with U C V' and L is m-generated over V. 0
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5. FREENESS FOR NEF AND LOG ABUNDANT LOG CANONICAL BUNDLES

In this section, we will prove Theorem 4. Then we will prove Theorem [T as an easy
application of Theorem 4. We will also prove Theorem I3 and Corollary IT0. For the
proof of Theorem 4, we first treat the following theorem. In the algebraic setting, it is
well known (see [Fuj6]). Once we know Theorem B, it is not difficult to prove Theorem
2.

Theorem 5.1. Let (X, A) be an irreducible divisorial log terminal pair and let m: X —'Y
be a projective morphism of complex analytic spaces. Assume that Kx + A is Q-Cartier
and is w-nef and m-abundant over Y. We further assume that Kg + Ag is m-semiample,
where S := |A| and Kg+ Ag := (Kx + A)|s. Let W be a compact subset of Y. Then
there exists a positive integer m such that Ox(m(Kx +A)) is m-generated over some open
neighborhood of W .

Proof. We can modify the argument in [Fuj6, Section 6] for our complex analytic set-
ting. Since the Kawamata—Viehweg vanishing theorem holds for projective morphisms
of complex analytic spaces, we can generalize [Fuj6, Theorem 6.1], which is a slight gen-
eralization of the Kawamata—Shokurov basepoint-free theorem, for our complex analytic
setting. By [Fujll, Theorem 21.4], which is a kind of a canonical bundle formula, and the
argument in Step 2 in the proof of [Fujll, Theorem 23.2], we can prove a complex analytic
generalization of [Fuj6, Theorem 6.2]. Therefore, we see that the desired statement holds
(see also [Fuj6, Theorem 1.1]). O

Let us prove Theorem 4.

Proof of Theorem [I.J. Let P be an arbitrary point of W. Since W is compact, it is
sufficient to prove that there exist a positive integer mp and an open neighborhood Up
of P such that Ox(mp(Kx + A)) is m-generated over Up. By Theorem [, we may
assume that X is normal. By taking a Stein compact subset Wp such that P € Wp and
['(Wp, Oy) is noetherian. By [Fujll, Theorems 1.21 and 1.27], after shrinking Y around
Wp suitably, we take a dlt blow-up and may assume that (X, A) is divisorial log terminal.
By induction on dimension, we may assume that Kg+ Ag is m-semiample over some open
neighborhood of P, where S := |A] and Kg + Ag := (Kx + A)|s. Hence, by Theorem
b1, we obtain the desired statement. We finish the proof. 0

The following proof is essentially due to Kenta Hashizume (see [H2, Lemma 3.4]).

Proof of Theorem IZ3. We can freely shrink Y around W suitably and always assume
that Y is Stein. By taking a dlt blow-up (see [BCHM, Theorems 1.21 and 1.27]), we may
assume that (X, A) is divisorial log terminal and is Q-factorial over W. By induction, we
may assume that Kg + Ag := (Kx + A)|g is m-semiample over some open neighborhood
of L for every log canonical center S of (X, A). By applying the argument in the proof of
[H?, Lemma 3.4], we can write Kx + A =) r;(Kx + 4,;) such that (X, A;) is divisorial
log terminal, Ky 4+ A, is Q-Cartier, r; is a positive real number, and Kx + A; is 7-nef and
m-log abundant over some open neighborhood of L for every i. Hence, by Theorem @4,
there exists a positive integer m; such that Ox(m;(Kx + 4;)) is m-generated over some
open neighborhood of L. Hence, Kx + A is m-semiample over some open neighborhood
of L. This is what we wanted. U

Theorem [7 is almost obvious by Theorem 3 and [EH2, Theorem 1.2].
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Proof of Theorem [I.]. We take an arbitrary point P € Z. Then it is sufficient to prove
the existence of a log canonical model of (X, A) over some open neighborhood of P.
We take P € U; ¢ W, C Uy C Wy, where U; is a Stein open subset of Z for i = 1,2
and W; is a Stein compact subset of Z such that I'(W;, Oz) is noetherian for i = 1,2.
Throughout this proof, we can freely shrink Z around W suitably. Since —(Kx + A) is
@-ample, we can take an effective R-divisor A on X such that Kx +A+A ~g, 0 and that
(X, A + A) is log canonical. By [Fujll, Theorems 1.21 and 1.27], we take a dlt blow-up
p: (X', A") — (X, A) over some open neighborhood of W5. We note that (X', A"+ A’) is
log canonical with Kx + A’ + A" ~g » 0, where A" :=p*A and ¢' :=pop: X' = Z. It
is sufficient to construct a log canonical model of (X', A’) over some open neighborhood
of P. By [EH2Z, Theorem 1.2], after finitely many flips and divisorial contractions, we
finally obtain (X", A”) over some open neighborhood of Wy such that Kx» + A” is nef
over Ws. By construction, Kx» + A" + A” ~g » 0 holds, where A" is the pushforward of
A" on X" and ¢": X" — Z is the structure morphism. Thus, by [GI, Theorem 6.1], we
can check that Kx»+ A" is ¢"-nef and ¢"-log abundant with respect to (X", A”) over Us
(see also [H3, Remark 3.7]). Therefore, by Theorem I3, Kx» + A” is ¢”-semiample over
some open neighborhood of P. This means that (X', A’) has a log canonical model over
some open neighborhood of P. This is what we wanted. We finish the proof. U

We prove Theorem 9 as an application of Theorem 4.

Proof of Theorem IQ. Let P be an arbitrary point of W. Since W is compact, it is
sufficient to prove that there exist a positive integer mp and an open neighborhood Up of
P such that Ox(mp(Kx + A)) is m-generated over Up. From now, we will freely shrink
Y around P. By [Fujll, Theorems 1.21 and 1.27], we take a dlt blow-up. Thus we may
assume that (X, A) is divisorial log terminal. Let S be a log canonical stratum of (X, A)
with Kg+Ag := (Kx+A)|s. It is obvious that Kg+ Ag is m-nef. By applying Conjecture
R to an analytically sufficiently general fiber F' of S — 7(.5), we see that K¢+ Ag is m-nef
and m-abundant. This means that Kx + A is m-nef and m-log abundant with respect to
(X, A). Hence, by Theorem 4, we obtain mp such that Ox(mp(Kx+A)) is m-generated
over some open neighborhood of P. We finish the proof. U

Let us prove Corollary 10, which is an easy application of Theorem 9.

Proof of Corollary II0. We can freely shrink Y around W. By using Shokurov’s polytope
(see [Fujll]), we can write Kx + A =" . r;(Kx + A;) such that (X, A;) is log canonical,
Kx + A; is Q-Cartier, r; is a positive real number, and Kx + A; is m-nef over W for
every i. In particular, Kx + A; is m-nef over U for every 7. Then, by Theorem 9, there
exists a positive integer m; such that Ox(m;(Kx + 4;)) is m-generated over some open
neighborhood of L for every ¢. This implies that Kx + A is m-semiample over some open
neighborhood of L. We finish the proof. U

Anyway, by Theorem I9 and Corollary 10, we are released from the abundance
conjecture for projective morphisms of complex analytic spaces. We close this section
with an important conjecture.

Conjecture 5.2. Let m: X — Y be a projective surjective morphism of normal complex
varieties and let (X, A) be a log canonical pair. Let W be a compact subset of Y. Assume
that Kx + A is m-nef over W. Then Kx + A is m-nef over some open neighborhood of
w.
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If Conjecture B2 holds true, then we can prove that Kx + A is w-semiample over some
open neighborhood of W in Theorem 3 and Corollary 0.

6. SUPPLEMENTARY COMMENTS

In this final section, we will make some supplementary comments on [Fujl] and [FG]
for the reader’s convenience.

6.1. In [EG, 2.20] and the proof of [EG, Theorem 4.3], we claim that we can freely use
the results in [Fujl, Section 2] by [BCHM). However, in order to prove [Fujl, Proposition
2.1] in dimension n > 4 (see also [Fujl, Remark 2.2]), the minimal model program with
scaling established in [BCHM] is not sufficient. We need the following result.

Theorem 6.2 (cf. [Bil, Theorem 5.2]). Let m: X — Y be a projective surjective morphism
of normal quasi-projective varieties and let (X, A) be a Q-factorial divisorial log terminal
pair such that Kx + A ~qg 0. Assume that m(|A]) C Y, that is, |A] is vertical with
respect to w. Then (X, A — e|A]) has a good minimal model over Y for every rational
number € with 0 < ¢ < 1. In particular, every (Kx + A — | A])-minimal model program
with ample scaling over Y always terminates.

If r(|A]) =Y, then Kx+A—¢|A] is not m-pseudo-effective for every rational number
e with 0 < & < 1. In this case, the minimal model program proved in [BCHM] is sufficient
for the proof of [Fujl, Proposition 2.1] in dimension n > 4. Theorem B2 follows from
[Bir]. We note that (X, A —¢|A]) is kawamata log terminal for every rational number
e with 0 < ¢ < 1. Hence, for the proof of Theorem B2, we need no deep results on
the abundance conjecture for log canonical pairs. There is no circular reasoning even
if we use [Bi, Theorem 5.2] in [EG]. For the details, see [Bi, Theorem 5.2]. We also
note that the most general result in this direction is treated in [HI|. By [BCHM] and
Theorem B2 above, we can freely use the results in [Fujl, Section 2] in dimension n > 4.
Therefore, there are no serious troubles in [FG]. In this paper, in Step [ in the proof of
Proposition B8, we use [EH2, Theorem 1.2] instead of Theorem B2 above. The minimal
model program established in [Fujl1] is insufficient for the proof of Proposition A8.

6.3. We make a small remark on [Fujl, Lemma 2.3| for the reader’s convenience. In the
proof of [Fujl, Lemma 2.3|, we claim that there exists a Q-divisor P on V satisfying
Kp, + Diff(A — D;) = ul}, (Ky + P). However, it is not clear when D, is irreducible
and the mapping degree deg[D; : V] = 2. In that case, we can not apply [AFKM, 12.3.4
Theorem)].

Example 6.4. We put Z := P! xP'. Let A be a general member of |p;Op1 (2) @ p5Op1(2)],
where p; is the ith projection for i = 1,2. Then A is a smooth elliptic curve and K7+ A ~
0. We consider the first projection h: Z — R := P!, In this setting, u :==h: Z =V := R
is a (Kz+A—¢e|A])-negative extremal Fano contraction over R. Of course, the horizontal
part A" =: Dy of |A] is irreducible and the mapping degree deg[D; : V] is two. In
[Fuil, Lemma 2.3|, we claim that there exists an effective Q-divisor P on V such that
Kp, = ulp, (Ky + P) holds without explaining it explicitly. It is somewhat misleading
when D; is irreducible with deg[D; : V] = 2.

Fortunately, as we see in the proof of Lemma EZ3 in this paper, we do not have to
construct a Q-divisor P on V in Case (III). Hence, there are no serious troubles in the
proof of [Fujl, Lemma 2.3].
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